

A Distributed Object Component-based Approach to Large-scale Engineering
Systems and an Example Component Using Motion Planning Techniques for

Disabled Access Usability Analysis

Charles S. Han1, John C. Kunz2, Kincho H. Law3

Abstract

This paper introduces a large-scale engineering systems distributed object
framework that serves as the connecting infrastructure between individual
engineering tools and analysis components. The framework can incorporate
software services as well as hardware solutions. Implemented software services
include motion planning simulations and animation visualizations. Hardware
solutions include the ability to incorporate devices to manipulate either remote
software or hardware services.

The success on such a framework relies on two levels of knowledge:
understanding the underlying concepts that facilitate the component-to-component
communication and the domain-specific knowledge to implement a particular
service. As an example of a domain-specific service, the paper describes a motion-
planning-based disabled access usability service that attempts to find accessible
routes in a facility.

Introduction

Currently, Architecture/Engineering/Construction (AEC) information technology
(IT) firms are developing specialized information-exchange solutions for domain-
specific problems, and standardization enables users ubiquitous access to these tools.
Indeed, these solutions use at least one level of Internet-based standard protocols: all
firms are leveraging World Wide Web technology, and some firms are beginning to

1 Graduate Student, Department of Civil and Environmental Engineering, Stanford
University, Stanford, CA 94305, csh@galerkin.stanford.edu
2 Senior Research Associate, Center for Integrated Facility Engineering, Stanford
University, Stanford, CA 94305, kunz@cive.stanford.edu
3 Professor, Department of Civil and Environmental Engineering, Stanford
University, Stanford, CA 94305, law@cive.stanford.edu

 1 Han, Kunz, Law

leverage standard distributed object paradigms. However, the implementation of
large-scale and interoperable engineering systems will require the development and
adherence to a third layer of standard protocols built on top of the distributed object
technology.

A distributed object environment provides the underlying application-to-
application communication protocol allowing an application to access the services of
other applications as if these services were part of the original application, a feature
known as object location transparency. This paradigm provides the facility for
development of computing environments across heterogeneous platforms. Benefits
include the optimization of services on specific computing platforms and taking
advantage of unused or under-utilized computing resources. Most importantly,
distributed object applications now act as individual but inter-communicating
components that can be aggregated to form the multiple and coordinated layers of
large-scale systems. This protocol must be general enough to accommodate and
anticipate future engineering-specific needs to build large-scale systems on a
component-by-component basis but robust enough to be truly useful for engineering-
specific services.

This paper introduces a distributed object framework that serves as the
connecting infrastructure between individual engineering tools and analysis
components. The framework can incorporate software services as well as hardware
solutions. Implemented software services include motion planning simulations and
animation visualizations. Hardware solutions include the ability to incorporate
devices to manipulate either remote software or hardware services. The distributed
object paradigm does not distinguish between local and remote access of components
that can either be software applications or hardware devices.

As an example component service that integrates into the large-scale framework,
the paper describes a disabled access usability analysis service. This development of
this component represents a domain-specific problem that is dependent on the
developer’s knowledge of the domain. Specifically, the paper describes the
application of motion-planning techniques used to determine accessible routes in a
facility.

The Engineering Analysis Component-based Distributed Object Framework

This research uses the concepts developed in (Han99) and reifies notion of a
service. To fully-leverage the power of the Internet, engineering and design services
should be able to interact in a formal yet flexible manner. Services should be able to
combine existing services to provide added functionality.

The distributed object environment provides object transparency—an
application accesses a Service object using the same protocol regardless of the
object’s location, either local or remote, and independent of the computer system
platform assuming the platform supports the Service object interface.

 2 Han, Kunz, Law

Figure 1 shows the network-enabled framework with four Service objects. In
this environment, each individual service adheres to a three-tiered architecture. The
first tier, a communication protocol interface, gives the application services a
common means to send and receive design data over the Internet. The middle tier,
the optional common product model interface, is a standard protocol that describes
the design data. The third tier is the core of the design service—the design service
extracts the appropriate information such as the building design through the common
product model interface and either modifies the design data or generates a report
based on the analysis of the data.

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Figure 1: The three-tiered distributed object framework

One service can register with another service in the infrastructure. The
registration and query or a Service object is based on a predetermined constraint
language. When the core of a parent design service executes its analysis, it may send
parts of the analysis to child services that have registered with the parent service.

The communication protocol interface makes certain methods of the Service
object public as shown in Figure 2. Following the object-oriented paradigm, the
“exposed” methods are the points of entry into a service, but the actual
implementation of these methods is dependent on service. The Service object
consists of two registration methods, registerService() and
registerDecompositionService(), that allow a service to register with
another service. A service registers using the registerService() method
with a broker that will advertise the service. Any child service that a parent service
will execute will register with the registerDecompositionService()
method. The Service object also provides both polling and callback mechanisms
(getStatus() and notification()) to communicate with child services.

module DistributedServiceArchitecture
{

 3 Han, Kunz, Law

 interface Service;

 typedef sequence<string> StringArray;

 interface Service
 {
 void registerService(in Service service, in boolean notify);
 void registerSequentialService(in Service service);
 void registerParallelService(in Service service);
 Service getRegisteredService(in string id, in string type);
 Service getRegisteredSequentialService(in string id, in string type);
 Service getRegisteredParallelService(in string id, in string type);

 string getServiceId();
 string getServiceType();
 void putServiceId(in string id);
 void putServiceType(in string type);

 void preProcess();
 void sequentialDecomposition(in Service service, in string session);
 void parallelDecomposition(in Service service, in string session);
 void postProcess();

 boolean getStatus(in Service service, in string session);
 void notification(in Service service, in string session);

 StringArray gets(in string session);
 void puts(in string session, in StringArray strings);
 };
};

Figure 2: The communication protocol.

The product model interface of a service component allows each component to
process the design data. This framework assumes a single product model interface,
but realistically, services that translate product model information from one domain-
specific format to another would need to reside in the infrastructure. The
implemented framework uses the International Alliance for Interoperability (IAI)
Industry Foundation Class (IFC) product model as the point-of-departure (IAI97).

Figure 3 shows the implemented framework. The CAD Service enables a CAD
package to download a design to a browser-based central user interface (UI)
component of the framework. The CAD Client Service Object registers with the
CAD Server Service Object, and the CAD package uploads the design data to the UI
component using this client service as the intermediary between the CAD package
computer system and the UI component. The CAD Client Service resides on the
same system as the CAD package. Leveraging the distributed object paradigm, the
CAD package probably resides on a different system than the UI component, though
the UI component can be seen on the CAD package system through the web
browsing environment.

 4 Han, Kunz, Law

Internet

CAD Client Path Planner Joystick Client

Joystick ProxyCAD Proxy Path Planner Proxy

Figure 3: The implemented distributed object framework

Figure 3 also shows the Joystick Service which allows the manipulation of a
wheelchair through the facility. Incorporation of the Joystick Service into the
framework underlines the generality of the framework. The Joystick Service does
not use the optional product model layer of the three-tiered architecture in the same
manner as the aforementioned CAD Service. It simply sends a stream of joystick
data to the UI component. The Joystick Service architecture is identical to the CAD
Service architecture with a single Client Service object registering with the Server
Service object. The UI component then uses the joystick data to manipulate the
wheelchair in the facility. The Joystick Client Service object resides on the same
machine as the joystick device. Again, following the distributed object paradigm,
the joystick can manipulate the wheelchair in the UI from any system on the network
but, in this case, would probably be most useful residing on the system.

Finally, Figure 3 includes the diagram for the collection of components
aggregated to make up the path-planning service that generates the accessible route,
a key component in disabled access analysis of a facility. The following section
describes the motion-planning techniques developed to realize this particular service.

The Motion-planning-based Disabled Access Analysis Component

Given the description of the facility, the accessible route analysis attempts to
generate an accessible route between two building components (for example, an
entrance and a water closet). Motion-planning techniques naturally lend themselves
to this type of analysis. Motion planning attempts to answer the question: How can a

 5 Han, Kunz, Law

robot decide which motion to perform in order to achieve goal arrangements of
physical objects (Latombe81)?

This analysis component uses motion-planning simulations that capture the
geometric requirements of accessible route disabled access code provisions. Robot
motion planning is a family of geometric search techniques in which an initial and a
goal configuration of a robot is specified. The robot searches a configuration space
generated from the robot’s geometric and motion parameters and obstacles in the
space to move from the initial to the goal configuration. The wheelchair and the
wheelchair occupant are the robot that attempts to move through the design of a
facility.

The signature of this movement mirrors “comfortable” wheelchair movement.
The robot is restricted to move in three directions: right, straight ahead, and left, and
there are two possible turning radii for right and left turn movements. The larger
radius describes general wheelchair motion, and the motion planner uses the smaller
radius for motion when the wheelchair comes within a certain distance of the goal
point. The description of acceptable accessible route geometries in the Americans
with Disabilities Act Accessibility Guidelines (ADAAG) document determine the
value of the two turning radii (ADAAG97). Figure 4 shows the generated plan
through an ADAAG-specified configuration. From this configuration, the larger
turning radius was determined to be 24 inches.

48
”

42” 42”

Figure 4: The generated accessible route using the larger turning radius

Figure 5 shows the generated plan using a 9-inch turning radius that allows the
ADAAG-specified 60-inch turning circle. Combining these two radii creates an
accessible route with the desired wheelchair behavior.

 6 Han, Kunz, Law

60”

Figure 5: The generated accessible route using the smaller turning radius

Case Example

To validate the overall framework as well as the accessible route generating
component, the research used as a case example an actual building on the Stanford
University campus. The facility, modeled using a modified commercial CAD
package successfully transferred the design data to the central UI component. From
this UI component, the user is able to interactively manipulate a wheelchair through
the virtual design using a joystick and determine the existence of an accessible route
from one building component to another in the facility design. Figure 6 illustrates
the case example and the generated accessible route between the entrance and the
toilet in the Men’s bathroom.

ENTRANCE RECEPTION
DESK

WOMEN

MEN

OFFICE
C01

OFFICE
C03

OFFICE
C02

OFFICE
C04

OFFICE
C07

OFFICE
C09

OFFICE
C08

OFFICE
C10

OFFICE
A02

OFFICE
A03

OFFICE
A04

OFFICE
A05ADMINISTRATION

ADMINISTRATION

INT RM
R06

C
O

M
PU

TER

C
O

M
PU

TE
R

D
ES

K
S

RESEARCH
DESK

RESEARCH
DESK RECEPTION

DESK

INT RM
R07

INT RM
R08

INT RM
R09

INT RM
R10

INT RM
R11

INT RM
R16

INT RM
R12

INT RM
R13

INT RM
R14

INT RM
R15

DESK

BOOKSHELF

Figure 6: A generated accessible route through the case example

 7 Han, Kunz, Law

 8 Han, Kunz, Law

Discussion

This paper has presented a component-based approach to building large-scale
engineering systems leveraging distributed object technology to enable general
engineering analysis techniques. Specifically, the framework employs a three-tiered
service architecture in which services can register with other services to aggregate
and create larger components. The three-tiered architecture specifies a
communication protocol among Service objects that supports the decomposition
of an engineering problem, a product model protocol, and a space for the domain-
specific analysis. As an example of a domain-specific analysis, the paper described
the developed motion planning techniques used in a disabled access accessible route
generating component of the framework. The techniques used attempt to directly
capture actual wheelchair movement.

The paper illustrates the need for both general engineering problem-solving
knowledge to develop the overall infrastructure and domain-specific knowledge to
develop the individual components of the system. With the incorporation of other
domain-specific analysis components, the power of this component-based approach
can be realized.

Acknowledgements

This research is partially sponsored by the Center for Integrated Facility
Engineering (CIFE) at Stanford University and the Intel Corporation.

References

(ADAAG97) Access Board (U.S. Architectural and Transportation Barriers
Compliance Board) (1997). Americans with Disabilities Act Accessibility Guide,
Washington, DC.

(Han99) Han, Charles S., J.C. Kunz, and K.H. Law (1999). “Building Design
Services in a Distributed Architecture,” Journal of Computing in Civil Engineering,
ASCE, 13(1), 12-22.

(IAI97) International Alliance for Interoperability (1997). Industry Foundation
Classes Release 1.0, Specifications Volumes 1-4, Washington DC.

(Latombe91) Latombe, Jean-Claude (1991). Robot Motion Planning, Kluwer
Academic Publishers, Norwell, MA.

	Abstract
	Introduction
	The Engineering Analysis Component-based Distributed Object Framework
	The Motion-planning-based Disabled Access Analysis Component
	Case Example

	Discussion
	Acknowledgements
	References

