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ABSTRACT 

This work develops a decision analytical approach to water quality management at the 

watershed scale through a mercury Total Maximum Daily Load (TMDL) development 

case study.  This approach treats the key environmental variables as causally-related 

random variables that may be influenced through mitigation actions (interventions) to 

an uncertain degree.  Starting from the perspective that water quality management falls 

under the rubric of “decision-making under uncertainty”, I explore the application of 

state of the art probabilistic tools for decision support.  This work goes beyond the 

current deterministic paradigm in which conservative modeling choices are used to 

deal with predictive uncertainty.  The proposed decision model frames the TMDL 

setting process as a set of regulatory decisions that may involve large uncertainties 

(limited data bases and incomplete knowledge) subject to tight regulatory deadlines 

and small decision process budgets. 

 Probabilistic source analysis and linkage analysis models based on the 

available data, standard environmental science and engineering theory, and mercury 

biogeochemistry expertise were created for the case study mercury TMDL decision 

situation.  Discrete conditional probability distributions based on these models and 

expertise were incorporated in a Bayesian network model, a tool for solving prediction 

and inference queries.  In conjunction with a parametric value model, this mercury 

Bayesian network serves as the basis of a mercury TMDL decision model for the case 

study.  This decision model demonstrates a formal context for considering the 

importance of uncertainty in TMDL decisions, for prioritizing information collecting 

activities, for considering trade-offs between compliance uncertainty and mitigation 

costs, and for considering and representing hypotheses within a TMDL decision-

modeling framework. Sensitivity analysis using the Bayesian network is used to 

demonstrate approaches for prioritizing information collection activities and for 

estimating the value of perfect information on variables of interest.  As demonstrated, 

future information activities should be based on preliminary models of the uncertain 
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relationships between possible interventions and environmental targets.  Very 

importantly, the Bayesian perspective of decision analysis allows decision participants 

to interpret new information (monitoring and knowledge) in light of previous 

information and knowledge, which is a good basis for an adaptive management 

framework. 
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CHAPTER 1: MOTIVATION, OBJECTIVES, AND BACKGROUND 

1.1  MOTIVATION 

 States list surface waterbodies as impaired under § 303(d) of the Clean Water 

Act when, although in compliance with surface water point source discharge 

regulations, they cannot meet their designated beneficial uses, such as providing 

potable water supply, aquatic habitat for wildlife, and recreational opportunities, due 

to contamination.  In such cases, nonpoint source (diffuse) water pollution is often the 

source of the impairment1.  When nonpoint water pollution sources are significant 

sources, impaired waterbodies are addressed through the creation of a Total Maximum 

Daily Load (TMDL) regulation that is designed to restore the beneficial use by 

sufficiently reducing contaminant sources.  Examples of contaminants that have been 

addressed by TMDLs include mercury, copper, sediment, and polyaromatic 

hydrocarbons (PAHs).  In practice, TMDL decisions are often made under large 

uncertainties due to severe data limitations and gaps in understanding of the linkages 

between the controls being considered and the environmental targets of interest. 

 Modeling plays a central role in the TMDL planning and setting process 

(Reckhow, 1999; NRC, 2001; Lung, 2001; USEPA, 2002).  Whether the models are 

empirical (statistical) or mechanistic, they represent the best scientific understanding 

of how contaminant loadings relate to water body impairment of designated beneficial 

uses (NRC, 2001).  Once a waterbody is listed as impaired, predictive models are used 

to assess the relative contributions of various pollution sources, to predict the total 

load reduction required to meet ambient water quality standards, and to predict the 

relationships between specific control measures (e.g., point source load reductions) 

 
1 For some contaminants, atmospheric deposition may also contribute to surface water impairment.  In 

most watersheds (Benoit et al. (GET CITE)), atmospheric deposition is the dominant input of 
mercury.  In this case study, run-off from mine wastes and geothermal spring inputs are the dominant 
sources of mercury (RWQCB-CV, 2004). 
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and water quality targets (e.g., ambient water concentration of a particular pollutant) in 

the load allocation process.  

 Decision-making related to TMDL planning and implementation requires one 

to answer questions related to determining the reasons for non-attainment of beneficial 

use and evaluating strategies for mitigating those determined causes.  Neither of these 

questions can be answered with certainty.  Uncertainty in model predictions can be 

large and, when explicitly considered, can confound interpretation of results in terms 

of the decisions that need to be made.  Uncertainty is, however, often treated 

superficially in water quality management decisions, which can be a major source of 

contention between stakeholders and regulatory agencies (Houck 2002; Ortolano 

1997a).  Regardless of the quality of knowledge and data bases, current TMDLs are 

almost always addressed using deterministic models of linkages between sources and 

environmental endpoints.  

 Uncertainty, whether the source is incomplete knowledge about the physical, 

chemical, and biological processes that control contaminant transport and fate, a lack 

of data about variables that are known to be important, or the stochastic variability 

inherent in natural systems (e.g., future stream flow), is a reality that any water quality 

management decision framework must recognize, assess, and, when possible, reduce.   

The consideration of uncertainty in TMDLs is constrained by the regulatory 

requirements for the use of a Margin of Safety (MOS) and thus most discussions of 

uncertainty in TMDL decisions take the MOS as a starting point.  From this 

perspective, an uncertainty analysis of the relevant (deterministic) models can be 

performed (in theory) and, from this uncertainty analysis, the choice of an appropriate 

MOS in the TMDL target can be made.  The use of conservative modeling 

assumptions, or even conservative mitigation goals, as “the MOS” is another strategy 

in use.  From a decision analytical point of view, the choice of “how conservative” the 

MOS should be is itself a decision of fundamental importance.  To leave this choice as 

a scientific/engineering judgment ignores the fact that this involves risk management 

and value judgments. 
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 The National Research Council (NRC 2001) and the US Environmental 

Protection Agency (USEPA 1999) suggest the use of adaptive management to deal 

with the significant uncertainty involved in TMDL decisions.  The decision analytical 

approach proposed in this work could be used as the planning basis for developing an 

adaptive management strategy for TMDL development and implementation (Cook et 

al. 2004; USEPA 1999).  The information collection prioritization methodology 

shown in later chapters could be used to choose the mitigation/response hypotheses to 

be tested.  Since the proposed model is Bayesian in nature, interpreting the meaning of 

the results from future monitoring could be done through Bayesian updating using 

both prior and new information.  Bayesian approaches for interpreting new data in the 

face of previous data and knowledge have the advantage of being flexible and 

general2, which allow them to cope with very complex problems (Gelman et al. 1995). 

Current adaptive management strategies tend to use deterministic models and intuition 

to design mitigation/response hypotheses.  Learning from future evidence is not 

modeled formally in common current practice. 

 This research focuses on a particular mercury TMDL situation in Northern 

California.  Water quality impairment due to high mercury fish tissue concentrations 

and high mercury aqueous concentrations is a widespread problem in several sub-

watersheds that are major sources of mercury to the San Francisco Bay .  Several 

mercury Total Maximum Daily Load regulations are currently being developed to 

address this problem.  Decisions about control strategies are being made despite very 

large uncertainties about current mercury loading behavior, relationships between total 

mercury loading and methylmercury formation, and relationships between potential 

controls, total mercury and methylmercury loads, and fish tissue mercury burdens. 

 
2 The ability to create complex models using Bayesian methods comes from their ability to provide a 

simple framework for dealing with multiple, potentially correlated and/or uncertain, parameters 
(Gelman et al., 1995).   
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THE MEANING OF UNCERTAINTY IN TMDL SETTING  

 The meaning of uncertainty is important in the TMDL setting context.  

Scientists and engineers often interpret uncertainty as a property of the natural world 

and distinguish events with uncertainties that are “knowable” (i.e., those with a 

definable population of possible events) from events that do not.  As Morgan and 

Henrion (1990) point out, this attitude renders probability theory and tools irrelevant 

to most decision-making situations, especially those involving complex systems.  

From the Bayesian point of view adopted in the modern decision sciences, uncertainty 

is expressed in terms of probabilities, where the probabilities represent degrees of 

belief about events in the world.  These degrees of belief are a property of the current 

state of information (Howard 1984; Luce and Raiffa 1989; Morgan and Henrion 1990; 

Pearl 2000).  This shifts the burden from the intractable technical problem of defining 

the sample space for the future state of a partially understood complex system to the 

much more tractable problem of expressing the uncertainty in that future state as a 

probability distribution that is conditioned on what is currently known about the 

behavior of the complex system and other relevant factors.  From the Bayesian 

decision analytical perspective, the role of environmental science and engineering 

expertise in decision support is to help decision-makers express what is currently 

known about the uncertain causal relationships between the interventions that could be 

made (alternatives) and the multitude of possible future consequences of those 

interventions (outcomes). 

CAUSALITY 

 It is noted that the definition of causality used in this work is also different 

from that often used by modern science and engineering practitioners.  While there is 

an on-going wide-ranging interdisciplinary debate about the precise definition of 

causality in a variety of contexts (including scientific contexts), causality is used by 

many scientists and engineers to mean that a prior set of circumstances can be used to 

predict a future set of circumstances based on physical laws (Ellis 2005; Galavotti et 

al. 2001; Pearl 2000; Sowa 2000).  Uncertainty is then a reflection of the quality of the 
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prediction and, in practice, is usually not explicitly represented in causal (mechanistic) 

scientific models.  Leaving the intellectual underpinnings of this tradition unexamined, 

for many (if not most) environmental problems of interest to decision-makers, it is 

incomplete.  In the context of decisions about manipulating complex environmental 

systems, partial understanding of the interactions between the physical, chemical, and 

biological components of the system, incomplete information on boundary conditions 

when mechanisms are understood, incomplete data sets needed for calibrating existing 

models of system behavior, uncertainty in the appropriateness of the chosen models, 

the counterfactual nature of environmental interventions3, and other significant 

sources of uncertainty all promote the use of a definition of causality that explicitly 

incorporates these uncertainties (Heckerman and Shachter 1995; Pearl 2000; Reckhow 

1999; Spirtes et al. 2000). The probabilistic definition of uncertain causal relations 

used in this work comes from a relatively new body of work, including Pearl (2000), 

Heckerman and Shachter (1995), Spirtes et al. (2000), and others, and is described in 

more detail in Chapter 3. 

TMDL DECISION ANALYTICAL APPROACH 

 The approach proposed in this work starts from a decision analytical paradigm 

precisely because it allows us to think about the uncertain causal connections in 

complex environmental decisions in terms of a comprehensive (spans the possible 

outcomes) yet comprehensible set of discrete possible outcomes.  These discrete 

outcomes are chosen such that a discrete probability distribution defined over them 

adequately approximates the continuous probability distribution over the range of 

possible outcomes for a particular intervention.  In the proposed approach, the model 

of the uncertain causal relations between possible interventions (mitigation 

alternatives), environmental components (described by variables), and environmental 

 
3 Environmental interventions, i.e., steps taken to alter a complex environmental system to change it in 

some “desirable way”, are counterfactual in the sense that, once the intervention is made, there is 
rigorous no way to determine the degree to which the intervention caused the observed changes.  In 
other words, since interventions on complex environmental systems are unique events, there is no 
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endpoints of concern (described by targets) can be used to predict the probability 

distribution over decision outcomes.   While the decision model will provide these 

predictions, the real purpose of a decision analytical approach is to determine the best 

course of action from a set of alternatives given our state of current information and 

our preferences. 

 Since current environmental scientific and engineering practice usually does 

not frame environmental mitigation predictions using the concepts of uncertain 

outcomes and uncertain causality, there is a role for another type of expert in 

environmental decision technical support, namely the environmental decision analyst.  

The environmental decision analyst works with decision participants (decision-

makers, stakeholders, and domain/subject matter experts from the relevant scientific 

and engineering disciplines) to build probabilistic (causal) conceptual models that aid 

them in developing a deeper understanding of the important uncertainties that make 

their decision situation difficult.  The probabilistic conceptual model may be created 

as an influence diagram, which can be used as a graphical communication tool that 

organizes and represents the many uncertainties that make a particular set of decisions 

hard.  The influence diagram represents these uncertainties in terms of the their 

relevance to meeting decision-maker goals and targets for individual strategies 

(Howard 1990; Howard and Matheson 1984).  In the literature, an influence diagram 

can either be a graph of a decision tree or a probabilistic (Bayesian) network model 

that includes algorithms that can be used to evaluate a decision problem, perform 

inferences, and to make predictions (Jensen 2001; Pearl 1988; Shachter 1988).  At the 

conceptual model development phase of defining the environmental decision problem, 

the graphical interpretation may be used.  The probabilistic conceptual model then 

consists of assertions of causal relationships and/or conditional independence between 

variables, with no numerical specification of probability distributions over possible 

future events.  In the decision sciences literature, this initial form of the influence 

 
way to test the hypothesis that the intervention had a particular effect and no ability to reproduce the 
experiment in a controlled manner.  See, e.g., Pearl (2000) or Heckerman and Shachter (1995). 
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diagram is referred to as an unspecified influence diagram (Shachter 1988).  Even with 

no further work on the influence diagram, decision participants may find that the 

unspecified influence diagram of their decision problem helps them in communicating 

about possible strategies and in thinking about information collection strategies. 

 If further information for identifying the best strategy is desired, the 

environmental decision analyst may then work with decision participants to evolve 

this conceptual model by assessing the needed conditional probability distributions 

that describe the uncertain causal relationships between alternatives, environmental 

variables, and environmental targets.  Once this required probabilistic information has 

been assessed, the influence diagram may be implemented as a Bayesian network for 

generating useful decision analytical insights. 

1.2  BACKGROUND ON THE DECISION PROBLEM AND RESEARCH 

OBJECTIVES 

This research uses a detailed case study to illustrate the development and application 

of a Bayesian network-based decision model for addressing watershed-scale 

management decisions.  The case  study involves Sulphur Creek, a small mercury-

impacted watershed in Northern California  (RWQCB-CV 2004b).  The decision-

makers are the Central Valley Regional Water Quality Control Board and its staff, 

who are faced with managing on-going mercury contamination problems in several 

watersheds that contribute to the Sacramento River and the Bay Delta, including 

Sulphur Creek, Cache Creek, and Harley Gulch.  For typical mercury-impacted 

watersheds, the environmental targets of primary interest are elevated fish tissue levels 

and methylmercury concentrations in sediment and water.  In mercury and gold mine-

impacted watersheds, total mercury concentrations in water (including particulate and 

dissolved fractions) are also an endpoint of concern.   

 In the Sulphur Creek watershed, fish rarely occur because of poor water quality 

associated with local geothermal activity. Accordingly, instead of mercury fish tissue 
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targets, decision-makers are using the annual methylmercury load exported from the 

watershed as the water quality target of primary concern  (RWQCB-CV 2004b).  The 

total mercury load exported to Lower Bear Creek is also a target of interest, because of 

its potential effects on downstream methylmercury production.  The compliance 

actions being considered are related to reducing total mercury concentrations in water 

and sediment in several areas of the watershed.  The uncertainty associated with the 

predicted changes in methylmercury concentration trends due to total mercury 

reduction efforts (interventions) is very large.  In fact, whether or not methylmercury 

is controllable through mine-related mitigation in this watershed is not a foregone 

conclusion.  The anthropogenic mercury contamination problem is complicated by the 

presence of high background mercury loadings (and other water quality factors) 

related to long-term local geothermal spring inputs (Churchill and Clinkenbeard 

2005).  For this reason, geothermal spring discharges adjacent to Sulphur Creek are 

also being considered for remediation, but this may prove difficult to achieve (Rytuba 

2005a). 

 This case study involves a real-world regulatory decision situation, one 

involving Federal, State, and local agencies and stakeholders, potentially including 

non-governmental organizations, impacted regulated interests, and the interested 

public. The approach proposed in this research is an integrated decision analytical 

framework (decision framework) designed for watershed group decision-making, 

focusing on the uncertainty in meeting targets, a methodology for considering the 

desirability of the possible outcomes without consensus, and methods for aiding 

decision-makers in considering trade-offs in a complex and highly uncertain decision 

situation.  This research tracked the actual Sulphur Creek mercury Total Maximum 

Daily Load regulatory development process, but was not associated with the real 

decision-making process in any formal way.  To some degree, comparisons can be 

made between the decision insights generated by this research and the actual decisions 

made, but it should be kept in mind that the more general purpose of this research is to 

demonstrate the feasibility of a decision analytical approach to watershed-scale water 

quality mitigation decision support. 
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1.3  STRUCTURE OF THIS DISSERTATION 

 The first four chapters of this dissertation provide the introductory material 

necessary for understanding the decision problem and the mathematical and analytical 

tools used in later chapters. Chapter 2 describes the decision situation in more detail 

and provides the starting point for developing the decision frame (or decision context), 

which serves as the foundation for building the decision model in terms of the 

alternatives being evaluated, the information being used in the decision, and decision 

participant preferences over possible outcomes from the decision.  Collectively, the 

alternatives, information, and preferences for a decision are referred to as the decision 

basis.  The decision context provided in Chapter 2 includes a description of the 

decision-makers and their stakeholders, the the regulatory (Total Maximum Daily 

Load) framework, and the water quality problem they are addressing.   

 Part of the initial framing process for this decision involves identifying the 

goals and objectives of the decision-makers (as influenced by the regulatory context 

and stakeholder values).  In regulatory situations, many of the decision participants 

may argue that the regulatory framework imposes the goals and objectives for the 

decision problem but, in practice, State agencies and their stakeholders exercise 

considerable discretion in prioritizing nonpoint4 source water pollution problems and 

in evaluating alternatives for addressing them (Boyd 2000; Houck 2002).  Chapter 4 

discusses a process of identifying and structuring goals and objectives in detail using a 

related regulatory decision example. Once identified, the objectives are associated 

with tangible environmental targets that decision-makers want to (or are required to) 

meet.   In the Sulphur Creek mercury case study, the environmental targets were 

inferred from the documentation developed by the decision-makers, from public 

meetings, and from consultation with the decision-makers (RWQCB-CV 2004b).  The 

 
4 EPA defines a nonpoint source as “any source from which pollution is discharged which is not 

identified as a point source, including, but not limited to urban, agricultural, or silvicultural runoff. 
Nonpoint source (NPS) pollution occurs when rainfall, snowmelt, or irrigation water runs over land, 
or through the ground, and picks up pollutants and deposits them into lakes, rivers and groundwater” 
(online glossary at: http://yosemite.epa.gov/R10/WATER.NSF/0/2f53bb35da337053882569-
f1005ecf17?OpenDocument). 
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decision participants’ preferences over decision outcomes can then be considered in 

terms of meeting the environmental targets and the costs associated with the 

alternative.   

 Background on the alternatives being considered for controlling total mercury 

and methylmercury levels in Sulphur Creek is discussed in Chapters 2.  The last part 

of the decision basis, information, is the focus of Chapters 5 and 6.  In decision 

analysis, “information” refers to what is known about the various uncertainties that are 

relevant to the decision value.    In the environmental decision problem used in this 

research, the informational part of the decision basis refers to what is known about the 

uncertain causal relationships between the possible mitigation strategies and the 

targets of interest, total mercury load and methylmercury load exported from Sulphur 

Creek.  Chapter 5 provides relevant background on mercury biogeochemistry and 

discusses the available hydrological and water quality data.  A conceptual model of 

the sources, fate, transport, and potential controllability of mercury in this watershed is 

also presented.  This conceptual model is developed as a causal network that can 

express what we know about the causal relationships between system variables, with 

explicit representation of uncertainty.  Causal networks and other Bayesian networks 

are introduced in Chapter 3.  Assessing the needed probabilistic information from 

existing data, models, and the available expertise is a large part of this research.  

Chapter 6 discusses the simulation and expert elicitation methods used to assess the 

needed probability tables to fully specify this causal network.   

 A significant part of this research involves the development of a methodology 

for ordering and valuing outcomes in a group decision setting in which consensus is 

not expected, but in which cooperation5 is expected.  Chapter 4 describes several 

 
5  This means that while decision participants may not agree on the values assigned to the various 

possible outcomes, they are honest about their beliefs and are interested into coming to consensus 
about which uncertainties are important and which experts and data to use to estimate probability 
distributions over the uncertainties.   In addition, “cooperation” implies that consensus is needed on 
which alternatives should be evaluated.  Ultimately, the goal is to achieve a common consensus-based 
understanding on the information and alternatives aspects of the decision basis.  The methodology is 
designed only to deal with a lack of consensus on preferences over outcomes. 
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methods for dealing with this situation.  A parametric value model, based on non-

compliance penalties for missed targets and the costs associated with mitigation, is 

introduced in Chapter 7.  In decision analysis, a “penalty function” is a tool that can be 

used to constrain targeted variables for the purposes of exploring the trade-offs 

between violating targets and expending resources to meet them.  In this context, a 

penalty does not refer to a legal fine that will be imposed upon the decision-makers by 

a regulatory agency, but rather reflects the “cost” of violating the target in the 

following sense.  The penalty value takes into consideration the probability of non-

compliance (predicted from the causal network) and the unknown social cost of non-

compliance (treated as a parameter).  By treating the social cost of non-compliance as 

a parameter, decision analysis can be performed and decision analytical insights can 

be generated without consensus on preferences.  This methodology results in the 

creation of two or three dimensional “decision maps” that allow decision participants 

to consider natural system uncertainties separately from the consideration of 

disagreements over preferences.  Chapter 7 presents the decision analytical results for 

the case study and discusses some insights generated by this approach.  Chapter 8 

offers conclusions from this research and suggests future research. 
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CHAPTER 2: SULPHUR CREEK MERCURY TMDL DECISION PROBLEM 

This chapter provides background on the Federal and California state Total Maximum 

Daily Load regulatory programs and the Sulphur Creek mercury TMDL situation.  It 

ends by describing the mercury mitigation actions being considered by the Central 

Valley Regional Water Quality Control Board for addressing the Sulphur Creek 

mercury problem.   

2.1  BACKGROUND ON TOTAL MAXIMUM DAILY LOAD (TMDL) 

REGULATIONS  

Under section 303(d) of the Clean Water Act, States, Territories, and Tribes with 

program delegation6 (“States”) are required to develop lists of impaired waterbodies 

(Percival et al. 2000).  In the context of the 303(d) lists, impaired waterbodies refer to 

waters that do not meet ambient water quality standards7, but that are in compliance 

with the NPDES program8 (USEPA 2005).  The Clean Water Act requires that States 

establish priority rankings for listed waterbodies and develop TMDLs for these waters.  

Appendix A provides some additional historical background on the adoption of and 

need for an ambient water quality approach like the TMDL program. 

 “TMDL” is often used in two senses .  First, it refers to the planning process 

States use for determining how to achieve ambient water quality standards subject to 

the Section 303d of the Clean Water Act.   The second sense is more quantitative and 

refers to the actual loads that are predicted to result in compliance with ambient water 

 
6 Program delegation refers to the fact that the Clean Water Act authorizes USEPA to delegate to States, 

Terrorities, and authorized Tribes responsibility for administering and enforcing clean water 
programs (Percival et al. 2000). 

7 States, Territories, and Tribes set ambient water quality standards for a given waterbody in terms of 
“beneficial uses” that they identify.  For example, drinking water supply, contact recreation 
(swimming), and wildlife habitat support are common beneficial uses  (USEPA, 2005). 

8 In other words, point source controls are in place that meet NPDES requirements, but the waterbody is 
being impaired by the combination of point and nonpoint sources. 
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quality standards.  Specifically, this second definition a TMDL is: 1) a calculation of 

the maximum pollutant load that a waterbody can receive and still meet ambient water 

quality standards for the designated beneficial uses of that waterbody; and 2) an 

allocation of that maximum load among the various pollutant sources in the watershed, 

including point and nonpoint sources.  The USEPA requires that a margin of safety be 

used to account for uncertainty and that seasonal variability be considered . 

 It is recognized that ambient water quality strategies (like TMDLs) are difficult 

to develop and implement because of uncertainties demonstrating causal relationships 

between sources (point9 and nonpoint10) and downstream water quality problems. The 

TMDL setting and implementation processes may require extensive stakeholder 

dialogues and, in many cases, collaborative decision processes not traditionally used in 

the implementation of the Clean Water Act.  The use of collaborative decision-making 

in a complex situation that affects stakeholders with potentially diverse values points 

to the need for tools that provide decision clarity.   

 This research builds on the idea that the suggested TMDL decision analytic 

process is a natural formulation of the watershed approach, in the sense described by 

(Haith 2003).  Haith describes the watershed approach as the logical conclusion of the 

systems analysis for waste load allocation, emphasizing the relationships between 

community participation, water quality management goals, watershed activities 

impacting water quality, and decision-maker/expert understanding of the responses of 

the natural system.  While traditional systems analysis techniques (e.g, waste load 

 
9 EPA defines a  point source as:  “any discernible, confined, and discrete conveyance, including but not 

limited to any pipe, ditch, channel, tunnel, conduit, well, discrete fixture, container, rolling stock, 
concentrated animal feeding operation, landfill leachate collection system, vessel, or other floating 
craft from which pollutants are or may be discharged.” (online glossary at: 
http://cfpub.epa.gov/npdes/glossary.cfm) 

10 EPA defines a nonpoint source as “any source from which pollution is discharged which is not 
identified as a point source, including, but not limited to urban, agricultural, or silvicultural runoff. 
Nonpoint source (NPS) pollution occurs when rainfall, snowmelt, or irrigation water runs over land, 
or through the ground, and picks up pollutants and deposits them into lakes, rivers and groundwater.” 
(online glossary at: http://cfpub.epa.gov/npdes/glossary.cfm) 
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allocation optimization subject to water quality and budgetary constraints) and/or 

economic approaches like cost-effectiveness analysis or cost-benefit analysis have 

been suggested for waste load allocation decisions (Burn and Lence 1992; Churchman 

1968; Thomann 1974), a watershed decision analytic framework can integrate the 

analytical power of such techniques with the community participation and group 

decision-making aspects of the watershed approach.  Thus, a decision analytical 

process can be viewed as an informed compromise between a purely 

technical/analytical approach and a purely political/negotiation approach to decision-

making. 

2.2  BACKGROUND ON THE SULPHUR CREEK MERCURY TMDL  

The example presented here is based on the Sulphur Creek mercury TMDL setting 

process.  Sulphur Creek is a 6,500 acre watershed in Colusa County in northern 

California (Figure 2-1) with several significant local mercury sources (Figure 2-2).  

The Sulphur Creek watershed is part of the California Coast Range mercury mineral 

belt and has a mercury (and gold) mining history that dates back to the mid-nineteenth 

century (Churchill and Clinkenbeard 2003).  Sulphur Creek, Cache Creek, and other 

creeks within the Cache Creek watershed are on the Central Valley Regional Water 

Quality Control Board’s (RWQCB) list of impaired water bodies due to elevated 

mercury levels in water and fish11 (RWQCB-CV 2004a; RWQCB-CV 2004b).  These 

watersheds are impacted by total and methylmercury loadings from local 

hydrothermal sources, erosion of soils with high background mercury concentrations 

and other background sources, and runoff from legacy mine wastes.  The principal 

local stakeholders in the Sulphur Creek mercury TMDL are the private landowners of 

legacy mines, the Wilbur Hot Springs resort, Colusa County, and the major land- 

 
11 As noted in Chapter 1, the available evidence suggests that Sulphur Creek has very few fish and does 

not provide suitable fish habitat because of water quality issues related to geothermal springs 
(RWQCB-CV 2004b).  No large fish have been reported.  In a recent (April 2004) fish survey 
(electroshock), no fish were observed.  In 2000, a single California roach was collected.  The 
RWQCB has determined that non-fish mercury endpoints are more appropriate for a Sulphur Creek 
mercury TMDL, since fish appear to be rare in Sulphur Creek. 
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Figure 2-1.  Sulphur Creek within Cache Creek watershed.  From RWQCB-CV 
(2004a). 

 

 

 

 

Figure 2-2.  Map of the Cache Creek watershed (Suchanek et al. 2004).  Mercury 
sampling sites and USGS flow gage stations correspond to the “index sampling sites” 
and “secondary sites” shown.  
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holder in the area, the US Bureau of Land Management.  Figure 2-3 shows a map of 

the Sulphur Creek watershed that includes the locations of the mercury mines and 

geothermal springs.   

 The Cache Creek watershed is a major source of mercury to the San Francisco 

Bay, which is also listed as impaired due to mercury contamination .  Elevated 

mercury fish tissue levels, high concentrations of mercury in the water column, and 

large loadings of total mercury and methylmercury have been observed in several 

parts of the Cache Creek watershed.   

 Since 2000, the Sulphur Creek TMDL workgroup has been collecting 

information relevant to the setting of the mercury TMDL target and for determining a 

proposed source allocation scheme.   In addition, the CALFED Bay Delta Program, a 

Federal/California State partnership with the mission of developing and implementing 

a long-term comprehensive plan that will restore ecological health and improve water 

management for beneficial uses of the San Francisco Bay-Delta System, has supported 

several relevant research projects.  The results of these studies are summarized in the 

November 2004 draft Sulphur Creek mercury TMDL report  and the various CALFED 

final reports (available on-line at http://loer.tamug.tamu.edu/calfed/ FinalReports.htm). 
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Figure 2-3. Map of the Sulphur Creek watershed, showing mine sites and geothermal 
springs. 
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DATA AND RESOURCE LIMITATIONS 

Predicting total mercury and methylmercury loadings in mine- and geothermal source-

impacted watersheds is an inherently difficult problem.  Since most of the total 

mercury mass is transported with the suspended sediment load, the many difficulties 

of modeling sediment transport apply.  Unfortunately, even larger uncertainties are 

involved in modeling the relationship between stream segment methylmercury 

concentrations and total mercury concentrations.  While several relevant and useful 

studies have been conducted, the available data are sparse relative to the complexity of 

the modeling problem and the very large uncertainties involved (Churchill and 

Clinkenbeard 2003; Domagalski et al. 2003; Rytuba 2005a; Suchanek et al. 2004).  

Details about the available relevant water flow and water quality data for Sulphur 

Creek and their implications for mitigation feasibility are discussed in Chapters 5 and 

6.   

 In general, data collection budgets for TMDL development are very limited 

relative to the complexity of the situation (Ruffolo 1999). Other important 

considerations are the large costs associated with the mitigation efforts being 

considered and recent evidence that strongly suggests that background total mercury 

and methylmercury loadings may be much larger than previously thought in the Bear 

Creek and Sulphur Creek watersheds (Rytuba 2005a).   

 In addition to data and modeling limitations and predictive uncertainty, the 

California Regional Water Quality Control Boards (RWQCBs) are very limited in 

number of staff that can be tasked with TMDL development (Ruffolo 1999).  Since 

budgets are limited, the ability to contract outside expertise is also limited.  

Collectively, these issues point to a need for a decision framework that takes into 

consideration the very large uncertainties involved and the resource constraints of the 

State agencies tasked with TMDL development and implementation planning. 



 

 21

                                                

2.3  MITIGATION ACTIONS BEING CONSIDERED  

The Central Valley Regional Water Quality Control Board staff are considering 

several potential controls for mercury in the Sulphur Creek watershed, including 

(RWQCB-CV 2004b): 

1. Reducing total mercury in run-off from inactive mercury mine sites by 

removing and/or stabilizing wastes; 

2. Remove or otherwise address mercury-contaminated sediments in creek 

channels and creek banks downstream from mine sites;  

3. Reduce erosion of mercury-enriched soils; and 

4. If feasible, reducing total mercury and methylmercury loads from geothermal 

springs. 

Once the load allocations have been determined, potential controls will be evaluated 

during the Basin Plan amendment process.  Projects and schedules will be evaluated 

and chosen subject to the relevant sections of the Porter-Cologne Water Quality Act.  

Additional monitoring may be performed before choosing projects (RWQCB-CV 

2004b).  For further background on the Sulphur Creek mercury TMDL, see the 

Regional Water Quality Control Board report (RWQCB-CV 2004b).  Other useful 

sources of background material from the RWQCB can be found on-line12. 

 

 

 
12 http://www.waterboards.ca.gov/centralvalley/programs/tmdl/Cache-SulphurCreek/ 
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CHAPTER 3:  BACKGROUND ON BAYESIAN NETWORKS 

3.1  DEFINITION AND PROPERTIES OF BAYESIAN NETWORKS 

Bayesian networks (belief networks) were developed as a general representation 

scheme for uncertain knowledge, organizing probabilistic and/or causal relationships 

between variables of interest as a directed acyclic13 graph (DAG) (Jensen 1996; Jensen 

2001; Pearl 1988; Pearl 2000; Williamson 2001).  The network is comprised of nodes 

and arcs, where the nodes represent the variables of interest and the arcs represent 

probabilistic relevance14, which is sometimes described as conditional dependence.  If 

the modeler is willing to make causal assertions about variables within the model, the 

arcs can be used to represent causal relations (Heckerman and Shachter 1995; Jensen 

2001; Pearl 2000).  A model may contain several types of variables:  chance (or 

probabilistic) variables represented by ovals, deterministic (functionally determined) 

variables represented by double ovals, decision variables represented by rectangles, 

and a value variable represented by a diamond (Figure 3-1).  An example of a chance 

variable is the mean total mercury concentration (HgT) of a particular stream segment 

over a particular time period, which for simplicity we will assign three states {Low ≡ 

HgT < 100 ng/L, Medium ≡ 100 ≤ HgT < 1000 ng/L, High ≡ HgT > 1000 ng/L}.  

Associated with this chance variable is a probability distribution over these states,  

 

 
13 A directed graph is acyclic if there exists no directed path between nodes A1→A2→ ... → An such 

that A1=An. 

14  Relevance between chance nodes refers to the relationship between the marginal (prior) probability 
distribution of the parent and the conditional probability distribution of the child.  For example, A→B 
represents the fact that the conditional distribution for B given A = a ({B|A=a, &}) is not equal to the 
distribution for B given A ≠ a ({B|A≠a, &}).  Relevance is defined in terms of a given state of 
information and is not defined in terms of the events in question.  Relevance is a mutual property, i.e., 
if A→B, then B→A.  This property is a result of arc reversal by applying Bayes’ Theorem.  For more 
information on the concept of relevance and a proof of mutual relevance, see Howard (1990) and 
Howard (1996).  Some authors refer to this relationship as “conditional dependence” or “probabilistic 
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Figure 3-1.  Types of nodes in a Bayesian network for a decision situation. 

 

 

perhaps conditioned on another variable.  An example of a deterministic variable is the 

HgT load at a particular point in time given the precise values of HgT and water flow, 

since HgT load is functionally determined by these values. If there is uncertainty in the 

state of the predicted HgT value for an observed (experimentally determined) flow, 

then the deterministic variable HgT load will be represented by a probability 

distribution over the possible load states, conditioned on HgT and flow.  A 

deterministic variable contains no uncertainty only if the states of its parents are 

known with certainty.  An example of a decision variable is a set of alternatives 

{Alternative 1, Alternative 2, etc.}, exactly one of which will be chosen by a decision-

maker at some point in time.  A value variable refers to a table of values (utilities) 

associated with each of the possible outcomes for each alternative.  A utility15 

                                                                                                                                             
dependence”, e.g., Shachter (1986).  When the arc is directed into a decision variable, the relationship 
may be termed “informational dependence” (Howard, 1990; Shachter, 1986; Pearl, 1988). 

15 Utility may be defined in terms of lotteries.  When examining a lottery, the decision-maker looks at 
the possible outcomes for the lottery, in which each outcome has an associated value (v) and a 
probability of occurrence (p).  For example, assume that a two-outcome lottery (Lottery i ≡ Li) has 
outcomes A and B.  The expected value of Lottery i is then computed as Li = pi,A*vi,A + pi,B*vi,B, 
where pi,j and vi,j refer to the probability and value (in dollars) of outcome “j” in Li.  When comparing 
two lotteries, if the decision-maker prefers L1 to L2 (L1 ► L2), then a number u(Li) can be assigned to 
each lottery that describes the strength of the preference for that lottery.  If these numbers are defined 
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represents the strength of the preference placed on that outcome by the decision-maker 

(Luce and Raiffa 1989).  See Chapter 4 for a discussion of using Bayesian networks 

(influence diagrams) to evaluate alternatives and to perform decision analysis. 

 Probabilistic relevance between variables is quantified within the network by 

conditional probability distributions for each variable given every possible 

combination16 of values of its parent variables (Jensen, 2001).  A variable with no 

parents is quantified by an unconditional (or marginal) probability distribution.  Arcs 

into non-decision variables represent probabilistic relevance and arcs into decision 

variables represent the relevant information available at the time the decision is made 

(Howard 1990; Howard and Matheson 1984; Jensen 2001; Shachter 1986; Shachter 

1988).  The Bayesian network allows:  1) computation of the posterior probabilities of 

any subset of the model variables given evidence about any other subset of model 

variables; 2) determination of the most likely scenario that explains the observed 

evidence; 3) determination of optimal decisions and value of information and control; 

and 4) determination of the effects of intervention on variables on interest through 

causal analysis, if causal assertions can be made (Jensen 2001; Pearl 1988; Pearl 2000; 

Shachter 1986). 

 This last use of Bayesian networks is of particular interest for TMDL linkage 

analysis.  In other words, Bayesian networks may be used to make predictions about 

the uncertain response of the natural system to changes in those variables over which 

the decision-maker has some control.  Bayesian networks without decision or value 

nodes can also be used to model reasoning under uncertainty and may be used as 

predictive tools in decision situations, e.g., water quality management decision 

situations (Borsuk et al. 2001; Borsuk et al. 2003; Reckhow 1999; Stow and Borsuk 

2003; Varis 1995).  One of the advantages of using a Bayesian network approach is 

 
over the set of lotteries such that u(L1) > u(L2) if and only if L1 ► L2, then a utility function u exists 
over the lotteries (Luce and Raiffa 1989, p. 29). 

16 For simplicity of presentation, this discussion assumes that the model is based on discrete probability 
distributions. 
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that the model evolves as new information is collected, yielding an updated model that 

reflects the current state of knowledge about the system of interest, synthesizing prior 

information and new evidence using theoretically sound probabilistic calculus (Jensen 

2001; Pearl 1988; Shachter 1988). 

 While Bayesian network models may be based on empirical probabilistic 

knowledge of the system of interest, they can also be based on what is known about 

the causal relationships between the variables of interest (Pearl 2000).  The 

introduction of expert knowledge about causal relationships between variables allows 

natural system processes and behavior to be modeled using Bayesian networks.  More 

importantly, when that causality is only incompletely understood or data-limitations 

exist, incomplete knowledge about causal relationships can be represented in terms of 

causal relations between random variables and conditional probabilities that describe 

these uncertain cause-and-effect relationships.  Causal assertions made in Bayesian 

networks, in effect, provide additional constraints on the flow of information through 

the network when observations or interventions are made (Pearl 2000).  When a 

variable is observed to be in a particular state, the d-separation17 properties are 

different from the situation in which the variable was placed in that state by an 

intervention.  These and other properties of causal networks are described in detail by 

Pearl (2000).  The importance of the decision context for defining causality is 

described by Heckerman and Shachter (1995).   

 In the Bayesian network model of the Sulphur Creek mercury TMDL setting 

decision situation, causal relations and conditional probabilities are based on what is 

currently known about the relations between HgT sources, HgT loading, MeHg 

production and the resulting loading, Hg fish-tissue burdens, and other natural-system 

 
17 D-separation refers to the relationship between evidence introduction and evidence transmission for a 

given model structure.  Two variables are d-separated if, given the evidence entered into the network, 
no information (changes in belief) may pass between them.  Jensen (2001) describes d-separated 
variables as “structurally independent” to emphasize the blocking of evidence between such 
variables.  If two variables are not d-separated, they are said to be d-connected.  The same two 
variables in a given model structure may be d-separated or d-connected depending on which variables 
in the structure receive evidence. 



 

 27

variables. The model also includes a probabilistic representation of what is currently 

known about how mitigation efforts may impact the natural system.  The composite 

effect of predictive uncertainty and natural variability are represented as conditional 

probability in these models. 

 Figure 3-2 shows two related examples of a Bayesian network representation 

of a decision involving three uncertainties as chance nodes in which the arcs represent 

causal relationships.  The network in (a) of Figure 3-2 is completely generic and is 

shown to illustrate different kinds of uncertain variables.  As shown, this model says 

that the states of Uncertain Variable 1, 2, and 3 will not be known before the decision 

is made.  In the case of Variable 2, its state is not influenced by the decision.  The arc 

from the decision to Uncertain Variable 1 means that while its state will not be known 

before the decision, the probability distribution over Uncertain Variable 1 is 

influenced by the choice of strategy.  The path from the decision to Uncertain Variable 

3 through the arc from Uncertain Variable 1 to Uncertain Variable 3 means that the 

decision-maker also has some influence over its state.  However, the arc from 

Uncertain Variable 2 to Uncertain Variable 3 means that Uncertain Variable 3 will 

also be influenced by something outside of the decision-maker’s control (namely 

Uncertain Variable 2).  In this way, uncertain decision-maker influence and 

uncontrollable uncertainty can be coherently modeled in terms of the available 

information and the best understanding of the causal behavior of the system being 

modeled. 

 Note that the relationships between variables are the same in the causal 

network shown in (b) of Figure 3-2.  The same discussion from (a) holds, but we can 

now think of these relationships in terms of meaningful variables.  In this network, the 

Load Allocation Decision (a decision about the strategy in reducing future total 

mercury loadings) has some influence over the future state of “Mine HgT Loading” 

(total mercury loading from some mercury mine source) over some time period, which 

will influence the future state of “HgT Loading at Gage” (total mercury loading 

downstream at a point of compliance) over the same time period.  However, HgT 
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Loading at the Gage is also influenced by “Background HgT Loading” (total mercury 

loading from all other sources upstream of the gage), which is not under the influence 

of the decision-makers.  In this context, the future state of Background HgT Loading 

is highly uncertain. 

In Bayesian network models, it is often useful to draw relevance relationships in 

causal directions to increase the intuitiveness of the model (Heckerman and Shachter 

1995; Pearl 2000).  In this form, relationships between variables in Bayesian network 

water quality models can be discussed in causal terms for the purposes of evidential 

reasoning18, where this causal understanding may be based on knowledge of the 

specific underlying causal processes involved or based on a statistical aggregation of 

more complex associations (Reckhow 1999).  However, it is emphasized that the 

general definition of Bayesian networks does not refer to causality and that there is no  

 

Figure 3-2.  Bayesian Network Examples.  (a)  Generic decision involving three 
uncertain variables as chance nodes.  (b)  An analogous decision situation for 
managing mine-related total mercury loadings (Mine HgT Loading).  

 
 

  

 

 

 

 

 
18  The task of evidential reasoning is to determine the validity of unobservable hypotheses from 

observable evidence (Heckerman and Shachter 1995).  The unobservable hypotheses are the variables 
of interest to the modeler, with the purpose being to estimate the probability that a particular 
hypothesis holds true given what has been observed. 
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requirement that arcs represent causal relationships.  The definition of Bayesian 

networks does, however, require that the d-separation properties implied by the model 

structure hold for the system being modeled (Jensen 2001).  It is often useful in 

decision analysis to draw arcs in a causal direction for use by decision-makers, but to 

reverse19 them for purposes of assessment or evaluation (Shachter 1988). 

 Causal relationships can be represented using Bayesian networks (Figure 3-3).   

This figure shows a simple Bayesian network model relating stream flow, total 

mercury loading, total aqueous mercury concentration, and total 

(mono)methylmercury concentration in a stream segment over a specific time period.  

This model asserts that total (unfiltered) methylmercury concentration (MeHgT) is 

caused by total mercury concentration (HgT) and “other environmental factors”, which 

may or may not have been observed.  In turn, total mercury concentration in water is 

caused by stream flow and total mercury loading.  There are many physical, chemical, 

and biological processes underlying these causal assertions, but the statements made in 

this model are accurate based on current understanding (and perhaps even useful to 

decision-makers, depending on the decision context). 

 
19 Arc reversal is the application of Bayes’ theorem to a Bayesian network and implies appropriate 

updating of the conditional probability distributions for the variables involved.  The rules of and uses 
for arc reversal are described in, e.g., Howard and Matheson (1984), Shachter (1986), and Heckerman 
and Shachter (1995). 
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Figure 3-3.  Graphical representation of a Bayesian network for relating mercury 
loading to methylmercury concentration. 

 

 

  

 

 

 

 

 

 

 

To illustrate one of the points made explicit by the graph, MeHgT is conditionally 

independent of stream flow (S) and total mercury loading (L) given the value of HgT 

and the other relevant environmental factors (OF).  This conditional independence is 

represented graphically by the absence of arcs connecting stream flow and total 

mercury loading to MeHgT, even though there is a path between them through the HgT 

variable.  It is emphasized that conditional independence in Bayesian networks refers 

to the blocking of the transmission of evidence within the network and is not the same 

as complete probabilistic independence (Jensen 2001; Shachter 1998).  To illustrate, if 

the value of total aqueous mercury concentration is not known, evidence concerning 

total mercury loading (L) may be relevant to MeHgT. 

 The ability of Bayesian networks to incorporate conditional independence 

greatly simplifies model development by allowing separate sub-models to be 
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developed for individual conditional relationships, where these sub-models may be 

based on uncertainty analysis of a mechanistic model, statistical relationships in an 

empirical model, or probabilistic information elicited from experts (Borsuk et al. 2001; 

Borsuk et al. 2003).  The Bayesian network itself represents a compact representation 

of a particular factorization of the joint distribution over the model variables (Howard 

and Matheson, 1984; Jensen, 2001).  The factorization for the joint distribution over 

the universe of variables for the model shown in Figure 3-3 is: 

{S, L, HgT, OF, MeHgT} = Пi{i|Pa(i)} = {S|&}{L|S&}{HgT|S,L&}{OF|&}{MeHgT|HgT, OF,&},  

where the product is over all of the model variables “i”, Pa(i) represents the set of 

parents for variable “i”, and “&” designates the background state of information. 

 Chance variables can be further sub-divided into hypothesis variables (not 

directly observable) and information variables, which may provide evidence that 

reveals something useful about the hypothesis variables in the decision context (Jensen 

2001).  In the context of this decision problem, whether or not mine mitigation results 

in a reduction in methylmercury concentration trends can be expressed as a hypothesis 

variable or a set of related hypothesis variables.  Total mercury concentration, reactive 

mercury concentration in sediment, sulfate concentration, the distribution of 

methylmercury concentrations throughout the watershed, etc., can then be modeled as 

information variables that reveal something about the relevant hypotheses. 

 The variables included in an influence diagram model should fit one or more of 

several criteria.  They are either:  1) manageable, which means that the alternative 

chosen influences its post-decision state (e.g., total mercury loads from a mine site); 2) 

predictable from available data, models, or expertise; or 3) observable at the scale of 

interest from the perspective of the water quality management problem.  In addition, 

chance variables are only included if they are:  1) of interest to the decision-makers 

and/or stakeholders or; 2) helpful for assessing probability distributions for variables 

that are of interest.  These last two criteria could be summarized by the requirement 

that a path exist between any chance variable and the value node.  Another way of 
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saying this is that chance variables should be relevant to the value of the decision 

outcome, if they are to be included in the influence diagram. 20

 A Bayesian network that is completely represented graphically (all nodes and 

arcs are present and correctly related), but that is missing some data, outcomes for 

decision variables, or conditional probabilistic data for any of the variables is said to 

be partially specified.  If no data is missing, the network is said to be fully specified.  

Partially specified network models are meaningful representations that carry 

considerable information about the system being modeled.  In fact, many predictive 

and inferential queries can be fully answered from a partially specified model, 

depending on the query, the model structure, and the required data (Shachter 1988). 

3.2  LITERATURE ON RELEVANT APPLICATIONS OF BAYESIAN NETWORK 

MODELS 

There are two examples in the literature of a belief network approach being taken to 

model regional water quality management situations:  a series of papers regarding a 

comprehensive study of nitrogen load reduction strategies for the Neuse River in 

North Carolina (Borsuk et al. 2001; Borsuk et al. 2003; Reckhow 1999; Stow and 

Borsuk 2003) and a application in the case of a phosphorus load reduction for the East 

Canyon Creek in Utah (Ames 2002).  The Neuse River work (Borsuk and others) 

develops a Bayesian network model relating nitrogen loadings to algal densities, 

eutrophication effects, and fish kills for several river segments.  The purpose of the 

model is to make predictions of future consequences of nitrogen load reductions on 

these endpoints of interest to stakeholders.  Stakeholder and decision-maker 

preferences were not explicitly considered in the model. 

 
20 An exception would be a variable or set of variables with no path to the value node, but that, for 

whatever reason, are of interest to one or more decision participants. 
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3.3  SUMMARY 

This chapter introduces Bayesian networks as a mathematical tool for modeling 

uncertain causal relationships between variables of interest.  It discusses several 

important concepts needed for understanding Bayesian networks, including:  1) types 

of variables; 2) the graphical notation for representing probabilistic relevance; 3) the 

importance of causal assertions for environmental modeling with Bayesian networks; 

4) d-separation, information “flow”, modularity, and the effects of evidence; 5) how 

new information can be incorporated through belief updating; and 6) the uses of 

Bayesian networks for making predictions and inferences and performing various 

analyses.  Other aspects of Bayesian networks are discussed in the context of decision 

analysis (Chapter 4) and as the Bayesian network model of the Sulphur Creek mercury 

TMDL is explicated in Chapters 5 and 6. 
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CHAPTER 4: A DECISION ANALYTICAL PERSPECTIVE ON TMDL 

DEVELOPMENT 

This chapter consists of a reviewed paper published as a conference proceedings paper 

for the Water Environment Federation’s National TMDL Science and Policy 2003 

Specialty Conference.  The chapter describes the decision analytical framework built 

upon in Chapters 5 through 8, but it takes a much more general view of preferences in 

TMDL decision-making than the methodology actually used in these later chapters.  

Some edits of the original paper were made for clarity and consistency with other 

chapters in this dissertation. 
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ABSTRACT 

This paper describes a decision analysis approach to TMDL implementation decisions 

for mercury using a mine-impacted tributary in the San Francisco Bay as an example.  

Decision analysis is a demonstrably sound approach for making best decisions under 

uncertainty (see, e.g., Howard 1968, 1988; Keeney and Raiffa 1976; Clemen 1996; 

Merkhofer 1999).  The Bayesian probabilistic nature of decision analysis makes it 

ideal for integrating diverse information, including the results from scientific and 

engineering models, cost and benefit models, empirical data, and expert judgment.  

One significant advantage of a decision analysis approach is its explicit separation of a 

decision problem into alternatives, information, and preferences.  This, in theory, 

allows decision-makers and stakeholders to separate “what we know” from “what we 

want”.  It is hypothesized that a more explicit separation of information and 

values/preferences will focus the debate.  While traditional decision analysis assumes 

a single rational decision-maker (where “single” may also denote a group that agrees 

on information and preferences), it can be extended to multiple decision-maker 

situations in a variety of ways.  Evaluating various extensions of decision analysis in a 
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TMDL implementation stakeholder context is one of the primary goals of this on-

going study.  It is hypothesized that, in general, decision analysis provides a helpful 

decision framework for a TMDL implementation planning/stakeholder process in 

many circumstances. 

 

KEYWORDS 

 
Decision analysis, TMDLs, mercury, water quality predictions, influence diagrams, 

Bayesian networks, probabilistic networks, information-gathering decisions, load 

allocation decisions, mitigation decisions, sensitivity analysis, value of information 

4.1  INTRODUCTION 

BACKGROUND 

There are a number of examples of the use of decision analysis for environmental 

decision-making in the literature, often in the area of site selection or choosing 

between remediation, restoration, or technology alternatives (e.g., Keeney 1980; 

Merkhofer and Keeney 1987; Maguire and Boiney 1994; Reckhow 1994a; Merkhofer 

et al. 1997; Perdek 1997; Kruber and Schoene 1998; Freeze and Gorelick 1999; 

Merkhofer 1999; Bonano et al. 2000; Anderson and Hobbs 2001).  Environmental 

decision situations are often rife with uncertainty and controversy, requiring the 

integration of diverse kinds of information and compromises between diverse 

interests.  TMDL load allocation decisions are typical in this regard (NRC 2001; 

Boese 2002).  Common TMDL decision issues include dealing with appreciable 

scientific uncertainty and information gaps in understanding the relationships between 

loadings, mitigation, and effects, determining whether to make allocation decisions 

based on what is currently known or whether to collect new data and perform new 

analyses before making those decisions, and prioritizing pre- and post-implementation 

monitoring activities.  Decision analysis provides a normative (as opposed to 
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descriptive) framework for providing decision clarity for these kinds of decision 

problems.  The theory behind decision analysis does not attempt to predict decision 

strategies that people will choose, but rather, it attempts to predict decision strategies 

people should choose, given a set of beliefs, alternatives, and preferences (the decision 

basis).  In a group decision situation, if consensus is achieved on the decision basis, 

decision analysis can be used to determine optimal decisions.  If consensus is not 

achievable, decision analysis may be used to highlight areas of agreement and 

disagreement, allowing insights into potential compromises and/or defining positions 

for negotiation.  

 Decision analysis makes use of the Bayesian (subjective) definition of 

probability, which treats uncertainty as a probability and allows the decision-maker to 

combine various kinds of information into a unified probabilistic framework.  For 

decisions that involve perturbations to natural systems, Bayesian (probabilistic) 

networks that are built up from the best available scientific models, data, and expert 

judgments can be used to predict the consequences of those decisions (Borsuk et al. 

2001, 2002; Stow et al. 2003; Reckhow et al. 1999).  In practice, empirical stochastic 

models, uncertainty analysis of semi-empirical models, and expert judgment are the 

only feasible means to creating the needed probabilistic relationships.  While rigorous 

uncertainty analyses of large mechanistic models can be used for this purpose, the 

computational burden is excessive (Reckhow 1999). 

 Bayesian (probabilistic) networks are designed to model the variables that are 

of interest to decision-makers.  Other variables that are useful for modeling the 

variables of interest may be initially included, then eliminated using probabilistic 

marginalization (Jensen 2001).  In effect, the influences of hidden variables are 

included in the conditional probability distributions of the variables in the model.  The 

cumulative effects of the many variables that may individually have a small effect on a 

variable of interest are modeled as random “noise”, as well.  This approach allows the 

modeler to focus on predictive accuracy for the time and spatial scales desired for the 

variables of interest to the decision-makers, removing details that are determined to be 
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extraneous to the decision problem. Again, the effects of these “details” are ideally 

present in the conditional probability distributions of the modeled variables. As 

pointed out by Reckhow (1999), this approach often leads to superior predictive 

accuracy for the modeled variables compared to larger, more detailed deterministic 

scientific models of water quality impacts.  The loss of mechanistic descriptive power 

is compensated by the ability to perform sensitivity analyses, explore scenarios 

probabilistically, and estimate credibility of compliance predictions.  Recent work has 

demonstrated that water quality management effects can be effectively modeled using 

Bayesian (probabilistic) networks (e.g., Reckhow 1999; Borsuk et al. 2001; Borsuk et 

al. 2002; Stow et al. 2003).  Since compliance is predicted probabilistically, a margin 

of safety (MOS) can be explicitly considered in terms of credibility of compliance 

predictions. 

 From a decision analysis perspective, the Bayesian network model of interest 

is the influence diagram, which combines decisions (“what you can do”) with a model 

of key uncertainties (“what you know”), subject to a valuation model (“what you care 

about”) (Howard and Matheson 1984; Shachter 1986, 1988).  If consensus is achieved 

on preferences, influence diagrams allow determinations of optimal decisions, 

sensitivity of the optimal decision to key uncertainties and assumptions, and value of 

information on uncertainties, which may be used to plan future information-gathering 

activities.  Value of information refers to the fact that improvements in the state of 

information before a decision is made can lead to a change in the predicted optimal 

policy.  It is the potential for changing the optimal policy that generates economic 

value (see Howard 1968; Lawrence 1999). 

 Even without consensus on preferences, sensitivity analysis can be performed 

to explore relationships between key uncertainties and variables of interest (e.g., water 

quality endpoints), allowing the decision-makers to explore “what-if” scenarios of 

interest.  When preferences are ignored (i.e., the value model is removed), the 

underlying Bayesian network may be referred to as a “belief network”.  In the context 

of water quality management decisions, belief networks can be thought of as modeling 
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the response of the natural system to management strategies.  For example, one could 

use a belief network to probabilistically explore the relationship between mercury load 

reductions and fish tissue mercury levels under a variety of scenarios, in essence 

demonstrating how beliefs about future fish tissue mercury levels change with load 

reductions.  This research project makes extensive use of influence diagrams and 

belief networks as tools for performing TMDL decision analysis.  However, the 

emphasis is on the use of these tools for supporting decisions, not as water quality 

models per se. 

 This paper demonstrates an influence diagram model of mitigation/load 

allocation decisions for a simple mercury TMDL example.  Such a model can be used 

throughout the TMDL decision process, including initial information-gathering 

decisions, load allocation/mitigation decisions, and post-implementation monitoring 

decisions.  The essential insight is that information-gathering/monitoring decisions, 

whether made before or after allocation decisions, draw their value from making better 

load allocation/mitigation decisions.  For this reason, information-gathering decision 

models build on load allocation/mitigation decision models.  Our load 

allocation/mitigation decision model integrates a Bayesian (probabilistic) network 

model of environmental system response to mitigation decisions with a valuation 

model, allowing insights into the credibility of compliance with multiple numerical 

standards, insights into sensitivity of conclusions to small changes in model 

parameters, and, if a value model can be defined, the determination of optimal 

strategies.   

 It is emphasized that decision analysis applied to group decision situations 

should be thought of as a process by which groups may discover useful insights that 

highlight where consensus may be achieved and where obstacles requiring 

clarification, negotiation, mediation, or litigation may lie.  There are many competing 

versions of decision analysis with variations on how alternatives are generated, 

uncertainty is represented, preferences are elicited, etc.  In this paper we describe a 

decision analytic approach that is based on small group elicitation of goals, objectives, 
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and alternatives, a probabilistic model of natural system response, and several 

potential methods for eliciting and representing preferences.  Other related approaches 

may be just as appropriate, depending on circumstances.  One of the focuses of this 

paper is dealing with the problem of competing preferences between stakeholders, 

both from the perspectives of making decisions and representing preferences. 

 At the highest level, decision analysis divides the decision problem into 

alternatives, information, and preferences.   In the context of public environmental 

decision-making, these could be cast as:  1) decision framing/strategy generation; 2) 

information modeling/synthesis/forecasting; and 3) multiattribute utility analysis, 

negotiation among interest groups, or other methods of eliciting and representing 

preferences.  Each of these aspects of decision analysis will be described further 

through examples, with the goal of showing how decision analysis can create clarity in 

a complex decision problem. But first, we discuss the importance of considering 

uncertainty in the TMDL decision-making process. 

UNCERTAINTY IN TMDL DECISIONS 

Models play and will continue to play a central role in the TMDL development and 

implementation process (Reckhow 1999; NRC 2001; Lung 2001; USEPA 2002).  

Whether the models are empirical (statistical) or mechanistic, they represent the best 

scientific understanding of how contaminant loadings relate to water body impairment 

of designated beneficial uses (NRC 2001).  Once a waterbody is listed as impaired, 

predictive models are used to assess the relative contributions of various pollution 

sources, to predict the total load reduction required to meet ambient water quality 

standards, and to predict the relationships between specific control measures (e.g., 

point source load reductions) and water quality targets (e.g., ambient water 

concentration of a particular pollutant) in the load allocation process. 

   Decision-making related to TMDL development and implementation requires 

one to answer questions related to determining the reasons for non-attainment of 

beneficial use and evaluating strategies for mitigating those determined causes.  
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Neither of these questions can be answered with certainty.  Uncertainty, whether the 

source is incomplete knowledge about the natural system, analytical error, or the 

stochastic variability inherent in natural systems, is a reality that any water quality 

management decision framework must recognize, assess, and, when possible, reduce 

(NRC 2001).  The decision analytic framework proposed in this paper specifically 

addresses model uncertainty in the context of decision-making, using Bayesian 

network models to integrate predictive uncertainty about the response of the natural 

system to proposed mitigation strategies with stakeholder valuations of the strategies 

being considered. 

 Uncertainty in model predictions can be large and, when explicitly considered, 

can confound interpretation of results in terms of the decisions that need to be made 

(Reckhow 1994b).  Uncertainty has been, however, often treated superficially in water 

quality management decisions, which can be a major source of contention between 

stakeholders and regulatory agencies (Ortolano 1997; NRC 2001).  Historically, this 

occurred because the ability to analyze uncertainty was limited by computing power 

and, in some cases, by a lack of understanding of how to feasibly model and propagate 

uncertainty in large mechanistic water quality models.  Besides the technical aspects, 

even when uncertainty analysis is performed well, the political reality is that 

discussions of the estimated uncertainty often get bogged down with arguments that 

have more to do with preferences than information.  In fact, the use of decision 

analysis is an attempt to incorporate uncertainty directly into TMDL modeling and 

decision-making in a manner that separates information and preferences.  In effect, 

this attempts to separate the estimation of uncertainty from the interpretation of 

uncertainty.  Disagreements about particular beliefs and preferences can be expected 

to remain, but decision analysis may be able to focus the argument on those sources of 

disagreement, reducing confusion about the impact of uncertainty on decisions.  

Downplaying uncertainty to avoid these confrontations may make for an easier 

stakeholder process in the short term, but that strategy runs of the risk of resulting in 

poorly informed decisions.  The National Research Council (ibid.) suggests the use of 

adaptive management to deal with the significant uncertainty involved in TMDL 
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decisions, an approach that is being employed in many TMDLs.  As discussed by 

Reckhow et al. (2002), an adaptive management approach may be modeled with 

Bayesian networks, but further discussion of adaptive management is beyond the 

scope of this paper. 

PREFERENCES 

If decision outcomes can be valued in terms of a single attribute (e.g., an exchangeable 

resource like dollars), and consensus can be reached regarding those values and 

attitudes toward risk, decision analysis can be applied straightforwardly to determine 

an optimal decision policy, sensitivity analysis can be used to determine the value of 

information, etc. (e.g., Howard 1968; 1988; Marshall and Oliver 1995; Clemen 1996; 

Merkhofer 1999).  The optimal decision policy for an uncertain decision situation is 

the policy that maximizes expected utility, a measure of value.  By making maximum 

expected utility the decision criterion, the utility of a particular outcome is weighted 

by its probability of occurrence, so that the strategy that yields the highest expected 

utility can be thought of as promising the “highest probability of achieving the best 

outcome”.  

 When a group agrees to cooperate and work towards consensus on information 

beliefs and preferences, the single decision-maker decision analysis approach may be 

used.  Single decision-maker problems involving utility over uncertain monetary 

outcomes are solved in terms of expected utilities, incorporating risk attitudes.  Non-

monetary outcomes can be accommodated in decision analysis using the “preference 

probability” interpretation of utility, in which the utility of an outcome is interpreted 

as the probability of obtaining the best outcome instead of the worst outcome.  The 

approach we explore in this paper is the use of multiattribute utility analysis to directly 

define a mapping from either monetary or non-monetary outcomes to utilities (Howard 

1984b; Marshall and Oliver 1995; Clemen 1996; Lawrence 1999).   

 However, the assumptions applying in single decision-maker situations 

obviously would not describe many TMDL decision situations, which instead can be 
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expected to have multiple goals with multiple associated attributes with perhaps no 

obvious consensus on valuing the various possible outcomes.  Note that there are two 

important issues at stake here: 1) TMDL goals have multiple attributes that may not be 

expressible in terms of a single measure like dollars; and 2) based on experience, we 

can expect disagreements between work group/stakeholder group members about 

valuing outcomes even within an agreed-upon multiattribute framework.  Each of 

these issues can be dealt with, if the TMDL decision-making group is willing to 

cooperate.  This does not require that consensus in preferences is achieved, but it does 

require that group members agree to faithfully participate in the decision analysis 

process. 

 Work groups and stakeholder groups may use decision analysis in a number of 

ways, including a “competing models” approach in which the work group/stakeholder 

group partitions into sub-groups that agree to act cooperatively in determining mutual 

preferences and preferred alternatives for the purpose of arriving at negotiating 

positions for each sub-group (Chechile 1991).  In other words, the sub-groups agree to 

effectively behave as a “single decision-maker” to determine recommended strategies 

according to the sub-group’s viewpoint.  While major differences may be found 

between the various recommended approaches, numerous points of agreement are 

expected.  At this point, decision analysis may be used further with mediated 

compromises on preferences and information that allows a group “best compromise 

strategy” to be formulated, but it may be necessary to resort to a purely negotiated or 

political compromise at this point.  The advantage of applying decision analysis in this 

latter case is that the sources of disagreement can be more easily identified and that 

potential compromises may become more apparent.  However, if a sub-group is non-

cooperative and misrepresents their beliefs and preferences in the analysis, decision 

analysis may not be a useful tool for the TMDL decision-making process.  Note that 

other analytical approaches are similarly hobbled by deliberate attempts to 

misrepresent positions (e.g., cost-benefit analysis).  In such cases, political solutions 

may be inevitable.  In cases in which group members are willing to cooperatively state 
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their beliefs and preferences, decision analysis is a robust process that should be 

considered.  

DECISION ANALYSIS PROCESS 

Figure 4-1 shows a flow diagram representing the decision analysis cycle (Howard 

1984a).  In a real application of decision analysis, individual steps may be emphasized 

or de-emphasized, depending on the particular situation.  Also, a particular step may 

be accomplished using very different tools and some tools may be used in more than 

one step.  So, from a “tools perspective”, two different decision analysis applications 

may appear to be very different, so much so that it may be difficult to see the 

relationships between the two approaches.  However, taking a decision analysis cycle 

perspective, one can see how the seemingly different approaches accomplish the basic 

steps in decision analysis.  For the purposes of this paper, we will focus on 1)  decision 

framing/structuring; 2) probabilistic modeling of the natural system response; 3) 

sensitivity analyses; and 4) dealing with preferences and potentially determining 

optimal strategies and value of information.  In particular, we will explore the 

application of decision analysis to load allocation/mitigation decisions and 

information-gathering decisions. 

 



 

 47

Figure 4-1.  Decision Analysis cycle. 

Structure Decision Problem:
Identify decision situation, explore and
identify objectives, identify alternatives

Deterministic Analysis:
Deterministic model of decision problem;
Deterministic sensitivity analysis (tornado
diagram) to identify important uncertainties

Probabilistic Analysis:
Probabilistic model of decision problem;
Determine best strategy; Perform
sensitivity analyses

Appraisal:
Value of information; Decision quality
diagram; Is further analysis needed?

Commitment to Action

Initial Situation
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 The initial step in the decision analysis cycle is preliminary framing and 

structuring of the decision situation in such a way that decision analysis may be used 

to evaluate the various alternatives.  In particular, framing involves identifying and 

discussing decision performance measures, e.g., decision objectives and their 

associated measurable/ predictable attributes.  Performance measures (attributes) can 

be thought of as gauging the consequences that the decision-maker cares about, so that 

the range of possible outcomes may be represented in a meaningful way (Keeney 

1992). 

 The influence diagram (as a Bayesian network) is a powerful tool that allows 

the decision analyst to perform the deterministic analysis phase, the probabilistic 

analysis phase, and, if a value model can be determined, to estimate the value of 

information on key uncertainties and assumptions.  In brief, the deterministic analysis 

phase translates the results of the framing analysis into a mathematical model for the 

purpose of determining which uncertainties are important enough to warrant 

probabilistic modeling in the subsequent probabilistic analysis phase.  The 

probabilistic analysis phase assigns probabilities to the identified key uncertain 

variables.  Input variables that have little effect on the value model output are assigned 

nominal (base) values and, thus, are treated deterministically.  The required 

probability distributions are either modeled empirically from data or assessed from 

experts and/or decision-makers.  In some cases, it may be advantageous to 

probabilistically combine empirical models with expert opinion.  In the probabilistic 

analysis phase, optimal decisions may be determined if a value model can be 

constructed.  The influence diagram may be further manipulated to perform 

probabilistic sensitivity analysis to determine how sensitive the optimal policy is to 

current beliefs about key uncertainties.  The decision analyst may find that the optimal 

policy may change given small changes in probability distributions for a key 

uncertainty, in which case further analysis may be recommended.  Performing and 

reporting the results of sensitivity analysis may be critical in achieving the degree of 

“decision transparency” that promotes buy-in from stakeholders.  
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 Value of information analysis may also be performed as this stage to determine 

if additional information may have the potential to change the optimal policy.  From a 

decision analysis perspective, new information only has value when the optimal policy 

may change in response to the new information (Howard 1968; Lawrence 1999).  

Since value of information analysis requires consensus in preferences, it may not 

resolve disagreements about information-gathering or technical review activities 

between sub-groups.  However, it can provide the basis for positions on information-

gathering and technical review activities within sub-groups and can shed light on the 

sources of agreement and disagreement regarding these activities. 

INFLUENCE DIAGRAMS (BAYESIAN NETWORKS) FOR ENVIRONMENTAL DECISION 

ANALYSIS:  GRAPHICAL TOOLS FOR DECISION PROBLEM FRAMING 

Influence diagrams are often used as framing tools for graphically representing the 

decision problem in terms of the relationships between decisions, uncertainties, and 

performance measures (Howard and Matheson 1984; Shachter 1988; Howard 1990; 

Merkhofer 1990; Marshall and Oliver 1995).  The influence diagram can be 

constructed as a group exercise in decision framing, focusing attention on the 

relationships between the important variables in the decision situation, including 

decision strategies, uncertain variables describing the state and response of the natural 

system, and variables related to valuing outcomes.  In addition to graphically 

representing important aspects of the decision problem, the influence diagram can be 

used to determine information/ forecasting requirements, probability assessment order, 

and, if decision trees are to be used, decision tree structure.  Deterministic sensitivity 

analysis may later determine that one or more uncertainties can be treated 

deterministically and hence the influence diagram may evolve during the decision 

analysis problem.  The role of the influence diagram in determining information and 

modeling/forecasting needs is very important: this approach helps decision-makers 

and technical experts/scientists communicate about what information is important in 

terms of the decisions to be made.   
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INFLUENCE DIAGRAMS AS BAYESIAN NETWORKS FOR SOLVING DECISION PROBLEMS 

In addition to decision framing, influence diagrams can also be used directly as 

Bayesian network models by adding to the graph the requisite probability structures 

needed for modeling consequences and value.  In this use, an influence diagram is a 

class of Bayesian networks that may include nodes representing uncertain system 

variables, deterministic system variables, decision variables, and a value variable.  

Optimal decisions are those that maximize expected utility through relationships 

between the value variable and the other variables.  Thus, influence diagrams can be 

used in lieu of or in parallel with decision trees to solve for optimal decisions, to 

evaluate sensitivity of the optimal decision to information and model assumptions, to 

estimate the value of information and control, and to make inferences from the 

available data important to the decision situation (Howard and Matheson 1984; 

Shachter 1986; Oliver and Smith 1990; Pearl et al. 1990).  In the approach described 

in this paper, decision trees (Chechile 1991; Marshall and Oliver 1995) are avoided 

altogether and the Bayesian network is used as the primary analytical tool. 

 To emphasize the point, the Bayesian network version of the influence diagram 

may be used to make predictions about the response of the natural system to changes 

in those variables over which the decision-maker has some control.  Bayesian 

networks without decision or value nodes (“belief networks”) can be also used to 

model reasoning under uncertainty and may be used as predictive tools in decision 

situations, e.g., water quality management decision situations (Reckhow 1999; Borsuk 

et al. 2001).  One of the advantages of using a Bayesian network approach is that the 

model evolves as new information is collected, yielding an updated model that reflects 

the current state of knowledge about the system of interest, synthesizing prior 

information and new evidence using theoretically sound probabilistic calculus (Jensen 

2001; Shachter 1986, 1988; Reckhow 1999; Pearl et al. 1990; Varis 1995). 

 Figure 4-2 shows an example of a Bayesian (belief) network representing 

causal relationships between precipitation, creek flow, river flow, mine mercury load, 

creek mercury load, and total mercury in water (HgT).  The belief network consists of 
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a graph and probabilistic data associated with the nodes in the graph.  The graph 

consists of nodes (ovals) connected by arrows.  Ovals represent chance (uncertain) 

nodes and associated with each chance node is a random variable.  The random 

variables in the Bayesian network represent the attributes of interest to decision-

makers.  Arrows represent potential conditional probabilistic dependence between the 

various random variables and can be drawn in a causal direction.  Graphically, the 

arrow points from the “parent node” to the “child node”, which intuitively indicates 

that the child node somehow “depends” on the parent node.  More precisely, an arrow 

from a parent node to an uncertain variable (child) means that the probability 

distribution in the uncertain variable (child) is conditioned on the state of the parent 

node.  The absence of an arrow between two variables indicates that the variables are 

conditionally independent.  If there is a directed path between two variables (i.e., there 

exists a set of arcs between them which can be traversed in the direction of the arcs) 

which do not have a direct parent/child relationship, those variables may or may not be 

relevant to one another, depending on the state of information.  For example, Figure 4-

2 asserts that precipitation may be relevant to total mercury in water (HgT) if at least 

one of the values for “Mine Hg Load”, “Creek Hg Load”, and “River Flow” has not 

been observed.  But, it also asserts that, given observations for “Mine Hg Load”, 

“Creek Hg Load”, and “River Flow”, precipitation and total mercury in water are 

conditionally independent of each other.  These assertions of conditional independence 

are very important in terms of understanding information needs and performing 

decision analysis. 

 The variables included in a network may be included for a variety of reasons, 

including the decision-makers’ direct interest in the state of a variable (e.g., HgT) or 

because the variable helps to interpret or predict those variables of direct interest (e.g., 

precipitation).  It is important to understand that variables needed from a technical 

perspective for modeling a particular complex system do not need to be shown in the 

version of the Bayesian network used for decision analysis, communicating with 

decision-makers or stakeholders, etc.  Variables needed only for modeling reasons can 

be probabilistically absorbed into the network, which yields the same results as before 
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the nodes were removed.  The local representation is changed, but the global 

probabilistic relationships are not affected (Shachter 1988; Pearl et al. 1990).  As there 

may indeed be variables of interest to scientists about the natural system being 

modeled that are not important to decision-makers, this is an important point to 

understand. 

 The conditional probabilistic relationships between conditionally dependent 

variables can be quantified in a modular fashion using an approach suitable to the kind 

and amount of information available, where this modularity follows from the 

conditional independence relationships in the model (Reckhow 1999, 2002).  This 

allows various kinds of statistical and subjective probabilistic information (from data, 

models, and expert judgment) to be integrated into a single probabilistic network 

model that can be used for predictions and inferences of use in decision-making 

situations.  Prediction refers to following an arrow in the forward direction, i.e., 

predicting the probability distribution of a child node based on the values or 

distributions of its parent nodes.  Inference refers to following an arrow in the reverse 

direction, i.e., inferring the probability distribution of the parent nodes based on 

evidence about the value of the child node(s) (Jensen 2001).  The ability of a Bayesian 

network to make predictions is useful,  
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Figure 4-2.  An example of a Bayesian network. 
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for example, when trying to model the effects of particular mitigation strategies on 

water quality attributes of interest.  Learning what new evidence about a predicted 

variable means in terms of hypotheses about cause and effect between parent and child 

nodes is an example where the ability of Bayesian networks to perform inference may 

be useful. 

 A point that needs to be emphasized here is that while such an influence 

diagram model (or any other model) is an imperfect representation of the real system, 

it should faithfully represent how the decision-maker believes the real system will 

behave, given the available data and current scientific understanding.  The decision-

maker can do no better than this when making a decision.  In particular, if the optimal 

strategy is sensitive to slight changes in the underlying probability distributions, then a 

value of information analysis may determine that re-framing the load 

allocation/mitigation decision problem as an information-gathering decision problem 

may be the best course of action.  If there are regulatory constraints that prevent this 

re-framing, using the existing model to suggest optimal strategies is the best course of 

action, from the decision analytical perspective. 
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4.2  METHODOLOGY AND DISCUSSION 

FRAMING THE DECISION:  OBJECTIVES HIERARCHY 

Decision framing tools are used to represent the decision situation in a way that 

enables the evaluation and comparison of alternatives according to criteria that are 

meaningful to the decision-maker.  The objectives hierarchy is a common framing tool 

that identifies and organizes decision outcome performance measures (attributes), 

which are used as evaluation criteria (Keeney 1992) and can be used as variables in an 

influence diagram representation of the decision problem.  Keeney (ibid.) organizes 

the objectives hierarchy with:  1) an overarching decision goal at the top of the 

hierarchy; 2) a set of issue-specific objectives consistent with and subject to this top 

goal; and 3) a set of attributes consistent with and subject to the specific objectives.  

There may be more than one level of objectives between the top decision goal and the 

decision attributes, depending on the framing desired by the decision-makers.  

Attributes are ideally the performance measures that the decision-makers care about, 

and they should be chosen to be well-defined, measurable (at least in theory) and 

predictable.  When the objectives hierarchy is complete, the attribute set formed 

should be comprehensive (capture all of the aspects of value at stake), minimal (as 

small in number as possible), independent of one another, and operationally feasible 

(Keeney and Raiffa 1976; Reckhow 1994a).  These requirements ensure that there are 

no “holes” or “double-counting” in the analysis and that a suitable value model can be 

constructed (Merkhofer 1999). 

 Figure 4-3 shows a hypothetical objectives hierarchy for a mercury TMDL for 

a tributary to the south San Francisco Bay.  In practice, the objectives hierarchy would 

be developed by the TMDL work group and/or stakeholder group, with the help of the 

decision analyst.   The top goal in this example objectives hierarchy is to manage 

mercury contamination in the watershed, with objectives pertaining to protecting 

human health and wildlife (sub-objectives of reducing mercury methylation potential 

and methylmercury levels), meeting Basin Plan water quality objectives for total 

mercury, maintaining adequate flood control, meeting the ten and twenty year total 
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mercury load reductions under the San Francisco Bay mercury TMDL, and controlling 

compliance costs.  Each objective is translated into one or more attributes, and this is 

shown graphically by arrows pointing from a given objective to its attributes 

(performance measures).  Attributes serve multiple roles in decision analysis.  They 

form the basis of the value model, since they are the performance measures that matter 

to decision-makers, and they define information needs for decision modeling.  In this 

latter role, TMDL decision situation attributes help define which natural system 

variables need to be modeled for relating management strategies to value, as will be 

demonstrated below. 

 For example, the “fish tissue mercury levels” attribute might be defined as the 

average fish tissue mercury burden of a particular fish species (with perhaps specified 

weight range, sex, etc.) within the watershed over some time scale.  An attribute that 

might be less obvious in the context of mercury mitigation, but that may be very 

important to some stakeholders is flood capacity.  The use of flood capacity as an 

attribute allows decision-makers to keep track of the impact of mitigation strategies on 

flood capacity, while simultaneously evaluating those strategies in terms of other 

attributes.  While establishing TMDL performance measures is an explicit activity in 

the TMDL process, it is important to identify a list attributes that capture all 

stakeholder values that may be significantly affected.  To emphasize the point, it is 

important to frame the problem not just in terms of “technical TMDL endpoints”, but 

also in terms of attributes that characterize objectives that matter to stakeholders in 

terms of idiosyncratic preferences.  In fact, capturing this latter class of attributes may 

make the difference between understanding why stakeholder values lead to 

disagreements about acceptable strategies later in the decision process and finding a 

situation in which there are arguments that are seemingly about “technical 

information”, but that really reflect unstated preferences. 
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Figure 4-3.  Hypothetical objectives hierarchy for managing mercury in a small mine-
impacted tributary to the South Bay. 
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It is common, but often unheeded, advice in the decision analysis literature to 

appropriately focus attention at this step since careless framing can lead to “solving 

the wrong problem”, leading to inappropriate or incomplete consideration of 

alternatives, a short-sighted understanding of the decision situation, and a 

misappropriation of resources (Howard 1968; 1988; Reckhow 1994a; Clemen 1996; 

Merkhofer 1999).  Nevertheless, decision-makers often treat this stage cursorily and 

plunge quickly into more familiar territory:  technical problem framing, information-

gathering, modeling, and analysis.  Decision-makers often have a good understanding 

of many aspects of the decision problem “going in” to a particular decision situation, 

which can sometimes lead to the misapprehension that detailed decision framing 

exercises are unneeded.  However, extensive decision framing can lead to better 

planning and resource allocation and to evaluating the “right alternatives” in terms of 
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the “right attributes” for making good TMDL decisions.  To a significant degree, 

TMDL guidance documents already promote this activity from the technical 

perspective. 

IDENTIFYING ALTERNATIVES AND GENERATING STRATEGIES 

Keeney (1992) describes a number of methods for using the attributes and objectives 

from the objectives hierarchy to explore and generate decision alternatives.  Clemen 

(1996) provides a basic and useful summary of various techniques, including some of 

the methods discussed in Keeney (ibid).  The methods build on the identified goals, 

objectives, and attributes, stressing the importance of flexibility and creativity.  One 

tool in particular may be useful for generating TMDL strategies: the strategy table.  

Figure 4-4 shows a simple example of a strategy table with two strategies.  Strategy 

tables are fairly intuitive and the tool can be used in a group setting without much 

introductory material required.  The basic idea is to capture the possibilities, then to 

select a manageable number of strategies as alternatives for further decision analysis.  

A strategy consists of a set of single elements from each column in which the 

combination of those elements makes sense as an approach.  There will, of course, be 

combinations that are incoherent and these combinations would not represent a viable 

strategy.  In a real TMDL allocation decision situation, the strategy table would be 

expected to have more elements (columns), making such an approach useful for 

brainstorming and organizing complexity.  In Figure 4-4, two strategies are shown for 

illustration:  1) a methylmercury potential mitigation strategy that includes “medium 

reductions” for mine site and creek mercury loads and an aggressive reduction of 

mercury methylation potential and 2) a mine site mercury load reduction strategy that 

includes a large reduction requirement for mine site mercury loading and minimal 

reductions for creek mercury loading and mercury methylation potential. 

 Once an objectives hierarchy has been created and alternatives have been 

generated, the decision analyst will work with the group to create an influence 
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diagram from the chosen attributes, alternatives, and variables representing identified 

important  

Figure 4-4.  Strategy table example. 
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uncertainties.  Attributes may become variables in an influence diagram or may 

become part of the value model, depending the nature of the attribute.  It may be 

worthwhile to revisit the objectives hierarchy and strategy table after the influence 

diagram has been created to see if revisions are necessary.  

MULTIATTRIBUTE UTILITY ANALYSIS 

Multiattribute utility analysis (MUA) is designed to deal with the complexity of 

eliciting and representing the values at stake in complex decision problems like 

environmental decision situations (Keeney and Raiffa 1976; Gregory 1999; Merkhofer 

1999; Prato 2003).  In particular, multiattribute utility analysis (MUA) or other 
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approaches (e.g, the analytic hierarchy process) may be used to elicit and represent 

preferences when multiple decision attributes/criteria are important (Chechile 1991; 

Marshall and Oliver 1995; Merkhofer 1999).  In general, MUA is conceptually simple, 

but may become operationally complex with details that should burden the decision 

analyst and not the decision-makers/work group.  One problem is that lay people may 

see this apparent complexity as being suspect, so great care should be taken to ensure 

that decision-makers/work group members sufficiently understand the concepts being 

used so that the preference representation approach is trusted (Morgan and Henrion 

1990).   

 While there may be consensus that one alternative appears superior to the 

others in terms of one particular attribute, it may appear inferior in terms other 

attributes.  Trade-offs between attributes is thus usually necessary and this idea is at 

the core of multiattribute decision-making (Keeney and Raiffa 1976; MacCrimmon 

and Wehrung 1977; Merkhofer et al. 1997).  MUA can be used directly to rank 

alternatives in terms of weighted utilities (Prato 2003), ignoring probabilities of 

outcomes in the decision-making process.  However, it can also be used in a decision 

analysis framework that includes a probabilistic treatment of uncertainty and that 

determines best policies based on expected utility.  

 Once the decision analyst elicits preferences between outcomes among the 

various decision attributes for each decision-maker sub-group, the consensus 

preferences for each sub-group can be aggregated into a multiple-attribute utility 

function and maximum expected utility can be determined.  Note that MUA does not 

require monetization of preferences, one of the appeals of the technique.  Other 

approaches like probabilistic cost-benefit analysis, cost-effectiveness analysis, 

minimization of chance of worst possible outcome, etc. could also be used, depending 

on the situation (Morgan and Henrion 1990). 

 To illustrate the MUA process, Table 4-1 shows an example multiattribute 

utility analysis (MUA) for a few outcomes for the two strategies from Figure 4-4, 
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MeHg Potential mitigation focus (Strategy 1) and mine site Hg load reduction focus 

(Strategy 2), as evaluated by a hypothetical decision-maker sub-group.  Other sub-

groups could be expected to have different results.  This analysis assumes that the 

decision problem is being modeled with discrete probabilities and that there are a 

finite number of possible outcomes.  MUA can then be used to elicit a utility function 

from the decision-makers over those outcomes, as suggested by this example.  Here 

the sub-group chose a weighting scheme of 0.3 for cost, 0.6 for credibility of 

compliance with total mercury load to the South Bay target, and 1.0 for credibility of 

compliance with fish tissue mercury level target.  Composite utilities are shown in the 

rightmost column.  Other approaches to defining a multiattribute utility function or 

analogous scoring functions could be used, depending on the wishes of the subgroup.    

 Credibility of compliance refers to the conditional probability (not 

“confidence” in the statistical sense) that a particular attribute has a value that meets a 

particular target (threshold) value, as computed within the network.  The threshold 

could itself be uncertain, but need not be.  The credibility of compliance in essence 

becomes a node in the Bayesian network conditioned on the attribute (target) of 

interest.  The concept is similar to the “confidence of compliance” described in the 

literature, but is referred to here as a “credibility” since it is not statistical confidence 

to which we are referring.  The concept may prove to be useful for evaluating 

mitigation/allocation strategies since strategies that yield higher probabilities of 

success would naturally be more appealing.  

 While the sub-groups may well arrive at different conclusions, their respective 

positions should be well-defined in terms of beliefs about probabilities of outcomes 

and their preferences.  Consensus building exercises that attempt to arrive at 

compromises may be performed or negotiation between the various sub-groups may 

follow.  Again, the advantage of using decision analysis is that the positions of each 

sub-group should be clear and the various sources of differences in positions should be 

apparent.  The price that must be paid to get to this point is that the work group 

members must agree to accurately state their beliefs and preferences.  If trust is 
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lacking, then appropriate measures may be required (e.g., allowing sub-groups to 

develop their positions privately without sharing analyses) or non-analytical 

approaches may be required.  Exploring the  

Table 4-1.  Multiattribute utility analysis for several outcomes for strategies 1 and 2 
for a particular sub-group. 

 
Possible Outcomes Utility 

on Cost1
Utility on 

COC 
Load2

Utility on 
COC fish3

Composite Utility 
Using Weighting 

Scheme
Strategy 1, Cost = 15, 
COC Load = 30%, 
COC fish = %20 

10 2 1 5.2 

Strategy 1, Cost = 30, 
COC Load = 35%, 
COC fish = 50% 

6 3 9 12.6 

Strategy 2, Cost = 30, 
COC Load = 40%, 
COC fish = 30% 

6 4 4 8.2 

Strategy 2, Cost = 50, 
COC Load = 60%, 
COC fish = 45% 

2 8 6 11.4 

 .... other outcomes ... ... ... ... 
Notes: 
1)  Mitigation cost 
2)  Credibility of compliance with total mercury load to the South Bay target 
3)  Credibility of compliance with fish tissue mercury level target 
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possibilities and determining “what works and why” is an active area of research in 

the field of collaborative group decision-making .   

 Such a multiattribute utility function could be used in an influence diagram 

model of TMDL decisions to determine optimal decisions, perform sensitivity analysis 

for expected utility, and estimate the value of information in terms of utility.  If 

preferences can be expressed in monetary terms, a monetary value of information can 

be estimated for the uncertainties.  One could argue whether or not this is appropriate, 

but the choice reflects the wishes of the sub-group cooperating in the analysis.  

Whether the scale is dollars or utility, value of information provides a useful signal for 

prioritizing information-gathering activities and technical review needs. 

INFLUENCE DIAGRAMS FOR FORECASTING ALLOCATION DECISION CONSEQUENCES 

Designing and implementing a Bayesian network model occurs in three stages:  1) 

development of the graphical model linking the identified variables in terms of 

conditional independence relationships; 2) assessment of the required conditional or 

marginal probability distributions for each variable; 3) entering evidence/observed 

data (if applicable) on observable nodes in the compiled model to see how beliefs in 

unobserved nodes are affected (Jensen 2001).  In the example that follows, the 

Netica™ Application for Belief Networks and Influence Diagrams (Norwys Software 

Corp. 1996) was used to implement the model.  Other Bayesian network development 

environments include the MatLab Bayes Net Toolbox (Murphy 2002), the GeNIe© 

software package (University of Pittsburgh), Microsoft® Bayes Networks (MSBN), 

and Analytica® (Lumina Decision Systems, Inc.).  Russell Almond at the University 

of Washington maintains a website listing and reviewing Bayesian network software: 

http://www.stat.washington.edu/bayes/almond/belief.html#MSBN.  Morgan and 

Henrion (1990) discuss considerations and issues in choosing a computing 

environment for probabilistic analysis.  

 Figure 4-5 shows an influence diagram that describes a decision situation 

building on the belief network from Figure 4-2.  This influence diagram includes a 
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decision variable (Load Allocation/Mitigation Decisions), new chance variables for 

mercury methylation potential, total mercury in water (MeHgT), fish tissue mercury 

levels, annual total mercury load to the Bay, mitigation cost, credibility of compliance 

(discussed below) for methyl mercury levels in fish, and, credibility of compliance for 

total mercury load to the Bay.  It also includes a multiattribute utility node (value 

node) defined in terms of mitigation cost, credibility of compliance with a mercury 

fish tissue target, and credibility of compliance with the annual total load to the Bay 

target.  By eliciting decision-maker (sub-group) preferences over outcomes in terms of 

these three attributes with multiattribute utility analysis, optimal load 

allocation/mitigation decisions can be determined for the sub-group using this model. 
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Figure 4-5.  Influence diagram for mercury load allocation/mitigation decisions for a 
small watershed impacted by a mercury mine site and mine wastes.  
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 The influence diagram in Figure 4-5 states that, given the total mercury 

concentration in water (HgT) and river flow, the annual total mercury load to the South 

Bay is independent of the mine and creek loads.  Precipitation is modeled using a 

marginal (unconditional) distribution based on the available historical data and creek 

flow is modeled conditioned on precipitation.  The mine mercury load is modeled as 

being conditional upon precipitation and the mine site mercury load allocation.  The 

creek mercury load is modeled as being conditional upon creek flow and the creek 

mercury load allocation.  To further illustrate the concept of conditional independence, 

note that given observations for HgT and river flow (e.g., annual average values over 

the waterbody), the annual total mercury load to the South Bay is conditionally 

independent of the creek Hg load and mine site Hg load.  This does not mean that 

creek Hg load and mine site Hg load do not impact the total annual Hg load to the 

Bay, but rather that the influence is through the HgT variable.  From a causal 

perspective, the observed HgT value would “reflect” any influence from the mine site 

and creek Hg loadings, which is why the loadings become irrelevant upon observation 

of HgT.  When HgT is not observed, the mine site Hg load and creek Hg load variables 

are relevant to the annual total Hg load to the Bay through their collective influence on 

the HgT variable. 

 Assumptions about spatial and temporal averaging are built into the Bayesian 

network, as appropriate to the particular decision problem.  This is driven by the scope 

of the environmental problem, and includes consideration of natural processes, 

regulatory requirements, stakeholder objectives, etc. For this simple example, 

precipitation and creek flow probability distributions represent the available data over 

annual cycles and total mercury in water (HgT) refers to annual average concentration 

over the waterbody.  These assumptions were made to keep the number of variables 

manageable for illustration.   

 The model in Figure 4-5 represents that fact that decision-makers have 

influence over the natural system, even though the decision outcomes are uncertain.  

Control is represented in the graph by arrows from the decision node to the Mine Hg 
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Load, Creek Hg Node, and Hg Methylation Potential nodes.  In an influence diagram, 

if the parent node is a decision variable, the probability distribution for the uncertain 

variable child is conditioned on the decision made.  This control can be thought of in 

causal terms as the ability of the decision-maker to require mitigation actions that 

reduce mercury loadings or alter environmental factors such that mercury methylation 

potential should be reduced (e.g., river or creek shading, reservoir aeration). 

 To understand how that influence over loading and methylation potential 

propagates through the other variables in the network, ultimately influencing value 

(multiattribute utility), we must understand how information “flows through” the 

network.  For example, the Creek Hg Load node is the parent of HgT node.  When the 

parent of a chance node is another chance node, the child’s probability distribution is 

conditioned on the state of the parent chance node, which may either have an observed 

value or may itself be represented by a conditional probability distribution.  In this 

example, the load allocation/mitigation decision alters the Creek Hg Load conditional 

probability distribution, which in turn alters the HgT conditional probability 

distribution.  In this manner, the uncertain impacts from the chosen 

allocation/mitigation strategy propagate through the network, influencing the 

conditional probability distributions for the attributes of interest to decision-makers.  

A chance node with no parents is described by an unconditional (or marginal) 

probability distribution, typically created from historical data (e.g., precipitation).   

 Bayesian networks can accommodate a mixture of continuous and discrete 

probability distributions for uncertain variables.  In special cases decision variables 

can be continuous (e.g., Gaussian influence diagrams), but in general decision 

variables are discrete.  In the implementation for the influence diagram shown in 

Figure 4-5, precipitation, creek flow, mine and creek loads, total mercury 

concentration in water, annual mercury load to the South Bay, and mitigation costs are 
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continuous21.  Fish tissue mercury levels and MeHgT in water are modeled as discrete 

variables, given the high uncertainty in their predicted post-mitigation states. 

OPTIMAL DECISIONS AND SENSITIVITY ANALYSIS USING INFLUENCE DIAGRAMS 

WITHOUT A VALUE MODEL 

To illustrate how influence diagrams can be used to perform decision analysis without 

a value model, Figure 4-6 simulates predictions for the hypothetical strategy focusing 

on reducing mercury methylation potential (“MeHg Potential Mitigation Focus”) from 

the strategy table shown in Figure 4-4.  For this strategy, “medium reductions” are 

chosen for mine site and creek Hg load reductions and a “high reduction” is chosen for 

MeHg potential reduction.  This simplified hypothetical model predicts mine Hg load, 

creek Hg load, HgT, MeHgT, Hg fish tissue levels, the annual total mercury load to 

the South Bay, and credibility of compliance measures for fish tissue levels and the 

load to the Bay.  For this strategy, the predicted credibility of compliance with 

mercury fish tissue targets is around 60% and the predicted credibility of compliance 

with the annual Hg load to the South Bay is around 42%.  The average predicted cost 

for this strategy is 28 with a standard error of 19, where the units are arbitrary (e.g., 

$10,000).  

 

 
21  Actually, all of the variables are modeled as discrete in the Netica software tool.  Continuous 

variables are approximated using discretization algorithms from the entered continuous distribution 
functions. 
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Figure 4-6.  Example predictions for “MeHg Potential Mitigation Focus” strategy. 
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 For a comparison, Figure 4-7 simulates predictions for the other hypothetical 

strategy from the strategy table, “Mine Site Load Reduction Focus”, in which a “high 

reduction” is chosen for the mine site Hg load and “low reductions” are chosen for the 

creek Hg load and MeHg potential.  For this strategy, the predicted credibility of 

compliance with mercury fish tissue targets is around 50% and the predicted 

credibility of compliance with the annual Hg load to the South Bay is around 40%.  

The average predicted cost for this strategy is 48 with a standard error of 20 in the  
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Figure 4-7.  Example predictions for “Mine Site Load Reduction Focus” strategy. 
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same arbitrary units.  In this simple example, the “MeHg Potential Mitigation Focus” 

strategy is clearly superior in terms of predicted credibility of compliance for both 

endpoints (fish tissue levels and annual load to the Bay) and mitigation cost.  The first 

question that arises at this point is how robust is this conclusion?  Another question 

that arises is, what would happen if the results were “mixed”, in the sense that one 

strategy was superior in terms of one attribute and the another was superior in terms of 

another attribute?  In most real world cases, “mixed results” would be anticipated.  

The first question may be addressed with sensitivity analysis and the second with 

multiattribute utility analysis, which will be explored next.  
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SENSITIVITY ANALYSIS IN DECISION ANALYSIS USING BAYESIAN NETWORKS 

Sensitivity analysis within the framework of influence diagrams and decision analysis 

has several meanings and purposes.  In general, the idea is to analyze how sensitive 

conclusions are to the various pieces that make up the model.  In the context of 

influence diagrams, sensitivity analysis refers to analyzing how sensitive conclusions 

(probabilities of interest or expected utility) are to small changes in the conditional 

probabilities that influence those conclusions (Jensen 2001).  Sensitivity analysis may 

be used, for example, to “tweak” the probability distributions within the network to 

meet constraints imposed by expert judgment or observations.  In this paper, we will 

focus on some aspects of sensitivity analysis dealing with the robustness of 

conclusions in the context of influence diagrams describing decision situations.  For 

more details, see Nielsen and Jensen (2003), Laskey (1995), Jensen (2002), and 

Castillo and others (1997). 

 Table 4-2 illustrates an analysis of the sensitivity of credibility of compliance 

for the total mercury load to the Bay to small changes in the conditional distributions 

for mine Hg load for the “Mine Site Load Reduction Focus” strategy.  Note that while 

the numbers are based on actual output from the model in Figure 4-7 implemented in 

Netica, the underlying distributions are fictitious.  The sensitivity analysis output 

shows that the credibility of compliance for total mercury to the Bay ranges from 

around 9% to 44% for changes to mine Hg load, where the current value is around 

40%.  “Quadratic scoring” and “Entropy reduction” refer to scoring rules that 

summarize how sensitive credibility of compliance is to mine site load (Jensen 2001).  

These scorings can be used to rank sensitivity of a particular attribute to the variables 

in the model, allowing the work group to focus attention on those variables that 

contribute the most uncertainty to conclusions.  This information could be used to 

support, for example, information-gathering activities and prioritization of technical 

review.   
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Table 4-2.  Sensitivity of “credibility of compliance for total mercury load to bay” to 
changes to mine Hg load for the mine site load reduction focus strategy. 

 

Example Output from Netica 

Probability 
ranges 

Min Value Current Value Max Value RMS1 
Change 

In Compliance 0.09365 0.4028 0.4394 0.09382 
Out of  

Compliance 
0.5606 0.5972 0.9064 0.09382 

Quadratic scoring  = 0.008803 
Entropy reduction  = 0.005048  (0.519 %) 

 
1 Root Mean Square 
 
 

The above represents “one-way” sensitivity analysis, in which sensitivity to individual 

attributes can be explored.  “Two-way” analysis can also be performed, in which the 

sensitivity of an attribute of interest is computed by varying two variables 

simultaneously.  “Three-way”, etc., sensitivity analysis can be performed, but the 

computational burden grows exponentially and quickly becomes burdensome.  Other 

methods of sensitivity analysis can be performed, including the conversion of the 

influence diagram into a decision tree by discretizing (if necessary) the probability 

distributions in the network, then performing probabilistic sensitivity analysis using 

the decision tree.  There are many possibilities (see, e.g., Morgan and Henrion 1990 

and Clemen 1996) and a lot can be learned about the decision problem using relatively 

simple methods. 

OPTIMAL DECISIONS AND SENSITIVITY ANALYSIS USING INFLUENCE DIAGRAMS WITH A 

MULTIATTRIBUTE UTILITY VALUE MODEL 

Figure 4-8 shows an influence diagram model with a multiattribute utility function 

used to determine optimal decisions, using utility values similar to those in Table 4-1 
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Figure 4-8.  Example optimal load allocation/mitigation strategy using an influence 
diagram with a multiattribute utility model. 
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for some hypothetical sub-group.  For this simple example, a strategy with a “high 

reduction” for the mine site Hg load, a “medium reduction” for creek Hg load, and a 

“medium reduction” for mercury methylation potential is optimal in terms of 

maximizing expected utility.  All of the other strategies yield lower expected utilities.  

Sensitivity analysis similar to that presented in the previous section could be used to 

determine the sensitivity of this conclusion to the various uncertainties (e.g., mine site 

Hg load and creek Hg load).  Value of information could then be determined from this 

sensitivity analysis, enabling a ranking of the uncertainties in terms of importance 

from the point of view of the preferences of the sub-group.  

4.3  CONCLUSIONS  

This paper illustrates a decision analysis approach to TMDL load allocation decisions 

using a mercury TMDL for a small mercury-mine impacted watershed as an example.  

Decision analysis is a rigorous and robust common sense approach that, in many 

circumstances, is an attractive alternative to other decision analytical tools like 

cost/benefit analysis and what-if analysis.  Decision analysis makes use of approaches 

for eliciting and representing preferences over both monetary and non-monetary 

outcomes, which is an appealing characteristic in environmental decision-making.  

While decision analysis does require active involvement of decision-makers relative to 

many other decision-making approaches, one could argue that this fact is responsible 

for much of the power of the decision analysis process.  When decision analysis is 

properly performed, decision-makers (or sub-groups) should believe the insights, 

given that the expertise and knowledge represented in the model should reflect trusted 

information and that the preferences expressed should be their own.  While the 

application of decision analysis in group decision-making situations can be 

problematic, since individual group members may have significantly different beliefs 

and preferences that cannot be simultaneously modeled, decision analysis can be used 

to generate sub-group negotiating positions and can shed light on the sources of 

disagreement (Merkhofer 1999). 
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 The various decision analysis tools, including objectives hierarchies, strategy 

tables, influence diagrams, and decision trees, can be very useful aids for 

communicating, eliciting knowledge and preferences, organizing a complex decision 

situation, and generating insights that can highlight sources of disagreement and areas 

of agreement.  When properly applied, decision analysis can help decision-makers 

make better decisions in terms of the consideration of uncertainty and value. 

 The approach highlighted in this paper makes extensive use of Bayesian 

networks for forecasting the response of the natural system to TMDL load allocations.  

As shown by Borsuk and others (2001, 2002), Reckhow (1999),  and Stow and others 

(2003), Bayesian network models of water quality and ecological response are 

competitive with complex mechanistic models in terms of goodness-of-fit statistics 

and other indications of forecasting ability.  They are superior in terms of model 

updating, since the Bayesian nature of the network allows new monitoring information 

to be incorporated directly into the existing network, generating an updated model that 

integrates the old and new information using robust probability calculus (Jensen 2001; 

Pearl 1988; Varis 1995).  By using a Bayesian network as the basis of the decision 

analysis (i.e., for more than forecasting water quality and ecological response), the 

potential for consensus on allocation decisions can be explored, sources of differences 

can be analyzed for potential compromise, and, at the very least, negotiating positions 

for sub-groups of stakeholders can be rigorously defined in terms of information and 

preferences.  In addition, sensitivity analysis can be performed using the Bayesian 

network to inform information-gathering priorities and peer-review activities. 
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CHAPTER 5: MERCURY TMDL CONCEPTUAL MODEL AS AN INFLUENCE 

DIAGRAM 

The conceptual model of the biogeochemical behavior of mercury in response to 

potential mitigation projects is presented in two parts.  The first part summarizes key 

aspects of what is currently known about the sources, fate, and transport of mercury in 

the Sulphur Creek watershed based on site-specific and other relevant research.  The 

second part motivates and structures the current understanding of mercury behavior 

and controllability as an influence diagram, including the indication of which variables 

are targeted for control by decision-makers. 

5.1  MERCURY SOURCES, FATE, AND TRANSPORT IN SULPHUR CREEK 

MERCURY SPECIATION IN WATER AND SEDIMENT IN TYPICAL SURFACE WATERS 

Mercury species measured in typical surface waters include Hg(II) associated with 

particulate organic matter and the organic fraction of suspended sediment and 

dissolved species, e.g., Hg(II) complexed with dissolved organic carbon (DOC), 

chloride, or sulfide.  It is hypothesized that mercury binds to organic materials 

primarily through sulfhydryl (thiol) functional groups (R-SH-).  Some evidence 

suggests that when the sulfide concentration is significant (as in anoxic pore waters), 

dissolved mercury sulfide species dominate over mercury-DOC complexes .  In 

surface waters with low sulfide concentration and significant DOC concentration, 

mercury-DOC complexes are probably the dominant dissolved species (Benoit et al. 

1999; Benoit et al. 2003).  It should be noted that the “dissolved fraction” is 

operationally defined as the fraction that passes through a 0.45 µm filter, which may 

include colloidal mercury sulfide species.  In fact, the “dissolved mercury” fraction 

may be predominantly colloidal sulfide species in mercury mine-impacted watersheds.  

Colloidal mercury sulfide species have much lower methylation potential and bacterial 

bioavailability relative to dissolved mercury species .  Methylation potential is defined 
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as the fraction of the total mercury that gets methylated under experimental conditions 

meant to approximate the oxic/anoxic interface in sediments.  The bacterial 

bioavailability of a mercury species refers to its ability to taken up by methylating 

bacteria and is a function of chemical properties that affect transport across 

membranes (Benoit et al. 2003; Kim et al. 2004; Lowry et al. 2004; Slowey 2005). 

MERCURY SPECIATION IN WATER AND SEDIMENT IN SULPHUR CREEK:  THE AVAILABLE 

EVIDENCE 

Sulphur Creek is an atypical watershed in terms of mercury occurrence, with very high 

mercury inputs from both anthropogenic and natural sources.  Sources of mercury 

include legacy mine-related waste rock and tailings, mine drainage, disturbed and 

undisturbed mineralized (associated with ore materials) and non-mineralized 

(background) soils throughout the watershed, stream sediments and suspended 

sediments, iron sulfide and iron oxyhydroxide precipitates from geothermal springs, 

and atmospheric deposition .  Geothermal springs in the Sulphur Creek watershed are 

actively depositing mercury sulfides, other mercury phases, and iron sulfides. While 

the geothermal springs contribute relatively small volumes of water to the annual 

Sulphur Creek water budget (on average, > 10% of total flow in the dry season and < 

2% of the flow in the wet season), the effluent total mercury concentrations (3,500 to 

60,000 ng/L) and methylmercury concentrations (1 to 20 ng/L) are very high.  The 

springs are also significant sources of sulfide, sulfate, dissolved organic carbon, and 

salinity, all of which can promote mercury methylation downstream of the springs.   

 Most of the mercury mass in the Sulphur Creek watershed is believed to 

consist of relatively insoluble sulfidic mercury species like cinnabar and metacinnabar 

originating from hot spring-type mercury ore deposits overprinting silica-carbonate 

mercury ore deposits (Rytuba 2003).  Cinnabar and metacinnabar have low 

bioavailability to the bacterial species that methylate inorganic mercury in-situ (Benoit 

et al. 2003; Bloom 2001).  Sediments and soils in the Sulphur Creek watershed 

downstream of mine sites and geothermal springs have been found to have total 
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mercury concentrations ranging from < 0.2 mg/kg dry weight (ppm) to >> 300 ppm , 

where most of this mercury is thought to be mercury sulfides and mercury associated 

with elemental sulfur (Bloom 2001; Rytuba 2005b).    

 Studies suggest that the mercury species transported from mercury mine sites 

by run-off are particulate and colloidal cinnabar, metacinnabar, and other colloidal 

mineral associations, and not sorbed mercury species (Rytuba 2003).  In larger flows, 

these mercury-containing particles/colloids may be associated with the particulate load 

or may be part of the operationally-defined “dissolved” load (< 0.45 µm).  Colloidal 

mercury, defined here as mercury associated with particles < 45 µm, have been 

observed to have 2 to >10 times higher total mercury concentrations than larger 

particles.  However, in the Sulphur Bank mine complex near Clear Lake, the 

intermediate size fraction (75 - 125 µm) has the highest total mercury concentrations 

(Kim et al. 2004; Rytuba 2003).   

 Kim et al. (2004) observed that colloids tend to consist of higher fractions of 

Hg-sulfides relative to larger suspended particles, explaining the higher mercury 

concentrations of colloids.  This suggests that the suspended particles in run-off with 

the highest associated mercury concentrations would tend to have low methylation 

potentials.  In a study of mercury methylation potential for various mine-related, 

geothermal spring, and background materials in the Cache Creek watershed (including 

Sulphur Creek), Bloom (2001) found that the mine materials had methylation 

potentials approximately 20 times less than Hg(II) chloride.  While the methylation 

potential experiments are illustrative of trends, the sample preparation and incubation 

techniques limit any quantitative field-scale predictions (Bloom 2001).  Because of the 

high total mercury concentrations and large amounts of mine wastes in the watershed, 

they may be significant sources of methylmercury over long time periods even with 

very low mercury methylation efficiencies.  

 Iron precipitates (sulfides deposited near spring orifices, called “muck”, and 

oxyhydroxides that form as Fe(II) oxidizes during transport) from geothermal springs 
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that contribute to Sulphur Creek have relatively high concentrations of Hg(II), ranging 

from 10 ppm to > 200 ppm.  Precipitates from the Jones Fountain of Life geothermal 

spring (total aqueous mercury concentration ranging from 22,000 to 34,000 ng/L) 

show relatively high methylation potentials (Bloom 2001). 

 Bloom (2001) also found that while the “organo-complexed” fraction22 of a 

Sulphur Creek sediment sample downstream of mine sites was relatively high (>40%), 

this fraction actually appeared to be associated with elemental sulfur rather than humic 

matter or chloride.  Most of the balance of the HgT in this sediment sample was in the 

fraction comprised of mercury sulfides (mostly cinnabar and metacinnabar).   By 

comparison, the Jones Fountain of Life sample had a similar percentage of HgT in the 

organo-complexed fraction, but had 28% in the strongly complexed fraction23 and 

27% in the mercury sulfides fraction. Bloom’s one-year sediment microcosm 

incubation studies showed that the cinnabar and metacinnabar spiked samples did not 

change significantly through the year and showed very low levels of mercury 

methylation (Bloom 2001).  In contrast, mercury chloride spiked samples transformed 

very quickly to the organo-complexed fraction and showed relatively high methylation 

potential.  By the end of the year, the sample mercury speciation for these samples was 

similar to that of the control receiving sediment.  There are no other studies of longer-

term speciation changes in mercury sulfide-containing sediments in the Cache Creek 

and Sulphur Creek watersheds. 

REACTIVE MERCURY IN SEDIMENT 

Reactive mercury in sediment (Hgsed
*) is an operationally-defined fraction of total 

mercury in sediment that is used as surrogate for the pool of inorganic mercury that is 

available for microbial methylation.  It is defined here according to recent extraction 

methods developed by the U.S. Geological Survey, which are described elsewhere 

(Marvin-DiPasquale 2005).  This fraction may include some dissolved Hg(II) species 

 
22 Extracted by 1 N NaOH.  Typical associations are Hg-(humic acid) and Hg2Cl2 (Bloom, 2001) 
23 Elemental mercury and mercury associated with solids soluble in 12 N nitric acid. 
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in porewater as well as some species weakly bound to particles, but there is some 

uncertainty about which species are extracted.  The hypothesis is that this extracted 

fraction is likely available to microbes for methylation, and thus represents a surrogate 

measure of ‘microbially available’ Hg(II).  Some researchers have speculated that 

uncharged dissolved species like HgS0
aq or HgCl2

0
aq may be the species taken up by 

microbes, but this is controversial (Benoit et al. 2003; Slowey 2005). 

SEASONAL PRECIPITATION EVENT-DRIVEN MERCURY TRANSPORT IN SULPHUR CREEK 

Estimated mercury loads in Sulphur Creek show very distinct seasonality with 

precipitation events dominating the annual loading pattern (Figure 5-1). Roughly 85% 

of the observed discharge and 89 – 96% of the estimated total mercury load occurred 

between December 1st and March 31st.  

Figure 5-1.  Hydrograph for the Sulphur Creek gage, 2003 water year (above normal 
year24), showing strong seasonality of discharge and event-driven discharge pattern.  
Data from U.S. Geological Survey (http://waterdata.usgs.gov/ca/nwis).  The location 
of the gage is shown in Figure 2-3. 
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24 “Above-normal” corresponds to a Sacramento Valley composite annual discharge greater than 7.8 
maf and less than 9.2 maf.  The composite annual discharge is the sum of the annual discharges for 
Sacramento River at Bend Bridge, Feather River inflow to Lake Oroville, Yuba River at Smartville, and 
American River inflow to Folsom Lake.  The 2003 water year refers to flows between October 1, 2002 
to September 30, 2003.  For further information, see http://cdec.water.ca.gov/cgi-progs/iodir/WSIHIST. 
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A TOTAL MERCURY LOADING MODEL FOR THE SULPHUR CREEK GAGE 

Annual total mercury loading observed at the gage is modeled as (Equation 5-1): 

OthersuspendedSpringsMinesGauge HgTLoadHgTLoadHgTLoadHgTLoadHgTLoad +++= Re

. 

HgTLoadMines refers to the annual total mercury loading contributed from run-off from 

mine waste materials during rain events, excluding deposition; HgTLoadSprings refers to 

the annual HgT loading from geothermal springs, including precipitates in run-off; 

HgTLoadResuspended refers to the annual mercury load associated with resuspended 

sediment, where the mercury may have originated from mine sources, geothermal 

springs, soil erosion, atmospheric deposition, ground water, and plant litter; and 

HgTLoadOther refers to other annual background loadings from ground water inputs to 

creek flow, erosion of mineralized and non-mineralized soils, atmospherically 

deposited mercury in run-off, and mercury-enriched plant litter.  The “background 

total mercury load” includes HgTLoadSprings, HgTLoadOther, and the fraction of 

HgTLoadResuspended not originating from mine-related sources. 

HIGH BACKGROUND MERCURY INPUTS IN SULPHUR CREEK 

Recent evidence suggests that background total mercury, dissolved mercury, and 

methylmercury loadings related to geothermal sources may be much larger than 

previously thought in the Bear Creek and Sulphur Creek watersheds, potentially 

shifting some of the focus from mine waste remediation to geothermal source controls 

for mitigating methylmercury watershed patterns (Churchill and Clinkenbeard 2005; 

Rytuba 2005a).  This “regional background data” was collected to help determine 

TMDL target loadings for Sulphur and Bear Creeks, rather than to test the hypothesis 

that geothermal sources were a significant contribution to the total mercury and 

methylmercury loadings observed within these watersheds.  This being the case, most 

of the available water quality data collected to support the Sulphur Creek mercury 

TMDL focuses on mine-related sources, so there are few data to support the modeling 

of the expected effects of geothermal source controls (Rytuba 2005a). 
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AVAILABLE RELEVANT SULPHUR CREEK DATA 

While several relevant and useful studies have been conducted in the watersheds 

relevant to the Sulphur Creek mercury TMDL, the available data are sparse relative to 

the complexity of the modeling problem and the very large uncertainties involved 

(Bloom 2001; Domagalski et al. 2004; Domagalski et al. 2003; RWQCB-CV 2004a; 

RWQCB-CV 2004b; Slotton et al. 2004; Suchanek et al. 2004).  The relevant data 

supporting the Central Valley Regional Water Quality Control Board’s Sulphur Creek 

Mercury TMDL report were used to inform the conceptual model.  These data include 

the mean daily flow data at the Sulphur Creek gage for the years 2000 – 2003 and the 

available water quality data presented in this section.  Figure 5-2 shows the sample 

averages and standard deviations for all of the available total mercury (HgT) data 

collected throughout the Sulphur Creek watershed in 2000 – 2004.  Figure 5-3 shows 

the sample averages and sample standard deviations for all of the available total 

methylmercury (MeHgT) data collected on the same dates.  Note that all of the sites 

have fewer than 10 data except Sulphur Creek at the USGS gage.  Figure 5-4 shows all 

of the available sediment and geothermal spring “muck” HgT concentrations 

distributed throughout the watershed.  All of these data are described in the 2004 

Sulphur Creek mercury TMDL report (RWQCB-CV 2004b).  The supporting data are 

compiled from several studies (Goff et al. 2001; Slotton et al. 2004; Suchanek et al. 

2004), including unpublished data collected by the RWQCB-CV.  In general, the data 

coverage is very sparse for most of the watershed, with the vast majority of the water 

quality and flow data having been collected at the U.G. Geological gage in the lower 

watershed near the confluence with Bear Creek (Figure 5-4). 



 

Figure 5-2.  Average HgT (in water) for sampled sites within sulphur creek watershed.  Bubble size reflects the sample standard 
deviation for all samples by site.  The number of samples for each site is indicated in the bubble.  Site locations are shown in Figure 
2-3.
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Figure 5-3.  Average MeHgT (in water) for sampled sites within Sulphur Creek watershed.  Bubble size reflects the sample standard 
deviation for all samples by site, except for hatched bubbles, as noted.  The number of samples for sites with more than two 
samples is indicated in the bubble.  Site locations are shown in Figure 2-3. 
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Figure 5-4.  Total mercury concentrations (ng/mg, ppm) in fine-grained sediment in 
the upper (a) and lower (b) parts of the Sulphur Creek watershed (RWQCB-CV 
2004b). 

a) 

b) 
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 Figure 5-5 shows a plot of the all of available total mercury (ng/L) data against 

instantaneous flow (cfs) for Sulphur Creek at the USGS gage (n = 56), collected over 

the 1997 – 2004 time period.  While most of these data were collected at long time 

intervals (weeks or months apart), 19 of the data were collected during a 30 hour time 

period at 1.5 to 3 hour time intervals in February of 2004.  The flow/HgT relationship 

is modeled as a lognormal distribution independent of flow for flows less than 55 cfs 

and as a ln-ln linear model for flows greater than 55 cfs.  The circled values represent 

three flows at the rising limb of a hydrograph in response to a storm event.  The HgT 

value is thus sensitive to the time rate of change in flow, as well as to the current flow.  

This complexity is discussed further in the next section on the available time series 

data.  Unfortunately, only mean daily flow data are available.  At this time scale, the 

hysteresis in the flow/HgT relationship is manifested as random scatter in the flow/HgT 

model.  Hysteresis in HgT concentration and loads is described and demonstrated in 

the next section. 

 Figure 5-6 shows the relationship between instantaneous flow and HgT/TSS 

(the ratio of total mercury concentration in water in ng/L to the concentration of total 

suspended solids in mg/L).  HgT/TSS is used as a surrogate for the concentration of 

total mercury in fine-grained suspended sediment.  Dry season values are assumed to 

be lognormally distributed independently of flow.  Wet season values are partitioned 

by flows > 55 cfs and flows < 55 cfs.  Within these flow ranges, the values are 

assumed to lognormally distributed independent of flow (see Appendix B for normal 

probability plots of HgT/TSS in log space by season and flow regime, Figures B.1, 

B.2, and B.3).  The first rains of the season show a “first flush” effect, with relatively 

large Hg/TSS values.  This is thought to result from the mobilization of geothermal 

spring precipitates and colloidal HgS(s) that have deposited during the dry season.  The 

wet season data include longer-term data shown as white circles (1997-2004) and data 

from a single storm event in February, 2004.  While the relationship between flow and 

HgT/TSS is very noisy, the long-term and single-storm data overlap well. 

    



 

Figure 5-5.  Instantaneous flow versus total mercury concentration for Sulphur Creek, all data. 
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Figure 5-6.  Relationship between HgT/TSS and flow by water season (mean daily flow) and for a single storm event (instantaneous 
flow) (2/2004). 
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SULPHUR CREEK HGT, HGT/TSS LOADING TIME SERIES DATA 

Figure 5-7 shows the time series for HgT, TSS, HgT/TSS, and flow for a 30-hour 

period (time step of 1.5 – 3.0 hours) on February 25/26, 2004, which included a storm 

event (“autosampler data”).  The relationship between instantaneous flow and HgT 

shown in Figure 5-7 collected for this single event is similar to the relationship 

between the instantaneous flow and HgT data collected days, weeks, months apart 

(Figure 5-5 includes both the autosampler data and the hand collected data).  However, 

several patterns emerge which emphasize the complexity of mercury/sediment 

transport.  For example, the residual errors in a plot of ln(flow) versus ln(HgT) in the 

time series data show significant autocorrelation.  The Durbin-Watson statistic for this 

data set is 0.72, which is much less than the lower rejection level of 1.18 for 19 data 

points and one predictor variable, supporting the rejection of the hypothesis that the 

residuals are not autocorrelated (Chatterjee et al. 2000).  Figure 5-8 shows a plot of the 

first-order residual error at time “t” (Residualt) versus the residual error for the 

preceding time step (Residualt-1).  A plot of the second-order residuals (Residualt 

versus Residualt-2) shows no significant correlation, suggesting that the autoregressive 

structure is approximately first-order for this time series. 

 Since most of the mercury comprising the total mercury concentration is 

associated with suspended sediment, the relationship between HgT and flow can be 

understood in terms of the relationship between suspended sediment transport (or TSS 

transport), the grain size distribution, and flow or stream power.  For example, Figure 

5-9 shows that HgT load versus discharge displays a hysteresis loop typical of 

suspended sediment load.  Figure 5-10 shows the relationship between the time step 

change in HgT (HgT,t – HgT,t+1) with the change in flow (Flowt – Flowt+1) during the 

storm event of 2/25-6/2004.  In general, the “falling limb” of a storm event 

hydrograph carries less sediment than the “rising limb” (Dunne and Leopold 1978).  
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4 Figure 5-7.  Time series data for HgT, TSS, HgT/TSS, and flow for 2/25-6/2005.  Data are from the Sulphur Creek TMDL report 
(RWQCB-CV 2004b). 
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Figure 5-8.  Test for first-order autoregressive structure in the Log(flow) vs Log(HgT) autosampler data.  The plot shows the 
residual (predicted HgT – observed HgT) for a time step “t” (“Residualt”) versus the residual for the previous time step    
(“Residualt-1”).  Data are from the Sulphur Creek TMDL report (RWQCB-CV 2004b). 

 

y = 0.6x + 0.0358
R2 = 0.3938

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1 1.5 2

Residualt

R
es

id
ua

l t-
1

 

 

 

 

 
 95 

  



 

50

100

150

200

250

300

350

400

H
g 

Lo
ad

 (g
/h

r)

  96

0
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Sediment transport is a complicated phenomenon and is incompletely understood.  In 

the case of the Sulphur Creek TMDL, data on the particle size distribution and direct 

measurements of stream velocity are missing.  Given this state of affairs and the 

magnitude of the other uncertainties in this decision problem, the simple flow versus 

HgT model shown in Figure 5-5 was used to simulate HgT loading patterns.  Table 5-1 

compares the predicted HgT and HgT load results from this model with the calculated 

HgT and HgT  load values from the time series observations.  The predictions match 

the observed values fairly well, but the comparison is based on very few data.  While 

this check is inconclusive, it represents all of the available data for decision support.

Figure 5-9.  Hysteresis in HgT load versus discharge, with arrows indicating time 
direction.  Data are from the Sulphur Creek TMDL report (RWQCB-CV 2004b). 
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Figure 5-10.  Change in total mercury concentration versus change in flow during a 
storm event (2/25/04 – 2/26/04).  Numbers depict the time sequence, with “1” being 
the first observation, where the time step is 1.5 to 3 hours.  Part “a” shows the first 
nine time steps and “b” shows the next eight time steps.  Note that part “a” includes 
the major discharge peak and part “b” includes a much smaller discharge peak around 
hour 14, as shown in Figure 5-7.  Data are from the Sulphur Creek TMDL report 
(RWQCB-CV 2004b). 

(a) 

Peak Flow 

-1500

-1000

-500

0

500

1000

1500

2000

-40 -30 -20 -10 0 10 20 30

Flow(t
i
) - Flow(t

i+1
)

1

2

3

4

5 6
7

8

(b) 

1st time step = hour 10 from 

 



 

  98

Table 5-1.  Mean daily HgT and daily HgT loading prediction for 2/25/04 using mean 
daily flow versus estimation of mean daily HgT and daily HgT loading from observed 
time series values.  Data are from the Sulphur Creek TMDL report (RWQCB-CV 
2004b). 

 

Predicted HgT
1, ng/L  

(95% confidence 
interval) 

Estimated 
HgT

2, ng/L 

Predicted HgT 
Loading1, g/day 
(95% confidence 
interval) 

Estimated HgT 
Loading2, g/day 

2600 (680 – 9,900) 3000 920 (240 – 3,500) 1600 

Notes:  1)  Mean daily values predicted from mean daily flow using model. 
            2)  Mean daily values estimated from summation over time step  
                 observations. 

 

METHYLMERCURY DATA 

 Most of the limited methylmercury data within the Sulphur Creek watershed 

were collected at the USGS gage (Figures 5-3, 2-3).  Looking more closely at these 

data, several things are apparent.  First, the data set (including both wet and dry season 

samples) appears to be approximately lognormally distributed (Figure 5-11).  

Secondly, the MeHgT data show a distinct seasonality, with distinct very high values 

in the hot, low flow months of July and August.  Figure 5-12 shows the seasonal trend 

of the MeHgT sample average.  One possible explanation for this seasonality is that the 

microbial activity of mercury methylating bacteria is very high in July and August due 

to in part to low flow conditions and high temperatures (low dissolved oxygen).  
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Figure 5-11.  a) Histogram of MeHgT data from the Sulphur Creek gage in log space 
(RWQCB-CV 2004b).  Data frequencies are represented by bars (NOTE:  bins are not 
evenly spaced).  Model frequencies for a lognormal distribution using the sample 
average and standard deviation are shown by the dashed line.  Twice as many data 
were collected in the wet season (n = 18) relative to the dry season (n = 9).  b) The 
histogram over the data in arithmetic space is shown for comparison. 

igure 5-11.  a) Histogram of MeHg

  

  

  

  

  

  

  

  

  

  

  

  

  

T data from the Sulphur Creek gage in log space 
(RWQCB-CV 2004b).  Data frequencies are represented by bars (NOTE:  bins are not 
evenly spaced).  Model frequencies for a lognormal distribution using the sample 
average and standard deviation are shown by the dashed line.  Twice as many data 
were collected in the wet season (n = 18) relative to the dry season (n = 9).  b) The 
histogram over the data in arithmetic space is shown for comparison. 
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 Figure 5-12.  Seasonal Trend in Average MeHgT.  The dry season data includes the three data broken out in the July/August 

average.  Data are from the Sulphur Creek TMDL report (RWQCB-CV 2004b). 
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 While there is no discernible pattern between HgT and MeHgT in Sulphur 

Creek, some trends do appear at the larger scale of the Cache Creek watershed.  Figure 

5-13 plots the average of log(HgT) against the average of log(MeHgT) for each site 

with data in the Cache Creek watershed.  The Sulphur Creek and Upper & Mid-Bear 

Creek data are grouped because of significant local geothermal influences not present 

at the other sites.  While these groupings indicate that HgT and MeHgT correlate at the 

scale of the Cache Creek watershed, missing data on other important predictive 

variables at this scale (sulfate concentration, dissolved organic carbon concentration, 

reactive mercury concentration in sediment concentration) prevent a causal 

interpretation of this relationship.  The causal probabilistic model used to predict 

MeHgT is discussed in Chapter 6. 
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 Figure 5-13.  A plot of the average of the log-transformed HgT data (Average Log(HgT)) versus the average of the log-transformed 

MeHgT data (Average log(MeHgT)) for sites within cache creek watershed.  Data are grouped for Sulphur Creek and Upper, Mid- 
Bear Creeks because of significant geothermal spring and ground water sources not present at the other sites.  These sources 
provide significant loads of total mercury and methylmercury, sulfate, nutrients, and DOC (Rytuba 2005b).  
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5.2  A CONCEPTUAL MODEL OF THE SULPHUR CREEK MERCURY TMDL 

AS AN INFLUENCE DIAGRAM  

 
Figure 5-14 shows a high level conceptual model of the behavior of mercury in the 

Sulphur Creek watershed, as observed at the gage, represented as an influence 

diagram.  At the highest level, this model shows the relationship of potential controls 

(“Potential Control Decision”), the variables that could be influenced by control 

projects (“Annual HgT Loading” and “HgT/TSS”), and the variables that are valued by 

decision-makers in this decision (“Annual HgT Loading” and “Annual MeHgT 

Loading”), as indicated by the arcs from these variables to the “Strategy Value” node.  

This model includes the uncertain environmental relationships between total mercury 

loading (“Annual HgT Loading”), total mercury concentration in total suspended 

solids (TSS) (“HgT/TSS”), methylmercury concentration in water (“[MeHgT]w”), and 

methylmercury loading (“Annual MeHgT loading”), conditioned on water year 

(“Wet/Dry Year”) and/or season, as indicated by the presence of an arc (“Water 

Season”: wet or dry). The environmental variables shown in Figure 5-14 reflect sets of 

probability distributions over loadings and concentrations observed at the gage for a 

particular water season in a wet or dry year.  The posterior distribution over an 

environmental variable takes into consideration wet and dry years and the wet and dry 

season within a water year, so that its distribution reflects the full range of hydrologic 

conditions.  These variables could be defined at other spatial and temporal scales, but 

the scale shown reflects the level of aggregation appropriate for this TMDL decision.  

It is important to note that the appropriate time and spatial scales for variable 

definitions should be determined by the decision-makers’ goals and objectives, not by 

technical considerations.  The basis for this statement is the use of the Bayesian 

definition of probability.  Of course, decision participants may choose to use scales 

supported by technical considerations, but this point is noted to emphasize the 

importance of the decision situation in the definition of variables. 
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 Details about the construction of these probability distributions are described 

in detail in Chapter 6.  The models and methods used include consideration of the 

partially-understood physical, chemical, and biological processes that drive the 

movement and fate of mercury species in the Sulphur Creek watershed and the 

available data.  With too little causal detail, the probability distributions are very 

difficult to interpret and to construct.  Sub-models are used to represent the additional 

detail needed to perform the later construction of the needed probability tables.  Figure 

5-15 shows the more detailed causal influence diagram used to construct these tables. 
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Figure 5-14.  Conceptual model relating the highly uncertain relationship between 
annual total mercury (HgT) loading and annual total methylmercury (MeHgT) loading 
at the Sulphur Creek gage as a causal influence diagram. 
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 Figure 5-15.  More detailed Sulphur Creek mercury TMDL conceptual model, expanding the sub-models shown in the influence 

diagram shown in Figure 5-14. 
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This additional detail is represented by expanding the decision-level influence diagram 

with new variables that explicitly represent additional spatial resolution in mercury 

concentrations and loadings and/or additional process-based relationships that aid in 

relating total mercury concentrations in sediment to methylmercury concentration in 

water.  The additional detail is warranted because it adds causal understanding to these 

relationships, albeit partial understanding. 

 The variables in the model in Figure 5-15 include the predicted total mercury 

loading at the gage conditioned on the various total mercury sources within Sulphur 

Creek, which includes mine waste-related run-off (“Annual Mine HgT Loading”), 

geothermal spring related run-off (“Annual Geothermal Spring HgT Loading”), and 

loadings from other background sources and re-suspended contaminated sediment, 

including air  deposition, ground water, and soil erosion sediment, etc. (“Background 

/Resuspension HgT Loading”).  Annual Mine HgT Loading, Geothermal HgT Loading, 

and Background/Resuspension HgT Loading are conditioned on the available record of 

mean daily flows for the water year (“Water Year”).  The flow conditions for a water 

year can be summarized by an index of the amount of precipitation received for a 

particular water year, e.g., “wet” (W), “dry ” (D), “above-normal” (AN), “below-

normal” (BN), and “critical” (C), as defined by the California Department of Water 

Resources.  In this model, “wet” and “dry” year states were used to capture the range 

of natural variability and uncertainty in the influence of flow on total mercury loading.   

 The influence diagram may be used to predict the probability distributions over 

several variables of interest to decision-makers and scientists:  1) annual median 

HgT/TSS concentration in fine grained sediment above the gage (“HgT/TSS”) in 

response to the various TMDL mitigation alternatives; 2) median reactive mercury in 

sediment (“Hgsed
*”) above the gage; 3) annual median methylmercury  (“MeHgT”) at 

the gage; and 4) MeHgT loading at the gage.  Other variables are included in the 

influence diagram to aid in the prediction of these variables of interest, including the 

hypothesis variable, “Mine Mitigation Reduces HgT/TSS?”, which has states TRUE 

and FALSE.  FALSE refers to the outcome in which mine mitigation results in no 
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discernable change in annual median HgT/TSS because of the high background 

mercury sources.  TRUE refers to the outcome in which mine mitigation reduces 

HgT/TSS during wet season flows to the regional background level of 1 - 10 ppm.  

“Percent Reactive HgT” refers to the fraction of HgT/TSS that contributes to the pool 

of reactive mercury in sediment.  

 The structure of the model reflects the fact that mercury methylation is 

believed to be controlled by the concentration of reactive mercury in sediment 

(Hgsed*) and the “level of microbial activity” of bacterial species that methylate 

reactive mercury in-situ.  There is no direct information on the concentrations of 

reactive mercury in sediment in Sulphur Creek.  However, some relevant information 

is available from mercury methylation potential studies in the Cache Creek watershed 

(Bloom 2001; Domagalski et al. 2003; Suchanek et al. 2004) and studies from other 

watersheds (Benoit et al. 2003; Marvin-DiPasquale 2005).  In this model, Hgsed* is 

conditioned by Annual Average Hg/TSS at Gage and Percent Reactive Hg in 

HgT/TSS.  While the uncertainty in Hgsed* is very large, this structure suggests that 

observed Hg/TSS provides relevant information about concentration and that the 

source of the mercury (mines/geothermal/soils) provides some limited information 

about speciation.    

 The use of hypothesis variables to describe the effectiveness of mine 

mitigation in reducing annual average HgT/TSS (Mine Reduction Reduces HgT/TSS?, 

“HgT/TSS reduction hypothesis”) and the percentage of reactive mercury in sediment 

(Percent Reactive Hg in Sediment?, “percent reactive mercury hypothesis”) is a 

reflection of the fact that both variables will remain unobserved before the decision is 

made.  While research could do much to inform the HgT/TSS reduction hypothesis, 

that variable can not be completely resolved until mine mitigation has been performed 

and the remaining contaminated sediment has been partially flushed from the creek.  

The percent reactive mercury hypothesis variable could be observed before the 

decision is made, but this was determined to be too expensive by decision-makers.  

The use of hypothesis variables allows decision-makers to consider the decision to 
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collect more information about these hypotheses in terms of TMDL decision value, the 

current state of information, and a consideration of which other variables could also be 

observed in the future.  This allows much more robust information collection decisions 

to be made, formalizing many of the intuitive approaches currently used (Howard 

1970). 

 The state of the “microbial activity” variable can also be thought of as a 

hypothesis variable, since it cannot be directly observed.  Instead, it should be thought 

of as a useful construct that describes the aggregate effect of the many factors that we 

partially understand as influencing the efficiency of the microbial methylation of 

mercury (Marvin-DiPasquale 2005).  For example, it could be modeled as being 

conditionally dependent on seasonal sulfate and sulfide concentrations, temperature, 

flow conditions (redox conditions), etc.  Also, the state of microbial activity can be 

updated based on a test set of current or future observations of methylmercury data.  It 

is in this sense that “microbial activity” can be thought of as a hypothesis variable in a 

Bayesian network. 

 This model represents the current understanding of the available experts and 

decision-makers of the relationships between potential mercury TMDL mitigation 

strategies and the environmental targets of interest, total mercury and methylmercury 

loads exported from the Sulphur Creek watershed.  Contrary to typical water quality 

model development practice, the purpose of this model is not to replace less realistic 

models, but rather to provide an alternative model framework specifically for decision 

support.  In addition to probabilistic causal representation of a complex environmental 

system, modeling for decision support should provide decision-makers with an 

understanding of the meaning of predictive uncertainty in the context of the decisions 

being made and in terms meaningful to decision-makers.  This obviously goes beyond 

the purposes and methods of traditional water quality modeling and potentially enters 

into the many sub-fields that make use of results from the decision sciences, including 

“decision support”, decision analysis, multi-criteria decision-making, the analytic 

hierarchy process, and others.   
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 This chapter concludes with a precise definition of the states for each of the 

variables shown in Figure 5-15.  Table 5-2 lists each variable and its type (chance, 

hypothesis, deterministic, or decision) and defines the states for each.  The generation 

of the probability distributions over the states of the variables shown in Table 5-2 and 

the decision analytical use of the fully-specified influence diagram model will be 

shown in subsequent chapters. 



 

  

  Variable Name Variable 
Type States Definition

Model/ 
Expertise/ Data 

Source 

TMDL Strategy Decision Decision 

Mine Mitigation, 
Geothermal & 
Mine Mitigation, 
and Status Quo 

Mine mitigation is the alternative in which HgT loadings from mines are 
reduced according to the load allocation scheme explained in Chapter 2.  
Geothermal & mine mitigation includes the mine reductions from the Mine 
Mitigation alternative, but also includes HgT load reductions from 
geothermal springs.  The Status Quo alternative refers to the conclusion from 
a use attainability analysis that the current beneficial uses are inappropriate 
given background loadings and includes a public information campaign.  See 
Chapter 2 for more details. 

Not applicable 

Water Year Chance Wet, Dry 

CA Dept of Water Resources (DWR) Index for the Sacramento River .  A 
wet year (W) is defined by a combined discharge ≥ 9 maf.  A dry year (D) is 
defined by a combined discharge > 5.4 maf but ≤ 6.5 maf.  See the footnote 
to Figure 5-1 for more information. 

Definition from 
CA DWR 

Water Season Chance Wet, Dry Dry = March 31 to September 30; Wet = Rest of year 
Definition from 
RWQCB-CV 
(2005b) 

Annual Mine HgT 
Loading Chance Low, High Low =  1 kg/year, High = 20 kg/year 

Expert judgment 
informed by 
limited data 

Background/Resuspension 
HgT Loading Chance  Low, High Low = 1 kg/year, 

High = 20 kg/year 

Expert judgment 
informed by 
limited data 

Annual Geothermal 
Spring HgT Loading Chance  Low, High Low = 0.1 kg/year, 

High = 4 kg/year 

Expert judgment 
informed by 
limited data 

Annual HgT Loading at 
Gage Deterministic LLL, LLH, LHL, 

LHH, etc. Functionally determined sum of parents Simulation 
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Table 5-2.  Definitions of variables used in the influence diagram shown in Figure 5-15. 

 



 

  

Variable Name Variable Type States Definition Model/ Expertise/ 
Data Source 

Annual Average HgT/TSS at 
Gage Chance   Low, Nominal, High Low = 1 ppm, Nominal = 10 ppm, 

High = 100 ppm 
Expert judgment informed by 
limited data 

Mine Mitigation Reduces 
HgT/TSS? Hypothesis   True, False True = HgT/TSS reduced to regional 

background levels, False = No change 
Expert judgment informed by 
other studies 

Reactive Mercury in Sediment Chance Low, High Low = 0.0001 ppm, High = 5 ppm Expert judgment informed by 
limited data 

Percent Reactive Mercury 
HgT/TSS? Hypothesis Low, High Low = 0.01%, High = 5% Expert judgment informed by 

other studies 

Microbial Activity Hypothesis   Low, High
High = 5 times more efficient 
methylation for a given Hgxed

* 
concentration relative to Low. 

Expert judgment informed by 
other studies 

Annual Median [MeHgT]w Chance   Low, Nominal, High Low = 0.05 ng/L, Nominal = 1 ng/L, 
High = 5 ng/L Simulation 

Annual MeHgT Loading at 
Gage Chance   Low, Nominal, High Low = 0.25 g/year, Nominal = 5 g/year, 

High = 100 g/year Simulation 

Table 5-2.  (Continued) 
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         CHAPTER 6: SULPHUR CREEK MERCURY TMDL SOURCE AND 

LINKAGE ANALYSIS USING A BAYESIAN NETWORK APPROACH  

 This chapter briefly reviews current practice in TMDL source analysis and 

linkage analysis, as relevant to the mercury TMDL case study used in this work.  It 

also presents a probabilistic mercury source analysis and linkage analysis for the 

Sulphur Creek mercury TMDL that organizes the results as probability tables.  These 

probabilistic data are then integrated into a Bayesian network model (influence 

diagram) that serves as the basis for TMDL decision analysis and decision support, the 

subject of Chapter 8. 

6.1  CURRENT PRACTICE IN MERCURY-MINE IMPACTED WATERSHED 

SOURCE AND LINKAGE ANALYSIS 

DETERMINISTIC TOTAL MERCURY SOURCE ANALYSIS 

The TMDL reports for the Sulphur Creek and Cache Creek, Bear Creek, and Harley 

Gulch mercury TMDLs present typical deterministic approaches for estimating annual 

budgets for water, total mercury, methylmercury, and sediment.  The available data for 

these TMDLs consist of mean daily flows measured at the gage stations shown in 

Figures 2-2 and 2-3 for 1995 – present (some missing data) and the available relevant 

water quality data for selected dates: instantaneous total mercury, methylmercury, and 

total suspended solids concentrations (HgT, MeHgT, and TSS, respectively).  TSS is 

used as a surrogate for suspended sediment concentration and HgT /TSS is used as a 

surrogate for total mercury concentration in fine-grained sediment (RWQCB-CV 

2004b). Table 6-1 summarizes the available relevant water quality data for Sulphur 

Creek and Lower Bear Creek, the stream segments focused on in this paper.  As an 

illustration of the amount of available data, the number of HgT data for all stream 

segments within the Cache Creek watershed range from 16 to 65, with a mean of 30.   



 

 

 The annual water budget was estimated by summing mean daily flows over a 

given water year for gaged stream segments.  Water budgets for ungaged segments 

were estimated from a version of the rational runoff method or, in some cases, using 

the assumption that the percentage discharge from a sub-basin could be directly 

approximated by its areal percentage of the watershed (Dunne and Leopold 1978).  

The Regional Water Quality Control Board (RWQCB) staff’s approach for estimating 

annual loads (LAnn) involves multiplying the mean daily flow (mdf) by the water 

quality concentration predicted for that flow (C(mdf)) to calculate the mean daily load, 

then summing over the water year:  

 It should be kept in mind that estimates of total mercury loadings within 

Sulphur Creek and the other stream segments in Cache Creek have significant 

associated uncertainties.  While estimating the annual water budget from gaged flows 

For some stream segments (South Fork, Cache Creek at Rumsey, and Cache Creek at 

Yolo), stream flow appears to be linearly correlated with HgT and TSS over the entire 

observed flow range.  For these segments, C(mdf) was deterministically estimated 

from linear correlations of the untransformed variables.  For the other stream 

segments, the arithmetic averages of HgT and TSS were used to estimate C(mdf).  For 

MeHgT, arithmetic averages were used for all segments to estimate C(mdf).  The use 

of arithmetic averages and linear models with no transformation of the variables for 

predicted concentrations implies that the variables/residuals are normally distributed, 

an assumption that is not supported by the data in several cases.  As shown in Chapter 

5, hysteresis in the C(flow) relationship at the scale of individual storm events may 

account for much of the scatter in the log-log linear regions of the HgT (TSS) versus 

flow relationship. 

∑=
wateryear
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is operationally straightforward25, predicted total mercury concentrations are used in 

the annual HgT load estimates.   Since the associated prediction errors are quite large 

relative to the predicted means and the concentrations appear to be lognormally 

distributed in most cases, a probabilistic estimate of average annual loadings based on 

log transformed concentration values is more informative than the typical 

deterministic estimation approaches.  It should be noted that additive errors in a 

lognormal flow vs. concentration model reflect the fact that the  

Table 6-1. Sulphur Creek and Lower Bear Creek Data Summary, from Cache Creek 
Mercury TMDL Report (RWQCB-CV 2004a) and Sulphur Creek TMDL Report 
(RWQCB-CV 2004b). 

Stream 
Segment 

Water Quality 
Parameter 

Number of 
observations Range Mean / 

Median 
HgT (ng/L) 34 245 – 16,410 2,890 / 

1,094 
MeHgT (ng/L) 27 0.1 – 21 2 / 1 
TSS (mg/L) 31 4 – 1,372 214 / 56 

HgT (ng/L), 2/25/04 
Storm Event 19 231 – 9,510 

 
2,540 / 
1,440 

Sulphur 
Creek 

TSS (ng/L), 2/25/04 
Storm Event 19 1.8 – 1,390 416 / 173 

HgT (ng/L) 16 18.5 – 1,290 281 / 81.9 
MeHgT (ng/L) 1 0.82 NA 

Lower 
Bear 

Creek TSS (mg/L) 15 1.7 - 670 118 / 29.3 
 

scatter in the underlying untransformed data is proportional to flow.  By log-

transforming the flow and concentration variables, the residuals in log-space obey the 

assumptions behind the linear regression model for the selected flow ranges. 

DETERMINISTIC MERCURY LINKAGE ANALYSIS 

While inorganic mercury associated with particulates is often the dominant mercury 

fraction in aquatic environments, methylmercury is the chemical species that 

 
25 While the estimation method is straightforward, the estimate has significant uncertainty. 
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bioaccumulates and biomagnifies in aquatic food webs, potentially resulting in fish 

tissue mercury levels that are toxic to humans and wildlife (Benoit et al. 2003).  

Although most fish advisories apply to watersheds dominated by atmospherically 

deposited mercury (Wiener et al. 2003), this research focuses on a watershed impacted 

by relatively large total mercury inputs from legacy mine wastes, active geothermal 

sources, and high regional background levels in soils.  In the creeks in this watershed, 

like most aquatic environments, in situ microbially mediated methylmercury 

production from available reactive inorganic mercury at the oxic/anoxic sediment 

interface is believed to be the dominant source of methylmercury.  While 

methylmercury formation is positively correlated with total mercury concentration in 

the Cache Creek watershed and many other watersheds, environmental factors other 

than total mercury loading (e.g., sulfate and sulfide sediment concentrations, dissolved 

organic carbon (DOC) levels, temperature, etc.) may strongly influence 

methylmercury concentrations and bioaccumulation in aquatic ecosystems (Benoit et 

al. 2003; Wiener et al. 2003).  In general, the range of mercury methylation rates 

across aquatic ecosystems is greater than the range in total mercury loading rates 

(Benoit et al. 2003).  In fact, it may be the case that high methylmercury 

concentrations may be more of a localized “hotspot problem” under conditions of high 

microbial activity and high reactive mercury than a watershed-wide mercury 

contamination problem (Calfed Bay-Delta Program 2005).  However, this issue is still 

an active area of research (Marvin-DiPasquale 2005). 

 The observed aqueous MeHg concentration at any point in time integrates the 

many processes influencing MeHg production and loss (Benoit et al. 2003).  Relevant 

factors include total mercury loadings, reactive mercury concentrations in sediment, 

low flow duration, and temperature, all of which vary spatially and temporally.  Even 

with ample data on the most relevant environmental factors, there is significant 

uncertainty in predicting the value of MeHgT for a given set of conditions.  In practice, 

the data on the most relevant environmental factors (reactive mercury concentration in 

sediment, acetate and lactate concentrations, sulfate and dissolved sulfide 
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concentrations in sediment, pore water temperature, etc.) are very sparse or missing 

altogether for the watershed of interest. 

 The large uncertainties in linking total mercury concentrations and loadings to 

methylmercury concentrations and loadings are widely acknowledged.  At present, 

trustworthy process-based models of the formation of methylmercury do not exist and 

the available empirical (statistical) models based on aqueous concentrations of total 

mercury (HgT) and total methylmercury (MeHgT) lack clear causal predictive power.  

While semi-empirical methylmercury predictive models based on the concentration of 

reactive mercury in sediment (Hgsed, rct) and microbial activity are the state of the art 

(Mark Marvin-DiPasquale, personal communication), there are no data available to 

describe Hgsed, rct  and very little relevant data for describing microbial activity in 

Sulphur Creek, other than what can be inferred from the small number of available 

MeHgT, sulfate, and DOC data.   

 Rather than relying on a potentially non-causal empirical relationship between 

HgT and MeHgT in the linkage analysis, I propose an alternative way of thinking about 

the causal relationship between inorganic mercury and methylmercury, one that 

focuses on the what experts know about the causal relationships between potential 

controls and the environmental targets of interest, making the best use of the available 

data and expertise. 

6.2  CURRENT PRACTICE IN DEALING WITH SOURCE AND LINKAGE 

ANALYSIS UNCERTAINTY 

 
The consideration of uncertainty in TMDLs is constrained by the regulatory 

requirements for the use of a Margin of Safety (MOS) and thus most discussions of 

uncertainty in TMDL decisions take the MOS as a starting point.  From this 

perspective, an uncertainty analysis of the relevant (deterministic) models can be 

performed (in theory) and, from this uncertainty analysis, the choice of an appropriate 

MOS in the TMDL target can be made.  The use of conservative modeling 
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assumptions, or even conservative mitigation goals, as “the MOS” is another strategy 

in use.  From a decision analytical point of view, the choice of “how conservative” the 

MOS should be is itself a decision of fundamental importance.  To leave this choice as 

a conventional “scientific/engineering judgment” is to risk making a poor decision.  

While a poor outcome may result from any decision under uncertainty, a good 

decision means that, given the available information, the alternatives considered, and 

the decision-makers’ preferences over the outcomes, the course of action chosen is the 

rational one (see Chapter 4 for a discussion of utility maximization in decision 

analysis). 

6.3  SOURCE ANALYSIS UNCERTAINTIES AS RANDOM VARIABLES IN A 

PROBABILISTIC (BAYESIAN) NETWORK  

ESTIMATING PROBABILITY DISTRIBUTIONS OVER MERCURY LOADINGS 

Depending on the types and amounts of available data, two basic approaches were 

used to estimate the probability distributions over total mercury and methylmercury 

loadings in the Sulphur Creek watershed.  For the gage sites, the empirical log-log 

linear model shown in Figure 5-5 was used to predict HgT from flow using Monte 

Carlo simulation26.  A random error term based on the residual error from Figure 5-5 

was used in the simulation.  Since MeHgT appears to be independent of flow 

(RWQCB-CV 2004b) and approximately lognormally distributed (Figure 6-1), 

simulated values from a lognormal model were used with flow data to estimate annual 

MeHgT loads.  To estimate the highly uncertain total mercury loadings from the 

various mine sites, geothermal springs, erosion of undisturbed soil, and erosion of the 

contaminated streambed, experts were asked to look at the available data for this 

watershed and any other relevant data from elsewhere in the Cache Creek watershed 

(Rytuba 2005a).  Probability distributions for the various sources reflecting their 

expert judgment were assessed and used to represent the current background state of 

 
26 Convergence of the mean was used to limit the number of trials.  Typically, 1000 to 5000 trials were 

sufficient.  The  
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),ln())(ln())(ln( ErrormdffmdfC

Mean daily loadings over the water year were predicted using mean daily flow data 

and the total (HgT) and methylmercury (MeHgT) concentrations predicted for that 

flow.  The summation over the water year for the mean daily loadings is the best 

estimate of the annual loading.  Note that I assumed that HgT and MeHgT are 

lognormally distributed (i.e., log(HgT) and log(MeHgT) are normally distributed).  

Figure 6-1 shows that an assumption of lognormality leads to much better HgT and 

MeHgT predictions from flow than the assumption of normality, based on the fit of 

observed versus expected values.  This means that using arithmetic averages and linear 

models using untransformed concentration data will lead to biased predictions. 

where the terms are defined as before.  Note that the fact that error is assumed to be 

additive in ln-space means that error is multiplicative in arithmetic space.  In other 

words, larger flows have larger errors for HgT, which is supported by the data.  Since 

the purpose of this simulation to estimate the uncertainty in the loading in any wet or

 

 To simulate the uncertain concentration distribution over the flow-independent 

range (e.g., MeHgT for all flows and HgT for flows < 55 cfs) for a given water year, 

concentrations were simply randomly generated from a lognormal distribution.  To 

simulate uncertainty in the HgT predictions for flow greater than 55 cfs, I used a log-

log linear model that included an estimate of the prediction error based on cross-

validation using five data sub-sets (Hastie et al. 2001): 

PROBABILITY DISTRIBUTION OVER THE ANNUAL TOTAL MERCURY (HGT) AND 

METHYLMERCURY (MEHGT) AT THE SULPHUR CREEK GAGE 

information.  Discrete approximations for the loading distributions were created from 

the simulated distributions using standard methods (Miller and Rice 1983; Poland 

1996; Smith 1993). 

+=
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Figure 6-1. Observed Versus Expected Values For Normal And Lognormal Distributions For Total Mercury (HgT) and 
Methylmercury Concentrations (MeHgT) for All Available Data, Representing Dry and Wet Seasons and All Flow Ranges. 

-1.5

-1

-0.5

0

0.5

1

1.5

-2 -1 0 1 2

Expected Value for Lognormally Distributed 
Value

O
bs

er
ve

d 
V

al
u

log(MeHgT)

-10

-5

0

5

10

15

20

25

-10 -5 0 5 10 15

Expected Value for Normally Distributed 
Variable

O
bs

er
ve

d 
V

al
u

MeHgT

2

2.5

3

3.5

4

4.5

3 3.5 4 4.5

Expected Value for Lognormally Distributed 
Value

O
bs

er
ve

d 
V

al
u

log(HgT)

-7500

0

7500

15000

22500

-10000 -5000 0 5000 10000 15000

Expected Value for Normally Distributed 
Variable

O
bs

er
ve

d 
V

al
u

HgT

 
 

 

 

 

 

 

 

 

 

 

 



 

 123

dry water year and not to construct a time series prediction for a given set of flows in a 

particular water year, the autocorrelation in the error term is not a concern (Chatterjee 

et al. 2000).  The scatter introduced by the hysteresis in the flow versus HgT 

relationship (one of the sources of autocorrelation) is treated as random error in this 

model. 

 A histogram over a water year’s or water season’s simulated mean daily 

loadings approximates the desired loading probability distribution for that water year 

or water season.  The resulting probability distributions represent what we know from 

the available flow and water quality data and what we do not know about the 

complicated relationship between flow and HgT or MeHgT.  The total uncertainty 

considered includes our uncertainty in the data measurements themselves and in the 

noisy relationships between flow and HgT and MeHgT.  Future flow variability is 

represented by a marginal distribution over water year with two states, “Wet Year” 

and “Dry Year”.  Based on the historical record (1906 – 2004) for the Sacramento 

Valley, wet years and dry years were represented as equally probable. 

 Figure 6-2 shows the simulated cumulative distribution over the annual HgT 

loading for Sulphur Creek in the 2000 water year, which includes flow variability, 

measurement uncertainty, and HgT prediction uncertainty.  Figure 6-2 also shows the 

annual load estimate made using the deterministic methodology of the Central Valley 

Regional Water Quality Control Board staff, which uses the arithmetic average of the 

available HgT data to predict the concentration for any flow.  This estimate results in a 

value that occurs well beyond the 99th percentile, indicating strong high bias.  This 

bias results from the use of the arithmetic average of the HgT data as the measure of 

central tendency, in part because wet season sampling was done more often than dry 

season sampling, and, as shown in Figure 5-5, there is a significant log-log linear 

correlation between flow and HgT for flows larger than 55 cfs.  Also, the use of an 

arithmetic average to predict HgT significantly overestimates the value for flows less 

than 55 cfs, as can be seen from Figure 5-5.  This results in significant load 

overestimates for most of the water year. 
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Figure 6-2.  Simulated Cumulative Distribution of Annual Total Mercury (HgT) Loading for Sulphur Creek, 2000 Water Year. 
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 Figure 6-3 shows the correlation between the log of the best estimate annual 

HgT loading and annual discharge at the Sulphur Creek gage for the period of record, 

2000 – 2004.  This information is summarized in Table 6-2, which also shows the 

numerical values for the averages and standard deviations for the annual HgT loads for 

the years of record.  A “dry year” was defined using the data from the 2001 water 

year, which had an average annual HgT load of 2.4 kg/year.  Using the definition of  

 

Figure 6-3.  Relationship between Log(annual HgT Loading) and annual discharge at 
the Sulphur Creek gage. 
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Table 6-2.  Statistical summary from simulation of annual total mercury load at the 
Sulphur Creek gage. 

 

Water Year Annual Discharge 
(106 Acre-ft/yr) 

Average Annual HgT 
Load (kg/yr) 

Standard Deviation 
for HgT Load (kg/yr) 

2000 0.83 3.6 0.7 

2001 0.53 2.4 0.8 

2002 1.0 6.2 3.8 

2003 1.2 8.0 3.1 

 

 

wet year as an annual discharge of 1.5 x 106 acre-feet/year, the average value for the 

wet year annual HgT loading at the gage was estimated from this relationship as 13 

kg/year.  The simulated distributions for the dry and wet years were approximated as 

two-point discrete probability distributions using a standard approach (Miller and Rice 

1983; Poland 1996; Smith 1993) and are shown in Table 6-4. 

PROBABILITY DISTRIBUTION OVER THE ANNUAL MINE HGT LOADING CONTRIBUTION  

The probability distribution over the aggregate annual mine HgT loading contribution 

was estimated as an uncertain percentage of the annual HgT loading observed at the 

gage.  Using published HgT data collected upstream and downstream of individual 

mine sites in 2000 – 2004 and the flows estimated by RWQCB staff (RWQCB-CV 

2004b), annual mine-related loadings were estimated to comprise around 70% of the 

observed annual HgT load at the gage.  However, this is an upper bound of the direct 

contribution of the mine sites to the HgT loading at the gage, since it does not account 

for any sediment deposition during transport from the mine sites to the gage.  

Researchers estimate that run-off from the mine sites contributed approximately 20% 

of the HgT loading observed at the gage during 2000 – 2002 (Churchill and 
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Clinkenbeard 2003; Suchanek et al. 2004).  To simulate our uncertainty in the 

percentage contribution, I used a triangular distribution with values {0.10,0.20,0.90}.  

The triangular distribution is typically used when the minimum and maximum values 

are the most well-understood parts of the distribution and the estimate of the modal 

value is an “inspired guess”.   Despite being a simplistic description of a population, it 

is a very useful distribution for modeling processes where the relationship between 

variables is known, but data are scarce (Johnson et al. 2002; Williams 1992). 

I used Monte Carlo analysis to estimate the distribution over annual mine HgT loading 

contribution from run-off using wet season flow data for a given water year: 

 

∑
==

lowsWetSeasonF

GaugeGaugeMines HgTLoadMinesfromHgTLoadHgTLoad

Year} Water Season,Wet |)Gauge{Load(flow*20,0.90)Tr(0.10,0.

)(*)(%

i

 

 

where Tr(•) represents a triangular distribution generation function, 

Load(flow)Gage|Wet Season represents the HgT loading at the gage predicted for a 

given wet season flow, and the summation is over the wet season flows for a given 

water year. 

 Note that the source loading model could be much more detailed, if the 

available data warranted it and if the decision were framed at the level of choosing 

between individual mine site remediation projects.  For example, Figure 6-4 shows a 

more detailed probabilistic sub-model for the Annual Mine HgT T Loading variable 

that includes the relationships between individual mine sites in the upper watershed 

(Elgin and Wide Awake mines), the aggregate mine contribution from the upper 

watershed, lower watershed mines (Clyde and others), and the total aggregate mine 

contribution observed at the gage.  Such a model could be used to evaluate specific 

mine site remediation projects, partly based on the uncertainty in these relationships. 
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Figure 6-4.  More Detailed Bayesian Network Sub-model for Mine HgT Loading at 
Gage. 

 

 
 

However, such detail was not needed for the TMDL decisions evaluated in this 

research, as framed. 

PROBABILITY DISTRIBUTION OVER THE GEOTHERMAL HGT LOADING CONTRIBUTION 

 The uncertainty in the annual geothermal HgT inputs to Sulphur Creek is much 

smaller than the uncertainty in the annual mine HgT inputs (Churchill and 

Clinkenbeard 2003).  The best estimate of the total annual geothermal input to Sulphur 

Creek is 1.7 kg/year (RWQCB-CV 2004b).  The major uncertainty involves the 

unknown net deposition factor on an annual basis aggregated over the watershed.  

There are some relevant observations concerning this factor.  For example, some 

segments of Sulphur Creek (e.g., between the Jones Fountain of Life and Wilbur Hot 

Springs) were determined to have net sediment deposition of precipitates venting from 
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thermal springs during dry and wet season flows.  The uncertainty in this net 

deposition factor was modeled as a triangular distribution with values {0.2, 0.8, 

0.95}(Rytuba 2005b).  The annual HgT load contribution from geothermal springs to 

the gage load is modeled as: 

./5.1*)95.0,8.0,2.0()}(*

){(%

yearkgTrLoadGeothermalAnnualTotal

AnnuallyCreeksinDepositedInputsGeothermalLoadHg SpringsT

=

=  

The annual variation in the spring HgT loading is negligible. 

PROBABILITY DISTRIBUTION OVER THE BACKGROUND/RESUSPENSION HGT LOADING 

CONTRIBUTION 

The Background/Resuspension HgT Loading variable in Figure 5-15 is defined to 

include mercury loading contributions from resuspended contaminated sediment along 

Sulphur Creek upstream of the gage, erosion of regional soils, and atmospheric 

deposition within the watershed.  The triangular distribution was approximated from a 

consideration of mass balance and uncertainty in the loadings terms: 

MinesSpringsGaugesuspensionBackground HgTLoadHgTLoadHgTLoadHgTLoad −−=Re/  

While this method is gross, it reflects the very sparse data available to support the 

mercury TMDL setting decision. 

ANNUAL HGT LOADING AT THE GAGE AS A DETERMINISTIC VARIABLE 

The Annual HgT Loading at Gage variable was modeled as a deterministic function 

(mapping) of its parent variables, Annual Mine HgT Loading (High/Low), Geothermal 

HgT Loading (High/Low), and Background/Resuspension HgT Loading (High/Low).  

Each of the eight possible combinations of the states of its parents was assigned its 

unique numerical result.  Table 6-3 shows the mapping used to predict the annual HgT 

loading at the Sulphur Creek gage.  The posterior distribution over this predicted 

loading is shown in the next section. 
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Table 6-3.  Deterministic mapping for predicting the annual HgT loading at the 
Sulphur Creek gage from source loadings. 

 
Parental Combinations 

HgT Load 
Mines 

HgT Load 
Springs 

HgT Load 
Background/
Resuspension

Resulting HgT 
Load at Gage 

(kg/year) 

Low Low Low 2.2 
Low Low High 21.2 
Low High Low 3.5 
Low High High 22.5 
High Low Low 21.2 
High Low High 40.2 
High High Low 22.5 
High High High 41.5 

 

 
 
 
 

 
 
 
 
 

6.4  TOTAL MERCURY SOURCE ANALYSIS USING A BAYESIAN NETWORK 

Figure 6-5 shows the Sulphur Creek HgT source analysis as a Bayesian network.  The 

conditional probability distributions derived in the previous section are associated with 

the variables shown and can be used to calculate the posterior probability distributions 

relevant to the source analysis.  This network will be incorporated in the linkage 

analysis influence diagram in the next section.  Table 6-4 shows the generated 

marginal probability table for Water Year and the conditional probability tables for 

Geothermal HgT Loading, Annual Mine HgT Loading and Background/Resuspension 

HgT Loading. 

 



 

Figure 6-5.  Total mercury source analysis as a Bayesian network.  a)  When Annual 
HgT Loading at Gage is unobserved (not shaded), Annual Mine HgT Loading is not 
relevant to Background/Resuspension HgT Loading given the TMDL Strategy 
Decision and Water Year.  b)  If Annual HgT Loading at Gage is observed (shaded), 
Annual Mine HgT Loading is relevant (additional arc) to Background/Resuspension 
HgT Loading given the TMDL Strategy Decision and Water Year. 
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Table 6-4.  Probability tables for source analysis variables. 

 

{Water Year|&} Probability Source 

Dry 51 Frequency from data1

Wet 49 Frequency from data1

Probability {Annual Mine HgT 
Loading|Dry Year} Status 

Quo 
Mine 

Strategy 
Geothermal & 
Mine Strategy 

Source 

Low 0.993 0.999 0.993 
High 0.007 0.001 0.007 

Simulation from published 
data2, expert judgment 

Probability {Annual Mine HgT 
Loading|Wet Year} Status 

Quo 
Mine 

Strategy 
Geothermal & 
Mine Strategy 

Source 

Low 0.54 0.964 0.54 
High 0.46 0.036 0.46 

Simulation from published 
data2,3, expert judgment 

Probability {Geothermal HgT  
Loading|Dry Year} Status 

Quo 
Mine 

Strategy 
Geothermal & 
Mine Strategy 

Source 

Low 0.81 0.81 1 
High 0.19 0.19 0 

Simulation from published 
data2, expert judgment 

Probability {Geothermal HgT  
Loading|Wet Year} Status 

Quo 
Mine 

Strategy 
Geothermal & 
Mine Strategy 

Source 

Low 0.51 0.51 0.962 
High 0.49 0.49 0.038 

Simulation from published 
data2,3, expert judgment 

Probability {Annual 
Background/ 

Resuspension HgT 
Loading | Dry Year } 

Status 
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Source 

Low 0.89 0.999 0.99999 
High 0.11 0.001 1e-005 

Simulation from published 
data2, expert judgment 

Probability {Annual 
Background/ 

Resuspension HgT 
Loading | Wet Year } 

Status 
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Source 

Low 0.21 0.8 0.9 
High 0.79 0.2 0.1 

Simulation from published 
data2,3, expert judgment 

Notes:  
1) Based on California Department of Water Resources, 1906 – 2004 water year indices for 
Sacramento Valley: {indices for dry, critical years} = dry and {index for wet years} = wet. 
2)  Data from RWQCB-CV, 2004b 
3)  Wet year average load estimate from representative wet year index. 
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Figure 6-6 shows the discrete posterior probability distributions (predicted from its 

parents) for the “Predicted Annual HgT Loading at Gage” variable as a marginal 

distribution (summed over water year) and as distributions conditioned on dry and wet 

years.  The average for the predicted annual HgT loads at the gage is 8.5 kg/year for 

the marginal distribution, 13 kg/year for a wet year, and 4.1 kg/year for a dry year. 

 

Figure 6-6.  Discrete probability distributions over the Annual HgT Loading predicted 
for the Sulphur Creek gage, given either value of Water Year (&), given a Wet Year 
(Wet), and given a Dry Year (Dry).  Note that “&” designates the “background state of 
information” and, in this model, indicates that the type of water year has not been 
observed. 
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6.5  MERCURY TMDL LINKAGE ANALYSIS AS A CAUSAL INFLUENCE 

DIAGRAM 

MODELING UNCERTAIN CAUSE-AND-EFFECT USING EXPERT ELICITED PROBABILITY 

DISTRIBUTIONS 

While the uncertainties in current total and methylmercury loading estimates for the 

source analysis are significant, largely due to a lack of data, the uncertainties in the 

linkage analysis are much larger, and include a lack a data as well as significant gaps 

in the understanding of the causal relationships between inorganic mercury loading 

and factors that promote the net formation of methylmercury (Benoit et al. 2003; 

Calfed Bay-Delta Program 2005; Marvin-DiPasquale et al. 2000; Slotton et al. 2004; 

Wiener et al. 2003).    Current research suggests that methylmercury may be more of a 

“hotspot” problem than an inorganic mercury loading problem.  Hotspots are thought 

to occur when relevant environmental conditions are optimized for promoting the net 

formation of methylmercury.  In such conditions, while reactive mercury in sediment 

is a necessary factor for the formation of methylmercury, it may rarely be the limiting 

factor in many watersheds (Calfed Bay-Delta Program 2005).  The environmental 

factors that promote the net methylation of mercury are discussed below. 

 One observation that supports the hotspot view is the strong relationship 

between methylmercury concentration and season.  In the latter hot period of the dry 

season (July and August), when flows are low, temperatures are high, and oxygen 

levels are low in water, methylmercury concentrations can be more than 300 times 

higher than in the latter part of the wet season (RWQCB-CV 2004b).  In the wet 

season, observed methylmercury comprises from 0.01% to 0.16% of total mercury. In 

the dry season, the range is from 0.03% to 2%.  This seasonal hotspot aspect of the 

linkage between inorganic mercury loading and local methylmercury concentration 

has significant implications for addressing the problem of environmental 

methylmercury, but at this time, the appropriate measures to address the problem are 

still controversial, even at a site specific level (Calfed Bay-Delta Program 2005). 
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 As discussed in more detail below, part of the difficulty in relating total 

mercury loading to methylmercury formation is due to a lack of data on the 

relationship between total mercury loading, the spatial distribution on the 

concentration of total mercury in sediments and erodable materials throughout the 

watershed, and the spatial and temporal distributions of reactive mercury in sediment 

near the primary zone of mercury methylation in Sulphur Creek, the creekbed 

oxic/anoxic sediment interface.  

 Data limitations and knowledge gaps make the predicted response of seasonal 

methylmercury concentrations to changes in total mercury loadings a very difficult 

and highly uncertain endeavor.  When one also considers the issue of the unknown 

contribution of background geothermal mercury sources to the concentration of 

reactive mercury in sediment, the uncertainty in the predicted consequences of mine 

mitigation efforts becomes enormous (Churchill and Clinkenbeard 2005; Rytuba 

2005b).  In fact, a first order analysis could be made in which one assumes that the 

uncertainty in the resulting future post-mine mitigation methylmercury concentration 

trend is independent of the decision to mitigate.  In other words, it is arguable that an 

appropriate decision model could be made in which future methylmercury 

concentrations are an uncertainty that are independent of the mitigation strategy 

chosen.  Rather than take this approach, the proposed model includes hypotheses in 

which mine mitigation may or may not have an effect on the concentrations of reactive 

mercury in sediment and methylmercury in the watershed.  This preserves the causal 

relationship between the potential controls and the desired environmental targets, 

while allowing for the very real possibility that methylmercury concentrations are 

outside of the feasible control of Sulphur Creek mercury TMDL decision-makers. 

 While other work (nutrient loading and eutrophication-related water quality 

problems) has focused on the using uncertainty analysis on calibrated semi-empirical 

models to generate the needed probability distributions for modeling water quality 

control decisions as a Bayesian network (Borsuk et al. 2003; Reckhow 1999; Stow et 

al. 2003), this work takes a very different approach.  Many aspects of the linkage 
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analysis for the nutrient loading-related problem addressed by Borsuk, Reckhow, and 

Stow were supported by a relatively large data set and accepted semi-empirical 

models.  As discussed above, the Sulphur Creek mercury linkage analysis is 

comparatively fraught with missing information.  Given this situation, the integrated 

use of the scant available data and scientific expertise in a probabilistic framework 

was determined to be the most useful way to proceed for the mercury TMDL linkage 

analysis.  Because of the absence of accepted deterministic models, it was also judged 

that the best way to integrate the available relevant data (both site-specific and from 

other watersheds) was to have the domain experts subjectively consider the data 

before expressing their uncertainty in the needed conditional probabilistic 

relationships between the variables of interest.  Methodologies for reducing bias, 

avoiding the introduction of bias, etc., in the elicitation of probability distributions 

have been reviewed extensively in the literature (Morgan and Henrion 1990; Spetzler 

and von Holstein 1975; Tversky and Kahneman 1974).  Experts from Stanford 

University (Aaron Slowey) and the U.S. Geological Survey (James J. Rytuba and 

Mark Marvin-DiPasquale) were interviewed following a description of the approach 

and a review of the available information. 

LINKAGE ANALYSIS 

Figure 6-7 shows a Bayesian network version of a mercury linkage analysis for the 

Sulphur Creek watershed.  It predicts the probability distributions over several 

variables of interest to decision-makers and scientists:  1) annual median HgT/TSS 

concentration in fine grained sediment above the gage (“HgT/TSS”) in response to the 

various TMDL mitigation alternatives; 2) median reactive mercury in sediment 

(“Hgsed
*”) above the gage; 3) annual median methylmercury  (“MeHgT”) at the gage; 

and 4) MeHgT loading at the gage.  Other variables are included in the linkage analysis 

to aid in the prediction of these variables of interest, including the hypothesis variable, 

“Mine Mitigation Reduces HgT/TSS?”, which has states TRUE and FALSE.  FALSE 

refers to the outcome in which mine mitigation results in no discernable change in 

annual median HgT/TSS because of the high background mercury sources.  TRUE



 

 

Figure 6-7.  TMDL linkage analysis as a Bayesian network relating total mercury loading to environmental targets of interest.
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refers to the outcome in which mine mitigation reduces HgT/TSS during wet season 

flows to the regional background level of 1 - 10 ppm.  “Percent Reactive HgT” refers 

to the fraction of HgT/TSS that contributes to the pool of reactive mercury in sediment.  

“Water Season” has states “Wet”, which refers to the rainy season defined as October 

1 to March 31,  and “Dry”, which refers to the balance of the water year.  “Water 

year” has the same definition as in the source analysis. 

 The structure of the model reflects the fact that mercury methylation is 

believed to be controlled by the concentration of reactive mercury in sediment 

(Hgsed*), as defined in Chapter 5, and the “level of microbial activity” of bacterial 

species that methylate reactive mercury in-situ.  There is no direct information on the 

concentrations of reactive mercury in sediment in Cache Creek.  However, some 

relevant information is available from mercury methylation potential studies in the 

Cache Creek watershed (Bloom 2001; Domagalski et al. 2003; Suchanek et al. 2004) 

and studies from other watersheds (Benoit et al. 2003; Marvin-DiPasquale 2005).  In 

this model, Hgsed* is conditioned by Annual Average Hg/TSS at Gage and Percent 

Reactive Hg in HgT/TSS.  While the uncertainty in Hgsed* is very large, this structure 

suggests that observed Hg/TSS provides relevant information about concentration and 

that the source of the mercury (mines/geothermal/soils) provides some limited 

information about speciation.   

 The use of hypothesis variables to describe the effectiveness of mine 

mitigation in reducing annual average HgT/TSS (Mine Reduction Reduces HgT/TSS?, 

“HgT/TSS reduction hypothesis”) and the percentage of reactive mercury in sediment 

(Percent Reactive Hg in Sediment?, “percent reactive mercury hypothesis”) is a 

reflection of the fact that both variables will remain unobserved before the decision is 

made.  While research could do much to inform the HgT/TSS reduction hypothesis, 

that variable can not be completely resolved until mine mitigation has been performed 

and the remaining contaminated sediment has been partially flushed from the creek.  

The percent reactive mercury hypothesis variable could be observed before the 

decision is made, but this was determined to be too expensive by decision-makers.  
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The use of hypothesis variables allows decision-makers to consider the decision to 

collect more information about these hypotheses in terms of TMDL decision value, the 

current state of information, and a consideration of which other variables could also be 

observed in the future.  This allows much more robust information collection decisions 

to be made, formalizing many of the intuitive approaches currently used (Howard 

1970). 

 The state of the “microbial activity” variable can also be thought of as a 

hypothesis variable, since it cannot be directly observed.  Instead, it should be thought 

of as a useful construct that describes the aggregate effect of the many factors that we 

partially understand as influencing the efficiency of the microbial methylation of 

mercury (Marvin-DiPasquale 2005).  For example, it could be modeled as being 

conditionally dependent on seasonal sulfate and sulfide concentrations, temperature, 

flow conditions, redox conditions, etc.  Also, the state of microbial activity can be 

updated based on a test set of current or future observations of methylmercury data.  It 

is in this sense that “microbial activity” can be thought of as a hypothesis variable in a 

Bayesian network. 

PROBABILITY DISTRIBUTION OVER ANNUAL AVERAGE HGT/TSS AT GAGE 

The concentration of total mercury in water (HgT, ng/L) divided by the concentration 

of  total suspended solids (TSS, mg/L), HgT/TSS (ppm), provides an indicator of the 

average concentration of total mercury in suspended and re-suspended sediment 

upstream of the point of sample collection.  In the following discussion, the annual 

average HgT/TSS value observed/predicted at the Sulphur Creek gage will be referred 

to as “HgT/TSS”.  Figure 6-8 shows the relationship between the sub-model for 

HgT/TSS and the sub-model for reactive mercury in sediment. 

 What is known about the complex relationship between HgT/TSS, flow, and 

water season is discussed in Chapter 5.  That discussion suggests that the available 

water quality and flow data and the available information about mercury sources and 

speciation support the use of a seasonal model that uses flow ranges for the wet 
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season.  In addition, the potential influence of the mine mitigation and geothermal 

spring mitigation alternatives on HgT/TSS is modeled by conditioning  HgT/TSS by 

the mitigation decision.  The large uncertainty in the effects of mine mitigation on 

HgT/TSS is modeled by conditioning HgT/TSS on the hypothesis variable, “Mine 

Mitigation Reduces HgT/TSS”, as discussed previously.  In this hypothesis variable, 

FALSE designates the result that mine mitigation does not influence HgT/TSS and 

TRUE designates the result that annual average HgT/TSS is reduced towards regional 

background levels of 1 – 10 ppm.  This approach allows decision-makers to consider 

the possibility that mine mitigation may have a negligible impact on HgT/TSS at the 

gage due to large background HgT loadings and contaminated sediments (Churchill 

and Clinkenbeard 2005; Rytuba 2005a).  Reductions in HgT/TSS due to geothermal 

spring mitigation were also modeled as resulting in the attainment of regional 

background levels.  While there is uncertainty that this could be achieved, the 

uncertainty is small relative to the uncertainty in the effect of mine mitigation on 

HgT/TSS. 

 For dry season flows, the probability distribution over HgT/TSS for current 

conditions (“status quo alternative”) is modeled as a lognormal distribution 

independent of flow (n = 8).  For wet season flows, HgT/TSS is modeled as two 

different lognormal distributions for flows less than (n = 16) and greater than (n = 23) 

60 cfs.  Table 6-5 summarizes the parameters used for modeling HgT/TSS.  The 

assumption of population lognormality was checked using the available data for all 

season/flow data partitions using normal probability plots (Rice 1995).  The 

probabilities used to express the uncertainty in the relationship between mitigation and 

HgT/TSS conditioned on water season and the HgT/TSS reduction hypothesis are 

shown in Table 6-6. 
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Figure 6-8.  Sub-model for Annual Average HgT/TSS at Gage and Reactive Mercury 
in Sediment 
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Table 6-5.  Parameters for season/flow dependent HgT/TSS model. 

 
Water Season Flow Range Average1  

(± S.E.) 
Standard Deviation1 (± S.E.) 

Dry All 1.4 ± 0.0009 0.25 ± 0.04 
Wet Flow < 60 cfs 1.5 ± 0.001 0.43 ± 0.0009 
Wet Flow > 60 cfs 0.87 ± 0.0004 0.18 ± 0.0003 

Note:  Estimated by bootstrapping the available data for that season/flow partition (10,000 
iterations).  The average and standard deviation refer to the distribution over log(HgT/TSS). 

 
 

  

Table 6-6.  Probability table for annual average HgT/TSS at gage. 

 
Probability1{Annual Average HgT/TSS at Gage| Mine 

Mitigation Reduces HgT/TSS? = False,   
Dry Season} 

Status
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Low = 1 ppm 0 0 0.95 
Nominal = 10 ppm 0.93 0.93 0.05 
High = 100 ppm 0.07 0.07 0 

Probability1{Annual Average HgT/TSS at Gage| Mine 
Mitigation Reduces HgT/TSS? = False, Wet 

Season} 
Status
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Low 0 0 0.70 
Nominal 0.35 0.35 0.30 

High 0.65 0.65 0 
Probability1{Annual Average HgT/TSS at Gage| Mine 

Mitigation Reduces HgT/TSS? = True, Dry 
Season} 

Status
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Low 0 0.50 0.95 
Nominal 0.93 0.50 0.05 

High 0.07 0 0 
Probability1{Annual Average HgT/TSS at Gage| Mine 

Mitigation Reduces HgT/TSS? = True, Wet 
Season} 

Status
Quo 

Mine 
Strategy 

Geothermal & 
Mine Strategy 

Low 0 0 0.70 
Nominal 0.35 0.77 0.30 

High 0.65 0.23 0 

Notes:   
1)  Simulation from published data (RWQCB-CV, 2004b), expert judgment (James J. Rytuba). 
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PROBABILITY DISTRIBUTION OVER ANNUAL MEDIAN REACTIVE MERCURY IN 

SEDIMENT UPSTREAM OF GAGE 

Reactive mercury in sediment (Hgsed
*) is an operationally-defined fraction of total 

mercury in sediment that is used as surrogate for the pool of inorganic mercury that is 

available for microbial methylation.  It is defined more specifically in Chapter 5.   The 

hypothesis is that this fraction is likely available to microbes for methylation, and thus 

represents a surrogate measure of ‘microbially available’ Hg(II).  Since there are no 

data on Hgsed
* in this watershed, a probability distribution based on the available 

HgT/TSS data and observations about the fraction of HgT comprised by Hgsed
* in other 

watersheds was elicited from experts at the U.S. Geological Survey, Dr. James J. 

Rytuba and Dr. Mark Marvin-DiPasquale.  The 5th , 50th, and 95th percentile values for 

the percentage of total mercury in sediment (or its surrogate, HgT/TSS) comprised by 

Hgsed
* for a wide variety of natural environments are 0.01%, 1%, and 5%, respectively 

(Marvin-DiPasquale 2005).  Based on the large uncertainties in the mercury speciation 

in HgT/TSS and sediment in the Sulphur Creek and Cache Creek watersheds, a 

uniform distribution from 0.01% to 5% was used (Bloom 2001; Marvin-DiPasquale 

2005; Rytuba 2005c).  Table 6-7 presents the probability table for annual median 

Hgsed
* based on the probability distribution over HgT/TSS, Percent Reactive Mercury 

in HgT/TSS, and expert judgment (Rytuba 2005c; Slowey 2005). 

PROBABILITY DISTRIBUTION OVER ANNUAL MEDIAN CONCENTRATION OF 

METHYLMERCURY IN WATER AT THE GAGE 

Table 6-8 shows the probability table for annual median concentration of 

methylmercury in water at the gage, elicited from Dr. Mark Marvin-DiPasquale of the 

U.S. Geological Survey.  The available methylmercury data for Sulphur Creek, Bear 

Creek, and Cache Creek were examined by Dr. Marvin-DiPasquale before this 

elicitation.   
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Table 6-7.  Probability table for annual median reactive mercury in sediment (Hgsed
*). 

Probability1

{Ann. Median Hgsed
* | Ann. Avg HgT/TSS = Low} % Reactive Hg in 

Sediment = Low 

% Reactive Hg 
in Sediment = 

High 
Low = 0.0001 ppm 0.999 0.99 

High = 5 ppm 0.001 0.01 
Probability1

{Ann. Median Hgsed
* | Ann. Avg HgT/TSS = 

Nominal} % Reactive Hg in 
Sediment = Low 

% Reactive Hg 
in Sediment = 

High 
Low 0.99 0.90 
High 0.01 0.10 

Probability1

{Ann. Median Hgsed
* | Ann. Avg HgT/TSS = High} % Reactive Hg in 

Sediment = Low 

% Reactive Hg 
in Sediment = 

High 
Low 0.90 0.0001 
High 0.10 0.9999 

Notes:   
1)  Simulation from published data (RWQCB-CV, 2004b), expert judgment (James J. Rytuba, 
Aaron Slowey). 

 

Table 6-8.  Probability table for annual median concentration of methylmercury in 
water at the gage (MeHgT). 

 
Probability1

{Ann. Median MeHgT | Hgsed
*  = Low} Microbial Activity 

 = Low 

Microbial 
Activity 
 = High 

Low = 0.06 ng/L 0.93 0.20 
Nominal = 1 ng/L 0.07 0.80 

High = 20 ng/L 0 0 
Probability1

{Ann. Median MeHgT | Hgsed
*  = High} Microbial Activity 

 = Low 

Microbial 
Activity 
 = High 

Low 0.05 0 
Nominal 0.95 0.06 

High 0 0.94 
Notes:   
1)  Simulation from published data (RWQCB-CV, 2004b), expert judgment (Mark Marvin-
DiPasquale). 
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PROBABILITY DISTRIBUTION OVER ANNUAL METHYLMERCURY LOADING AT THE GAGE 

The probability distribution over methylmercury loading at the Sulphur Creek gage 

(MeHgT) was simulated from the available mean daily flow data, using the median 

methylmercury concentration in water as the predicted concentration (Table 6-9).  As 

described in Chapter 5, methylmercury was approximately lognormally distributed 

over the period of record, 2000 – 2003.  The median value for the period of record was 

0.76 ng/L.  The mean daily flow data for 2000 – 2003 was used to simulate annual 

MeHgT loadings (g/year) and to explore the relationship between annual discharge and 

annual MeHgT loading (g/year).  Figure 6-9 shows this relationship for the current 

estimate of annual median MeHgT value and for assumed values of 0.06, 1.0 and 20 

ng/L.  As with the annual HgT loading, the simulated MeHgT load for 2001 was used 

as the typical dry year. The MeHgT load for the wet year was predicted from the linear 

relationships shown in Figure 6-9 using an annual discharge of 1.5 million acre-

feet/year for each value of the annual median methylmercury concentration. 

Figure 6-9.  Relationship between Sulphur Creek annual discharge and the simulated 
annual methymercury load (kg/year) using a lognormal distribution for predicted 
MeHgT, current conditions (status quo strategy).  In the legend, “m” refers to the 
hypothetical mean value of the annual MeHgT distribution. 
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Table 6-9.  Probability table for predicted annual methylmercury loading at the gage 
(g/year). 

 
Probability1

{Ann. MeHgT Load | Ann. Median MeHgT = Low} Water Year 
 = Dry 

Water Year = 
Wet 

Low = 0.25 g/year 0.995 0.89 
Nominal = 5 g/year 0.005 0.11 
High = 100 g/year 0 0 

Probability1
{Ann. MeHgT Load | Ann. Median MeHgT = 

Nominal} Water Year 
 = Dry 

Water Year = 
Wet 

Low 0 0 
Nominal 0.989 0.89 

High 0.011 0.11 
Probability1

{Ann. MeHgT Load | Ann. Median MeHgT = High} Water Year 
 = Dry 

Water Year = 
Wet 

Low 0 0 
Nominal 0.76 0.23 

High 0.24 0.77 
Notes:   
1)  Dry year simulation from published data (RWQCB-CV, 2004b) for 2001.  Wet year loading 
distribution estimated from the relationship shown in Figure 6-9. 
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CHAPTER 7: SULPHUR CREEK MERCURY TMDL DECISION ANALYSIS 

This chapter demonstrates the use of the proposed decision analytical approach for 

TMDL setting. While the level of collaboration with the decision-makers for this case 

study was not adequate to perform a real-world decision analysis, the intent of this 

chapter is to demonstrate the proposed decision analytical approach.  For the 

purposes of this demonstration, we assume that our somewhat fictionalized decision 

participants have fully cooperated in the creation of the conceptual decision model 

presented in Chapter 5, trust the expertise encoded in the probability distributions 

presented in Chapter 6, and agree that the valuation approach (presented below) 

reflects their preferences.  The proposed decision analytical methodology is intended 

to be adaptable to a real-world TMDL decision-making situation in collaboration with 

decision-makers and stakeholders, taking into consideration data limitations, 

knowledge gaps, tight regulatory deadlines, and limited budgets for information 

collection and modeling. 

 For this demonstration, I develop and describe a parametric value model that 

does not require consensus on the desirability of compliance with the various TMDL 

targets.  The approach is designed for use in stakeholder situations in which 

participants are cooperative, but do not necessarily share the same preferences.  This 

value model is incorporated into a decision model that builds on the mercury 

mitigation Bayesian network explicated in Chapters 5 and 6.  

 Decision analytical results from this fully-specified decision model are 

presented and interpreted.  Contingent on the value of non-compliance (as defined 

below), best strategies are determined, sensitivity to key assumptions and probabilities 

are evaluated, and the value of clairvoyance (perfect information) for key uncertainties 

are presented. The decision analytical approach and types of insights generated serve 

as an example useful for transferring the approach to other TMDL situations. 
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7.1  MITIGATION COSTS AND NON-COMPLIANCE PENALTIES:  A 

PARAMETRIC VALUE MODEL 

Figure 7-1 shows the Sulphur Creek TMDL decision as an influence diagram with a 

multi-attribute value model27 defined as the sum of the expected mitigation cost and 

non-compliance penalties28 for a particular strategy.  Here, “non-compliance” is in 

reference to two TMDL regulatory targets, the total mercury loading and total 

methylmercury loading exported from Sulphur Creek to lower Bear Creek.  The total 

mercury load target can be thought of as a “downstream issue”, in that it potentially 

affects methylmercury concentrations in water and fish downstream (e.g., in the San 

Francisco Bay delta).  The methylmercury load target is more of a “local issue”, in that 

potentially affects methylmercury concentrations immediately downstream in Lower 

Bear Creek.  The variables shown in the model (Figure 7-1) are defined in Chapter 5 

and their associated probability tables are presented in Chapter 6.  The use of penalty 

functions in optimization problems like this is standard methodology (Bertsimas and 

Tsitsiklis 1997; Sundaram 1996).  

 
27 Multi-attribute value models are defined in Chapter 4.  In brief, they can be thought of as a bundle of 

endpoints or targets that decision-makers are interested in for a particular decision. 
28 In decision analysis, a “penalty function” is a tool that can be used to constrain targeted variables for 

the purposes of exploring the trade-offs between the risk of violating targets and the costs expended 
in lowering this risk.  In this context, a penalty does not refer to a legal fine that will be imposed upon 
the decision-makers by a regulatory agency, but rather reflects the social cost of violating the target. 
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Figure 7-1.  Influence diagram for Sulphur Creek mercury TMDL. 

 

 



 

 153

The Bayesian network in Figure 7-1 calculates the posterior probabilities of non-

compliance conditioned on TMDL mitigation strategy, which is defined as the 

probability of non-compliance (pNC,Ti) for target Ti given all prior data, current 

scientific understanding, and available expertise about the effects of the various 

mitigation strategies.  The value of the penalty for non-compliance with target Ti is 

calculated as theproduct of the cost associated with being in the state of non-

compliance (CNC,Ti) and the probability of non-compliance with Ti (pNC,Ti):  

)17(* ,,, −= EquationCpPenalty TiNCTiNCTiNC . 

In the case of a single decision-maker, the value of CNC,Ti could be elicited as a unique 

value.  However, in the case of a social decision, the meaning of CNC,Ti is much more 

complicated, although one could interpret it as the social disbenefit of non-compliance 

with regulatory target Ti.  Such a social disbenefit (or cost) would have a highly 

uncertain value that could be estimated through a variety of benefit estimation 

methodologies (observed behavior, surveys, secondary sources, etc.) (Boardman et al. 

2001; Heathcote 1998).  However, in this work, the value of CNC,Ti is parameterized to 

evaluate its effect on the identification of the best strategy.  This method provides very 

useful information to decision-makers without the requirement for consensus on 

preferences.  Since the identified best strategy is always contingent on CNC,Ti, the 

approach adopted could be described as “decision analytical support” rather than 

“decision analysis”, since an optimal strategy is not uniquely identified. 

 The mitigation costs for the mine strategy and the status quo are loosely based 

on estimates from documents supporting the Sulphur Creek TMDL (RWQCB-CV 

2004b; Tetra Tech 2003), but the geothermal & mine strategy mitigation cost is simply 

assumed to be twice the mine strategy mitigation cost.  Note that the purpose of the 

analysis is to illustrate the Bayesian network-based decision analytical approach and 

that, while the actual numbers used are reasonable, they do not reflect the beliefs of 

the actual decision-makers.  Table 7-1 summarizes the mitigation costs used and a 

brief description for each strategy. 



 

 154 

 

Table 7-1.  Mitigation costs used in the decision analysis. 

Alternative Mitigation 
Cost Notes1

Status quo $500,0001
Educational programs to educate 
downstream fish consumers, other social 
controls 

Mine strategy $3,350,0001 Targeted mine waste removal, erosion 
control at mine sites in watershed 

Geothermal & 

mine strategy 
$6,700,0002 High priority mine waste removal, erosion 

control, and geothermal spring mitigation. 

1.  (Delta Tribunal Mercury Council 2005). 

2.  Chosen as twice the mine strategy mitigation cost. 

 

7.2  FULLY-SPECIFIED SULPHUR CREEK TMDL INFLUENCE DIAGRAM 

Appendix A shows the posterior distributions for all variables for each alternative: 

status quo, mine strategy, and geothermal & mine strategy.  Figure 7-2 shows the 

posterior distributions for current conditions (status quo alternative) calculated by an 

implementation of the model in the GeNIe 2.0 Bayesian network programming 

environment (Decisions Systems Laboratory 2005).  This fully specified model is used 

to determine best strategies conditioned on the value of CNC,Ti (Section 7.4), to 

perform sensitivity analysis on key uncertainties (Section 7.5), and to determine the 

value of clairvoyance on these uncertainties (Section 7.6).  But first, the total mercury 

and methylmercury loadings predicted by this model are reported by strategy and 

water year in Section 7.3. 
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7.3  PREDICTED TOTAL AND METHYLMERCURY LOADINGS BY 

STRATEGY 

The posterior probability distributions over the predicted long-term total mercury 

(HgT) loading (Figure 7-3) and the methylmercury loading (Figure 7-4) for each 

strategy were calculated using the Bayesian network from Figure 7-1.  The predicted 

long-term total HgT and MeHgT loadings for each TMDL strategy, given dry, wet, and 

any water year are tabulated (Table 7-2).  In the case of post-mitigation predictions, 

“long- term” refers to the new steady state loadings that are predicted to result on the 

time-scale of years to decades after mitigation.  In the case of the status quo, there is 

no prediction time lag.  Table 7-2 also shows the credibility of compliance (COC) with 

the HgT loading and MeHgT loading targets for each strategy.  In this model, the 

COCHgT is defined as the posterior probability that the annual HgT loading at the gage 

is in state “LLL”, which refers to the situation where the annual mine HgT loading, 

annual geothermal HgT loading, and annual background/resuspension HgT loading are 

all in the state “Low”.  COCMeHgT similarly refers to the posterior probability that the 

annual MeHgT loading at the gage is in the state “Low”.  Other definitions of the 

credibility of compliance are possible.  For example, treating the loadings as 

continuous variables, COCHgT could be defined as the cumulative distribution for 

{HgT Load ≤ Target}.  However, for simplicity of presentation and given the very 

large uncertainties in the predicted loadings, a discrete representation with targets 

defined explicitly as states is adequate. 
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Figure 7-2.  Posterior distributions over all variables given no mitigation (status quo strategy). 
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Figure 7-3.  Posterior distribution over predicted long-term annual HgT loading at gage by strategy. 
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Figure 7-4.  Posterior distribution over predicted long-term annual MeHgT loading at gage by strategy. 
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Table 7-2.  Predicted annual HgT and MeHgT loadings at the Sulphur Creek gage and 
the associated credibility of compiance (COC), by strategy and water year. 

 Mine Strategy Geothermal & 
Mine Strategy Status Quo 

Annual Loading | &1

Average HgT Loading 

(kg/year), COC2 4.8, COC = 0.64 11, COC = 0.71 
12, COC = 

0.52 

Average MeHgT Loading 

(g/year), COC 
11, COC = 0.33 6.3, COC = 0.43 

11, COC = 

0.31 

Annual Loading | Dry Year 

HgT Loading (kg/year), 

COC2 3.7, COC = 0.79 3.5, COC = 0.93 
4.2, COC = 

0.77 

MeHgT Loading (g/year), 

COC 
5.8, COC = 0.34 3.5, COC = 0.46 

6.1, COC = 

0.33 

Annual Loading | Wet Year 

HgT Loading (kg/year), 

COC2 5.9, COC = 0.49 19, COC = 0.48 
21, COC = 

0.27 

MeHgT Loading (g/year), 

COC 
16, COC = 0.31 9.2, COC = 0.41 

17, COC = 

0.29 

Notes:  1)  “&” designates the “background state of information”.  In this case, this means  
                   that the loading prediction includes the uncertainty about the future state of the  
                   water year. 

2)   Credibility of compliance, defined as the posterior probability that the compliance 
target is met. 

7.4   DETERMINING THE BEST STRATEGY 

Using the model shown in Figure 7-2, a best strategy can be determined for the 

background state of information contingent on the non-compliance costs, CNC,HgT and 



 

 160

                                                

CNC,MeHgT.  When the non-compliance costs are assigned values, a best strategy is 

determined from the expectation of the value model, E[Mitigation Cost + Penalty].  

There are several exact and approximate algorithms used for solving influence 

diagrams (Jensen 2001; Pearl 1988; Shachter 1986).  The computational requirements 

for solving a particular probabilistic problem using a given algorithm can be estimated 

beforehand.  When exact algorithms are predicted to consume an unreasonable amount 

of computational resources (storage and/or time), approximation algorithms (e.g., 

stochastic simulation) can be used.  For this work, the clustering algorithm29 was used 

in the GeNIe 2.0 environment, which provides an exact solution for belief updating 

and is feasible for relatively small models (Decisions Systems Laboratory 2005).  The 

“policy evaluation” mode was used to solve influence diagrams, which is an 

implementation of the algorithm proposed by Cooper (Cooper 1988).  The policy 

evaluation algorithm solves the influence diagram by transforming it into a Bayesian 

network and then determining the expected utility for each of strategy.  The algorithm 

can be computationally intensive for large influence diagrams, but is very fast for the 

model shown in Figure 7-2.  See Shachter (1986), Jensen (2001), and Pearl (1988) for 

further discussion on the details and trade-offs among the various Bayesian network 

and influence diagram solution algorithms. 

 
29 The clustering algorithm often uses a two phase process.  First, the directed acyclic graph (DAG) is 

compiled into a junction tree.  Then, probability updating is performed in the junction tree 
representation.  However, the compilation phase is not necessary for many models.  The clustering 
algorithm in GeNIe 2.0 does not use a compilation phase.   For more information on the details of the 
clustering algorithm and other exact algorithms, see Jensen (2001) and Pearl (1988).  
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 Figure 7-5 shows the best strategy regions given the values of the non-

compliance social cost parameters (CNC,HgT and CNC,MeHgT), ranging from $ 0 to $ 

50,000,000.  This figure can also be thought of as an analysis of the decision 

sensitivity to the non-compliance social cost parameters, in the sense that any 

particular combination of CNC,HgT and CNC,MeHgT values uniquely determines an 

optimal decision, given those values.  Performing a standard decision sensitivity 

analysis on CNC,HgT  and CNC,MeHgT is then equivalent to treating CNC,HgT  and CNC,MeHgT 

as unknown parameters.   Note from Figure 7-5 that there are regions in which each of 

the three alternatives is the best strategy.  This suggests that decision-makers should 

carefully evaluate where they think they are in terms of this “non-compliance cost 

map”.  As will be seen, the cost of non-compliance is one of the most important 

factors for decision-makers to consider in making this decision.  In the actual Sulphur 

Creek TMDL decision situation, this factor is only implicitly considered (RWQCB-

CV 2004b).  The fact that the real world decision-makers will probably choose either 

the mine strategy or geothermal & mine strategy reveals that their cost of non-

compliance values are in either area “1” or “2” of Figure 7-5. 
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Figure 7-5 .  Best strategy contigent on CNC,HgT and CNC,MeHgT.  Labeled areas denote the best strategy for regions of 
CNC,HgT , CNC,MeHgT  
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7.5  SENSITIVITY ANALYSIS 

The influence diagram implementation can be used to perform sensitivity analysis in a 

simple manner by adding a “sensitivity variable” to the model from Figure 7-2.  Figure 

7-6 demonstrates this method for performing sensitivity analysis using the variable 

“Percent Reactive Hg in HgT/TSS” (PRHg).  A conditioning arc is added from the 

sensitivity variable to the variable of interest and an informational arc is added from 

the sensitivity variable (PRHg) to the decision variable (TMDL Strategy Decision).  

The sensitivity variable has states “Low”, “Nominal”, and “High”, assumed to have a 

uniform marginal distribution.  The PRHg is no longer marginal and is now described 

by the probability table (Table 7-3): 

 

Table 7-3.  Probability table over the sensitivity variable. 

 

Sensitivity States → 
Percent Reactive Hg 

in HgT/TSS 

States ↓ 

Low Case 
Nominal  

Case 
High Case 

Low 0.1 0.5 0.9 

High 0.9 0.5 0.1 

The nominal case (Sensitivity state =  Nominal) is the uniform distribution over the 

PRHg variable.  The low case has a probability of 0.1 for the PRHg variable having a 

state of Low (PRHg = Low) and the high case has a probability of 0.9 for PRHg = 

Low.  This reduces the sensitivity analysis to solving the influence diagram for the 

expected value for the TMDL Strategy Decision variable now that it is conditioned by 

the sensitivity variable.  Table 7-4 shows that results of the sensitivity analysis for the  
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Figure 7-6.  Sensitivity to the probability distribution over percent reactive Hg in HgT/TSS. 
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Table 7-4.  Sensitivity analytical results for the Percent Reactive Hg in HgT/TSS 
(PRHg) variable.  The value for the best strategy is shown in bold for each state of the 
sensitivity variable.  The values shown are the expected costs (mitigation cost + 
penalties) for each strategy, given the effect of sweeping through the probability 
distribution for the PRHg variable on the credibility of compliance, calculated using 
the Bayesian network model.  The mitigation costs used are from Table 7-1 and the 
assumed values for the social costs of non-compliance for the HgT and MeHgT load 
targets (CNC,HgT , CNC,MeHgT) are each $30,000,000. 

PRHg variable assuming that CNC,HgT  = CNC,MeHgT = $30,000,000.  The fact that the 

best strategy is “Spring Mitigation” for the low and nominal states and the “Mine 

strategy” for the high state indicates potential value to gathering information on this 

variable, given the assumed values of CNC,HgT  and CNC,MeHgT.  By varying CNC,HgT  and 

CNC,MeHgT and repeating this procedure, sensitivity to probability for the PRHg 

variable can be explored without assuming particular non-compliance costs. 

 

 Figure 7-7 shows a model for performing sensitivity analysis on the Microbial 

Activity variable from the model shown in Figure 7-2.  Using the procedure just 

described and again assuming that CNC,HgT  = CNC,MeHgT = $30,000,000, it turns out that 

the best strategy is “geothermal & mine strategy” for all states of the sensitivity 

variable.  For the assumed non-compliance costs, this implies that there is no value to 

gathering more information on this variable.  This procedure demonstrates the use of 

sensitivity analysis as a tool for exploring which uncertainties are most important for 

supporting the TMDL decision. Determining which uncertainties have the potential to

 

Sensitivity States → Low Nominal High 

Expected Value of the Decision           ↓                          ↓                               ↓  
                              
Mine strategy -$35,464,000 -$33,637,000 -$31,809,000 

Geothermal & mine strategy -$32,500,000 -$32,359,000 -$32,218,000 

Status quo -$38,011,000 -$35,478,000 -$32,945,000 
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Figure 7-7.  Sensitivity to the probability of Microbial Activity = Low. 
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change the best strategy to prioritize future information collection activities is a 

potentially important application for the proposed decision analytical approach.  

While this procedure could again be repeated for a range of non-compliance costs to 

map out regions in which the best strategy changes, there are easier methods for 

exploring the value of perfect information using influence diagrams, as described in 

the next section. 

7.6  VALUE OF CLAIRVOYANCE (PERFECT INFORMATION) 

The influence diagram implementation of the model shown in Figure 7-2 can be 

directly used to calculate the value of clairvoyance (VOC) for the variables in the 

model.  The value of clairvoyance is based on the abstraction of the “clairvoyant”, 

which is a convenient fictional character that omnisciently knows the future outcome 

of any decision, but cannot change that future.  For the clairvoyant to be able to 

answer a query about a future outcome, the possible decision outcomes be clearly 

defined in terms of unambiguous events30.  The clairvoyant cannot tell you, even in 

theory, anything about your preferences, but could tell you exactly how a particular 

uncertainty will be resolved in the post-decision future.  For outcomes that can be 

valued in terms of money, this useful abstraction allows us to formulate the idea of 

the value of clairvoyance (perfect information), which serves as the upper limit to the 

value of any information gathering activity (Clemen et al. 1996; Howard 1996; 

Howard et al. 1972). 

 Clairvoyance (knowing the future state of an uncertain variable before the 

decision is made) can be expressed using the notation of influence diagrams.  In this 

notation, clairvoyance on an uncertainty is equivalent to the presence of an 

informational arc from that uncertainty to the decision variable, which denotes that 

its state is known before the decision is made.  This is semantically equivalent to 

flipping the decision tree described by an influence diagram such that the uncertainty 

in question precedes the decision variable in the tree.  Since we do not know what the 

 
30 In other words, the events must be mutually exclusive and collectively exhaustive. 
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hypothetical clairvoyant would reveal beforehand, the probability distribution over 

the Clairvoyant’s response is the same as the marginal distribution over the 

uncertainty.  In essence, this allows us to explore whether or not perfect information 

would change the best strategy and, for monetized outcomes, allows us to calculate 

what that perfect information would be worth to us before the decision is made.  

Assuming that the decision-maker is risk neutral, the value of clairvoyance is simply 

the difference of the value of the decision31 with clairvoyance and without 

clairvoyance (Clemen et al. 1996; Howard 1996).  This work assumes risk neutrality 

over monetized outcomes, which is appropriate for many public decisions 

(Merkhofer 1987).  A detailed introduction to the value of clairvoyance can be found 

in an introductory decision analysis text, e.g., Clemen (1996) or Howard (1996). 

 The GeNIe Bayesian network programming environment allows the value of 

clairvoyance to be easily calculated for an influence diagram for a risk neutral 

decision-maker, automating the steps of comparing the decision value with and 

without clairvoyance.  Figure 7-8 shows the joint value of clairvoyance on Percent 

Reactive Hg in HgT/TSS (PRHg) and Microbial Activity (MA) for several 

combinations of CNC,HgT  = CNC,MeHgT.  These two variables were not picked 

haphazardly.  They are the only uncertainties with significant VOC over the range of 

non-compliance costs.  This means that collecting information on these uncertainties 

could potentially change the choice of strategy, while collecting information on the  

 
31 In this case study, the “value of the decision” is the expected value of the best strategy.  This 

corresponds to the strategy with the minimum cost function (mitigation cost + penalties).  For at 
least one of the clairvoyant’s responses, the best strategy changes from the best strategy without 
clairvoyance.  This potential change generates value for the decision with clairvoyance.  



 

 

Figure 7-8 .  Joint value of clairvoyance (VOC) on microbial activity and percent reactive mercury in HgT/TSS as a function of the 
cost of non-compliance with the HgT load (CNC,HgT) and the MeHgT load (CNC,MeHgT). 
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other uncertainties will not change the best strategy for a given set of non-compliance 

costs.  

 Joint VOC refers to perfect information on more than one uncertainty 

simultaneously and is calculated as the difference between the decision value with 

perfect information on the set of uncertainties and without this information.  Note that 

the joint VOC on two or more variables does not have to be the sum of the VOC on 

the individual uncertainties.  In fact, two variables with zero VOC can jointly have a 

significant VOC, indicating that the clairvoyance on both variables may change the 

best strategy while clairvoyance on each individual variable never changes the best 

strategy.  For example, when CNC,HgT  = CNC,MeHgT = $10,000,000, the individual VOCs 

on the PRHg and MA variables are zero, but the joint VOC is $176,000.  Figure 7-8 

also shows that the joint VOC varies considerably depending on the particular values 

of CNC,HgT /CNC,MeHgT.  This suggests that exploring the magnitude of non-compliance 

costs would be also be useful to decision-makers for its implications regarding the 

value of clairvoyance on Percent Reactive Hg in HgT/TSS and Microbial Activity. 

7.7  SUMMARY 

This chapter presents the decision analytical results for the Sulphur Creek mercury 

TMDL strategy decision using the Bayesian network (influence diagram) model 

created in Chapters 5 and 6.  It presents a parametric value model based on the 

unknown social costs of non-compliance with two TMDL targets.  The model was 

designed such that it does not require consensus among decision-makers and 

stakeholders.  This approach allows decision-makers to separate the importance of 

scientific uncertainties from the importance of preferences over possible decision 

outcomes.  Best strategies are shown as a function of the social costs of non-

compliance with the total mercury (HgT) and methylmercury (MeHgT) load targets 

through the use of “decision maps”.  Sensitivity analysis is used to demonstrate which 

uncertainties are most important for TMDL decision support.  For choosing between a 

“mine mitigation strategy” and a “geothermal and mine mitigation strategy”, only 
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studies concerning the percent reactive mercury in HgT/TSS from mine run-off versus 

geothermal springs and the ability to model microbial activity (related to mercury 

methylation efficiency) should be conducted.  Value of perfect information analysis is 

used to determine the upper limit on money spent for future decision support 

information collection activities.  A value of perfect information map is also provided 

as a function of the social costs of non-compliance with the HgT and MeHgT load 

targets.  This demonstration is meant to show the capabilities of a decision analytical 

approach for identifying and exploring important scientific uncertainties in a complex 

TMDL decision problem, to separate informational concerns from value judgments, 

and to prioritize information collection activies to support the TMDL decision-making 

process.
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CHAPTER 8:  CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

8.1  SUMMARY 

The typical current approach to the complexities and uncertainties surrounding TMDL 

decision-making is to build deterministic predictive models that characterize the 

situation as well as possible and then depend heavily on these models to help make 

and support decisions. Uncertainty is currently handled through the use of ad hoc 

methods for “doing away” with uncertainty by adopting conservative TMDL targets 

(margins of safety) and/or employing conservative modeling choices.  The recognition 

that TMDL uncertainties are much larger than deterministic thinking warrants is 

reflected in the wide adoption of adaptive management as the planning framework.  

Answering the question of “how conservative should we be” should be approached by 

thinking carefully and strategically about the uncertainties involved and the values at 

stake. 

 To address this problem, this research has a re-framed a real-world mercury 

TMDL decision problem from a decision analytical perspective.  This paradigm shift 

introduces concepts and modes of thinking not currently used in TMDL decision-

making, including outcome-based strategy evaluation, value of clairvoyance (perfect 

information), and the explicit separation of scientific uncertainty from decision-maker 

preferences.  It also provides a formal context for considering the importance of 

uncertainty in TMDL decisions, for prioritizing information collecting activities, and 

for considering and representing hypotheses within a TMDL decision-modeling 

framework.  Very importantly, the Bayesian perspective of decision analysis allows 

decision participants to interpret new information (monitoring and knowledge) in light 

of previous information and knowledge.  The proposed decision model frames the 

TMDL setting process as a set of related regulatory (scientific, engineering, and 

economic) decisions that may involve large uncertainties (limited data bases and 

incomplete knowledge) subject to tight regulatory deadlines and small decision 
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process budgets.  Poor TMDL decisions avoid the hard work of considering trade-offs 

between scientific uncertainties and decision-maker values, which may result in a 

higher risk of a bad future outcome. An example of a poor TMDL decision would be 

the choice of a strategy that has both high expected compliance costs and a low 

probability of achieving compliance within the desired time-frame.  Current TMDL 

decision-making only considers such possible outcomes implicitly using deterministic 

models and margins of safety to “ensure compliance”.  In many TMDL situations, 

including the mercury TMDL case study used in this research, compliance is not a 

certainty for feasible mitigation strategies. Good TMDL decision-making explicitly 

considers the important (and often large) uncertainties that may be the difference 

between “success” and “failure” for a strategy, recognizes differing decision 

participant preferences over possible outcomes, and considers the trade-offs between 

the uncertainty of meeting targets and the costs associated with compliance for a 

strategy.  Ultimately, a good TMDL decision should result in a better chance of 

achieving the successful restoration of a water body’s beneficial use at a socially 

acceptable cost.  From the decision analytical perspective, a good outcome happens to 

the lucky decision-maker.  A good decision is the result of the quality of the processes 

used by decision participants to define and analyze the decision problem.  

 This research has resulted in a decision model that represents the current 

understanding of the uncertain relationships between potential mercury TMDL 

mitigation strategies and the environmental targets of interest, total mercury and 

methylmercury loads exported from a small mine-impacted Northern California 

watershed (Chapter 2).  These complex relationships are broken down into 

probabilistic causal relationships between variables, in which each variable has an 

associated conditional probability table that describes the probability distribution over 

its value conditioned on the values of its parent32 variables (Chapters 3 and 5).  The 

 
32 As described in Chapter 3, causally related variables can be thought of in terms of structural 

equations, in which a child variable (C) is predicted from the states of its various parent variables 
(Pa(C)).  The exact states of the parent variables may themselves be uncertain and the value of the 
child variable given the exact states of its parents may also be uncertain (random error, ε).  This can 
be represented by:  C = F(Pa(C), ε), where F is a function that predicts C from the states of its 
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purpose of the model is to generate posterior probabilities that the targets of interest 

will be met in the future, given a particular mitigation strategy (Chapters 5, 6, and 7).  

The value of the strategy is modeled as a simple net benefits model (Chapter 7): 

 

where the penalty33 for violating a particular target is modeled as the product of the 

posterior probability that the target “i” will be violated (pNC,Ti) and the social cost of 

non-compliance with target “i” (CNC,Ti).  To avoid the need for decision participant 

consensus on the value of the social cost of non-compliance, CNC,Ti is treated as a 

parameter.  This approach allows the decision participants to explore pair-wise value 

trade-offs between targets, to explore the sensitivity of the best strategy to important 

informational uncertainties, and to estimate the upper-limit of the value of collecting 

new information before the decision is made (Chapters 4 and 7). 

 Contrary to typical water quality model development practice, the purpose of 

the water quality sub-model is not to replace less realistic models, but rather to 

provide an alternative causal modeling framework specifically designed for decision 

support.   In addition to providing a causal understanding of a complex environmental 

system, modeling for decision support should provide decision-makers with an 

understanding of the meaning of predictive uncertainty in the context of the decisions 

being made and in terms useful to decision-makers (Chapters 1, 4, and 7).  This 

obviously goes beyond the purposes and methods of traditional water quality modeling 

and potentially enters into the many sub-fields that make use of results from the 

decision sciences, including “decision support”, decision analysis, multi-criteria 

decision-making, multi-attribute utility analysis, etc.  In short, the burden becomes 

 

),18( −+= EquationPenaltiesCostStrategyValueStrategy

parents, Pa(C).  The uncertainty in this functional relationship is represented by the random error 
term, ε.  See Pearl (2000) for a detailed explication of causal networks and structural equation 
models. 

33 In decision analysis, a “penalty function” is a tool that can be used to constrain targeted variables for 
the purposes of exploring the trade-offs between violating targets and expending resources to meet 
them.  In this context, a penalty does not refer to a legal fine that will be imposed upon the decision-
makers by a regulatory agency, but rather reflects the “cost” of violating the target to the decision-
participants. 
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scientific modeling for decision support in the face of both significant informational 

uncertainty and disputes over preferences and values. 

 This dissertation proposes an approach for meeting the needs of decision-

makers, while faithfully representing what is currently known about the behavior of a 

complex environmental system subject to possible interventions, given the available 

data, models, and expert judgment.  The approach is based on the use of influence 

diagrams, since this tool allows probabilistic modeling of complicated knowledge 

systems in the context of decision-making and can be used to perform the full range of 

decision analysis.  The approach also addresses the complex institutional aspect of 

group decision-making by using a parametric penalty value model to model decision-

maker preferences, without requiring consensus.  This results in a methodology that 

could be described as “decision analytical support” rather than decision analysis, since 

best strategies are contingent on the penalty parameter and hence are not uniquely 

identified.  In essence, this maps out the “decision space” along the dimensions of 

social costs on targets of interest to decision-makers. 

 This research presents a decision analytical approach for handling uncertainty 

and balancing trade-offs in a mercury TMDL decision situation.  Current decision-

making based on the highly uncertain results from deterministic models of complex 

systems makes use of potentially flawed heuristics, subject to many potential errors.  

By using a conservative deterministic approach, decision-makers cannot determine 

whether they are being overly conservative or not conservative enough.  Just as 

importantly, by not explicitly separating values and preferences from information 

about scientific uncertainty, a conservative deterministic approach avoids the 

important question, “conservative for whom?”.  The trade-off framework presented in 

Chapter 7 explicitly separates these dimensions and allows decision-makers to 

consider the importance of scientific uncertainty separately from the importance of 

differing stakeholder preferences. 
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8.2  CONCLUSIONS AND MAJOR FINDINGS FOR MERCURY TMDL CASE 

STUDY 

• The Regional Water Quality Control Board staff should focus their future 

Suphur Creek mercury TMDL data collection efforts on identifying and 

modeling zones of high microbial activity for mercury methylation and on 

characterizing the reactive34 fractions of mercury inputs from mine-related run-

off and geothermal springs (Chapter 7, Section 6).  Figure 7-8 could be used by 

decision-makers to estimate the upper limit on collecting data on these two 

uncertainties.  It is important to note that this upper limit depends on the social 

costs of non-compliance for the total mercury and methylmercury TMDL 

targets. 

• The consideration of decision participant preferences strongly influences the 

best strategy.  Depending on the exact values of the social costs of non-

compliance for the total mercury load target and methylmercury load target, 

any of the three alternatives considered (status quo, mine strategy, geothermal 

& mine strategy) could be the best strategy, given current scientific 

understanding (see Table 7.1 for descriptions of the strategies). 

• The choice of mine strategy versus the geothermal & mine strategy depends 

strongly on whether the “local mercury problem” (methylmercury load 

exported to Lower Bear Creek) is more important than the “downstream 

mercury problem” (total mercury exported further downstream).  If the local 

problem is more important, the geothermal & mine strategy is superior to the 

mine strategy.  Only if the downstream mercury problem is more important 

could the mine mitigation strategy be superior.  However, depending on the 

exact social costs of non-compliance and the results of new data collections on 

reactive mercury and high microbial activity locations, the combined 

 
34 Reactive mercury in sediment (Hgsed

*) is an operationally-defined fraction of total mercury in 
sediment that is used as surrogate for the pool of inorganic mercury that is available for microbial 
methylation. 
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mine/geothermal mitigation strategy could still be superior.  This means that, 

in this case, further decision-modeling could be in order (Chapter 7, Sections 4 

– 6). 

8.3  FUTURE RESEARCH 

 I have developed a simple decision model for a very complicated water quality 

problem for a small watershed.  There are, of course, many other possible approaches.  

Carefully exploring and comparing the applicability, strengths, and weaknesses of the 

possible approaches could be the subject of much useful future research.  This 

decision model could be extended in a number of ways, including expanding the 

decision frame to include the TMDL decisions for Cache Creek, Bear Creek, and 

Harley Gulch.  This would allow these TMDLs to be considered simultaneously, to 

consider the uncertain relationships between upstream and downstream mercury 

loadings and to think about integrated mitigation strategies.  The relationship between 

mercury in water and mercury in biota could be modeled at various points in the 

watershed, and a penalty for a fish tissue target could be incorporated. 

 The model could also be extended to explicitly consider information gathering 

decisions for various uncertainties, incorporating expert judgment over the likelihoods 

of experimental results given the possible states of the uncertainty.  For example, an 

information gathering strategy for reducing uncertainty in the percentage of reactive 

mercury in various erodible materials from mines and geothermal springs could be 

devised by considering which materials and sites to sample and how many samples to 

analyze.  This decision could be modeled as an influence diagram treating the choice 

of information collection strategy as a decision. 

 This approach could also be tested in a real TMDL decision-making situation 

and/or in a decision laboratory situation, in which the decision situation is simulated 

under controlled conditions.  This research could explore and compare the usefulness 

of various methods for presenting decision insights, for talking about the uncertain 
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causal linkages, and, in exploring the usefulness of modeling preferences using a 

parametric penalty function.  Simple formulations of this and related approaches could 

prove useful to decision-makers in real water quality management decisions, allowing 

decision-makers to consider the meaning of uncertainty in terms of possible preference 

structures. 
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APPENDIX A - ADDITIONAL BACKGROUND ON THE FEDERAL WATER 

QUALITY PROTECTION AND THE TMDL REGULATORY PROGRAM 

Since the 1972 Clean Water Act, water quality protection has been driven by 

the control of point source pollution through the promulgation of effluent-based water 

quality standards (NRC 2001).  These regulations require that point dischargers 

comply with effluent-based standards for criteria pollutants through a permitting 

system, the National Pollutant Discharge Elimination System (NPDES).  State 

agencies issue these permits to individual dischargers subject to the oversight of the 

U.S. Environmental Protection Agency (USEPA), as authorized by the Clean Water 

Act.  The NRC (2001) points out that the NPDES program has been successful in 

reducing point source pollution, but has not resulted in the achievement of the nation’s 

water quality goals of “fishable and swimmable waters” in large part because of 

pollutant contributions from nonpoint sources, like runoff from agriculture, mining 

operations, and urban environments.   

These on-going water quality challenges have resulted in a shift in focus from 

effluent standards to ambient water quality standards and the Total Maximum Daily 

Load (TMDL) program.  The goals of the TMDL program are to attain ambient water 

quality standards through controls of both point and nonpoint sources of pollution, 

channel modification, and other potential controls.  Although the legislative authority 

for the TMDL program dates back to the 1972 Clean Water Act, it was underutilized 

until citizen lawsuits in the 1980’s prompted the USEPA to focus on the TMDL 

approach to managing ambient water quality (Houck 2002; NRC 2001). 
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SEVERITY OF THE PROBLEM FACING STATES 

At present, over 40% of assessed waterbodies do not meet ambient water 

quality standards for their designated beneficial uses.  Impaired waterbodies comprise 

over 20,000 individual river segments, lakes, and estuaries, affecting approximately 

300,000 miles of rivers and shorelines and approximately 5 million acres of lakes.  

The most common contaminants are excess sediments, nutrients, and pathogens.  A 

majority of the population of the United States (ca. 220 million, or 78%) live within 10 

miles of an impaired waterbody (USEPA 2005).  Since a waterbody may be impaired 

by more than one contaminant, there are actually more than 40,000 TMDLs that need 

to be set in the near future (NRC, 2001). 

TMDL regulations promulgated by USEPA in 1992, and in specific cases 

terms of lawsuit settlements, require States to meet deadlines of 8 to 13 years for 

completion of TMDLs.  Many TMDLs are imminently due and many TMDL 

workgroups are in the process of performing information collection activities and 

making TMDL setting decisions.  The Government Accounting Office reports that 

there is a pervasive lack of data (especially for nonpoint sources) at the State and 

watershed level for supporting water quality determinations and TMDL development 

(GAO 2000).  NRC (2001) reports claims by Federal, State, and local government 

officials, representatives of regulated and potentially regulated parties, and concerned 

citizens that untested analytical and decision-making procedures will be required to 

meet the “unrealistic” deadlines and resource limitations.   

The original focus on point source controls through the NPDES program in the 

1972 Clean Water Act was largely in response to concerns about the infeasibility of 
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determining causes of impairment and assigning responsibility to the various sources 

(Houck 1999; Houck 2002; Ortolano 1997a).  The return to a focus on ambient water 

quality standards presents and will continue to present significant challenges to States 

as they attempt to implement the TMDL requirements under Section 303(d) of the 

Clean Water Act.   

As I hope to demonstrate with this research, the use of Bayesian network water 

quality modeling and TMDL decision influence diagrams addresses these needs, at 

least in part.  Specifically, the approach presents a feasible and useful decision 

analytical framework that makes the best use of available information (scientific, 

economic, and social), allows for comprehensive planning of information gathering 

activities, allows for rigorous updating of existing models when new evidence is 

presented, and can be designed in terms of adaptive management approaches that 

balance information needs with water quality goals.  
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APPENDIX B – LOGNORMAL PROBABILITY PLOTS FOR TOTAL MERCURY 

CONCENTRATION IN FINE SEDIMENT DATA 

 

This appendix shows the normal probability plots (in log space) for the available 

HgT/TSS data for Sulphur Creek, by water season and flow regime. 
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Figure B.1.  Normal probability plot, Log(HgT/TSS), dry season, all data. 
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Figure B.2.  Normal probability plot, Log(HgT/TSS), wet season, flow < 55 cfs. 
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Figure B.3.  Normal probability plot, Log(HgT/TSS), wet season, flow > 55 cfs. 
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