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1 Introduction 
The primary goal of NEESgrid data/metadata effort is to work collaboratively with 
NEESgrid team and the NEES community and to help define data requirements and needs 
for the George Brown Jr. Network for Earthquake Engineering Simulation instigated by the 
National Science Foundation.  The NEESgrid promotes NEES as a distributed virtual 
laboratory for earthquake engineering research and simulation.  The “collaboratory” will 
allow researchers gain remote, shared access to experimental equipment and data.  This 
report serves to outline current tasks and approaches to define data models for supporting 
the activities involved in earthquake engineering simulations.   

In order to facilitate collaboration within the NEES framework, one of the key services that 
NEESgrid needs to support is with respect to the data and metadata, for earthquake 
engineering simulations.  Following the NEESgrid Data and Metadata Advisory Group 
meeting that was held at the Argonne National Laboratory on November 5, 2003, a NEES 
Data/MetaData Task Group (DMD-TG) was formed to actively define and coordinate the 
data/metadata development tasks. Complete list of contributing members involved in this 
development is given in the Acknowledgements section of this report. The goal of DMD-TG 
is to develop and deploy end-to-end solutions that put tools and capabilities into the hands of 
the NEES community. The high level outline of this effort is to develop models for data 
representation based on existing data efforts combined with new information. For this 
purpose sample data sets are being developed that demonstrate the features of the data 
models along with scenarios for the use of the data and models. Ultimately, associated 
specifications for the tools necessary to support entering, importing, storing, searching, and 
extracting data from the repository are being established.  

One major task of data/metadata effort is to develop a reference data model for supporting 
the major activities involved in earthquake engineering simulations.  There are many 
existing data modeling techniques and tools that are available to help design and structure 
the data. A brief review of these relevant techniques and approaches has been reported 
earlier [1].  A data model is defined as the grammar, vocabulary and content that represent 
all types of “information” stored in one format or another in a “system”.  The grammar 
defines the relationships among elements in the system; the vocabulary defines the 
terminology used to describe these element; content defines what is to be included in the 
system.  A data model is in essence a representation of the data and their relationship and 
provides a conceptual or implementation view of the data. Ideally, the data model should be 
independent of hardware/software platforms so that its implementation can be universal.   

Within the scope of the NEESgrid data/metadata effort, data is defined as all of the project 
related information and encompasses observational (or acquired) data recorded during 
experiments by means of sensors, cameras and the like; computational (or generated) data 
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for and as a result of simulations, post-processing, etc.; literature in the form of reports, 
journal papers, drawings, etc. It is noted that the utilities and tools to facilitate the 
processing, visualization, interpretation and dissemination of data are also included within 
the scope. Associated descriptive and related data, i.e. metadata, are expected to be 
generated and published in the prescribed (by NEESgrid) formats and language (e.g. XML, 
RDF, NEESML, etc.). It is expected that a set of functional system-wide services for 
storage, retrieval, and management of data and metadata associated with a project will be 
available as part of the NEESgrid infrastructure. These services will be based on specialized 
data models with only limited content populated by elements that are most critical to (1) the 
execution of a project, i.e. conduct and control of experiments and simulations; (2) the 
equipment, collection of sensor and video/image data, visualization; (3) the storage, retrieval 
and management functions. However, it must be noted that the so-called limitations on the 
content and elements will not prevent future extensions of the data models and the 
integration of new project related elements in the NEESgrid infrastructure. 

Based on the experience gained from the review and the suggestions/feedback from 
NEESgrid team and the NEES community, a reference data model has been developed.  The 
preliminary design of the reference data model is presented in the following sections.  A 
brief summary is also presented that discusses the approach currently undertaken to develop 
a project data model for NEES experimentations.  Although the reference data model is 
intended to focus on the data requirements for shake table experiments, large portion of the 
model should be of sufficient generality to be useful for other types of experiments, such as 
centrifuge, Tsunami, or even field tests. In fact, the upcoming version of the data model will 
include details for the applications in centrifuge and geotechnical areas, currently being 
developed by the University of Southern California team. 

2 Data Modeling Tool and Approach 

2.1 Protégé-2000 – Data Modeling Tool 
There are many data modeling or software design tools that can be used to facilitate the 
design of a data model for specific application.  In our work, we select Protégé-2000, which 
is an open-source software package designed to help developing knowledge-based systems 
[2].  Protégé-2000 (http://protege.stanford.edu) is a useful tool to build ontology for 
knowledge-based systems.  Ontology represents explicit formal specifications of the terms 
in the domain and relations among them [3]. 

As an open source software, Protégé-2000 has attracted a wide variety of plug-ins from 
around the world to enhance its capabilities.  Some of these software plug-ins allow a model 
developed in Protégé-2000 to be exported in many standard formats, including UML 
(Unified Modeling Language [4]), OWL (Web Ontology Language, 
http://www.w3.org/2001/sw/WebOnt/), XML Schema (http://www.w3.org/XML/Schema), 
and RDF (Resource Description Framework, http://www.w3.org/RDF/).   

In Protégé-2000, a graphical user interface (GUI) is provided to facilitate ontology 
development.  The interface enables the modeling of an ontology of classes to describe a 
particular subject with a set of concepts and their relationships.  The interface also allows 
direct entering of specific instances of data and the creation of a knowledge base. Figure 1 
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shows an example of the GUI, with classes view shown in the left window, and detailed 
attributes view of a class (Project) shown in the lower right window. 

 

 Figure 1  – Protégé-2000 Interface 

2.2 Object-Oriented Data Modeling 
Object-oriented data modeling approach is employed in the development of NEESgrid data 
model.  In an object-oriented data model, information is modeled as objects, which can be 
any sorts of (real or abstract) entities [5].  The general representation of certain type of 
objects is called a class, which represents explicit description of concepts in a domain. The 
creation of an object of a certain class is called instantiation. The relationship between an 
object and a class can be viewed analogically in a procedural language in that a variable 
being a particular instance of a pre-defined type such as an integer.  For example, Project is 
modeled as a class, and a MOST experiment [6] is an object instance of the Project class. 

An object encapsulates certain related data as slots, which are also called attributes or 
properties.  Slots can have different facets describing the value type, allowed values, the 
number of the values (cardinality), and other features of the values the slot can take.  A 
value-type facet describes what types of values can fill in the slot.  Some common value 
types are string, number, Boolean, enumerator, and object instance.  Allowed objects and the 
variety of values (e.g. minimum number, maximum number) of a slot are often referred to as 
a range of a slot.  Slot cardinality defines how many values a slot can have, such as single 
(at most one value) or multiple (more than one value).  For example, “minute” is a slot of 
class Time.  The cardinality of minute is single, the data type of minute is integer, and the 
range is from 0 to 59. 

An object connects with other related objects via some relationships.  The relationship types 
commonly used include classification, association, aggregation and generalization.  These 
relationships types may in turn impose certain “object-oriented” features and integrity 
constraints to help maintain consistency and correctness of the data in the model.  One 
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important feature of object-oriented modeling is the concept of class hierarchies, with slots 
of a superclass being inherited by its subclasses.  This inheritance feature allows us to 
define the common slots used by several classes at the highest possible level in the 
hierarchy, which avoids the duplication of slots at the lower levels.  A class can have 
subclasses that represent concepts that are more specific than the superclass.  For example, 
we can divide the class Activity into Project, SingleSiteActivity, and MultiSiteActivity.  The 
class SingleSiteActivity in turn can be divided into Task, EventGroup, and Event.  The 
common slots for all these Activity classes are name, description, start Time and end Time. 

In object-oriented data models, class can be abstract or concrete [3].  A concrete (or 
physical) class can have direct instances, as in the case that a MOST experiment is an 
instance of the class Project.  On the other hand, abstract class cannot have any direct 
instances.  For example, the Activity class is defined as the general abstraction of action or 
process, and thus a direct instance cannot be created.  In Protégé-2000, an “A” icon next to 
the class name indicates that the class is abstract, as shown in the left window of Figure 1.  

3 Description of the Reference Data Model 
As depicted in Figure 2, the NEESgrid data/metadata task group is working towards 
producing end-to-end solutions that integrate site specifications database, project level 
model, domain specific data models, and common elements. To capture all these data, the 
reference data model is designed to include six base classes, namely SiteInformation, 
Activity, Apparatus, ApparatusSetup, DataElement, and ComplexDataType.  The high-level 
class diagram of the reference data model is presented in Figure 3, which shows the 
association relationship among classes.  (The ComplexDataType class, which is employed to 
support other base classes, is not shown in the figure.)  The association relationship exists 
between classes when an object of one class knows/contains an object of another class.  For 
example, a Project object knows about its Tasks objects, a Project also contains 
Organizations, Sites, and RolePersons.  RolePerson is in turn defined as the combination of 
a Person and his/her role in a Project.  The arrow in Figure 3 denotes the direction of the 
relationship contains; i.e., A Æ B indicates that class A contains class B.    In the following, 
the six base classes are briefly described. 

 



 Page 5 of 12

NEES

Site A Site CSite B

Equipment People

Experiments Trials

Equipment People

Experiments Trials

Data Data Data

Tsnumai
Specimen

Shake Table
Specimen

Geotech
Specimen

Centrifuge
Specimen

Units Sensors Descriptions

Site
Specifications
Database

Project
Description

Domain 
Specific
models

Common 
Elements

Data / 
Observations

 

Figure 2 – Overall Data Model for NEESgrid (Courtesy of Chuck Severance) 
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Figure 3 – High-level Class Diagram of the Reference Data Model 
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3.1 SiteInformation 
A typical experiment site is hosted by certain organizations, and the site has personnel 
playing different roles, facilities, equipments and other information.  In the reference data 
model, Site is modeled as the aggregation of other component classes, such as RolePerson, 
Organization, PrimaryEquipment, and SecondaryEquipment.  The relationship of Site with 
other related classes is shown in Figure 4.  This group of classes is intended to be associated 
with the site specifications database [7] that is currently under development by the NEES 
community. 

 

Figure 4 – Relationship of Site with Other Classes (generated by Protégé) 

3.2 Activity 
The Activity class is designed to support project level modeling.  As shown in Figure 3, the 
Activity class has four hierarchical layers. 

� A Project is a collection (organized group) of tasks designed to achieve specific goals 
and objectives of a project.  A Project can be sponsored by one or more funding sources.  
A Project includes one or more related Tasks.  For example, the CUREE-Caltech 
Woodframe project had many tasks/activities to study the performance of woodframe 
structures, with the objective to reduce earthquake losses to woodframe construction 
(http://www.curee.org/projects/woodframe/index.html).  

� A Task belongs to a particular Project and contains one or more EventGroups.  Each 
Task typically serves a specific role in a Project.  In case of an experiment, each Task 
has a distinct InfrastructureSetup; any changes to the InfrastructureSetup would initiate a 
new Task.  For example, Task 1.1.1 of the CUREE-Caltech Woodframe project refers to 
the shake table test of a simplified two-story single-family house [8].  

� An EventGroup is defined as a collection of Events. Any change to the data acquisition 
setup, sensor setup or the specimen setup would initiate a new EventGroup.  The 
sequence of EventGroups in a Task is determined by their startTime.  For example, Test 
Phase 6 of the Task 1.1.1 of the CUREE-Caltech Woodframe project is identified as an 
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EventGroup because the test structure (specimen) has been changed after Test Phase 5 
[8]. 

� An Event, which is the atomic level of Activity, refers to each single run of an 
experiment or a simulation. Events within an EventGroup may have different input 
motions, loading protocols, etc. The sequence of Events in an EventGroup is determined 
by their startTime. Two types of Event are defined in the model, namely 
ExperimentEvent and SimulationEvent.  An example Event is a particular test within 
Test Phase 6 of Task 1.1.1 of the CUREE-Caltech Woodframe Project.  For each event, 
output, such as sensor readings or simulation results, are generated and recorded. 

The reference data model explicitly models certain Activities that are carried out at multiple 
Sites.  The class hierarchy of Activity in the reference data model is shown in Figure 5.  In 
the reference data model, SingleSiteActivity is defined as Activity that is carried out only at 
a single Site, whereas MultiSiteActivity is defined as a collection of SingleSiteActivities. 
Figure 6 shows an example project that has a single site Task (Task1) and a MultiSiteTask 
(M_Task1).  The M_Task1 has Tasks that are undertaken at both Site1 and Site2.  The 
MultiSiteEvent M_E1 has an Event E2 at Site1 and an Event E4 at Site2, and the 
MultiSiteEvent M_E2 has an Event E3 at Site1 and an Event E5 at Site2.  As shown in 
Figure 6, although Project does not directly contain Task2 that takes place at Site2, Task2 
can still be accessed from the Project since M_Task1 contains Task2. This design enables 
the support of the types of experiments (such as the MOST experiment) that are carried out 
either simultaneously or independently at several Sites. 

 

 

 

Figure 5 – Class Hierarchy of Activity (generated by Protégé) 
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Figure 6 – Layout of an Example Project 

3.3 Apparatus 
Apparatus is defined as any equipment, specimen, or software that may be used in an 
Activity.  In the current version of the reference data model, the direct subclasses of 
Apparatus include Specimen, SoftwareProgram, PrimaryEquipment, and 
SecondaryEquipment.  Explicit modeling of Specimen or SoftwareProgram is not 
considered in the reference model.  Only the most basic modeling is provided (as a 
collection of descriptive files, drawings, and/or photos).  This design reflects current 
approach used to describe specimen in earthquake engineering experiments. However, if so 
desired, the Specimen class can be extended to support other, more detailed, models. 

PrimaryEquipment is the major equipment that is used for the execution of an experiment 
with respect to a specific research area.  Direct subclasses of PrimaryEquipment are 
ShakeTableEquipment, CentrifugeEquipment, WaveBasinEquipment, FieldTestEquipment, 
and LargeScaleTestEquipment. Further description of individual PrimaryEquipment is 
assumed to be contained in the site specifications database [7].  New types of primary 
equipment can be added to the model as needed. 

SecondaryEquipment may be a component of the PrimaryEquipment or may be a piece of 
equipment that facilitates the execution of an Event, data collection, and/or observation.  
One important type of SecondaryEquipment are the equipment and sensors used for data 
acquisition.  Data schemas for describing sensors are available; one example is the 
SensorML [9] developed by OpenGIS Consortium.  The reference data model includes a 
sensor model that is designed specifically to support earthquake engineering experiments.  
The data acquisition equipment is modeled as a collection of classes, including Sensor, 
DAQCable, DAQChannel, and DAQSystem.  Figure 7 shows the relationships and the slots 
of these classes.  Typically a data acquisition system involves at least three main 
components:  (1) the sensors which respond to a physical stimulus and generate analog 
voltage signals; (2) a DAQchannel (a.k.a. signal conditioner as part of a DAQSystem) which 
receives the signal and uses predefined filter, gain, offset, excitation, sensitivity (calibration) 
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information for Analog-to-Digital (A/D) and Engineering Unit (EU) conversions; and (3) a 
PC unit which uses some communications link (serial port, phone modem, radio modem, 
etc.) to retrieve the data.  It is noted that A/D hardware can be either external to or as part of 
the signal conditioner. DAQDevice model will be further detailed in future versions of the 
data model. 
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Figure 7 – Setup and Modeling of DAQ Devices 

3.4 ApparatusSetup 
Universal modeling of the arrangement and setup of apparatus for all experiments is very 
difficult if not impossible.  Not only are there different types of experiments (such as shake 
table, pseudo-dynamic tests, centrifuge, and tsunami) and different materials (such as 
concrete, steel, wood, etc.), but also the geometry of specimen, the arrangement of sensors, 
and the configuration of PrimaryEquipment may be too complicated and cumbersome to 
model.  For example, the “as-built” locations of sensors may be different from the “design” 
locations, and the exact physical locations (i.e., the coordinates x, y, z values) of sensors are 
very hard to be recorded.  Therefore, it is recommended that the development of 
ApparatusSetup model be focused on tools and methodologies that can capture and organize 
CAD drawings, sketched drawings and notes, photos, narrative descriptions, electronic 
notes, and etc. 

The class hierarchy of AppartusSetup in the current reference data model is shown in Figure 
8.  The InfrastructureSetup models the assembly and arrangement of the PrimaryEquipment 
used for a specific Task; any changes in InfrastructureSetup would trigger the launch of a 
new Task.  The SpecimenSetup deals with the information on how the specimen is set up 
with respect to PrimaryEquipment. The SensorSetup includes the arrangement (location, 
orientation, etc.) of Sensors used in an experiment.  The DAQSetup models the physical and 
electrical setup of one or more devices whose primary purpose is to acquire data.  Any major 
change to SpecimenSetup, SensorSetup, or DAQSetup initiates a new EventGroup.  The 
InputDataSetup deals with the choice and organization of input data to an Event.  Any 
change to a new InputDataSetup indicates the beginning of a new Event.  



 Page 10 of 12

 

Figure 8 – Class Hierarchy of ApparatusSetup (generated by Protégé) 

3.5 DataElement 
DataElement represents all types of data that may be generated or processed during an 
Activity.  The DataElement normally serves as Input/Output to an Activity.  Types of 
DataElement include text document, publication, earthquake record, photo, CAD drawing, 
movie, etc.  In NEESgrid data/metadata effort, it is assumed that the data is saved in or 
translated into computer-readable format. Therefore, a DataElement object is represented in 
the format (such as a file) that can be saved in computer memory, on disks, or in some kind 
of data storage repository.  

3.6 ComplexDataType 
ComplexDataType is defined in the reference data model to represent any data type that is 
not a simple data type such as integer, Boolean, or character string.  In the current version of 
the reference data model, the following ComplexDataType are provided: 

� Folder, which is a collection of DataElements as files.  

� RolePerson, which is defined as the combination of a Person and his/her role in an 
Activity or in an Organization. 

� Unit, which is modeled as a name and its description.  Currently there is a prototype unit 
library included in the reference data model.  The unit library supports certain basic unit 
conversion.  Other types of unit representation, such as the compact representation [10], 
can also be incorporated, if needed. 

� Measurement, which is defined as a value with associated unit. 

� Date/Time, which is externally represented as year, month, day, hour, minute, second, 
millisecond, etc., and internally saved as a long integer. 

� Geometry/Location, the geometry/location is needed for finding sensor location, 
representing specimen model, and etc.  The spatial location is currently modeled as the 
values in a coordinate system (i.e. x, y, z values).  It should be noted that, very often, 
geometry/location information are specified within CAD drawings or text documents, 
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etc.  Referencing scheme may be added to relate an entity to the source that defines the 
location.  

4 Summary and Discussions 
In this report, a reference NEESgrid data model currently under development has been 
presented.  The intention of this document is not to give a detailed description of the data 
model, but rather to present the preliminary design and to solicit feedbacks and comments 
from the NEES community.  Although the reference data model is focused on shake table 
experiments, many of the features can be applied or extended to centrifuge, tsunami, 
pseudo-dynamic and other types of experiments.  Six base classes and the relationships 
among these classes are defined and they represent the essential elements to support the end-
to-end solution of NEESgrid data efforts. We believe the proposed reference data model is 
sufficiently flexible that new classes can easily be introduced; the slots of a particular class 
can be added, deleted, or modified; and the relationships among the classes can be altered.  
Other models, such as specimen model, unit model, geometry/location model, and Site 
model, can be appended to (or even replace certain parts of) the reference model.  Data 
model development is an iterative and evolving process, and the reference data model will 
continue to be tested, validated, modified and revised, even beyond the current development 
effort. 

We would like to emphasize that the data model development is a community effort.  
Suggestions and feedback from the NEES community and stakeholders are in the 
development process.  The reference data model described in this document is based on 
version 0.4, which will be released for the review of NEES community during the second 
half of April 2004.  We look forward to receiving and to incorporating any valuable 
suggestions from the NEES community. 

Acknowledgements 
This report is drafted as an interim report by the authors as part of the NEES’s System 
Integration effort, WBS No. 2.4 Data and Metadata Management.  The authors would like to 
acknowledge the active collaboration and contributions of the NEESgrid’s Data/Metadata 
task committee members (sorted alphabetically by their first name): 

Andrei Reinhorn State University of New York, Buffalo 
Bill Spencer University of Urbana-Champaign 
Chuck Severance University of Michigan 
Gokhan Pekcan University of Nevada, Reno 
Hank Ratzesberger University of California, Santa Barbara 
Jean-Pierre Bardet University of Southern California 
Jennifer Swift University of Southern California 
Jim Eng University of Michigan 
Jun Peng Stanford University 
Ken Ferschweiler Northwest Alliance for Computational Science and Engineering 
Kincho Law Stanford University 
Lelli Van Den Einde University of California, San Diego 



 Page 12 of 12

The authors would like to thank Joe Futrelle of UIUC, Chuck Severance and Jim Eng of U. 
Michigan for their time and discussions related to NEESgrid developments.  The authors 
would also like to thank Dr. Patrick Laplace of University of Nevada, Reno and Professors 
Steve Mahin, Bozidar Stojadinovic and Greg Fenves of University of California, Berkeley 
for their time to discuss the data and metadata issues related to earthquake engineering 
experiments and simulations.  Any opinions, findings, and conclusions or recommendations 
expressed in this material are, however, those of the authors and do not necessarily reflect 
the views of others and the National Science Foundation. 

References 
[1] Jun Peng and Kincho H. Law. A Brief Review of Data Models for NEESgrid, Technical 

Report NEESgrid-2004-01, 2004. (http://www.neesgrid.org/documents/TR_2004_01.pdf) 

[2] J. Gennari, M. A. Musen, R. W. Fergerson, W. E. Grosso, M. Crubézy, H. Eriksson, N. F. 
Noy, and S. W. Tu. The Evolution of Protégé: An Environment for Knowledge-Based 
Systems Development, Stanford Medical Informatics, Stanford University, 2002. 
(http://smi.stanford.edu/pubs/SMI_Abstracts/SMI-2002-0943.html) 

[3] Natalya F. Noy and Deborah L. McGuinness. Ontology Development 101: A Guide to 
Creating Your First Ontology, Stanford University, Stanford, CA, 2002. 
(http://protege.stanford.edu/publications/ontology_development/ontology101.html) 

[4] J. Arlow and I. Neustadt. UML and the Unified Process: Practical Object-Oriented Analysis 
and Design, Addison-Wesley Pub Co., Boston, MA, 2001. 

[5] J. R. Rumbaugh, M. R. Blaha, W. Lorensen, F. Eddy, and W. Premerlani. Object-Oriented 
Modeling and Design, Prentice Hall, 1990. 

[6] NEESgrid Team. Multi-site Online Simulation Test (MOST), 2003. 
(http://www.neesgrid.org/most/index.html) 

[7] Bruce L. Kutter, Daniel W. Wilson, Cherri Pancake, and Sally Haerer. Introduction to the 
Site Specifications Database (SSDB), Network for Earthquake Engineering Simulation, 
2004. (http://nees.orst.edu/IT/site.specs.db/cohorts/Introduction.pdf) 

[8] D. Fischer, A. Filiatrault, B. Folz, C.-M. Uang, and F. Seible. CUREE-Caltech Woodframe 
Project: Shake Table Tests of a Two-Story Woodframe House, Consortium of Universities 
for Research in Earthquake Engineering, 2001.  

[9] M. Botts (ed.). Sensor Model Language (SensorML) for In-situ and Remote Sensors, 
OpenGIS Interoperability Program Report, OGC 02-026, Open GIS Consortium Inc, 2002. 
(http://vast.uah.edu/SensorML/OGC-02-026_SensorML_0.07.doc) 

[10] B. Hamilton. A Compact Representation of Units, Hewlett-Packard Laboratories, 1996. 
(http://www.hpl.hp.com/techreports/96/HPL-96-61.pdf) 

 


