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ABSTRACT 
 
NEES (the George E. Brown, Jr. Network for Earthquake Engineering Simulation) is a national, 
networked resource for next-generation experimental earthquake engineering research and education 
in the United States.  The goal of NEES is to support open access to and use of NEES’s facilities and 
data by the earthquake engineering community.  The system infrastructure to support the NEES 
activities is the NEESgrid which is intended as a distributed virtual “collaboratory” 
cyberinfrastructure for earthquake experimentation and simulation.  Building on grid technologies, 
this collaboratory will allow researchers to gain remote, shared access to experimental equipment and 
data.  Tools are being developed to support the sharing, access, and utilization of the NEESgrid data 
repository, and thus enhance efficient communication among the researchers in earthquake 
engineering.  One of the key ingredients required to bridge between the data repository and the 
experimental users is the development of data models that provide the “semantic” information 
describing the project and experimental data.  This paper describes the current effort in developing a 
reference data model for NEESgrid shake table experiments.  
 
 
INTRODUCTION 
 
In order to facilitate collaboration within the NEES framework, one of the key services that NEESgrid 
needs to support is with respect to the data and metadata for earthquake engineering simulations.  It is 
well known that engineering design and manufacturing activities generally involve a large set of 
independent but interrelated data items (Law et al. 1987). Traditional hierarchical, network, and 
relational database models, which are designed for highly structured commercial applications, do not 
adequately support technical engineering problem domains. To support the expressive concepts and 
the semantic content of engineering data, object oriented data models are often employed.  Influenced 
by the field of artificial intelligence, semantic relationships such as classification, association, 
aggregation and generalization can be used for organizing and structuring engineering data (Law 
1988).  Besides the mechanism needed to represent and manipulate data, data model development also 
requires some knowledge on the intended use of the data (Law et al. 1991).  For this purpose sample 
data sets are being developed that demonstrate the features of the data models along with scenarios for 
the use of the data and models. Specifications for the tools necessary to support entering, importing, 
storing, searching, and extracting data from the repository are being proposed and developed. This 
paper briefly describes the current effort in developing a reference NEESgrid data model, focusing on 
shake table experiments.   
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A data model is in essence a representation of the data and their interrelationship and provides a 
conceptual or implementation view of the data.  A data model can be viewed as the “grammar”, 
“vocabulary” and “content” that represent the types of “information” stored in a “system”.  The 
grammar defines the relationships among the data elements in the system; the vocabulary defines 
the terminology used to describe these elements; the content defines what is to be included in the 
system. Within the scope of the NEESgrid data/metadata effort, data is defined as all of the project 
related information and encompasses observational (or acquired) data recorded prior to the 
experiments and during the experiments by means of sensors, cameras and the like; computational 
(or generated) data for and as a result of simulations, post-processing, etc.; literature in the form of 
reports, journal papers, drawings, etc. Associated descriptive and related data, i.e. metadata (or data 
about the data), are defined and published in a prescribed (by NEESgrid) format and language.   
 
 
DATA MODELING TOOL AND APPROACH 
 
There are many existing data modeling techniques and tools that are available to help design a 
database and to structure the data.  A brief review of relevant techniques and approaches has been 
reported earlier (Peng and Law 2004a).  This section briefly discusses the tool selected for developing 
the NEESgrid data model and the basic concepts of object-oriented data modeling. 
 
Protégé – An Ontology Development Tool 
 
To facilitate the design of the NEESgrid data model, we selected Protégé (http://protege.stanford.edu), 
which is an open-source software package designed to help developing ontology for knowledge-based 
systems (Gennari et al. 2002).  Ontology represents explicit formal specifications of the terms in the 
domain and the relations among them (Noy and McGuinness 2002). As open source software, Protégé 
has attracted a wide variety of plug-ins from around the world to enhance its capabilities.  Some of 
these software plug-ins allow a model developed in Protégé to be exported in many standard formats, 
including UML (Unified Modeling Language (Arlow and Neustadt 2001)), XML Schema 
(http://www.w3.org/XML/Schema), RDF (Resource Description Framework, http://www.w3.org/ 
RDF/), OWL (Web Ontology Language, http://www.w3.org/2001/sw/WebOnt/), and others. 
 
In Protégé, a graphical user interface (GUI) is provided to facilitate ontology development.  The 
interface enables the modeling of an ontology of classes to describe a particular subject with a set of 
concepts and their relationships.  The interface also allows direct entering of specific instances of data 
and the creation of a knowledge base.  Figure 1 shows an example of the GUI, with the view of 
classes shown in the left window, and the view of detailed attributes of a class (e.g. Project class) 
shown in the lower right window. 
 
Object-Oriented Data Modeling 
 
Object-oriented data modeling approach is employed in the development of NEESgrid data model.  In 
an object-oriented data model, information is modeled as objects, which can be any sorts of  entities 
(Rumbaugh et al. 1990).  The general representation of certain type of objects is called a class, which 
represents explicit description of concepts in a domain. The creation of an object of a certain class is 
called instantiation. The relationship between an object and a class can be viewed analogically in a 
procedural language in that a variable being a particular instance of a pre-defined type such as an 
integer.  For example, Project is modeled as a class, and a Mini-MOST experiment (Nakata et al. 
2004) is an object instance of the Project class. 
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 Figure 1 – Protégé Interface with OWL Plug-in 

An object encapsulates certain related data as slots, which are also called attributes or properties.  
Slots can have different facets describing the value type, allowed values, the number of values 
(cardinality), and other features of the values the slot can take.  A value-type facet describes what 
types of values can fill in the slot.  Some common value types are string, number, Boolean, 
enumerator, and object instance.  Allowed objects and the variety of values (e.g. minimum number, 
maximum number) of a slot are often referred to as a range of a slot.  Slot cardinality defines how 
many values a slot can have, such as single (at most one value) or multiple (more than one value).  For 
example, “minute” is a slot of class Time, with data type defined as integer, cardinality one and range  
from 0 to 59. 
 
One important feature of object-oriented modeling is the concept of class hierarchies, with slots of a 
superclass being inherited by its subclasses.  This inheritance feature allows us to define the 
common slots used by several classes at the highest possible level in the hierarchy, which avoids the 
duplication of slots at the lower levels.  A class can have subclasses that represent concepts that are 
more specific than the superclass.  
 
 
A REFERENCE DATA MODEL FOR NEESGRID 
 
As depicted in Figure 2, the NEESgrid data/metadata effort is working towards producing end-to-end 
solutions that integrate site specifications database, project level model, domain specific data models, 
and common elements. To capture all these data, the reference data model is designed to include six 
base classes, namely SiteInformation, Activity, Apparatus, ApparatusSetup, DataElement, and 
ComplexDataType.  The high-level class diagram of the reference data model is presented in Figure 3, 
which shows the association relationship among classes.  (The ComplexDataType class, which is 
employed to support other base classes, is not shown in the figure.)  The association relationship exists 
between classes when an object of one class knows/contains an object of another class.  For example, 
a Project object knows about its Tasks objects, a Project also contains Organizations, Sites, and 
RolePersons.  RolePerson is in turn defined as the combination of a Person and his/her role in a 
Project.  The arrow in Figure 3 denotes the direction of the relationship contains; i.e., A Æ B indicates 
that class A knows/contains class B. 
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Figure 2 – Overall Data Model for NEESgrid (Courtesy of Chuck Severance) 
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Figure 3 – High-level Class Diagram of the Reference Data Model 

Overview of the Reference Data Model 
 
Although the NEESgrid reference data model is intended to focus on the data requirements for shake 
table experiments, large portion of the model is of sufficient generality to be used for other types of 
experiments, such as centrifuge, pseudo-dynamic tests, etc.. The following gives a brief description 
about the six groups of base classes defined in the reference data model. 
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� SiteInformation: SiteInformation is modeled to represent a typical experiment site and its 
associated personnel, facilities, equipments and other information.  In the reference data model, 
Site is modeled as the aggregation of other component classes, such as RolePerson, 
Organization, PrimaryEquipment, and SecondaryEquipment.  This group of classes is intended 
to be associated with the site specifications database (Kutter et al. 2004) that is currently under 
development by the NEES community. 

� Activity: Activity is designed to support project level modeling.  Common properties of Activity 
classes include objective, description, start time and end time.  The duration of an Activity can 
be calculated by using start time together with end time.  The start time of an Activity can also 
be used to identify which Activity happens first, i.e. to sort out the sequence of several 
Activities. There are four basic types of Activities, including Project, Task, EventGroup and 
Event.  A Project is a collection (organized group) of tasks designed to achieve specific goals 
and objectives of a project.  A Task belongs to a particular Project and contains one or more 
EventGroups.  Each Task typically serves a specific role in a Project.  An EventGroup is defined 
as a collection of Events. Any change to the data acquisition setup, sensor setup or the specimen 
setup would initiate a new EventGroup.  An Event, which is the atomic level of Activity, refers 
to each single run of an experiment or a simulation.   

� Apparatus:  Apparatus is defined as any equipment, specimen, or computational resource that 
may be used in an Activity.  In the current version of the reference data model, the direct 
subclasses of Apparatus include Specimen, PrimaryEquipment, SecondaryEquipment and 
TertiaryEquipment.  Explicit modeling of Specimen is not considered in the reference model 
(Peng and Law 2004a).  Only the most basic modeling is provided (as a collection of descriptive 
files, drawings, and/or photos). This design reflects current approach used to describe specimen 
in earthquake engineering experiments. However, if so desired, the Specimen class can be 
extended to support other, more detailed, models.   

� ApparatusSetup: ApparatusSetup models the arrangement and setup of apparatus for all 
experiments. Universal modeling of ApparatusSetup is very difficult. Not only are there 
different types of experiments (such as shake table, pseudo-dynamic tests, centrifuge, and 
tsunami) and different materials (such as concrete, steel, wood, etc.), but also the geometry of 
specimen, the arrangement of sensors, and the configuration of PrimaryEquipment may be too 
complicated and cumbersome to model.  For example, the “as-built” locations of sensors may be 
different from the “design” locations, and the exact physical locations (i.e., the coordinates x, y, 
z values) of sensors may be very hard to be recorded.  Therefore, current design for the 
ApparatusSetup model focuses on tools and methodologies that can capture and organize CAD 
drawings, sketched drawings and notes, photos, narrative descriptions, and electronic notes, etc. 

� DataElement:  DataElement represents all types of data that may be generated or processed 
during an Activity.  The DataElement normally serves as Input/Output to an Activity.  Types of 
DataElement include text document, publication, earthquake record, photo, CAD drawing, 
movie, etc.  In NEESgrid data/metadata effort, it is assumed that the data is saved in or 
translated into computer-readable format.  Therefore, a DataElement object is represented in the 
format (such as a file) that can be saved in computer memory, on disks, or in some kind of data 
storage repository. 

� ComplexDataType: ComplexDataType is defined in the reference data model to represent any 
data type that is not a simple data type such as integer, float, Boolean, or character string.  Some 
of the example subclasses of ComplexDataType include Folder, RolePerson, Unit, DateTime, 
Location, Measurement, Angle, etc.. 

 
Features of the Reference Data Model 
 
Since the reference NEESgrid data model is developed specifically to support collaborative 
earthquake engineering experiments and simulations, it has several unique features.  Details of these 
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features have been discussed by Peng and Law (2004c).  The following briefly describes two 
important but unique features of the developed reference NEESgrid data model.  
 
The reference data model explicitly models certain Activities that are carried out at multiple Sites.  
Figure 4 shows an example project that has a single site Task (e.g. Task1) and a MultiSiteTask (e.g. 
M_Task1).  The MultiSiteTask M_Task1 has Tasks that are undertaken at both Site1 and Site2.  The 
MultiSiteEvent M_E1 has an Event E2 at Site1 and an Event E4 at Site2, and the MultiSiteEvent 
M_E2 has an Event E3 at Site1 and an Event E5 at Site2.  As shown in Figure 4, although Project 
does not directly contain Task2 that takes place at Site2, Task2 can still be accessed from the Project 
since M_Task1 contains Task2. This design enables the support of the types of experiments that are 
carried out either simultaneously or independently at several Sites. 
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Figure 4 – Layout of an Example Project 

The reference data model includes a sensor model that is designed specifically to support earthquake 
engineering experiments.  The data acquisition equipment is modeled as a collection of classes, 
including Sensor, DAQCable, DAQChannel, and DAQSystem.  Figure 5 shows the relationships and 
the slots of these classes. Typically a data acquisition system involves at least three main components:  
(1) the sensors which respond to a physical stimulus and generate analog voltage signals; (2) a 
DAQchannel which receives the signal and uses predefined filter, gain, offset, excitation, sensitivity 
information for Analog-to-Digital and Engineering Unit conversions; and (3) a PC unit which uses 
some communications link to retrieve the data.  
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Figure 5 – Setup and Modeling of DAQ Devices 
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VALIDATION AND USABILITY TEST 
 
The usability of the reference data model has been tested with legacy experimental data (Peng and 
Law 2004b).  For the validation tests, Protégé (Gennari et al. 2002) was employed as the interface to 
input experimental data and local file system was used as the storage medium. Legacy data from 
several earthquake experiments have been used. For illustration purpose, this paper focuses on the 
data sets obtained from a Mini-MOST experiment (Nakata et al. 2004). 
 
Mini-MOST Experiment 
 
The main purpose of the Mini-MOST experiment is to show the capability of the various NEESgrid 
service components using a small-scale physical experimental setup (Nakata et al. 2004). The Mini-
MOST experimental hardware, as implied by its name, is small in size and can be easily packed and 
shipped to experimental sites.  The Mini-MOST experiment provides a platform for researchers to 
become familiar with the NEESgrid software and to gain first-hand experience in using the NEESgrid 
services.  For the validation test of the reference data model, the data sets generated from a particular 
Mini-MOST test on February 28, 2004 at University of Illinois at Urbana-Champaign (UIUC) are 
employed. 
 
Inputting Experimental Data 
 
For validation purpose, data generated from the Mini-MOST experiment was ingested using Protégé 
(Gennari et al. 2002) and saved as files in a local file system.  As we mentioned earlier, besides 
defined classes and their properties, Protégé can also be used to handle instances of data. Data related 
to Mini-MOST experiment can be inputted using the slots (properties) as defined in the reference data 
model.  If a slot is defined as primitive type, such as Integer, Real Number, Time, or String, etc., we 
can simply type in the value.  If a slot is defined as Objects, then we can either choose a previously 
created object or create a new one.  If a slot is defined as of type “URI” (Universal Resource 
Identification, which would normally refers to a file), we can save the file in a particular location and 
then enter the URI for the file location. Other types of objects, such as Task, EventGroups, Event, 
SensorSetup, InfrastructureSetup, Sensor, Specimen, and etc., can also be created and inputted 
through Protégé interface. Therefore, all the objects related to Mini-MOST experiment can be created 
and saved.  The metadata, i.e. information about the data, are saved as an OWL 
(http://www.w3.org/2001/sw/WebOnt/) file.  Other experimental data, such as specimen photos and 
sensor readings, can be stored in a file on a web server with its URI saved in the OWL file.   
 
Browsing Experimental Data 
 
For validation purpose, we implemented a project viewer to retrieve the saved data and to view the 
data on a web browser according to the data model.  The program is implemented using Java Servlet 
technology (http://java.sun.com/products/servlet/); and the parsing of the OWL file is handled by 
using Jena (McBride et al. 2004). 
 
Since the data is organized according to the project it belongs to, the project viewer is started with a 
webpage that contains a list of projects.  When we click on a particular project, say miniMOST-1, the 
details of the project will be shown on the browser.  The details include the values for all the slots 
defined for Project class.  If a slot is defined to have data with primitive data type, the value is shown 
directly in the webpage.  If a slot is defined to be a reference to other object, then a link is shown in 
the webpage.  We can then follow these links to browse the details of other objects.  For example, we 
can navigate and access all the Tasks that belong to the Project by following specific links.  We can 
further follow links to access EventGroups, as each Task in a project may contain one or more 
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EventGroups.  Since an EventGroup is defined as a collection of Events, each Event can be accessed 
from the EventGroup object.  The details of an Event can be accessed and shown in a browser (see 
Figure 6 for an example named miniMOST_test_0228).  An Event, which is an entity at the atomic (or 
lowest) level of an Activity, refers to a single run of an experiment or a simulation.  Experimental 
results, such as SensorReading, can be accessed from an Event object, as shown in Figure 7. 
 
The details of other objects, such as InfrastructureSetup, can also be retrieved by navigating the 
project viewer. An InfrastructureSetup object essentially is a collection of texts, documents (in the 
format of Word, PDF, Excel, etc.), figures and drawings stored as files.  Files are saved in a web 
server and their URIs are saved as metadata.  The files can be dynamically downloaded and shown on 
a web browser, as illustrated in Figure 8. 
 

 
Figure 6 – Detailed Display of the Event miniMOST_test_0228 

 
Figure 7 – Access of SensorReading for the Event miniMOST_test_0228 



 9 

(a) MiniMostWiring.pdf 
 

(b) Mini_MOST_overall.jpg 
Figure 8 – Access of Files Representing the InfrastructureSetup 

 
SUMMARY AND DISCUSSIONS 
 
This paper has discussed the approach for the development of a reference NEESgrid data model.  
Brief description of the developed data model and some of its features are also presented.  Six base 
classes are presented and the relationships among these classes are defined.  These classes represent 
the essential elements to support the end-to-end solution of NEESgrid data efforts. We believe the 
proposed reference data model is sufficiently flexible and extendible: (1) new classes can easily be 
introduced; (2) the slots of a particular class can be added, deleted, or modified; (3) and the 
relationships among the classes can be altered.  Other models, such as specimen model, unit model, 
geometry/location model, and Site model, can be appended to (or even replace certain parts of) the 
reference data model.   
 
To validate the reference data model, we have populated the model with the Mini-MOST 
experimental data provided by UIUC. This validation process helps evaluate the completeness, 
flexibility and usability of the data model. The usability test has demonstrated that the data model is 
sufficiently comprehensive to save and organize all the Mini-MOST data.  In addition, as the 
experimental data are organized according to the data model, browsing and accessing them are fairly 
intuitive and straightforward. Efforts will continue to validate, evaluate and refine the reference data 
model using other experimental projects and data.  Furthermore, a general project browser is currently 
under development. 
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