
A Client/Server Framework for On-line Building Code

Checking

Charles S. Han1, John C. Kunz2, Kincho H. Law3

Center for Integrated Facility Engineering
Stanford University
Stanford, CA 94305-4020

Abstract

This paper outlines an integrated client/server framework for an automated code-

checking system. Most previous studies have been focused on the processing of design

codes for conformance checking. In this work, we examine additional issues: the criteria

of a building model, representation of code provisions, the relevance of the provisions

with respect to design components, and the encoding of component-based provisions. In

this paper, we will demonstrate the integration of these issues in the framework in order

to develop an effective system to analyze a design for code-compliance.

Key Words

automation, building codes, handicapped accessibility, product model, STEP, Industry

Foundation Classes, client/server, World-Wide Web, Virtual Reality Modeling Language

1 Graduate Student, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305,
csh@galerkin.stanford.edu
2 Senior Research Associate, Center for Integrated Facility Engineering, Stanford University, Stanford, CA 94305,
kunz@cive.stanford.edu
3 Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, law@cive.stanford.edu

 1

Introduction

Currently, design and construction documents submitted to a building department for

permit-approval are checked manually against a continuously changing and increasingly

complex set of building codes. The complexity and the changing nature of building

codes leads to delays in both the design and construction processes. The designer must

assess which codes are applicable to a given project as well as sort through potential

ambiguity in the code provisions. An inspector must go through a similar process. In

addition, inconsistencies in interpretation of a given section of the code may differ from

inspector to inspector. The design checking and approval process can be a critical

activity that prolongs the construction and delays the operation of a facility. Automating

this process has the potential to alleviate both the delays and inconsistencies associated

with manual checking by giving the designer and the permit-issuing body a consistent

framework in which to apply and check codes.

Several researchers have developed frameworks for the representation and processing of

design standards (de Waard92) (Kiliccote96) (Yabuki92). A survey of developments for

computer representation of design codes was reported by Fenves, et.al. (Fenves94). In

this study, we focus on the problem to develop a framework for architectural building

code issues by initially investigating handicapped accessibility. Among the numerous

provisions governing a facility design, the two issues that have been identified by facility

managers as most significant are accessibility and egress. Though we are examining a

self-contained aspect of the building code, there is sufficient complexity and ambiguity in

the handicapped accessibility code that warrants a close examination of the issues that are

fundamental to the development of a practical integrated framework for the

representation and processing of design standards.

The design intent of the handicapped accessibility code is to provide the same or

equivalent access to a building and its facilities for disabled persons (for example,

persons restricted to a wheelchair, persons with hearing and sight disabilities) and

persons without qualifying disabilities. To fulfill this intent, organizations such as the

U.S. Access Board (also known as the Architectural and Transportation Barriers

 2

Compliance Board), the authors of the Americans with Disabilities Act (ADA), have

developed prescriptive measures such as various clearances and reach thresholds for

building components. For example, the U.S. Access Board has developed minimum

clearances to allow transfer of a person from a wheelchair to a toilet and minimum

lengths of grab bars associated with a toilet. In the example presented in this paper, we

have only implemented issues related to door accessibility, but the concepts of clearance

and distance thresholds are similar for other building components that must be accessible.

Therefore, the developed prototype can potentially be extended to accommodate the

critical building components that must be accessible.

Advances in Internet and web-based technologies will have a significant role in making

on-line code-checking a reality (Han97). Specifically, on-line checking of building

designs via the World Wide Web (WWW) can be organized in a client-server

environment. The development of a standard product model including the Standard for

the Exchange of Product Data (STEP) (ISO94) and the International Alliance of

Interoperability (IAI) Industry Foundation Classes (IFC) (IAI97) will further facilitate

design data exchange. In this work, the user (the client) develops a plan using an IFC-

compliant CAD package (enhancements have been made to AutoCAD to output an IFC

EXRESS file from a building design). At any point in the design process, the user can

send this design to a code-checking program that resides on a remote server. The code-

checking program examines the IFC design data and summarizes the results in a

generated web page. The web page contains a graphical representation of the building

model along with “redline” information with hyperlinks to specific comments, and, when

applicable, the comments have hyperlinks to the actual building code document

provisions (in this case the Americans with Disabilities Act Accessibility Guidelines

(ADAAG) (ADAAG97)).

We examine the structure and attributes of a product model and a building code model

needed to provide sufficient design information to be analyzed by a code-checking

program. The code-checking program must be able to read the design data and

reorganize the information in a form that can be analyzed against a model of the building

code. We describe this building code model as a mapping of building code provisions to

 3

methods that are embedded in an object-oriented framework appropriate to analyze a

design for code-compliance. We categorize the building code into three classes:

1. provisions that determine the relevancy of other provisions

2. provisions that examine the criteria of a system of building components

3. provisions that examine the criteria of individual building components.

This paper examines the integration of a building product model and the object-oriented

building code model.

The Building Product Model

In order to automate the checking of a building design for compliance to a building code

document, the program that does the analysis of a building design must understand the

design data. Currently, drawings that are manually inspected by a building department

are two-dimensional representations of three-dimensional information, a constraint of

using paper as the medium of communication. An inspector must coordinate related

drawings such as plans with elevations in order to develop a three-dimensional image to

check a design against a building code. Three-dimensional model development and

analysis has several advantages over viewing and interpreting a two-dimensional

representation:

• Representation of building components and their geometrical relationships to

other components is explicit (there is no ambiguity as there is with the

interpretation and construction of the three-dimensional building model from two-

dimensional representations which often have missing or contradictory data)

• Elimination of the need (albeit physical models or mental images) of the three-

dimensional building model from two-dimensional views

 4

• Function and behavior of the building model components can be more accurately

modeled in a three-dimensional representation.

Some current CAD systems allow the designer to develop three-dimensional building

models, but when designers assemble a design or construction document package, they

typically generate two-dimensional representations (plans, elevations, sections) for the

review process. Inherent in the projection of the three dimensional representation to a set

of two-dimensional representations is the loss of design data, the simplest of which is the

loss of data of one of the three dimensions. Directly using three-dimensional building

models for analysis purposes alleviates the need for the process of projection and

subsequent regeneration (2D back to 3D).

There have been several research efforts to develop object-oriented CAD systems and

object-oriented building models that contain the necessary geometric, functional, and

behavioral relationships of building components (de Waard92) (Garrett89) (Ito89).

Currently, there is an effort by the International Alliance of Interoperability (IAI), a

consortium of CAD vendors and other AEC industry partners, to develop standards for a

three-dimensional project model that enables interoperability between applications by

different software vendors (IAI97). The IAI’s effort includes defining a set of objects

called Industry Foundation Classes (IFCs) that conform to current object-oriented

philosophy. IFC Release 1.0 currently defines two standard formats for sharing project

data: a standard EXPRESS file format and software interfaces. The development of IFC-

compliant CAD and analysis packages to enable interoperability is the main goal of the

IAI. We have chosen to use the IFC Release 1.0 project model as our point of departure

for the building model.4 For our prototype, we implemented the IFC hierarchy as shown

in Figure 1.

In this work, AutoCAD is being employed as the design environment. We have

developed a simple AutoCAD-to-IFC translation module generating the building model

4 IFC Release 1.5 was made available in early 1998, and Release 2.0 is being planned to become available in early 1999. Entity
classes differ between Release 1.0 and Release 1.5, but the Release 1.0 model adequately describes a building design for the code-
checking prototype described in this paper.

 5

class attributes and relationships required by the code-checking program to perform the

building code analysis. Since AutoCAD currently does not support the IFC building

model format, we have created an additional layer of building component objects with

semantics corresponding to the IFC specifications (see Figure 2 for an example of IFC-

specific relationships of building components). At any point in the design process, the

designer can send the building model to the code-checking program that resides on a

remote server. An AutoLisp routine extracts the IFC information from the enhanced

AutoCAD database and converts the information into an IFC EXPRESS file. An

example of a building model and the corresponding IFC EXPRESS file is shown in

Figure 3.5

For the code-checking program to correctly analyze the building model, we make one

assumption about the use of the IFC IfcSpace that describes the attributes of a space,

that is the designer needs to make explicit whether a space needs to be accessible. We

examine this issue in detail in the section that describes relevancy as it is implemented in

the building code model.

A Client/Server Framework

Our prototype is built utilizing a client/server environment as shown in Figure 4. The

code-checking program resides on the server side of the system. Both the client and the

server are written in Java giving both sides of the system platform independence. The

user (the client) sends an IFC model (an IFC EXPRESS file) across the network to the

code-checking program. The abstraction of network operations in Java made constructing

a proprietary client/server communication sequence a relatively easy task. The code-

checking program is continually listening to a predetermined socket on the server for the

appropriate start sequence and the subsequent stream of IFC EXPRESS data. In our

prototype, an AutoLisp routine spawns the client process after it has generated the IFC

5 This example is shown to illustrate the IFC information generated by a simple building design; the EXPRESS file generated by a
building design, for instance, in the code-checking example is too lengthy to be included in a figure.

 6

EXPRESS file. Note that the client program can also be started independently of the

AutoLisp routine and will execute successfully as long as there is a generated IFC

EXPRESS file that is ready to be sent to the code-checking program. The client opens

the IFC EXPRESS file and the corresponding socket on the server, sends the appropriate

start sequence, and then sends the stream of the IFC EXPRESS file to the code-checking

program. The results are posted to a web page, and the code-checking program notifies

the client that the analysis is complete.

The code-checking program stores the IFC data as objects in a data structure that uses

objects based on the hierarchical structure of the IFCs as shown in Figure 1. We have

constructed our Java IFC classes directly mapping the attributes and relationships as

defined in the IFC EXPRESS schema thereby retaining the desired behavior and

functionality (for example comparisons, see Figure 5 and Figure 6). The IFC objects in

the data structure have slots to accommodate additional information that is generated by

the code-checking program (such as additional graphical information and comments

associated with either code-compliance or code violations).

The code-checking program on the server reads the IFC data sequentially, and an object

that makes reference to a previously instantiated object will simply point to the previous

object in the appropriate attribute field. Certain attributes of a building component are

described by a subsequent building component instantiated on another line in the

EXPRESS file. For example, when an IfcDoor is instantiated, an IfcRelFills and

an IfcRelVoids must be instantiated in order to make the association between this

door and the appropriate opening (see the EXPRESS file in Figure 3, specifically lines

#34, #60, #61, and #62). Once all the IFC data has been put into a data structure

containing the building components, the code-checking program is ready to analyze the

building model.

 7

The Building Code Model

The building code model uses the same structure as the IFC project model hierarchy. For

example, all encoded provisions concerning door accessibility would be instances of a

door accessibility class. Therefore, an individual component can be checked against all

the applicable instances of the provisions for that class of building component. Since

IFCs are grouped by similar functional units (for example, doors and windows are

subclasses of a class called IfcFillingElement), by design, we can group similar

code issues. For example, doors and windows have egress-related provisions. By

structuring the encoded provisions in this manner, we loosely categorize building

component provisions by design intent since the behavior of similar building components

is similar. Design intent is defined differently according to the context (Garza95). Here,

we are specifically examining the design intent of the code provision.

The code-checking program reads in a stream of IFC data to populate its database of

building components. Similarly, the program reads in a stream from a building code file.

This file is a mapping from the text of provisions of a building code document to an

EXPRESS file that has instances of the encoded provisions. The code-checking program

reads in the building code EXPRESS file and populates a data structure containing

instances of the building code provisions. In the current implementation, since we are

focusing on the ADAAG, an ADAAG building code file containing encoded provisions

is read once when code-checking program is initialized on the server. Figure 7 shows an

example of the EXPRESS schema for a handicapped-accessibility building code class,

the corresponding Java class, and sample lines from the ADAAG EXPRESS file that are

instances of the handicapped-accessibility building code class.

Notice that one building code class can have several instances that correspond to related

provisions in the building code—in this case, there is a class of building code

corresponding to the issue of door clearance. Here, a handicapped-accessibility building

code class is an abstraction of a handicapped-accessibility concept, and the instances in

the ADAAG EXPRESS file map to the actual text of the building code provisions, in this

case the ADAAG document. Other handicapped accessibility building codes can be

 8

easily mapped to this accessibility code class hierarchy and generate corresponding

EXPRESS files.

Relevance

Relevance as applied to checking a building design against a building code is applied in

the following ways:

• Determining which provision or provisions are applicable to a given building

component or system of building components.

• Conversely, determining which building component or system of building

components are applicable to a given provision or set of provisions.

• Resolving exceptions within a provision.

There are several levels of relevance that need to be addressed. We take a top down

approach to determine the relevance of provisions for a specific building component.

First, we decide if a set of provisions is relevant to the project under consideration (the

project model). Next we look at specific buildings, specific floors, and then specific

spaces (for example, rooms). Note that this hierarchy follows the same class hierarchy as

the IFC model—it is logical that the structure of the code model closely follows the

structure of the IFC class hierarchy. Finally, we determine if a set of provisions is

relevant to the specific building component associated with a specific space.

We can determine whether provisions are relevant to a project or building given the same

information that building inspectors receive in construction documents. For example, a

set of plans must list the type of building (for example, commercial, residential, and so

on). However, our relevance engine must determine whether a set of provisions is

applicable to a given space in the building product model. There are instances when

exclusions need to be made explicit such as delineation of a historical space, but this

additional information must be made available to the building inspector who is checking

the plans.

 9

Currently, in our implementation of the relevance module, we are looking only at

relevance issues related to accessibility on the space level. The ADAAG sets guidelines

for determining if a door is accessible, but other provisions must be analyzed to

determine whether the door accessibility provisions are applicable to a specific door in

the building model. We require the user to explicitly label a space (an IfcSpace) as

accessible (in our implementation, if the name of a space starts with the letter ‘x,’ then

accessibility is not required in this space) and the code-checking program examines this

information to note which spaces are accessible. There are several states that a building

component can have. The code-checking program initially labels a space as either

REQUIRED or NOT_REQUIRED (for accessibility) according to how the user has

explicitly labeled the space. The other state that co-exists with the REQUIRED state,

PASSING or FAILED, will be examined in the next section.

The code-checking program then determines which building components are associated

with a specific space that is in the REQUIRED state. If a building component is within or

intersects the space, it is put into the set. One of the attributes for IfcSpace is the

container HasElements, and we use it for this purpose. We could generate this

information in the CAD environment; however, since we cannot predict how individual

IFC implementers will use this container, we let the code-checking program generate this

information.

The code-checking program is now ready to analyze the building components in each

space that has been labeled REQUIRED. After the building components are analyzed, the

code-checker must again determine whether an individual building component that is

contained in a REQUIRED space is relevant for the overall code-compliance of the

building design. This is the issue of cardinality deciding whether a building component

needs to be accessible in relation to the other building components in the space being

examined. Since higher-level provisions often determine the number of similar building

components that need to comply to a specific building code issue, an individual building

component must be examined in relation to other building components of the same class

within a given space. For example, not all water closets in a space need to be accessible.

 10

Therefore, the code-checking program must first analyze the building components in a

space and then group and re-analyze the subset of similar components to determine

whether they finally need to comply with accessibility code provisions. If a building

component does not meet accessibility code-compliance, it may not mean that the project

is in violation of the accessibility code. For example, the building code may only require

that there exists a similar building component in the same space that complies.

Encoded Building Component Provisions

The code-checking program analyzes the building model twice with respect to the

building code instances. First, it analyzes all the building components in the REQUIRED

spaces. Then it determines whether a component needs to comply with the building code

provisions relative to the other components in the space.

We have concentrated on encoding building component provisions that can be mapped to

methods in our building code model. Geometric tests are examples of easily encodable

building-component-based provisions (for example, the clearance requirements of a door

for egress or accessibility). Encoding these provisions alone is not sufficient for the

building code framework—the code-checking program must apply relevance tests to the

specific building component or components in question to see whether a provision or set

of provisions is applicable.

We noted that the code-checking program generates sets of building components

associated with particular spaces that need to be checked for accessibility. Conversely,

each building component is associated with a set of one or more spaces (for example,

building components such as doors may be associated with two spaces since a door can

connect two spaces). Once the code-checking program establishes these relationships, it

examines all the building components including components that are associated with a

space that are not required to be accessible (it is useful for the designer to have as much

information about all the building components in a design).

 11

A building component can have several states. We have already established the

accessibility state of spaces (REQUIRED or NOT_REQUIRED), but the code-checking

program cannot yet determine if an individual building component associated with a

REQUIRED space necessarily needs to be accessible; compliance of one component may

be dependent on one or a set of other components. Each component is checked against

the relevant provisions, and after all related components are checked, the code-checker

determines whether the set of components is in compliance. The building component

initially has a state where the requirement for accessibility is unknown and has the state

of PASSING until it fails one of the encoded provisions tests.

The code-checking program examines each of encoded provisions in the building code

instances until it matches two attributes: the class of the building component and the

attribute IfcClass in the building code component and the attribute level with the

string “ELEMENT.” In this inspection of the building model, the code-checking program

is examining building components on the element level as opposed to the space level.

When the code-checking program finds a match, it tests the encoded provision (the

building code component instance) against the building component. Most of the encoded

provisions are geometric tests. For those that are associated with the issue of clearance,

the building component must be checked against other building components within the

associated accessible space (or in the case of a door, the two accessible spaces that it

connects).

If the building component complies with the encoded provision, the code component

returns a PASSING status. If not, it returns a FAILED status (here, FAILED sets a status

bit to TRUE) along with text comments. The return status is ORed with the current status

and the module continues to traverse and search for relevant encoded provisions. The

building component’s status is ORed because if a building component has failed a

previous test, passing a future provision does not change its non-compliant state. The

code-checking program continues to check a component even if it has failed a previous

test so it can return as much information on a building component as possible. For

example, a door can fail several clearance tests, and all issues may be of interest to the

 12

designer. As noted earlier, we reserve some fields in a building component for issues

outside the scope of the IFC. The code-checking program uses these fields to append the

comments associated with code violations.

After examining all of the building components the code-checking program must resolve

whether an individual building component within an accessible space is required to

comply with the accessibility code. The code-checking program makes a second pass

through the database of building components this time looking for matches with code

component attribute IfcClass and the type of building component. The program also

looks for matches with the code component attribute “level” with the string “SPACE.”

The code-checking program concurrently examines a set of identical building

components associated with the same space (or spaces as would be the case for doors).

For example, an ADAAG provision states that if toilet stalls are provided, then at least

one needs to be accessible (this provision has several more qualifying statements, but

using the simplified provision demonstrates the reasoning method used to analyze the

particular space). The code-checking program must examine each toilet associated with

the accessible space. If there is one that complies with the accessibility code (it had

previously been marked as PASSING), the code-checking program marks this toilet as

REQUIRED and all the others as NOT_REQUIRED. If there are no toilets in the

accessible space (they had previously been marked as FAILED) that comply with the

accessibility code, then the code-checking program marks all the toilets in the space as

REQUIRED. This serves as a notification to the designer that none of the toilets in the

space meet the accessibility code, and at least one needs to be compliant.

At this point, the code-checking program has finished the analysis of the building model.

All building code issues (compliance or non-compliance, associated comments) have

been attached to the building components. The final step is to generate the information in

the form of a web page.

 13

Web Page Generation

The code-checking program examines building component database one final time and

extracts the necessary information to generate a web page consisting of three frames: a

VRML frame, COMMENTS frame, and a building code document frame. In our prototype,

the code-checking program color-codes a building component in the VRML model

according to the rules in Table 1.

Color-coding a building component yellow is useful for a designer to realize that even

though the specific component need not be accessible, it does not comply. In addition to

the color-coded information, all VRML objects are hyperlinked to a set of comments in

the COMMENTS frame since it is useful to know that an object complies with the building

code. As the VRML components are generated, since they are linked to the COMMENTS

frame, the COMMENTS frame is concurrently and dynamically generated with the

corresponding HTML anchors. The links in the COMMENTS frame to the building code

document frame have been predetermined for each encoded provision (see examples of

encoded-provisions instances in Figure 7). The building code document (in this case, the

ADAAG) already has the predefined anchors associated with the possible links that are

generated in the COMMENTS frame.

Example

To illustrate the framework developed, we present a simple example of a building model

that does not comply with the ADAAG. We step through the reasoning of the code-

checking program and present the results. Then, we modify the example to make the

design comply and highlight the differences in the code-checking analysis. For this

example, we focus on door accessibility issues. We will also underline the advantages of

using a three-dimensional building model by providing an analogous analysis of a two-

dimensional representation of the building model.

 14

A Non-Compliant Design

Figure 8 shows a plan view and an isometric view of the example. All spaces except for

the one noted have been marked by the designer as spaces where accessibility is required.

Doors D1 and D2 violate ADAAG door width provisions, and the half-wall interferes

with one of the maneuvering clearances for door D3. All other doors in the design meet

accessibility requirements so we will focus the discussion on these three doors.

Relevance

The code-checking program marks door D1 as NOT_REQUIRED. D1 does not need to

comply with accessibility provisions since it serves a space (space X) that is not required

to be accessible. For example, space X might be a mechanical room. Since all other

spaces are required to be accessible, the code-checking program cannot yet determine if

the other doors in the space need to comply with the accessibility provisions. The code-

checking framework now checks each door in the building model.

Encoded Provisions

The code-checking program checks all the doors against the relevant provisions that

examine individual building components in relation to the whole building model. Doors

D1 and D2 violate width requirements and D3 violates a maneuvering clearance

provision. At this point, the code-checking program contains the status information in

Table 2.

Relevance Revisited

Finally, the code-checking program checks the doors against the relevant provisions that

relate to the cardinality issue. For doors, an accessible space must have at least one door

on an accessible path (a simplified view, but it demonstrates the issue of cardinality). D1

has already been taken care of since accessibility is not required. An accessible route is

required between space A and the corridor to its left. The two door candidates for an

accessible route are D2 and D3. Since both violate accessibility code provisions and

 15

there is no accessible route between the two spaces, the code-checking program labels

both doors as being required to meet accessibility provisions shown in Table 3.

Generating the Web Page

Figure 9 shows the web page generated for the non-compliant building design. Doors

D1, D2, and D3 in the VRML model are hyperlinked to comments #45, #46, and #49

respectively. Door D1 (not shown) is color-coded yellow, and D2 and D3 are color-

coded red. The underlined portions of the comments are hyperlinked to the appropriate

ADAAG provisions. The code-checking program also generates semi-transparent redline

clearance box associated with D3 and the appropriate encoded maneuvering clearance

provision. It is hyperlinked to the appropriate sub-comment in comment #46.

Two-Dimensional Representation Analysis

Figure 10 shows the necessary two-dimensional representations needed to carry out the

analogous analysis of the same example. A code-checking program analogous to our

prototype would first have to reconstruct the building model from the appropriate 2D

representations in order to check it for code compliance. We assume that whatever

modeling package is employed to generate the 2D representations, the 2D model will

have a logical naming scheme for the building components. For example, A-D1, B-D1,

and C-D1 would correspond to the same door as viewed in the plan and the two

elevations. Even with some standard naming convention, there is no guarantee of

completeness of the generated 3D model. Without a naming convention, the analogous

2D code-checking program would have to utilize algorithms to match different views of

the same component.

The building model in Figure 10 illustrates some additional problems associated with this

regeneration task. The number of 2D views needed to generate sufficient information

depends on the building model. Here, we must generate two elevations in order to get all

the height information of the half-wall and door D1. More views would be needed for

non-orthogonal components and placement of components.

 16

As with the 3D-model analysis, the analogous 2D code-checking program can determine

that doors D1 and D2 violate the width requirement information from any of the views.

In this case, each 2D view is sufficient. Note, though, that if door D2 were widened to

meet the width requirements, Figure 10-A would not be adequate to guarantee

compliance since it gives no height information, and Figure 10-B or Figure 10-C would

be needed to generate the 3D model or provide the additional height information. In the

case of door D3, any individual 2D view in Figure 10 is insufficient to determine whether

the half-wall interferes with the maneuvering clearance, and here the code-checking

program must generate the 3D information from Figure 10-A and Figure 10-B.

The Revised Design

When we remove the half-wall, the design now complies with the ADAAG. The code-

checking program’s analysis is identical to the previous example except that D3 is given

a PASSING status. Since D3 provides an accessible route between space A and the

corridor to its left, D2 is no longer required to meet the accessibility provisions. Figure

11 shows the web page generated for the revised and compliant design. Again, all the

accessibility information is generated for each building component. In the associated

VRML frame, D2 is color-coded yellow, and D3 is rendered showing it meets the

accessibility code requirements. The information generated by the code-checking

program when it examines the doors against the relevant space-level provisions is shown

in Table 4.

Discussion

In this paper, we have demonstrated the modules of an integrated framework for code

checking with specific focus on accessibility issues. Although only provisions related to

door accessibility have been implemented, the key modules required to deliver the

client/server code-checking framework have been formalized and completed. The

prototype is easily extendible to accommodate other building components that must be

 17

accessible. While the code-checking program is successful in handling encodable

provisions and localized door compliance, it does not address the following issues:

• Complete handling of the relevance issue

• Ambiguous provisions

• Complete system-wide accessibility analysis

In the following, we outline future research that is necessary to address these

shortcomings in the framework.

Framework Enhancements

Figure 12 outlines our proposed code-checking framework delineating the future

enhancements that are discussed in this section.

Relevance

We must increase the capabilities of the building code framework so the code-checker

can determine which spaces must be made accessible in the building design. Currently,

we must explicitly define the spaces that are accessible whereas it is desirable for the

code-checker to make the determination. There are certain gray areas—in certain

circumstances, a space may be explicitly delineated as not needing to be accessible. For

example, in a historically significant building, current provisions may not be relevant to

some of the spaces. Therefore, we must formally define the desired space-analyzing

capabilities of the code-checker.

We must also increase the scope of the relevance module by taking into consideration the

design intent behind certain provisions. For example, when we expand our code-

checking program to handle egress, we must address the following relevance problem:

Building codes explicitly state when exit signs are required based on occupancy type.

Here, the design intent is based on the issue of familiarity. A person does not need exit

signs in one’s home because a resident is probably familiar with the possible exit paths

 18

whereas in buildings with which occupants may be unfamiliar with the surroundings,

these paths require signs. Also, if the room is small enough (for example, a small office),

even if the occupant may be unfamiliar with the space, the exit path is more obvious and

a sign is not required. Formally, when the search space is below some threshold (here,

familiarity reduces the search space), exit signs are not required.

Brokered Lookup and Integration of the Distributed Object Environment

Certain building code provisions are purposely left ambiguous. In following example

from the ADAAG, the U.S. Access Board has not specifically defined what constitutes a

shape that is easy to grasp:

4.13.9 Door Hardware. Handles, pulls, latches, locks, and other operating

devices on accessible doors shall have a shape that is easy to grasp with

one hand…

In order to resolve such provisions, we propose to defer the decision as to whether an

individual building component complies with the building code to another source that

keeps a repository of compliant building components for a specific provision. We

propose to implement a distributed object environment such as CORBA to implement

this brokered lookup in our framework. However, if we are going to implement this

environment, it makes sense to implement this technology for an overall shared product

model environment.

Currently, we envision a shared product model as a repository of building components on

the network (see Figure 13). Various disciplines will have different views and different

capabilities of modifying the project model. For example, a CAD view might be

graphical and a cost analysis view might be in the form of a spreadsheet. Code-checking

would be one of the many services (various different areas of code-checking would in

fact be different services) that are on the network. These services would be invoked from

a view—for example, code-checking might be invoked from the CAD view, a search for

best prices on materials might be invoked from the cost analysis view. The invocation

would go through a trading service that would make the determination of the relevant

 19

service. The trading service would then initiate the transfer of the shared project model

(or relevant parts of the model) to the relevant service. In this environment, the brokered

lookup would simply be a sub-service of the code-checking framework. The details on

information transfer need to be formalized, but the current state of distributed object

technology allows such shared product model scenarios to be implemented.

Simulation

We are currently working on the implementation of the motion planning algorithms to

address global accessibility issues through simulation. Static encoded provisions that test

local clearance issues are insufficient to extract accessible path information from an

entire building design. In general, simulation has advantages over static encoded

provisions to examine system-level issues while static encoded provisions may be

sufficient to analyze local phenomena or individual building components.

Conclusion

We seek to solve the design standards processing problem in one domain (in this case,

handicapped accessibility) and then apply the principles of our code-checking framework

to other domains. Since our approach entails certain domain-specific solutions, we do

not present a completely generalized solution. However, the principles behind our

approach to building code checking developed here for disabled access should be

applicable to other aspects of the building code.

Exploration of the amount of information contained in a building model is an important

issue. Attributes related to a building code should be generated by the code-checking

program as opposed to being explicitly defined within the building model. As an example

of explicitly defined attributes, IFC IfcSpace has among its attributes ExitPaths,

ExitWidths, and ExitDistances (IAI97). Subsequent releases of IFC will define

more code-related processes and attributes such as IfcRamp to explicitly define a ramp

building component. If a designer is going to employ the services of a code-checking

program, the program, not the designer, should make the determination of whether an

exit path exists. In addition, when the building code changes, the integrated

 20

building/building code model will be outdated. Our current prototype requires that the

designer explicitly state whether a space requires accessible access—this requirement

will be eliminated as we further develop the building code framework.

We have demonstrated the feasibility of online code-checking with our framework. We

continue to develop the framework and implement all the proposed enhancements to fully

realize the significance of our approach to the code-checking problem. In our approach,

we seek to solve the specific problem of automating the disabled access analysis of a

building design. This paper has outlined the steps needed to solve a specific code-

checking problem, and we hope to extend our approach to make it applicable to other

areas of code-checking, but by no means do we feel that we are solving all the

generalized design standards processing issues.

Acknowledgments

This research is partially sponsored by the Center for Integrated Facility Engineering at

Stanford University. Discussions with facility managers have given valuable insight into

the building code review process.

References

(ADAAG97) Access Board (U.S. Architectural and Transportation Barriers Compliance

Board) (1997). Americans with Disabilities Act Accessibility Guide, Washington, DC.

(de Waard92) de Waard, Marcel (1992). Ph.D. Thesis: Computer Aided Conformance

Checking: Checking Residential Building Designs Against Building Regulations with

the Aid of Computers, The Hague, The Netherlands.

(Fenves94) Fenves, S.J., Garrett, J.H., Kiliccote, H., Law, K.H., Reed, K.A. (1995)

“Computer Representations of Design Standards and Building Codes: U.S. Perspective,”

 21

The International Journal of Construction Information Technology, University of

Salford, Salford, U.K.

(Garrett89) Garrett, J.H., Basten, J., Breslin, J., Andersen, T. (1989) “An object-oriented

model for building design and construction,” Proc. Struct.Congress, ASCE pp. 332-341,

New York, NY.

(Han97) Han, C.S., Kunz, J.C., Law, K.H. (1997) “Making Automated Building Code

Checking a Reality,” Facility Management Journal, IFMA September/October 1997 pp.

22-28, Houston, TX.

(IAI97) International Alliance for Interoperability (1997). Industry Foundation Classes

Release 1.0, Specifications Volumes 1-4, Washington DC.

 (ISO94) International Standards Organization, Technical Committee 184, subcommittee

4 (1994). ISO 10303-1:1994: Industrial automation systems and integration—Product

data representation and exchange—Part 1: Overview and fundamental principles,

Geneva, Switzerland.

(Ito89) Ito, K., Ueno, Y., Levitt, R.E., Darwiche, A. (1989) “Linking knowledge-based

systems to CAD design data with an object-oriented building product model,” Technical

Report 17, Center for Integrated Facility Engineering, Stanford University, Stanford,

CA.

(Kiliccote96) Kiliccote, Han (1996). Ph.D. Thesis: A Standards Processing Framework,

Carnegie Mellon University.

(Vogel97) Vogel Andreas, and Keith Duddy (1997). Java Programming with CORBA,

John Wiley and Sons, Inc., New York, NY.

(Yabuki92) Yabuki, N. and Law, K.H. (1992). “An Integrated Framework for Design

Standards Processing,” Technical Report 67, Center for Integrated Facility Engineering,

Stanford University, Stanford, CA.

 22

Ifc
Project
Object

Ifc
Product
Object

Ifc
Element

Ifc
Manufactured
Element

Ifc
Assembled
Element

Ifc
Space
Element

Ifc
Fixture

Ifc
Space

Ifc
Filling
Element

Ifc
Opening
Element

Ifc
Building
Element

Ifc
Door

Ifc
Window

Ifc
Layered
Element

Ifc
RoofSlab

Ifc
Wall

Ifc
Floor

Figure 1: IFC class hierarchy implemented.

Figure 2: An example of a relationship between door and wall classes.

 23

#1 = P42_DIRECTION ((1.00, 0.00, 0.00));
#2 = P42_DIRECTION ((0.00, 1.00, 0.00));
#3 = P42_DIRECTION ((0.00, 0.00, 1.00));
#4 = P41D_LENGTH_MEASURE (0.00, .IN.);
#5 = P41D_LENGTH_MEASURE (0.00, .IN.);
#6 = P41D_LENGTH_MEASURE (0.00, .IN.);
#7 = IFCPOINT ((#4, #5, #6));
#8 = IFCORIENTEDVERTEX (#7, (#1, #2, #3));
#9 = P41D_POSITIVE_LENGTH_MEASURE (400.00, .IN.);
#10 = P41D_POSITIVE_LENGTH_MEASURE (400.00, .IN.);
#11 = P41D_POSITIVE_LENGTH_MEASURE (12.00, .IN.);
#12 = IFCBOUNDINGBOX (#8, #9, #10, #11);
#13 = P42_DIRECTION ((1.00, 0.00, 0.00));
#14 = P42_DIRECTION ((0.00, 1.00, 0.00));
#15 = P42_DIRECTION ((0.00, 0.00, 1.00));
#16 = P41D_LENGTH_MEASURE (440.00, .IN.);
#17 = P41D_LENGTH_MEASURE (200.00, .IN.);
#18 = P41D_LENGTH_MEASURE (-12.00, .IN.);
#19 = IFCPOINT ((#16, #17, #18));
#20 = IFCORIENTEDVERTEX (#19, (#13, #14, #15));
#21 = IFCFLOOR ((site, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #20, #0, #12,
 #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#22 = P41D_POSITIVE_LENGTH_MEASURE (306.00, .IN.);
#23 = P41D_POSITIVE_LENGTH_MEASURE (6.00, .IN.);
#24 = P41D_POSITIVE_LENGTH_MEASURE (120.00, .IN.);
#25 = IFCBOUNDINGBOX (#8, #22, #23, #24);
#26 = P42_DIRECTION ((0.00, 1.00, 0.00));
#27 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#28 = P42_DIRECTION ((0.00, 0.00, 1.00));
#29 = P41D_LENGTH_MEASURE (630.00, .IN.);
#30 = P41D_LENGTH_MEASURE (252.00, .IN.);
#31 = P41D_LENGTH_MEASURE (0.00, .IN.);
#32 = IFCPOINT ((#29, #30, #31));
#33 = IFCORIENTEDVERTEX (#32, (#26, #27, #28));
#34 = IFCWALL ((iwall-8, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #33, #0, #25,
 #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#35 = P41D_POSITIVE_LENGTH_MEASURE (36.00, .IN.);
#36 = P41D_POSITIVE_LENGTH_MEASURE (6.00, .IN.);
#37 = P41D_POSITIVE_LENGTH_MEASURE (96.00, .IN.);
#38 = IFCBOUNDINGBOX (#8, #35, #36, #37);
#39 = P42_DIRECTION ((0.00, 1.00, 0.00));
#40 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#41 = P42_DIRECTION ((0.00, 0.00, 1.00));
#42 = P41D_LENGTH_MEASURE (630.00, .IN.);
#43 = P41D_LENGTH_MEASURE (360.00, .IN.);
#44 = P41D_LENGTH_MEASURE (0.00, .IN.);
#45 = IFCPOINT ((#42, #43, #44));
#46 = IFCORIENTEDVERTEX (#45, (#39, #40, #41));
#47 = IFCOPENINGELEMENT ((idoor-c, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0,
 #46, #0, #38, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#48 = P41D_POSITIVE_LENGTH_MEASURE (36.00, .IN.);
#49 = P41D_POSITIVE_LENGTH_MEASURE (2.00, .IN.);
#50 = P41D_POSITIVE_LENGTH_MEASURE (96.00, .IN.);
#51 = IFCBOUNDINGBOX (#8, #48, #49, #50);
#52 = P42_DIRECTION ((0.00, 1.00, 0.00));
#53 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#54 = P42_DIRECTION ((0.00, 0.00, 1.00));
#55 = P41D_LENGTH_MEASURE (628.00, .IN.);
#56 = P41D_LENGTH_MEASURE (360.00, .IN.);
#57 = P41D_LENGTH_MEASURE (0.00, .IN.);
#58 = IFCPOINT ((#55, #56, #57));
#59 = IFCORIENTEDVERTEX (#58, (#52, #53, #54));
#60 = IFCDOOR ((idoor-c, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #59, #0, #51,
 #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#61 = IFCRELFILLS (#47, (#60));
#62 = IFCRELVOIDS (#34, (#47), ('foo', 'TRUE'));

Figure 3: Graphical representation of a simple design and the corresponding IFC

EXPRESS file.

 24

Client
Data

Transfer

CLIENT SIDE SERVER SIDE

CAD package

web browser

IFC
EXPRESS

file

RULES
linked to
hypertext

Code
Document

Code
Document

VRML model w/redlines,
comments linked to Code Doc

Code
Checking

Server

IFC
EXPRESS

file

Figure 4: Mechanics of the prototype code-checking program.

 25

package IfcClasses;
import java.util.*;

public class IfcFillingElement extends IfcAssembledElement
{
 public IfcFillingElement() {

 // constructor internals here…

 }

 public IfcFillingElement(Vector vector)
 {

 // constructor internals here…

 }

 // accessors and modifiers here…

 protected ifc_bounded_curve ImplGeoPath; // 19
 protected Vector ImplGeoPoints; // 20 ifc_cartesian_point;
 protected ifc_bounded_curve ImplGeoFrameProfile; // 21
 protected Vector ImplGeoPanelProfiles; // 22 ifc_bounded_curve;
 protected Vector ImplGeoTrimAProfiles; // 23 ifc_bounded_curve;
 protected Vector ImplGeoTrimBProfiles; // 24 ifc_bounded_curve;
 protected Vector ImplGeoPanelFrameProfiles; // 25 ifc_bounded_curve;
 protected ifc_length_measure Height; // 26
 protected ifc_length_measure Width; // 27
 protected ifc_length_measure PanelThickness; // 28
 protected Vector FillsVoids; // IfcRelFills;
}

ENTITY IfcFillingElement
 ABSTRACT SUPERTYPE OF (ONEOF
 (IfcDoor,
 IfcWindow))
 SUBTYPE OF (IfcAssembledElement);
 ImplGeoPath : ifc_bounded_path ;
 ImplGeoPoints : LIST [0:?] OF ifc_cartesian_point;
 ImplGeoFrameProfile : ifc_bounded_curve;
 ImplGeoPanelProfiles : SET [0:?] OF ifc_bounded_curve;
 ImplGeoTrimAProfiles : SET [0:?] OF ifc_bounded_curve;
 ImplGeoTrimBProfiles : SET [0:?] OF ifc_bounded_curve;
 ImplGeoPanelFrameProfiles : SET [0:?] OF ifc_bounded_curve;
 Height : OPTIONAL ifc_length_measure;
 Width : OPTIONAL ifc_length_measure;
 PanelThickness : OPTIONAL ifc_length_measure;
 INVERSE
 FillsVoids : SET [0:1] OF IfcRelFills FOR
 FilledByFillingElement;
END_ENTITY;

IFC EXPRESS schema for IfcFillingElement:

Analogous Java classes for IfcFillingElement:

Figure 5: IFC EXPRESS schema for IfcFillingElement and the analogous

Java classes.

 26

ENTITY IfcRelVoids;
 VoidsBuildingElement : IfcBuildingElement;
 VoidedByOpeningElement : SET [1:?] OF IfcOpeningElement;
 Interpenetration : IfcAttLogical;
END_ENTITY;

package IfcClasses;
import java.util.*;
import Utilities.*;

public class IfcRelVoids
{
 public IfcRelVoids() {
 }

 public IfcRelVoids(Vector vector) {

 // set up the inverse relationship here...
 Vector HasOpenings = this.VoidsBuildingElement.getHasOpenings();

 // accessors, modifiers, and other methods here…

 private IfcBuildingElement VoidsBuildingElement;
 private Vector VoidedByOpeningElement; // IfcOpeningElement
 private IfcAttLogical Interpenetration;
}

 // constructor internals here…

IFC EXPRESS schema for IfcRelVoids:

Analogous Java classes for IfcRelVoids:

Figure 6: IFC EXPRESS schema for IfcRelVoids and the analogous Java classes.

 27

package AccessibilityClasses;
import java.util.*;
import Utilities.*;
import IfcClasses.*;
import CommentClasses.*;

public abstract class AccessibilityElement
{

public AccessibilityElement() {
 }

public AccessibilityElement(Vector vector) {

 // constructor internals here…

 }

 // accessors, mutators, and supplementary methods here…

protected String getReferenceInformation(IfcElement element, int commentIndex) {
return "";

 }

protected String getAnchorInformation() {
return "See " + this.hypertext + "\n";

 }

public abstract void runRule(Vector elementSet, IfcElement element);

protected String method;
protected ifc_length_measure dimensions[];
protected String comments[];
protected String hyperlink;
protected String hypertext;
protected Class ifcClass;
protected String level;

}

ENTITY AccessibilityElement
method : IfcString;
dimensions : LIST [0:?] OF ifc_length_measure;
comments : LIST [0:?] OF IfcString;
hyperlink : IfcString;
hypertext : IfcString;
ifcClass : Class;
level : IfcString;

}

#1 = ACCESSIBILITYDOOR (
DoorWidth,

 ((32., .IN.)),
 (),

../adaag/adaag.htm#4.13.5,
 Section 4.13.5,
 ELEMENT
);
#2 = ACCESSIBILITYDOOR (

DoorClearances,
 ((0., .IN.), (0., .IN.), (0., .IN.), (18., .IN.), (-60., .IN.), (80., .IN.)),
 (none, none, none, length, none, none),

../adaag/adaag.htm#4.13.6,
 Section 4.13.6,
 ELEMENT
);

EXPRESS schema for Accessibility Code component AccessibleElement:

Analogous Java classes for AccessibleElement:

Sample instances of AccessibleElement in EXPRESS format:

Figure 7: Schema for the Accessibility Code component, the corresponding Java

structure, and sample instances.

 28

Space marked as not required
to be accessible

Half wall that causes design
to be non-compliant

X

A

D1

D2
D3

Figure 8: Plan and isometric views of the example design.

 29

Figure 9: Web page generated for the non-compliant design example.

 30

A Plan C Elevation

B Elevation

C B

D1

D1

D1

Figure 10: Two-dimensional representation: plan and elevation views.

 31

Figure 11: Web page generated for the revised and compliant design.

 32

BUILDING
MODEL

SIMULATIONENCODABLE PROVISIONSBROKERED LOOKUP

RELEVANCE

•COMPLIANCE REPORT
•TIME ELAPSED
•CONSISTENCY

Figure 12: A proposed and enhanced code-checking framework.

 33

SERVER:
SHARED MODEL

BUILDING
COMPONENT
REPOSITORY

SERVER:
OTHER

SERVICES

SERVER:
CODE-CHECKING

SERVICE
TRADING
SERVICE

OBJECT REQUEST BROKER (ORB)

Figure 13: A proposed shared model environment.

 34

Accessibility Required? Compliance? Color

UNKNOWN * NOT red or yellow

REQUIRED PASSING NOT red or yellow

REQUIRED FAILED red

NOT_REQUIRED PASSING NOT red or yellow

NOT_REQUIRED FAILED yellow

Table 1: Building component color-coding rules.

 35

 Door Accessibility Required? Compliance?

D1 NOT_REQUIRED FAILED

D2 UNKNOWN FAILED

D3 UNKNOWN FAILED

all others UNKNOWN PASSING

Table 2: Intermediate status information for the non-compliant design example.

 36

Door Accessibility Required? Compliance?

D1 NOT_REQUIRED FAILED

D2 REQUIRED FAILED

D3 REQUIRED FAILED

all others depends PASSING

Table 3: Final status information for the non-compliant design example.

 37

Door Accessibility Required? Compliance?

D1 NOT_REQUIRED FAILED

D2 NOT_REQUIRED FAILED

D3 REQUIRED PASSING

all others depends PASSING

Table 4: Final status information for the compliant design example.

 38

List of Figures

Figure 1: IFC class hierarchy implemented.

Figure 2: An example of a relationship between door and wall classes.

Figure 3: Graphical representation of a simple design and the corresponding IFC

EXPRESS file.

Figure 4: Mechanics of the prototype code-checking program.

Figure 5: IFC EXPRESS schema for IfcFillingElement and the analogous Java

classes.

Figure 6: IFC EXPRESS schema for IfcRelVoids and the analogous Java classes.

Figure 7: Schema for the Accessibility Code component, the corresponding Java

structure, and sample instances.

Figure 8: Plan and isometric views of the example design.

Figure 9: Web page generated for the non-compliant design example.

Figure 10: Two-dimensional representation: plan and elevation views.

Figure 12: Web page generated for the revised and compliant design.

Figure 13: A proposed and enhanced code-checking framework.

Figure 14: A proposed shared model environment.

 39

 40

List of Tables

Table 1: Building component color-coding rules.

Table 2: Intermediate status information for the non-compliant design example.

Table 3: Final status information for the non-compliant design example.

Table 4: Final status information for the compliant design example.

	A Client/Server Framework for On-line Building Code Checking
	
	Abstract
	Key Words

	Introduction
	The Building Product Model
	A Client/Server Framework
	The Building Code Model
	Relevance
	Encoded Building Component Provisions

	Web Page Generation
	Example
	A Non-Compliant Design
	Relevance
	Encoded Provisions
	Relevance Revisited
	Generating the Web Page
	Two-Dimensional Representation Analysis

	The Revised Design

	Discussion
	Framework Enhancements
	Relevance
	Brokered Lookup and Integration of the Distributed Object Environment
	Simulation

	Conclusion

	Acknowledgments
	References

