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ABSTRACT 
 

Structural health monitoring is a process of evaluating and ensuring the safety and integrity of 
structural systems by converting sensor data into structural health monitoring information. The first 
and most important objective of structural health monitoring is to ascertain with confidence if damage 
is present or not. The idea is to characterize only the normal condition of a structure and the baseline 
data are used as a reference. When data are measured during continuous monitoring, the new data are 
compared with the reference. A significant deviation from the reference will signal damage. This 
decision-making procedure necessitates the establishment of a decision boundary. Choosing the 
decision boundary is often based on the assumption that the distribution of the data is Gaussian in 
nature. While the problem of damage detection focuses attention on the outliers or extreme values of 
the data, i.e. those points in the tails of the distribution, the establishment of the decision boundary 
based on the normality assumption weighs the central population of the data. This unwarranted 
assumption about the nature of the data distribution can significantly impair the performance of a 
structural health monitoring system by increasing false positive and negative indications of damage. In 
this study, a robust and automated damage classifier is developed by properly modeling the tails of the 
distribution using extreme value statistics.  
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1. INTRODUCTION 
The first and most important objective of any damage identification algorithm is to ascertain with 

confidence if damage is present. Considering most real world applications of damage detection, this 
detection must be accomplished in an unsupervised learning mode. Here, the term ‘unsupervised 
learning’ indicates that data from a damaged state are not used to aid in the damage detection process. 
The objective of the unsupervised damage detection is to establish a statistical model of the features 
extracted from the normal condition of structures and thereafter to signal significant departures from 
this normal condition.  

The statistical modeling of the features extracted from the measured data can be accomplished in 
several ways. The most direct methods seek to model the probability distribution of the normal 
condition using a priori training data. For instance, the outlier approach (Worden et al. 2000a) often 
assumes the damage sensitive features have a Gaussian distribution and the model parameters such as 
the mean vector and the covariance matrix are estimated from the data. More sophisticated approaches 
use Gaussian mixture models (Roberts 1998, 2000) or kernel density estimates (Worden et al. 2000b). 
The main limitation of all of these methods is that they make an unwarranted assumption about the 
nature of the feature distribution. For instance, the statistical modeling based on these methods weigh 
on central statistics such as the mean vector and the covariance matrix, and the analysis is largely 
insensitive to the tails of the distribution. However, damage detection is mainly concerned with the 
data points near the tails of the distribution. This unwarranted assumption about the nature of the 
feature distribution can lead to false positive and false negative indications of damage. 

The major problem with modeling the undamaged condition of a system is that the functional form 
of the distribution is unknown and there are an infinite number of candidate distributions that may be 
appropriate for the prediction applications. Furthermore, in some cases, only extreme values of events 
may be recorded due to sensor or storage limitations. Therefore, modeling the data as a parent 
distribution could also bring about erroneous results. For example, seismic stations are primarily 
interested in recording strong ground motions, which have magnitudes beyond certain strength to 
affect people and their environment (Kramer 1996). Currently, a choice among the infinite 
distributions is made by knowledgeable operator and then the parameter estimation is based on 
training data. This process is largely subjective. Any choice of distribution and parameters will also 
constrain the behavior of the tails to that prescribed distribution. 

In fact, there is a large body of statistical theory that is explicitly concerned with modeling the tails 
of distributions, and these statistical procedures can be applied to the problem of damage detection. 
The relevant field is referred to as extreme value statistics (EVS), a branch of order statistics. EVS has 
been widely used in engineering problems in fields like meteorology, hydrology, ocean engineering, 
pollution studies, strength of materials and so on. This paper illustrates that EVS can be used to 
minimize misclassification of damage for structural health monitoring applications and a procedure to 
automatically estimate the parameters of the extreme value distributions is presented. 

The layout of this paper is as follows: Section 2.1 introduces three types of extreme value 
distributions consisting of Gumbel, Weibull, and Frechet distributions. Section 2.2 describes the 
parameter estimation of extreme value distributions. Section 2.3 provides a brief descript of 
constrained nonlinear optimization technique for estimating the extreme distribution parameters. 
Section 3.1 shows a comparison between thresholds of the damage index calculated using Gaussian 
assumption with those calculated using EVS for numerical data generated from different probability 
density functions. Section 3.2 demonstrates validity of the parameter estimation method using real 
sample data and comparison studies with other methods are provided. Section 3.3 explores the 
integration of EVS into delamination detection in a compose plate using the time reversed Lamb 
waves. Conclusions and further recommendations are provided in Section 4. 

 
2. Extreme Value Statistics and Parameter Estimation of Extreme Value Distributions 
2.1 Extreme Value Statistics 

The Gaussian distribution occupies its central place in statistics for a number of reasons; not least 



is the central limit theorem (Benjamin and Cornell, 1970). The central limit theorem states that if 
{ }nXXX ,...,, 21  is a set of random variables with arbitrary distributions, the sum variable 

nXXXX +++=Σ K21  will have a Gaussian distribution as ∞→n . Although this theory is 
arguably the most important limiting theorem in statistics, it is not the only one. If the problem at hand 
is concerned with the tails of distributions, there is another theorem that is more appropriate.  

Suppose that one is given a vector of samples { }nXXX ,,, 21 K  from an arbitrary parent 
distribution. The most relevant statistic for studying the tails of the parent distribution is the maximum 
operator, max({ }nXXX ,,, 21 K ), which selects the point of maximum value from the sample vector. 
Note that this statistic is relevant for the right tail of a univariate distribution only. For the left tail, the 
minimum should be used. The pivotal theorem of EVS states that in the limit as the number of vector 
samples tends to infinity, the induced distribution on the maxima of the samples can only take one of 
three forms: Gumbel, Weibull, or Frechet (Fisher and Tippett, 1928).  

⎪
⎩

⎪
⎨

⎧
λ≥

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

λ−
δ

−=

β

otherwise0

ifexp)(          :FRECHET x
xxF  (1)

                     otherwise--exp    

if                   1                 
)(          :WEIBULL

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

δ
λ

λ≥

=
βx

x
xF  (2)

0  and   expexp)(:GUMBEL >δ∞<<∞−⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

δ
λ−

−−= xxxF  (3)

In a similar fashion, there are only three types of distribution for the minima of the samples; 
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where λ, α, and β are the model parameters, which should be estimated from the data. 

When samples of maximum or minimum data from a number of n-point populations are given, it 
is possible to select an appropriate limit distribution and fit a parametric model to the data. It is also 
possible to fit a model to portions of the parent distribution’s tails, as the distribution of the tails is 
equivalent to the appropriate extreme value distribution. Once the parametric model is obtained, it can 
be used to compute an effective threshold for novelty based on the true statistics of the data as opposed 
to statistics based on an unwarranted assumption of a Gaussian distribution. 

2.2 Parameter Estimation of Extreme Value Distributions  
A least squares method using the generalized weighted least squares is employed to find the best-

fit extreme value distribution.  
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where F, p, x, θ, W, and R represent an assumed cumulative density function vector from one of 
Eqs.(1)-(6), an empirical cumulative density function vector, a probability position vector, a shape 
parameter vector of F, a weighting matrix, and a constraint vector with respect to θ. For instance, for 
the Gumbel distribution, the shape parameter vector consists of δ and λ in Eq.(3). Regarding the 
constraints R, the lower constraints with respect to δ and β are imposed to ensure that the parameters 
lie in a feasible domain defined in Eqs.(1)-(6).  

Because our concern is to accurately predict one side of tail distributions, the weighting matrix is 
employed to weigh the either maxima or minima values of the distribution. (Castillo 1998). 
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where pm denotes the mth component of the empirical cumulative probability vector p. 
Since Eq.(7) is a nonlinear function with respect to θ and the constraints are defined to impose 

the lower bounds on δ and λ, a quadratic sub-problem with linear inequality constraints are employed 
to solve this optimization problem iteratively (Luenberger 1989).  

0cΑgH ≤−+=π iii
T

i
T ξξξξ

ξ
 subject to   

2
1Min sub  (9)

where ξ, Hi, gi, Ai, and ci are an unknown solution increment vector for θ, a Hessian matrix, a gradient 
vector, a linear constraint matrix, and a constraint vector at ith iteration, respectively. Specifically, the 
Hessian matrix and the gradient vector are derived as following: 
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where Fi and ∇θFi are the assumed cumulative density function and the first derivative of F with 
respect to θ at ith iteration. For the simplicity of the mathematical manipulation, the subscript i is 
omitted hereafter. 

Introducing a Lagrange multiplier vector µ, Eq.(9) can be rewritten as follows.  
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Eq.(11) is rearranged into the following equation by introducing a solution vector q denoting [ξ µ]T. 
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The first necessary condition of optimality is given as: 

0=π∇ Lq  (13)

Applying Eq. (13) to Eq. (12), the first necessary condition of Eq. (9) becomes: 
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Solving Eq.(14), the solution vector ξ is obtained and the solution θi+1 at the next step is updated from 
the current solution.  

ξθθ +=+ ii 1  (15)

If the solution vector ξ violates any of the constraint condition of Eq.(9), then the active set 
strategy (Fletcher 1971) is used to impose the inequality constraints on θ and Eq.(9) is solved 



iteratively until the all solutions lie in the feasible domain defined by the inequality conditions. The 
solution procedure is described in detail in the next section. 

 
2.3 Solution Procedure for Quadratic programming with the active set strategy  
The iteration described in this section is required due to inequality constraints. If no inequality 
constraint is triggered, there is no need for this iteration. Note that the iteration procedure in this 
section is the inner iteration that should be performed in each outer iteration presented in Section 2.2. 
Therefore, a different subscript j is used instead of I to distinguish this iteration procedure from the 
previous one.  
 
1) Calculate the Hessian matrix and the gradient vector at the ith iteration. Note that the Gauss-Newton 
Hessian is employed to approximate Hessian matrix instead of the Newton Hessian matrix because the 
Gauss-Newton Hessian converges better than the Newton Hessian when the optimal solution is located 
far from the initial guess: 

FWFH θθ ∇∇≈ T , (16)

The two Hessians are almost identical when the optimal solution is near the initial guess because the 
second derivative term of the Newton Hessian matrix in Eq.(10) becomes negligible 
 

2) Set the constraint matrix A and the constraint vector c denoting the distance between the coordinate 
θi and the boundaries of the inequality constraints. Initialize an active constraint set ℵ0 that indicates 
which constraints are triggered.  
 

3) Initialize the augmented Hessian matrix L and the augmented gradient vector γ of Eq. (12).  
 

4) Calculate the trial direction vector by solving Eq. (14): 
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11 );( −
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5) Calculate the search step length αi:  

cA )}({1
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6) Find the row number k corresponding to the minimum value less than 1.0 in αi+1.  

]0.1,min[ 11 ++ =α j
k
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where αk
j+1 denote the kth row value of αj+1. Note that if k

jα  is larger than 1.0, then the kth row is set 
to null which means no inequality constraint is triggered.  
 

7) Update the direction vector corresponding to the design variables: 

ξξξ ∆α+=+
k
jjj 1  (20)

8) Check out the convergence of ∆ξ and go to Step 13 if the convergence is satisfied. Otherwise 
processed to the next step: 

ϑ<∆ + ||||/|||| 1jξξ  (21)

where ||.|| and ϑ denote the Euclidian norm and a prescribed convergence criterion. 
 

9) Update the active constraint set by adding the constraint index k indicating the corresponding 
inequality constraint is triggered. If k is null, skip this step:  

}{1 kjj ∪ℵ≡ℵ +  (22)

10) Update the Hessian matrix: 
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where 
1+ℵ j

A  denotes the active constraint matrix corresponding to the active constraint set ℵj+1. 
 

11) Update the gradient vector: 
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where 
1+ℵ j

c  denotes the active constraint vector corresponding to the active constraint set ℵj+1. 
 

12) j=j+1 and go to Step 4. 
 

13) Find out the minimum negative Lagrange multiplier and the corresponding row k. If all the 
Lagrange multiplier is positive then terminate the process. Otherwise,  

]min[ 11 ++ =µ j
k
j µ  (25)

where µk
j+1 denotes the kth row value of µj+1. Note that if µk

j+1 is positive, then terminate the iteration 
process. This means that all solutions are optimal on the hyperplane of the current active constraints.  
 

14) Update the active constraint set by dropping the inactive constraint. If the active constraint set is 
empty, terminate the iteration procedure. Otherwise go to Step 10.  

}{1 kjj −ℵ≡ℵ +  (26)

 
 
3. EXAMPLES 
3.1 Numerical Simulations 

Simulated random signals from three different distributions are used to demonstrate the 
usefulness of EVS in accurately modeling the tail distributions without any prior knowledge of the 
parent distribution. In each example, a 99% confidence interval for the distribution is computed based 
on the following three methods: 

 
1. The assumed true parent distribution. 
2. A best-fit normal distribution where the sample mean and standard deviation are estimated 

from the sample data randomly generated from the assumed parent distribution.  
3. An extreme value distribution, the parameters of which are estimated by solving the proposed 

nonlinear optimization for either the top or bottom fraction of the simulated random data.  
 
Hereafter, the aforementioned three methods for the confidence interval estimation are referred to as 
Method 1, Method 2, and Method 3, respectively. More detailed description on these methods can be 
found in Sohn et al. 2004 regarding setting a confidence interval on the parent distribution using the 
above three distributions.  

Three different parent distribution types are chosen to investigate the number of false-positives, 
or type I errors, produced by each of the three methods discussed previously. The normal, lognormal 
and gamma distributions are modeled using the three methods and the number of outliers is compared 
for a 99% confidence interval. The normal distribution provides a sanity check to make sure that the 
establishment of the confidence intervals based on EVS and best-fit normal distribution obtained by 
parameter estimation produce similar thresholds. The lognormal and the gamma distributions are both 
skewed and provide an opportunity to dramatically illustrate the shortcomings of the confidence 
interval estimation based on a normal assumption of the data.  



The analysis results for the sample size of N = 10,000 are presented in this study. The statistical 
parameters of the true assumed parent distributions are as same as those used to generate samples in 
Sohn et al. 2004. Castillo (1988) analytically shows that both the minimum and the maximum for the 
normal and lognormal distributions can be modeled with a Gumbel distribution while gamma 
distribution has Gumbel distributed maxima and Weibull distributed minima. However, it is 
impossible to analytically figure out which extreme distribution the maximum or minimum sample 
data points should follow unless the parent distribution of the sample data is known a priori. If the 
maximum or minimum data points are obtained from unknown parent distribution, the specific type of 
the extreme distribution should be identified a posteriori.  

In this study, the best-fit extreme value distribution is selected a posteriori when parameter 
estimation using all three types of extreme value distributions has been performed. The best-fit 
extreme value distributions selected by this study and analytic method presented in Castillo are 
compared for all numerical examples in Table 1. The selected extreme distributions using the proposed 
method are in agreement with the analytical ones presented in Castillio’s except for minimum for 
lognormal distribution.  

Tables 4, 5 and 6 summarize the estimated confidence intervals and the number of outliers for the 
given 10,000 sample data point. Note that all results for Method 3 are obtained by using the best-fit 
extreme value distributions shown in Table 1. Only the first 1,000 data points are plotted for 
illustrative purposes in Figures 2, 3 and 4. 

Looking at the normally distributed data in Figure 1, it seems that the thresholds obtained from 
Methods 1, 2 and 3 are comparable. Table 2 shows the upper and lower confidence limits computed 
from Methods 1, 2 and 3, and the associated numbers of outliers. As can be seen in Figure 1 and Table 
2 even though Method 3 returns thresholds that are slightly different from the known probability 
density function, the number of outliers is close to the expected 1% outliers. 

In the second numerical example, the parent distribution is lognormal instead of normal. The 
associated lognormal density function is displayed on the left side of Figure 2. The skewness and 
kurtosis of this distribution are 1.74 and 8.45, respectively. Note that, for all normal distributions, the 
values of the skewness and kurtosis should be 0.0 and 3.0, respectively (Wirsching et al., 1995). 
Therefore, the departure of the skewness and kurtosis values from 0.0 and 3.0 indicates the non-
Gaussian nature of the data. Figure 2 and Table 3 display similar analysis results for the lognormal 
parent distribution. For the lognormal example, Method 3 only returns 9 more false-positive 
indications than the expected 100 outliers as calculated from Method 1. Method 2, however, shows 
over twice as many false-positive indications as expected because the upper threshold is 
underestimated. On the other hand, the lower limit based on Method 2 misses all of the minimum 
values because the lower limit is overestimated..  

Finally, the sequential tests are applied to data sets simulated from a gamma parent distribution. 
This gamma distribution has the skewness value of 1.15 and kurtosis of 5.00, respectively. The 
associated density function is plotted on the left side of Figure 3. The extreme value method again 
shows a distinct advantage over the normal assumption. For the gamma distribution, Method 3 returns 
five higher numbers of false-positives than expected from Method 1, while Method 2 again returns 
almost twice as many false-positives as Method 1. The number of false positive indications returned 
by Method 2 might lead to incorrect damage diagnosis of the system. 

 
 

Table 1. Comparison results with domain of the attractions derived by Castillo (1998) 
Gaussian Log-normal Gamma  

Max Min Max Min Max Min 
Method 3 Gumbel Gumbel Gumbel Weibull Gumbel Weibull 
Castillo Gumbel Gumbel Gumbel Gumbel Gumbel Weibull 
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Figure 1. The exact 99% confidence interval of a normal parent distribution compared with that from 
extreme value distribution. This figure shows the first 1000 data points from a 10,000 data point set. 

 
Table 2. Estimation of 99% confidence intervals for the 10,000 data points generated from a Gaussian 

parent distribution. 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α = 0.01) 
Method 1 (Exact) 2.548 -2.548 100 

Method 2 (Normal) 2.602 -2.581 96 
Method 3 (Gumbel) 2.576  -2.561  100 
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Figure 2. The exact 99% confidence interval of a lognormal parent distribution with those computed 

from either extreme value distribution or the normality assumption. 
 
Table 3. Estimation of 99% confidence intervals for the 10,000 data points generated from a lognormal 

parent distribution. 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α = 0.01) 
Method 1 (Exact) 9.854 0.750 100 

Method 2 (Normal) 7.278 -1.160 241 
Method 3  9.771  0.7357 109 
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Figure 3. The exact 99% confidence interval of a gamma parent distribution with those computed from 

either extreme value distribution or the normality assumption. 
 
 

Table 4. Estimation of 99% confidence intervals for the 10,000 data points generated from a gamma 
parent distribution 

Estimation method Upper confidence 
Limit 

Lower confidence 
Limit 

# of outliers out of 
10,000 samples. 

(α = 0.01) 
Method 1 (Exact) 46.369 1.689 100 

Method 2 (Normal) 37.56 -7.257 223 
Method 3 (Gumbel) 46.240 1.684 105 

 
 

3.2 Parameter Estimation of Extreme Value Distribution using Real Sample Data 
The proposed parameter estimation technique is applied to estimate the statistical distributions of 

real extreme value data such as Maximum wind velocity data, epicenter data, and fatigue data 
published in Castillo 1998.  

 
Table 5 shows the residuals of the converged error function defined in Eq. 7. For each data set, 

the smallest residuals are denoted in bold and the best-fit distribution corresponding to the smallest 
residuals is listed in the last column of Table 1. To validate the proposed selection criterion for extreme 
value distributions, the extreme value distributions selected by other selection methods are presented 
in Table 6. It is concluded that the extreme distributions selected by the proposed method agree with 
those estimated by other methods (Castillo 1998). In addition, it should be noted that the proposed 
method is superior to the other methods in a sense that the final residuals using the proposed method 
are smaller than those from the other methods  

Figure 4 shows the estimated cumulative density functions and empirical cumulative density 
functions based on the best-fit extreme value distribution for each data set. Note that data points with 
the smallest values are best fitted of all data points especially when Epicenter data are used. This is 
because the weighting matrix of Eq.(8) plays an important role in weighing either maxima or minima 
values of the distribution. Finally, regarding the stability of the nonlinear optimization used for 
parameter estimation, all solutions are obtained successfully in a few iterations.  

 
 



 

 
Table 5. Selecting the best-fit EV distribution based on the converged error function 

Residuals of Converged Error Function Sample Data 
Weibull Gumbel Frechet 

Best-fit EV 
dist. 

Wind (+)* 1.1103 1.0761 0.19692 Frechet 
Epicenter (-) 0.74287 6.7358 6.9779 Weibull 
Fatigue (-) 0.17664 2.1031 2.1873 Weibull 
Wave (+) 0.085799 0.084634 0.095251 Gumbel 

* (+) and (-) denote maxima and minima of the sample data. 
 
 

Table 6. Comparison with other methods to decide domain of attractions 

 Probability 
paper Picklands III Curvature 

method This study 

Wind (+) Gumbel or 
Frechet Gumbel Frechet Frechet 

Epicenter (-) Weibull Weibull Weibull Weibull 
Fatigue (-) Weibull Weibull Weibull Weibull 
Wave (+) Gumbel Gumbel Gumbel Gumbel 
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Figure 4. Estimated cumulative probability (red line) using each best-fit EV distribution and empirical 



cumulative probability (blue line) using each sample data. 

3.3 Application to Damage Detection of a Composite Plates 
The overall test configuration of this study is shown in Figure 5 (a). The test setup consists of a 

composite plate with a surface mounted sensor layer, a personal computer with a built-in data 
acquisition system, and an external signal amplifier. The dimension of the composite plates is 60.96 
cm x 60.96 cm x 0.6350 cm (24 in x 24 in x 1/4 in). A total of 16 PZT patches are used as both sensors 
and actuators to form an “active” local sensing system. Because the PZTs produce an electrical charge 
when deformed, the PZT patches can be used as dynamic strain gauges. Conversely, the same PZT 
patches can also be used as actuators, because elastic waves are produced when an electrical field is 
applied to the patches. In this study, one PZT patch is designated as an actuator, exerting a predefined 
waveform into the structure. Then, the adjacent PZTs become strain sensors and measure the response 
signals. This actuator-sensor sensing scheme is graphically shown in Figure 5 (b). This process of the 
Lamb wave propagation is repeated for different combinations of actuator-sensor pairs. A total of 66 
different path combinations are investigated in this study. Actual delamination is seeded to the 
composite plate by shooting a steel projectile into the composite plate. The data collection using the 
active sensing system was performed before and after the impact test. 
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(a) Testing configuration 
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(b) A layout of the PZT sensors/actuators 

Figure 5: An active sensing system for detecting delamination on a composite plate 

In this study, a damage detection method is developed based on time reversal acoustics. 
According to the time reversal concept, an input signal can be reconstructed at an excitation point 
(point A) if an output signal recorded at another point (point B) is reemitted to the original source 
point (point A) after being reversed in a time domain as shown in Figure 6. This process is referred to 
as the time reversibility of waves. This time reversibility is based on the spatial reciprocity and time-
reversal invariance of linear wave equations (Fink and Prada 2001). However, it should be noted that 
time reversal acoustic is originally developed for propagation of body waves in an infinite solid media. 
Additional issues such as the frequency dependency of time reversal operator and signal reflection due 
to limited boundary conditions should be addressed to successfully achieve the time reversibility for 
Lamb waves. By developing a unique combination of a narrowband excitation signal and wavelet-
based signal processing techniques, the authors demonstrated previously that the original input 
waveform could be successfully reconstructed in a composite plate through the enhanced time reversal 
method (Park et al. 2004). 

This paper takes advantage of this enhanced time reversal method to identify defects in 
composite plates: Damage causes wave distortions due to wave scattering during the time reversal 
process and it breaks down the linear reciprocity of wave propagation. Therefore, a damage index is 
defined as a function of the reconstructed signal’s deviation from the original input waveform: 
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where the )(tI  and )(tV  denote the known input and reconstructed signals. to and t1 represent the 
starting and ending time points of the baseline signal’s first Ao mode. The value of DI becomes zero 
when the time reversibility of Lamb waves is preserved. Note that the root square term in Eq. (27) 
becomes 1.0 if and only if )()( tItV β=  for all t where t0 ≤ t ≤ t1 and β is a nonzero constant. 
Therefore, a simple linear attenuation of a signal will not alter the damage index value. If the 
reconstructed signal deviates from the input signal, the damage index value increases and approaches 
1.0, indicating the existence of damage along the direct wave path. It should be noted that the 
proposed damage detection method leaves out unnecessary dependency on past baseline signals by 
instantly comparing the known input signal to the reconstructed input signal. By eliminating the need 
for the baseline signals, the proposed damage detection is immune to potential operational and 
environmental variations throughout the life span of a structure.  
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Figure 6: A schematic concept of damage identification in a composite plate through time reversal processes 

The next step is to compute a threshold value. Once the damage index value exceeds a pre-
specified threshold value, the corresponding actuator-sensor path is defined as damaged. First, the 
damage index values were computed for all 66 paths when there was no damage on the plate. Then, 
one of the extreme value distributions was fitted to the damage index values as shown in Figure 7 (a). 
In this example, the Weibull distribution turned out to best describe the damage index values. Once the 
parameters of the Weibull distribution was estimated by the presented quadratic programming, a 
threshold value corresponding to a 99.9% confidence level was established in Figure 7 (b). 

Damage Index

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Weibull Distribution

Damage Index

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Weibull Distribution

(a) Best-fitting extreme value 
distribution 

Wave propagation paths

D
am

ag
e 

In
de

x

Wave propagation paths

D
am

ag
e 

In
de

x

 
(b) Establishing a threshold value for detecting the wave paths with 

damage  
Figure 7: Threshold establishment using Extreme Value Statistics 

Figure 8 (a) shows the actual impact location. The identification of the damaged paths shown in 
Figure 8 (b) is based on the results shown in Figure 7 (b). The final goal is to pinpoint the location of 



delamination and to estimate its size based on the damaged paths identified in Figure 8 (b). To identify 
the location and area of the delamination, a damage localization algorithm is also developed in Sohn et 
al. 2004. The delamination location and size estimated by the active sensing system was presented in 
Figure 8 (c), and the estimate from the proposed damage identification matched well with the 
ultrasonic scan results. 
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(c) The damage size and location 
identified by the proposed method 

Figure 8: Detection of different sizes of damage using the wavelet-based approach 

 
4. SUMMARY 

Data that lie in the tails of distributions have traditionally been modeled based on a Gaussian 
distribution. This inherent assumption of many statistical processes can be dangerous for applications 
such as damage detection, which deal mostly with those extreme data points that may not be 
accurately modeled by the Gaussian assumption. Extreme value statistics (EVS) focuses on modeling 
those extreme points without knowing their parent distributions. Modeling the tails simplifies the 
decision-making (establishment of decision boundaries) to some extent because the extreme values 
follow one of three EV distributions. These extreme points conform to one of three types of 
distributions: Gumbel, Weibull, or Frechet. In this paper, the damage detection is reworked to take 
advantage of these extreme value distributions.  

A quadratic programming technique for solving nonlinear optimization problems is adopted to 
automatically estimate the parameters of the extreme value distributions. In particular, no specific type 
of the distribution for each sample data needed to be known a priori. The first numerical examples 
demonstrated the effectiveness of EVS when applied to a simple novelty analysis. Thresholds obtained 
from the actual distribution, the best-fit normal distribution and the extreme value distributions were 
compared. In all of the examined cases, EVS produced results that only slightly deviated from those of 
the true distributions. In the second example, it was shown that the best-fit extreme distribution can be 
determined a posteriori by applying the presented parameter estimation technique to real sample data. 
Finally, EVS is incorporated into a delamination detection study where delamination in a composite 
plate was successfully detected by using PZT materials for sensing and actuation.  
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