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Abstract 

This paper outlines an integrated client/server framework for an automated code-

checking system.  Most previous studies have been focused on the processing of design 

codes for conformance checking.  In this work, we examine additional issues: the criteria 

of a building model, representation of code provisions, the relevance of the provisions 

with respect to design components, and the encoding of component-based provisions.  In 

this paper, we will demonstrate the integration of these issues in the framework in order 

to develop an effective system to analyze a design for code-compliance. 
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Introduction 

Currently, design and construction documents submitted to a building department for 

permit-approval are checked manually against a continuously changing and increasingly 

complex set of building codes.  The complexity and the changing nature of building 

codes leads to delays in both the design and construction processes.  The designer must 

assess which codes are applicable to a given project as well as sort through potential 

ambiguity in the code provisions.  An inspector must go through a similar process.  In 

addition, inconsistencies in interpretation of a given section of the code may differ from 

inspector to inspector.  The design checking and approval process can be a critical 

activity that prolongs the construction and delays the operation of a facility.  Automating 

this process has the potential to alleviate both the delays and inconsistencies associated 

with manual checking by giving the designer and the permit-issuing body a consistent 

framework in which to apply and check codes. 

Several researchers have developed frameworks for the representation and processing of 

design standards (de Waard92) (Kiliccote96) (Yabuki92).  A survey of developments for 

computer representation of design codes was reported by Fenves, et.al. (Fenves94).  In 

this study, we focus on the problem to develop a framework for architectural building 

code issues by initially investigating handicapped accessibility.  Among the numerous 

provisions governing a facility design, the two issues that have been identified by facility 

managers as most significant are accessibility and egress.  Though we are examining a 

self-contained aspect of the building code, there is sufficient complexity and ambiguity in 

the handicapped accessibility code that warrants a close examination of the issues that are 

fundamental to the development of a practical integrated framework for the 

representation and processing of design standards. 

The design intent of the handicapped accessibility code is to provide the same or 

equivalent access to a building and its facilities for disabled persons (for example, 

persons restricted to a wheelchair, persons with hearing and sight disabilities) and 

persons without qualifying disabilities.  To fulfill this intent, organizations such as the 

U.S. Access Board (also known as the Architectural and Transportation Barriers 
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Compliance Board), the authors of the Americans with Disabilities Act (ADA), have 

developed prescriptive measures such as various clearances and reach thresholds for 

building components.  For example, the U.S. Access Board has developed minimum 

clearances to allow transfer of a person from a wheelchair to a toilet and minimum 

lengths of grab bars associated with a toilet. In the example presented in this paper, we 

have only implemented issues related to door accessibility, but the concepts of clearance 

and distance thresholds are similar for other building components that must be accessible.  

Therefore, the developed prototype can potentially be extended to accommodate the 

critical building components that must be accessible. 

Advances in Internet and web-based technologies will have a significant role in making 

on-line code-checking a reality (Han97).  Specifically, on-line checking of building 

designs via the World Wide Web (WWW) can be organized in a client-server 

environment.  The development of a standard product model including the Standard for 

the Exchange of Product Data (STEP) (ISO94) and the International Alliance of 

Interoperability (IAI) Industry Foundation Classes (IFC) (IAI97) will further facilitate 

design data exchange.  In this work, the user (the client) develops a plan using an IFC-

compliant CAD package (enhancements have been made to AutoCAD to output an IFC 

EXRESS file from a building design).  At any point in the design process, the user can 

send this design to a code-checking program that resides on a remote server.  The code-

checking program examines the IFC design data and summarizes the results in a 

generated web page.  The web page contains a graphical representation of the building 

model along with “redline” information with hyperlinks to specific comments, and, when 

applicable, the comments have hyperlinks to the actual building code document 

provisions (in this case the Americans with Disabilities Act Accessibility Guidelines 

(ADAAG) (ADAAG97)). 

We examine the structure and attributes of a product model and a building code model 

needed to provide sufficient design information to be analyzed by a code-checking 

program.  The code-checking program must be able to read the design data and 

reorganize the information in a form that can be analyzed against a model of the building 

code.  We describe this building code model as a mapping of building code provisions to 
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methods that are embedded in an object-oriented framework appropriate to analyze a 

design for code-compliance.  We categorize the building code into three classes: 

1. provisions that determine the relevancy of other provisions 

2. provisions that examine the criteria of a system of building components 

3. provisions that examine the criteria of individual building components. 

This paper examines the integration of a building product model and the object-oriented 

building code model. 

The Building Product Model 

In order to automate the checking of a building design for compliance to a building code 

document, the program that does the analysis of a building design must understand the 

design data. Currently, drawings that are manually inspected by a building department 

are two-dimensional representations of three-dimensional information, a constraint of 

using paper as the medium of communication.  An inspector must coordinate related 

drawings such as plans with elevations in order to develop a three-dimensional image to 

check a design against a building code. Three-dimensional model development and 

analysis has several advantages over viewing and interpreting a two-dimensional 

representation: 

• Representation of building components and their geometrical relationships to 

other components is explicit (there is no ambiguity as there is with the 

interpretation and construction of the three-dimensional building model from two-

dimensional representations which often have missing or contradictory data) 

• Elimination of the need (albeit physical models or mental images) of the three-

dimensional building model from two-dimensional views 
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• Function and behavior of the building model components can be more accurately 

modeled in a three-dimensional representation. 

Some current CAD systems allow the designer to develop three-dimensional building 

models, but when designers assemble a design or construction document package, they 

typically generate two-dimensional representations (plans, elevations, sections) for the 

review process.  Inherent in the projection of the three dimensional representation to a set 

of two-dimensional representations is the loss of design data, the simplest of which is the 

loss of data of one of the three dimensions.  Directly using three-dimensional building 

models for analysis purposes alleviates the need for the process of projection and 

subsequent regeneration (2D back to 3D).  

There have been several research efforts to develop object-oriented CAD systems and 

object-oriented building models that contain the necessary geometric, functional, and 

behavioral relationships of building components (de Waard92) (Garrett89) (Ito89).  

Currently, there is an effort by the International Alliance of Interoperability (IAI), a 

consortium of CAD vendors and other AEC industry partners, to develop standards for a 

three-dimensional project model that enables interoperability between applications by 

different software vendors (IAI97).  The IAI’s effort includes defining a set of objects 

called Industry Foundation Classes (IFCs) that conform to current object-oriented 

philosophy.  IFC Release 1.0 currently defines two standard formats for sharing project 

data: a standard EXPRESS file format and software interfaces.  The development of IFC-

compliant CAD and analysis packages to enable interoperability is the main goal of the 

IAI.  We have chosen to use the IFC Release 1.0 project model as our point of departure 

for the building model.4 For our prototype, we implemented the IFC hierarchy as shown 

in Figure 1. 

In this work, AutoCAD is being employed as the design environment.  We have 

developed a simple AutoCAD-to-IFC translation module generating the building model 

                                                 

4 IFC Release 1.5 was made available in early 1998, and Release 2.0 is being planned to become available in early 1999.  Entity 
classes differ between Release 1.0 and Release 1.5, but the Release 1.0 model adequately describes a building design for the code-
checking prototype described in this paper. 
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class attributes and relationships required by the code-checking program to perform the 

building code analysis.  Since AutoCAD currently does not support the IFC building 

model format, we have created an additional layer of building component objects with 

semantics corresponding to the IFC specifications (see Figure 2 for an example of IFC-

specific relationships of building components).  At any point in the design process, the 

designer can send the building model to the code-checking program that resides on a 

remote server.  An AutoLisp routine extracts the IFC information from the enhanced 

AutoCAD database and converts the information into an IFC EXPRESS file.  An 

example of a building model and the corresponding IFC EXPRESS file is shown in 

Figure 3.5 

For the code-checking program to correctly analyze the building model, we make one 

assumption about the use of the IFC IfcSpace that describes the attributes of a space, 

that is the designer needs to make explicit whether a space needs to be accessible.  We 

examine this issue in detail in the section that describes relevancy as it is implemented in 

the building code model. 

A Client/Server Framework 

Our prototype is built utilizing a client/server environment as shown in Figure 4.  The 

code-checking program resides on the server side of the system.  Both the client and the 

server are written in Java giving both sides of the system platform independence.  The 

user (the client) sends an IFC model (an IFC EXPRESS file) across the network to the 

code-checking program. The abstraction of network operations in Java made constructing 

a proprietary client/server communication sequence a relatively easy task.  The code-

checking program is continually listening to a predetermined socket on the server for the 

appropriate start sequence and the subsequent stream of IFC EXPRESS data.  In our 

prototype, an AutoLisp routine spawns the client process after it has generated the IFC 

                                                 

5 This example is shown to illustrate the IFC information generated by a simple building design; the EXPRESS file generated by a 
building design, for instance, in the code-checking example is too lengthy to be included in a figure. 
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EXPRESS file.  Note that the client program can also be started independently of the 

AutoLisp routine and will execute successfully as long as there is a generated IFC 

EXPRESS file that is ready to be sent to the code-checking program.  The client opens 

the IFC EXPRESS file and the corresponding socket on the server, sends the appropriate 

start sequence, and then sends the stream of the IFC EXPRESS file to the code-checking 

program.  The results are posted to a web page, and the code-checking program notifies 

the client that the analysis is complete. 

The code-checking program stores the IFC data as objects in a data structure that uses 

objects based on the hierarchical structure of the IFCs as shown in Figure 1.  We have 

constructed our Java IFC classes directly mapping the attributes and relationships as 

defined in the IFC EXPRESS schema thereby retaining the desired behavior and 

functionality (for example comparisons, see Figure 5 and Figure 6).  The IFC objects in 

the data structure have slots to accommodate additional information that is generated by 

the code-checking program (such as additional graphical information and comments 

associated with either code-compliance or code violations). 

The code-checking program on the server reads the IFC data sequentially, and an object 

that makes reference to a previously instantiated object will simply point to the previous 

object in the appropriate attribute field.  Certain attributes of a building component are 

described by a subsequent building component instantiated on another line in the 

EXPRESS file.  For example, when an IfcDoor is instantiated, an IfcRelFills and 

an IfcRelVoids must be instantiated in order to make the association between this 

door and the appropriate opening (see the EXPRESS file in Figure 3, specifically lines 

#34, #60, #61, and #62).  Once all the IFC data has been put into a data structure 

containing the building components, the code-checking program is ready to analyze the 

building model. 
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The Building Code Model 

The building code model uses the same structure as the IFC project model hierarchy.  For 

example, all encoded provisions concerning door accessibility would be instances of a 

door accessibility class.  Therefore, an individual component can be checked against all 

the applicable instances of the provisions for that class of building component.  Since 

IFCs are grouped by similar functional units (for example, doors and windows are 

subclasses of a class called IfcFillingElement), by design, we can group similar 

code issues.  For example, doors and windows have egress-related provisions.  By 

structuring the encoded provisions in this manner, we loosely categorize building 

component provisions by design intent since the behavior of similar building components 

is similar.  Design intent is defined differently according to the context (Garza95).  Here, 

we are specifically examining the design intent of the code provision. 

The code-checking program reads in a stream of IFC data to populate its database of 

building components.  Similarly, the program reads in a stream from a building code file.  

This file is a mapping from the text of provisions of a building code document to an 

EXPRESS file that has instances of the encoded provisions. The code-checking program 

reads in the building code EXPRESS file and populates a data structure containing 

instances of the building code provisions.  In the current implementation, since we are 

focusing on the ADAAG, an ADAAG building code file containing encoded provisions 

is read once when code-checking program is initialized on the server. Figure 7 shows an 

example of the EXPRESS schema for a handicapped-accessibility building code class, 

the corresponding Java class, and sample lines from the ADAAG EXPRESS file that are 

instances of the handicapped-accessibility building code class. 

Notice that one building code class can have several instances that correspond to related 

provisions in the building code—in this case, there is a class of building code 

corresponding to the issue of door clearance.  Here, a handicapped-accessibility building 

code class is an abstraction of a handicapped-accessibility concept, and the instances in 

the ADAAG EXPRESS file map to the actual text of the building code provisions, in this 

case the ADAAG document.  Other handicapped accessibility building codes can be 
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easily mapped to this accessibility code class hierarchy and generate corresponding 

EXPRESS files. 

Relevance 

Relevance as applied to checking a building design against a building code is applied in 

the following ways: 

• Determining which provision or provisions are applicable to a given building 

component or system of building components. 

• Conversely, determining which building component or system of building 

components are applicable to a given provision or set of provisions. 

• Resolving exceptions within a provision. 

There are several levels of relevance that need to be addressed.  We take a top down 

approach to determine the relevance of provisions for a specific building component.  

First, we decide if a set of provisions is relevant to the project under consideration (the 

project model).  Next we look at specific buildings, specific floors, and then specific 

spaces (for example, rooms).  Note that this hierarchy follows the same class hierarchy as 

the IFC model—it is logical that the structure of the code model closely follows the 

structure of the IFC class hierarchy.  Finally, we determine if a set of provisions is 

relevant to the specific building component associated with a specific space. 

We can determine whether provisions are relevant to a project or building given the same 

information that building inspectors receive in construction documents.  For example, a 

set of plans must list the type of building (for example, commercial, residential, and so 

on).  However, our relevance engine must determine whether a set of provisions is 

applicable to a given space in the building product model.  There are instances when 

exclusions need to be made explicit such as delineation of a historical space, but this 

additional information must be made available to the building inspector who is checking 

the plans. 
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Currently, in our implementation of the relevance module, we are looking only at 

relevance issues related to accessibility on the space level. The ADAAG sets guidelines 

for determining if a door is accessible, but other provisions must be analyzed to 

determine whether the door accessibility provisions are applicable to a specific door in 

the building model.   We require the user to explicitly label a space (an IfcSpace) as 

accessible (in our implementation, if the name of a space starts with the letter ‘x,’ then 

accessibility is not required in this space) and the code-checking program examines this 

information to note which spaces are accessible.  There are several states that a building 

component can have. The code-checking program initially labels a space as either 

REQUIRED or NOT_REQUIRED (for accessibility) according to how the user has 

explicitly labeled the space.  The other state that co-exists with the REQUIRED state, 

PASSING or FAILED, will be examined in the next section. 

The code-checking program then determines which building components are associated 

with a specific space that is in the REQUIRED state.  If a building component is within or 

intersects the space, it is put into the set.  One of the attributes for IfcSpace is the 

container HasElements, and we use it for this purpose.  We could generate this 

information in the CAD environment; however, since we cannot predict how individual 

IFC implementers will use this container, we let the code-checking program generate this 

information. 

The code-checking program is now ready to analyze the building components in each 

space that has been labeled REQUIRED.  After the building components are analyzed, the 

code-checker must again determine whether an individual building component that is 

contained in a REQUIRED space is relevant for the overall code-compliance of the 

building design.  This is the issue of cardinality deciding whether a building component 

needs to be accessible in relation to the other building components in the space being 

examined.  Since higher-level provisions often determine the number of similar building 

components that need to comply to a specific building code issue, an individual building 

component must be examined in relation to other building components of the same class 

within a given space.  For example, not all water closets in a space need to be accessible.  
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Therefore, the code-checking program must first analyze the building components in a 

space and then group and re-analyze the subset of similar components to determine 

whether they finally need to comply with accessibility code provisions.  If a building 

component does not meet accessibility code-compliance, it may not mean that the project 

is in violation of the accessibility code.  For example, the building code may only require 

that there exists a similar building component in the same space that complies. 

Encoded Building Component Provisions 

The code-checking program analyzes the building model twice with respect to the 

building code instances.  First, it analyzes all the building components in the REQUIRED 

spaces.  Then it determines whether a component needs to comply with the building code 

provisions relative to the other components in the space. 

We have concentrated on encoding building component provisions that can be mapped to 

methods in our building code model.  Geometric tests are examples of easily encodable 

building-component-based provisions (for example, the clearance requirements of a door 

for egress or accessibility).  Encoding these provisions alone is not sufficient for the 

building code framework—the code-checking program must apply relevance tests to the 

specific building component or components in question to see whether a provision or set 

of provisions is applicable. 

We noted that the code-checking program generates sets of building components 

associated with particular spaces that need to be checked for accessibility.  Conversely, 

each building component is associated with a set of one or more spaces (for example, 

building components such as doors may be associated with two spaces since a door can 

connect two spaces).  Once the code-checking program establishes these relationships, it 

examines all the building components including components that are associated with a 

space that are not required to be accessible (it is useful for the designer to have as much 

information about all the building components in a design). 
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A building component can have several states.  We have already established the 

accessibility state of spaces (REQUIRED or NOT_REQUIRED), but the code-checking 

program cannot yet determine if an individual building component associated with a 

REQUIRED space necessarily needs to be accessible; compliance of one component may 

be dependent on one or a set of other components.  Each component is checked against 

the relevant provisions, and after all related components are checked, the code-checker 

determines whether the set of components is in compliance.  The building component 

initially has a state where the requirement for accessibility is unknown and has the state 

of PASSING until it fails one of the encoded provisions tests. 

The code-checking program examines each of encoded provisions in the building code 

instances until it matches two attributes: the class of the building component and the 

attribute IfcClass in the building code component and the attribute level with the 

string “ELEMENT.”  In this inspection of the building model, the code-checking program 

is examining building components on the element level as opposed to the space level.  

When the code-checking program finds a match, it tests the encoded provision (the 

building code component instance) against the building component.  Most of the encoded 

provisions are geometric tests.  For those that are associated with the issue of clearance, 

the building component must be checked against other building components within the 

associated accessible space (or in the case of a door, the two accessible spaces that it 

connects). 

If the building component complies with the encoded provision, the code component 

returns a PASSING status.  If not, it returns a FAILED status (here, FAILED sets a status 

bit to TRUE) along with text comments.  The return status is ORed with the current status 

and the module continues to traverse and search for relevant encoded provisions.  The 

building component’s status is ORed because if a building component has failed a 

previous test, passing a future provision does not change its non-compliant state.  The 

code-checking program continues to check a component even if it has failed a previous 

test so it can return as much information on a building component as possible.  For 

example, a door can fail several clearance tests, and all issues may be of interest to the 
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designer.  As noted earlier, we reserve some fields in a building component for issues 

outside the scope of the IFC.  The code-checking program uses these fields to append the 

comments associated with code violations. 

After examining all of the building components the code-checking program must resolve 

whether an individual building component within an accessible space is required to 

comply with the accessibility code.  The code-checking program makes a second pass 

through the database of building components this time looking for matches with code 

component attribute IfcClass and the type of building component.  The program also 

looks for matches with the code component attribute “level” with the string “SPACE.”  

The code-checking program concurrently examines a set of identical building 

components associated with the same space (or spaces as would be the case for doors). 

For example, an ADAAG provision states that if toilet stalls are provided, then at least 

one needs to be accessible (this provision has several more qualifying statements, but 

using the simplified provision demonstrates the reasoning method used to analyze the 

particular space).  The code-checking program must examine each toilet associated with 

the accessible space.  If there is one that complies with the accessibility code (it had 

previously been marked as PASSING), the code-checking program marks this toilet as 

REQUIRED and all the others as NOT_REQUIRED.  If there are no toilets in the 

accessible space (they had previously been marked as FAILED) that comply with the 

accessibility code, then the code-checking program marks all the toilets in the space as 

REQUIRED.  This serves as a notification to the designer that none of the toilets in the 

space meet the accessibility code, and at least one needs to be compliant. 

At this point, the code-checking program has finished the analysis of the building model.  

All building code issues (compliance or non-compliance, associated comments) have 

been attached to the building components.  The final step is to generate the information in 

the form of a web page. 
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Web Page Generation 

The code-checking program examines building component database one final time and 

extracts the necessary information to generate a web page consisting of three frames: a 

VRML frame, COMMENTS frame, and a building code document frame.  In our prototype, 

the code-checking program color-codes a building component in the VRML model 

according to the rules in Table 1. 

Color-coding a building component yellow is useful for a designer to realize that even 

though the specific component need not be accessible, it does not comply.  In addition to 

the color-coded information, all VRML objects are hyperlinked to a set of comments in 

the COMMENTS frame since it is useful to know that an object complies with the building 

code.  As the VRML components are generated, since they are linked to the COMMENTS 

frame, the COMMENTS frame is concurrently and dynamically generated with the 

corresponding HTML anchors.  The links in the COMMENTS frame to the building code 

document frame have been predetermined for each encoded provision (see examples of 

encoded-provisions instances in Figure 7).  The building code document (in this case, the 

ADAAG) already has the predefined anchors associated with the possible links that are 

generated in the COMMENTS frame. 

Example 

To illustrate the framework developed, we present a simple example of a building model 

that does not comply with the ADAAG.  We step through the reasoning of the code-

checking program and present the results.  Then, we modify the example to make the 

design comply and highlight the differences in the code-checking analysis.  For this 

example, we focus on door accessibility issues.  We will also underline the advantages of 

using a three-dimensional building model by providing an analogous analysis of a two-

dimensional representation of the building model. 
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A Non-Compliant Design 

Figure 8 shows a plan view and an isometric view of the example.  All spaces except for 

the one noted have been marked by the designer as spaces where accessibility is required.  

Doors D1 and D2 violate ADAAG door width provisions, and the half-wall interferes 

with one of the maneuvering clearances for door D3.  All other doors in the design meet 

accessibility requirements so we will focus the discussion on these three doors. 

Relevance 

The code-checking program marks door D1 as NOT_REQUIRED.  D1 does not need to 

comply with accessibility provisions since it serves a space (space X) that is not required 

to be accessible.  For example, space X might be a mechanical room.  Since all other 

spaces are required to be accessible, the code-checking program cannot yet determine if 

the other doors in the space need to comply with the accessibility provisions.  The code-

checking framework now checks each door in the building model. 

Encoded Provisions 

The code-checking program checks all the doors against the relevant provisions that 

examine individual building components in relation to the whole building model.  Doors 

D1 and D2 violate width requirements and D3 violates a maneuvering clearance 

provision.  At this point, the code-checking program contains the status information in 

Table 2. 

Relevance Revisited 

Finally, the code-checking program checks the doors against the relevant provisions that 

relate to the cardinality issue.  For doors, an accessible space must have at least one door 

on an accessible path (a simplified view, but it demonstrates the issue of cardinality).  D1 

has already been taken care of since accessibility is not required.  An accessible route is 

required between space A and the corridor to its left.  The two door candidates for an 

accessible route are D2 and D3.  Since both violate accessibility code provisions and 

 15



there is no accessible route between the two spaces, the code-checking program labels 

both doors as being required to meet accessibility provisions shown in Table 3. 

Generating the Web Page 

Figure 9 shows the web page generated for the non-compliant building design.  Doors 

D1, D2, and D3 in the VRML model are hyperlinked to comments #45, #46, and #49 

respectively.  Door D1 (not shown) is color-coded yellow, and D2 and D3 are color-

coded red.  The underlined portions of the comments are hyperlinked to the appropriate 

ADAAG provisions.  The code-checking program also generates semi-transparent redline 

clearance box associated with D3 and the appropriate encoded maneuvering clearance 

provision.  It is hyperlinked to the appropriate sub-comment in comment #46. 

Two-Dimensional Representation Analysis 

Figure 10 shows the necessary two-dimensional representations needed to carry out the 

analogous analysis of the same example.  A code-checking program analogous to our 

prototype would first have to reconstruct the building model from the appropriate 2D 

representations in order to check it for code compliance.  We assume that whatever 

modeling package is employed to generate the 2D representations, the 2D model will 

have a logical naming scheme for the building components.  For example, A-D1, B-D1, 

and C-D1 would correspond to the same door as viewed in the plan and the two 

elevations.  Even with some standard naming convention, there is no guarantee of 

completeness of the generated 3D model.  Without a naming convention, the analogous 

2D code-checking program would have to utilize algorithms to match different views of 

the same component. 

The building model in Figure 10 illustrates some additional problems associated with this 

regeneration task.  The number of 2D views needed to generate sufficient information 

depends on the building model.  Here, we must generate two elevations in order to get all 

the height information of the half-wall and door D1.  More views would be needed for 

non-orthogonal components and placement of components. 

 16



As with the 3D-model analysis, the analogous 2D code-checking program can determine 

that doors D1 and D2 violate the width requirement information from any of the views.  

In this case, each 2D view is sufficient.  Note, though, that if door D2 were widened to 

meet the width requirements, Figure 10-A would not be adequate to guarantee 

compliance since it gives no height information, and Figure 10-B or Figure 10-C would 

be needed to generate the 3D model or provide the additional height information.  In the 

case of door D3, any individual 2D view in Figure 10 is insufficient to determine whether 

the half-wall interferes with the maneuvering clearance, and here the code-checking 

program must generate the 3D information from Figure 10-A and Figure 10-B. 

The Revised Design 

When we remove the half-wall, the design now complies with the ADAAG.  The code-

checking program’s analysis is identical to the previous example except that D3 is given 

a PASSING status. Since D3 provides an accessible route between space A and the 

corridor to its left, D2 is no longer required to meet the accessibility provisions. Figure 

11 shows the web page generated for the revised and compliant design.  Again, all the 

accessibility information is generated for each building component.  In the associated 

VRML frame, D2 is color-coded yellow, and D3 is rendered showing it meets the 

accessibility code requirements.  The information generated by the code-checking 

program when it examines the doors against the relevant space-level provisions is shown 

in Table 4. 

Discussion 

In this paper, we have demonstrated the modules of an integrated framework for code 

checking with specific focus on accessibility issues.  Although only provisions related to 

door accessibility have been implemented, the key modules required to deliver the 

client/server code-checking framework have been formalized and completed.  The 

prototype is easily extendible to accommodate other building components that must be 
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accessible.  While the code-checking program is successful in handling encodable 

provisions and localized door compliance, it does not address the following issues: 

• Complete handling of the relevance issue 

• Ambiguous provisions 

• Complete system-wide accessibility analysis  

In the following, we outline future research that is necessary to address these 

shortcomings in the framework. 

Framework Enhancements 

Figure 12 outlines our proposed code-checking framework delineating the future 

enhancements that are discussed in this section. 

Relevance 

We must increase the capabilities of the building code framework so the code-checker 

can determine which spaces must be made accessible in the building design.  Currently, 

we must explicitly define the spaces that are accessible whereas it is desirable for the 

code-checker to make the determination.  There are certain gray areas—in certain 

circumstances, a space may be explicitly delineated as not needing to be accessible.  For 

example, in a historically significant building, current provisions may not be relevant to 

some of the spaces.  Therefore, we must formally define the desired space-analyzing 

capabilities of the code-checker. 

We must also increase the scope of the relevance module by taking into consideration the 

design intent behind certain provisions.  For example, when we expand our code-

checking program to handle egress, we must address the following relevance problem: 

Building codes explicitly state when exit signs are required based on occupancy type.  

Here, the design intent is based on the issue of familiarity.  A person does not need exit 

signs in one’s home because a resident is probably familiar with the possible exit paths 
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whereas in buildings with which occupants may be unfamiliar with the surroundings, 

these paths require signs.  Also, if the room is small enough (for example, a small office), 

even if the occupant may be unfamiliar with the space, the exit path is more obvious and 

a sign is not required.  Formally, when the search space is below some threshold (here, 

familiarity reduces the search space), exit signs are not required. 

Brokered Lookup and Integration of the Distributed Object Environment 

Certain building code provisions are purposely left ambiguous.  In following example 

from the ADAAG, the U.S. Access Board has not specifically defined what constitutes a 

shape that is easy to grasp: 

4.13.9 Door Hardware. Handles, pulls, latches, locks, and other operating 

devices on accessible doors shall have a shape that is easy to grasp with 

one hand… 

In order to resolve such provisions, we propose to defer the decision as to whether an 

individual building component complies with the building code to another source that 

keeps a repository of compliant building components for a specific provision. We 

propose to implement a distributed object environment such as CORBA to implement 

this brokered lookup in our framework.  However, if we are going to implement this 

environment, it makes sense to implement this technology for an overall shared product 

model environment. 

Currently, we envision a shared product model as a repository of building components on 

the network (see Figure 13).  Various disciplines will have different views and different 

capabilities of modifying the project model.  For example, a CAD view might be 

graphical and a cost analysis view might be in the form of a spreadsheet.  Code-checking 

would be one of the many services (various different areas of code-checking would in 

fact be different services) that are on the network.  These services would be invoked from 

a view—for example, code-checking might be invoked from the CAD view, a search for 

best prices on materials might be invoked from the cost analysis view.  The invocation 

would go through a trading service that would make the determination of the relevant 
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service.  The trading service would then initiate the transfer of the shared project model 

(or relevant parts of the model) to the relevant service.  In this environment, the brokered 

lookup would simply be a sub-service of the code-checking framework.  The details on 

information transfer need to be formalized, but the current state of distributed object 

technology allows such shared product model scenarios to be implemented. 

Simulation  

We are currently working on the implementation of the motion planning algorithms to 

address global accessibility issues through simulation.  Static encoded provisions that test 

local clearance issues are insufficient to extract accessible path information from an 

entire building design.  In general, simulation has advantages over static encoded 

provisions to examine system-level issues while static encoded provisions may be 

sufficient to analyze local phenomena or individual building components. 

Conclusion 

We seek to solve the design standards processing problem in one domain (in this case, 

handicapped accessibility) and then apply the principles of our code-checking framework 

to other domains.  Since our approach entails certain domain-specific solutions, we do 

not present a completely generalized solution.  However, the principles behind our 

approach to building code checking developed here for disabled access should be 

applicable to other aspects of the building code. 

Exploration of the amount of information contained in a building model is an important 

issue. Attributes related to a building code should be generated by the code-checking 

program as opposed to being explicitly defined within the building model. As an example 

of explicitly defined attributes, IFC IfcSpace has among its attributes ExitPaths, 

ExitWidths, and ExitDistances (IAI97).  Subsequent releases of IFC will define 

more code-related processes and attributes such as IfcRamp to explicitly define a ramp 

building component.  If a designer is going to employ the services of a code-checking 

program, the program, not the designer, should make the determination of whether an 

exit path exists.  In addition, when the building code changes, the integrated 
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building/building code model will be outdated.  Our current prototype requires that the 

designer explicitly state whether a space requires accessible access—this requirement 

will be eliminated as we further develop the building code framework. 

We have demonstrated the feasibility of online code-checking with our framework.  We 

continue to develop the framework and implement all the proposed enhancements to fully 

realize the significance of our approach to the code-checking problem.  In our approach, 

we seek to solve the specific problem of automating the disabled access analysis of a 

building design.  This paper has outlined the steps needed to solve a specific code-

checking problem, and we hope to extend our approach to make it applicable to other 

areas of code-checking, but by no means do we feel that we are solving all the 

generalized design standards processing issues. 
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Figure 1: IFC class hierarchy implemented. 

Figure 2: An example of a relationship between door and wall classes. 
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#1 = P42_DIRECTION ((1.00, 0.00, 0.00));
#2 = P42_DIRECTION ((0.00, 1.00, 0.00));
#3 = P42_DIRECTION ((0.00, 0.00, 1.00));
#4 = P41D_LENGTH_MEASURE (0.00, .IN.);
#5 = P41D_LENGTH_MEASURE (0.00, .IN.);
#6 = P41D_LENGTH_MEASURE (0.00, .IN.);
#7 = IFCPOINT ((#4, #5, #6));
#8 = IFCORIENTEDVERTEX (#7, (#1, #2, #3));
#9 = P41D_POSITIVE_LENGTH_MEASURE (400.00, .IN.);
#10 = P41D_POSITIVE_LENGTH_MEASURE (400.00, .IN.);
#11 = P41D_POSITIVE_LENGTH_MEASURE (12.00, .IN.);
#12 = IFCBOUNDINGBOX (#8, #9, #10, #11);
#13 = P42_DIRECTION ((1.00, 0.00, 0.00));
#14 = P42_DIRECTION ((0.00, 1.00, 0.00));
#15 = P42_DIRECTION ((0.00, 0.00, 1.00));
#16 = P41D_LENGTH_MEASURE (440.00, .IN.);
#17 = P41D_LENGTH_MEASURE (200.00, .IN.);
#18 = P41D_LENGTH_MEASURE (-12.00, .IN.);
#19 = IFCPOINT ((#16, #17, #18));
#20 = IFCORIENTEDVERTEX (#19, (#13, #14, #15));
#21 = IFCFLOOR ((site, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #20, #0, #12,
      #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#22 = P41D_POSITIVE_LENGTH_MEASURE (306.00, .IN.);
#23 = P41D_POSITIVE_LENGTH_MEASURE (6.00, .IN.);
#24 = P41D_POSITIVE_LENGTH_MEASURE (120.00, .IN.);
#25 = IFCBOUNDINGBOX (#8, #22, #23, #24);
#26 = P42_DIRECTION ((0.00, 1.00, 0.00));
#27 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#28 = P42_DIRECTION ((0.00, 0.00, 1.00));
#29 = P41D_LENGTH_MEASURE (630.00, .IN.);
#30 = P41D_LENGTH_MEASURE (252.00, .IN.);
#31 = P41D_LENGTH_MEASURE (0.00, .IN.);
#32 = IFCPOINT ((#29, #30, #31));
#33 = IFCORIENTEDVERTEX (#32, (#26, #27, #28));
#34 = IFCWALL ((iwall-8, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #33, #0, #25,
      #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#35 = P41D_POSITIVE_LENGTH_MEASURE (36.00, .IN.);
#36 = P41D_POSITIVE_LENGTH_MEASURE (6.00, .IN.);
#37 = P41D_POSITIVE_LENGTH_MEASURE (96.00, .IN.);
#38 = IFCBOUNDINGBOX (#8, #35, #36, #37);
#39 = P42_DIRECTION ((0.00, 1.00, 0.00));
#40 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#41 = P42_DIRECTION ((0.00, 0.00, 1.00));
#42 = P41D_LENGTH_MEASURE (630.00, .IN.);
#43 = P41D_LENGTH_MEASURE (360.00, .IN.);
#44 = P41D_LENGTH_MEASURE (0.00, .IN.);
#45 = IFCPOINT ((#42, #43, #44));
#46 = IFCORIENTEDVERTEX (#45, (#39, #40, #41));
#47 = IFCOPENINGELEMENT ((idoor-c, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0,
      #46, #0, #38, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#48 = P41D_POSITIVE_LENGTH_MEASURE (36.00, .IN.);
#49 = P41D_POSITIVE_LENGTH_MEASURE (2.00, .IN.);
#50 = P41D_POSITIVE_LENGTH_MEASURE (96.00, .IN.);
#51 = IFCBOUNDINGBOX (#8, #48, #49, #50);
#52 = P42_DIRECTION ((0.00, 1.00, 0.00));
#53 = P42_DIRECTION ((-1.00, 0.00, 0.00));
#54 = P42_DIRECTION ((0.00, 0.00, 1.00));
#55 = P41D_LENGTH_MEASURE (628.00, .IN.);
#56 = P41D_LENGTH_MEASURE (360.00, .IN.);
#57 = P41D_LENGTH_MEASURE (0.00, .IN.);
#58 = IFCPOINT ((#55, #56, #57));
#59 = IFCORIENTEDVERTEX (#58, (#52, #53, #54));
#60 = IFCDOOR ((idoor-c, abc, #0), #0, #0, #0, #0, #0, #0, #0, #0, #59, #0, #51,
      #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0, #0);
#61 = IFCRELFILLS (#47, (#60));
#62 = IFCRELVOIDS (#34, (#47), ('foo', 'TRUE'));

 

Figure 3: Graphical representation of a simple design and the corresponding IFC 

EXPRESS file. 
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Figure 4: Mechanics of the prototype code-checking program. 
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package IfcClasses;
import java.util.*;

public class IfcFillingElement extends IfcAssembledElement
{
    public IfcFillingElement() {

    // constructor internals here…

    }

    public IfcFillingElement(Vector vector)
    {

    // constructor internals here…

    }

    // accessors and modifiers here…

    protected ifc_bounded_curve     ImplGeoPath;                // 19
    protected Vector                ImplGeoPoints;              // 20 ifc_cartesian_point;
    protected ifc_bounded_curve     ImplGeoFrameProfile;        // 21
    protected Vector                ImplGeoPanelProfiles;       // 22 ifc_bounded_curve;
    protected Vector                ImplGeoTrimAProfiles;       // 23 ifc_bounded_curve;
    protected Vector                ImplGeoTrimBProfiles;       // 24 ifc_bounded_curve;
    protected Vector                ImplGeoPanelFrameProfiles;  // 25 ifc_bounded_curve;
    protected ifc_length_measure    Height;                     // 26
    protected ifc_length_measure    Width;                      // 27
    protected ifc_length_measure    PanelThickness;             // 28
    protected Vector                FillsVoids;                 // IfcRelFills;
}

ENTITY IfcFillingElement
    ABSTRACT SUPERTYPE OF (ONEOF
        (IfcDoor,
         IfcWindow))
    SUBTYPE OF (IfcAssembledElement);
        ImplGeoPath : ifc_bounded_path ;
        ImplGeoPoints : LIST [0:?] OF ifc_cartesian_point;
        ImplGeoFrameProfile : ifc_bounded_curve;
        ImplGeoPanelProfiles : SET [0:?] OF ifc_bounded_curve;
        ImplGeoTrimAProfiles : SET [0:?] OF ifc_bounded_curve;
        ImplGeoTrimBProfiles : SET [0:?] OF ifc_bounded_curve;
        ImplGeoPanelFrameProfiles : SET [0:?] OF ifc_bounded_curve;
        Height : OPTIONAL ifc_length_measure;
        Width : OPTIONAL ifc_length_measure;
        PanelThickness : OPTIONAL ifc_length_measure;
    INVERSE
        FillsVoids : SET [0:1] OF IfcRelFills FOR
            FilledByFillingElement;
END_ENTITY;

IFC EXPRESS schema for IfcFillingElement:

Analogous Java classes for IfcFillingElement:

 

Figure 5: IFC EXPRESS schema for IfcFillingElement and the analogous 

Java classes. 
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ENTITY IfcRelVoids;
    VoidsBuildingElement : IfcBuildingElement;
    VoidedByOpeningElement : SET [1:?] OF IfcOpeningElement;
    Interpenetration : IfcAttLogical;
END_ENTITY;

package IfcClasses;
import java.util.*;
import Utilities.*;

public class IfcRelVoids
{
    public IfcRelVoids() {
    }

    public IfcRelVoids(Vector vector) {

    //  set up the inverse relationship here...
        Vector  HasOpenings = this.VoidsBuildingElement.getHasOpenings();

    // accessors, modifiers, and other methods here…

    private IfcBuildingElement  VoidsBuildingElement;
    private Vector              VoidedByOpeningElement; // IfcOpeningElement
    private IfcAttLogical       Interpenetration;
}

    // constructor internals here…

IFC EXPRESS schema for IfcRelVoids:

Analogous Java classes for IfcRelVoids:

 

Figure 6: IFC EXPRESS schema for IfcRelVoids and the analogous Java classes. 
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package AccessibilityClasses;
import java.util.*;
import Utilities.*;
import IfcClasses.*;
import CommentClasses.*;

public abstract class AccessibilityElement
{

public AccessibilityElement() {
    }

public AccessibilityElement(Vector vector) {

    // constructor internals here…

    }

    // accessors, mutators, and supplementary methods here…

protected String getReferenceInformation(IfcElement element, int commentIndex) {
return "<a name = \"" + element.getOwnerID().getIdentifier() + "." + commentIndex + "\">";

    }

protected String getAnchorInformation() {
return "See <a href=" + this.hyperlink + " target=\"code\">" + this.hypertext + "</a>\n";

    }

public abstract void runRule(Vector elementSet, IfcElement element);

protected String                method;
protected ifc_length_measure    dimensions[];
protected String                comments[];
protected String                hyperlink;
protected String                hypertext;
protected Class ifcClass;
protected String                level;

}

ENTITY AccessibilityElement
method : IfcString;
dimensions : LIST [0:?] OF ifc_length_measure;
comments : LIST [0:?] OF IfcString;
hyperlink : IfcString;
hypertext : IfcString;
ifcClass : Class;
level : IfcString;

}

#1 = ACCESSIBILITYDOOR          (
DoorWidth,

                                    ((32., .IN.)),
                                    (),

../adaag/adaag.htm#4.13.5,
                                    Section 4.13.5,
                                    ELEMENT
                                );
#2 = ACCESSIBILITYDOOR          (

DoorClearances,
                                    ((0., .IN.), (0., .IN.), (0., .IN.), (18., .IN.), (-60., .IN.), (80., .IN.)),
                                    (none, none, none, length, none, none),

../adaag/adaag.htm#4.13.6,
                                    Section 4.13.6,
                                    ELEMENT
                                );

EXPRESS schema for Accessibility Code component AccessibleElement:

Analogous Java classes for AccessibleElement:

Sample instances of AccessibleElement in EXPRESS format:

 

Figure 7: Schema for the Accessibility Code component, the corresponding Java 

structure, and sample instances. 
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Figure 8: Plan and isometric views of the example design. 
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Figure 9: Web page generated for the non-compliant design example. 
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Figure 10: Two-dimensional representation: plan and elevation views. 
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Figure 11: Web page generated for the revised and compliant design. 
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Figure 12: A proposed and enhanced code-checking framework. 
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Figure 13: A proposed shared model environment. 
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Accessibility Required?   Compliance?   Color 

UNKNOWN    *    NOT red or yellow 

REQUIRED    PASSING   NOT red or yellow 

REQUIRED    FAILED   red 

NOT_REQUIRED   PASSING   NOT red or yellow 

NOT_REQUIRED   FAILED   yellow 

Table 1: Building component color-coding rules. 
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 Door    Accessibility Required?   Compliance? 

D1    NOT_REQUIRED   FAILED 

D2    UNKNOWN    FAILED 

D3    UNKNOWN    FAILED 

all others   UNKNOWN    PASSING 

Table 2: Intermediate status information for the non-compliant design example. 
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Door    Accessibility Required?   Compliance? 

D1    NOT_REQUIRED   FAILED 

D2    REQUIRED    FAILED 

D3    REQUIRED    FAILED 

all others   depends    PASSING 

Table 3: Final status information for the non-compliant design example. 

 37



Door    Accessibility Required?   Compliance? 

D1    NOT_REQUIRED   FAILED 

D2    NOT_REQUIRED   FAILED 

D3    REQUIRED    PASSING 

all others   depends    PASSING 

Table 4: Final status information for the compliant design example. 
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