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Abstract 

This paper describes a distributed service architecture that enables the delivery of 

building design services over the Internet.  The architecture of an individual service is 

three-tiered.  The first tier is a common communication protocol interface.  The middle 

tier is the common product model interface.  The third tier is the core of the design 

service.  With the standardization of the first two tiers, it is possible to rapidly deploy 

various design services, both new and legacy applications, that can be easily accessed via 

the Internet.  As examples of building design services, the prototype implements a project 

manager service with a companion CAD package, a disabled building code analysis 

service, and a service that generates and displays an accessible path for a wheelchair for a 

given building design using motion planning and animation techniques. 
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Introduction 

Traditional CAD systems are monolithic in that all functions or “services” are bundled in 

a software package.   With the maturation of information and communication 

technologies, the concept that distributed CAD services are delivered over the Internet, 

Internet-based Computer-Aided Design (I-CAD), is becoming a reality.  Regli (1997) 

outlined the technologies that are now readily available to make the network-enabled  

CAD environment possible. Specifically, the technologies include: 

1. A standard product model. 

2. A distributed object environment that allows for the development and transfer of a 

design based on the standard product model. 

This paper describes a prototype implemented to illustrate a framework that provides 

building design services over the Internet.  

The benefits of the framework for distributed design services are at least twofold.  First, 

the framework provides a means to distribute design services in a modular and systematic 

way.  With this infrastructure, users have the ability to select appropriate design services 

(as opposed to having to use a large monolithic design tool) and can easily replace a 

service if a superior service becomes available without having to recompile the existing 

services being used.  Second, it provides a means to seamlessly integrate a legacy 

application as one of the modular design services in the infrastructure.  With the 

standardization of the communication protocol and the exchange of product model data, 

integration of legacy applications as well as deployment of new design packages 

becomes a straightforward task. 

In the prototype implementation, a project manager service with a companion CAD 

package and two design applications with companion viewers have been developed to 

demonstrate the operation of the infrastructure.  The project manager service acts as a 

building design (model) repository as well as a portal to direct a client application to 

other services provided in the infrastructure.  A companion CAD package, a client 
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application of the project manager service, has access to the building design repository of 

the project manager service and queries the project manager service for the location of 

other appropriate services available over the Internet.  The first design application is the 

integration of a service that performs compliance checking of a design against a building 

code for disabled accessibility (Han et al.1998).  The second design application is a 

service that generates and displays a wheelchair accessible route for a given floor plan 

design. 

The distributed object environment layer of the services is implemented with the 

Common Object Request Broker Architecture (CORBA) (Vogel and Duddy 1997), and 

the International Alliance for Interoperability (IAI) Industry Foundation Class (IFC) 

product model is used for the common product model layer (Industry 1997).  For the 

CAD service implementation as well as views of the data generated by the design 

services, standard World-Wide Web (WWW) browser technologies are employed 

although the use of these technologies is not mandatory for the functionality of a service 

or a view of a service within the infrastructure.  However, using a standard browser 

interface leverages the most widely available Internet environment as well as being a 

convenient means of quick prototyping. 

Infrastructure Framework 

Figure 1 shows the conceptual network-enabled framework for a distributed service with 

three application services and a broker.  In this framework, each individual service 

adheres to a three-tiered architecture.  The first tier, a communication protocol interface, 

gives the application services a common means to send and receive design data over the 

Internet.  The middle tier, the common product model interface, is a standard protocol 

that describes the design data.  The third tier is the core of the design service—the design 

service extracts the appropriate information of the building design through the common 

product model interface and either modifies the design data or generates a report based 

on the analysis of the data.  As shown in Figure 1, the broker does not need the product 

model interface that is present in the services.  An application package will register with 
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the broker to advertise its services in the infrastructure.  Another service will query the 

broker for the existence of services in the distributed service architecture.  The 

registration and query service is based on a predetermined constraint language, but the 

broker does not have to be aware of the underlying product model that is being used to 

exchange design data between services.  In the following, the design of the three-tiered 

architecture is examined in detail. 

The Communication Protocol Interface 

Methods that define the communication protocol interface that are made publicly 

available by the broker and the services are illustrated in Figure 2.  Following the object-

oriented paradigm, the “exposed” methods are the points of entry into the broker and the 

services, but the actual implementation of these methods is dependent on the individual 

broker or service.  The following discussion describes the minimum requirements for the 

communication protocol. 

In the simple prototype implementation, the broker interface defines only two methods, 

register() and query().  When an application registers its services with the 

broker, it provides two arguments, the service that is being registered and a string that 

describes the service.  When the broker is queried for a service, the broker returns a 

registered service that matches the description of the query argument.  In a real 

implementation of this infrastructure, a more sophisticated broker protocol would be 

necessary.  For example the client would need to provide client registration information 

and, for building code analysis services, geographic location and a more specific 

description of the type of building code (structural, mechanical, electrical, etc).  An even 

more sophisticated protocol would involve a more extensive communication sequence 

between a client and the broker.  For example, the client could query the broker for a set 

of existing services that match a specific set of constraints, and then the client could 

choose among the services returned by the broker.  For the purposes of the prototype, this 

simple interface is sufficient to illustrate the minimum specification of the broker.  For 

further description on a broker protocol, see the discussion on the CORBA Trading 

Service by Vogel and Duddy (1997). 
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The service interface for communication is also very simple with put() and get() 

being the most important methods.  The put() method sends the product model to the 

service with two arguments, a string identifying the name of the model and a stream of 

data that defines the model.  The get() method returns a model with the name 

identified by the single string argument. 

Services themselves have the ability to process a query concerning the existence of other 

services through a project manager service module.  The motivation for providing this 

ability is that in an enterprise environment, the user of a CAD package may not be given 

the responsibility of knowing what services should be used.  The project manager service 

has the responsibility of filtering the information given by the broker.  

Finally, when a service is initiated, it can be queried for its status with the status() 

method since a service may not necessarily process the information or complete the work 

immediately.  With this small set of methods for the broker and a service, the 

communication protocol layer is fully functional and can be utilized by an application 

that operates within the distributed network-based environment. 

The Product Model Interface 

In order to create an infrastructure in which design services can be incrementally added 

and since each service will have its own representation of the design data, the availability 

of multiple services suggests a mapping of each service’s design data representation to a 

common model.  Without this lingua franca, a process that needs to use a specific service 

would need to have a mapping of its representation of the design data to the service’s 

design data representation, and the need to use a new service would require additional 

mapping. 

With the three-tiered service architecture illustrated in Figure 1, the product model 

interface has been deliberately decoupled from the communication protocol interface.  

Using a distributed object paradigm, it would have been possible to expose the objects or 

building components of a common product model in the communication protocol 
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interface, thus combining the communication protocol and product model layers.  

However, if the objects (and their attributes and relationships) are made public at the 

communication protocol level, as the product model evolves, the communication protocol 

must also evolve to take into account the product model evolution.  By decoupling the 

two layers, it is up to the individual service whether the product model interface needs to 

be modified to accommodate the product model evolution. 

As previously noted, the put() and get() methods of the communications protocol 

interface take as input and output a stream of design data as strings.  In decoupling the 

two layers and keeping the infrastructure general, the trade-off comes in the efficiency of 

sending the design data.  The integrated approach of defining the objects at the 

communication protocol layer would be much more efficient but requires the continuing 

evolution of the communication protocol as the product model evolves.  Although there 

are no restrictions on how the string array is imposed by the infrastructure itself, in the 

prototype, the string array is a description of the model in EXPRESS format to conform 

with the standard IFC product model (Industry 1997). 

The product model interface stores the design data according to the individual service’s 

needs.  In the implementation of the prototype, all application services (as well as the 

client CAD package) store the design data in a hash table keyed by the building 

component identification string.  The critical constraint is that each individual service is 

able to understand the common product model that has been agreed upon a priori.  

However, by making the product model storage consistent across the infrastructure, it 

would be easier to reuse methods to extract and to send the critical data from the product 

model to the core of the design service for the appropriate analysis. 

The Core of the Design Service 

Any application service needs to extract a view or a diagram from the product model 

(Clancy 1985).  The transformation from the product model to a view or a diagram is 

unique to the application.  The core of the design service needs to map the common 

product model data to its own design data representation.  If part of the task of the design 
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service is to modify the product model that has been deposited into its repository, the 

service must then perform a reverse mapping from its own design data representation 

back to the common product model to update the model.  Otherwise, the service simply 

generates a report. 

In the prototype, the two design applications simply generate a report after mapping the 

common product model to their own design data representation and performing some 

analysis. Therefore, each of these services represents a one-way exchange of design data.  

To generate their respective reports, these services translate their own internal design 

data representations into human-readable formats.  If the services were to report their 

findings directly to the originating process, a two-way exchange of design data would be 

required.  The project manager is an example of a service that performs both input and 

output of a design model, a two-way exchange of design data.  Even though the project 

manager is only a repository and does not modify the design data, it still must perform a 

mapping and a reverse mapping corresponding to the input and the output of a building 

model. 

The Distributed Service Architecture Prototype 

This section describes the technologies used to implement the distributed service 

architecture for building design services as illustrated in Figure 3.  For the design 

services, the communication protocol layer is implemented using CORBA, and the IAI 

IFC (Industry 1997) is employed as the common product model.  A seamless interface 

between CORBA and the IAI IFC would be critical for the proliferation of 

communication and services across the Internet for building design applications.  The IAI 

IFC product model effort is the only building product model that has the support of major 

CAD vendors and manufacturers associated with the building industry. 

CORBA provides a high-level distributed object paradigm that is well-suited to 

implement a network-based distributed service architecture.  Specific desirable features 

include interface implementation independence, object access independent of the 
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implemented programming language, object access independent of location, and access 

to standard distributed object services and facilities (Vogel and Duddy 1997). 

Java is employed as the programming language to implement most parts of the 

distributed service architecture, both the services as well as the service clients.  Java’s 

well-designed object-oriented structure and platform independence were the influencing 

factors in using it as the implementing programming language.  The wide proliferation of 

the Internet can be attributed to the ease of World-Wide Web access, so taking advantage 

of this environment was appropriate.  When interaction was needed within the Web 

browser environment, Java applets could be seamlessly integrated into the Java-written 

distributed architecture.  The client CAD package and the accessible path viewer employ 

Java applets to create browser-based interfaces. 

The disadvantage of Java’s implementation of platform independence is execution speed.  

Thus, the motion planner and the animator are application service programs written in 

C++ for optimal computational performance.  Since Java provides simple methods for 

incorporating external processes, the integration of the C++-written applications within 

the Java-written infrastructure was straightforward. 

The Common Distributed Object Environment 

The communication protocol interface shown in Figure 2 is the Interface Definition 

Language (IDL) file used to generate the CORBA-related Java source code.  Using an 

IDL-to-Java generator (provided by the Java Development Kit 1.2 from Sun 

Microsystems), source code known as stubs and skeletons is generated for the broker and 

the services.  Note that a service is an application program that interacts with the broker 

in the form of registration and queries, and the CAD client is the program that interacts 

with the project manager service.  Once the stubs and skeletons associated with the IDL 

file are generated, the developer can simply implement the exposed methods following 

the object-oriented paradigm.  Though applications access objects and their methods 

defined in the IDL file in a distributed object environment across the Internet, from the 

 8



application’s point of view, these objects and methods are treated as local entities.  This 

concept underlines the power of the CORBA paradigm. 

One feature of CORBA is the Naming Service which allows distributed objects or 

applications to register and locate other distributed objects or applications at a common 

location by name (Vogel and Duddy 1997).  The order in which the various distributed 

applications are launched is critical: The Naming Service must be launched first.   For the 

prototype, a broker called “SimpleTrader” is the first process that registers with the 

Naming Service since the design services will register with the broker.  The design 

services must be launched before their respective clients (the CAD package is a client to 

the project manager service, and the path-viewing is a client to the path planning service).  

It is the responsibility of the project manager service to query the broker for the 

availability of design services.  If a design service has not been launched (and therefore 

has not registered with the broker), when the broker is queried by the project manager 

service for that design service, the broker will simply inform the project manager service 

that the requested design service is not available. 

When a design service is initialized, it queries the Naming Service for the broker object.  

The Naming Service returns the broker object to the design service, which can now 

register with the broker.  Similarly, when a client of a design service is initialized, it 

queries the Naming Service for a specific design service object.  For example, the client 

CAD package queries the Naming Service for the project manager service by its name 

“ProjectManager”.  Once the Naming Service returns the service object to the client, the 

client can interact with the service using the exposed methods that are described in the 

IDL file. 

The Common Building Product Model 

The communication protocol interface specifies methods for sending and retrieving a 

building model from a service without the interface having any knowledge about the 

semantics of the building model.  However, understanding the semantics of the building 

model is the responsibility of the product model interface.  There have been several 
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research efforts to develop object-oriented CAD systems and object-oriented building 

models that contain the necessary geometric, functional, and behavioral relationships of 

building components (de Waard 1992, Garrett et al. 1989, Ito et al. 1989).  Currently, 

there is an effort by the International Alliance of Interoperability (IAI), a consortium of 

CAD vendors and other AEC industry partners, to develop standards for a three-

dimensional project model that enables interoperability between applications by different 

software vendors (Industry 1997). The development of IFC-compliant CAD and analysis 

packages to enable interoperability is the main goal of the IAI.  The same motivation for 

developing a standard building product model applies to the development of the 

distributed service architecture.  The IAI’s effort includes defining a set of objects called 

Industry Foundation Classes (IFCs) that adhere to the object-oriented paradigm. 

IAI defines two standard formats for IFCs for sharing project data: a standard EXPRESS 

file format and a distributed object specification using IDL. The IFC (Release 1.5) 

project model is used as the point of departure for the common product model interface.  

However, the EXPRESS file format (in the form of a data stream as opposed to a static 

file) was chosen over the IDL specification to decouple the communication protocol 

interface and the common product model interface. 

The IFC-compliant design data stream transfers from one application via the 

communication protocol interface to the product model interface of another service.  The 

product model interface constructs an IFC-compliant internal representation of the design 

data from the data stream.  A Java class structure that mirrors the IFC EXPRESS 

schema’s class hierarchy, attributes, and relationships has been constructed for the 

internal representation (see Figure 4).  The communication protocol interface or the 

common product model interface does not specify how the design data is stored, but in 

the prototype implementation, the data is stored in a hash table keyed by the 

identification string of the building component.  The only restriction mandated by the 

common product model interface is that the core of the design service accesses the 

building components in the repository by the name of the model and the name of the 

building component.  Once the building components are stored in the hash table, the core 
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of the design service can extract the necessary data from the table to perform a particular 

analysis. 

The Design Services 

A variety of the design services implemented using the prototype infrastructure 

demonstrate the flexibility of the distributed service architecture.  The combination of the 

project manager service and a client CAD package illustrates a new application 

developed specifically for the distributed service architecture, while the two design 

services are legacy applications to various degrees. As shown in Figure 3, the client 

applications of the design services vary in their use of the communication protocol 

interface and the product model interface. 

The Project Manager Service with a Client CAD Package 

The project manager is a very simple service to illustrate the functionality of the 

communication protocol and product model interface.  Since the main function of the 

project manager service is to act as a repository of building models, the service core layer 

does not perform any design data extraction and analysis from the building model that 

resides in the product model interface. The only other function the project manager 

service has is to process queries from the client CAD package by first passing the queries 

to the broker and then transferring the service object that the broker has returned back to 

the CAD package.  In an enterprise environment, instead of simply acting as a pass-

through mechanism, the project manager service may act as a security agent that would 

filter the CAD package’s service request depending on the constraints of the specific 

project. 

The client CAD package, a combination of a Java Applet and a Virtual Reality Modeling 

Language (VRML) (“Information” 1997) interface, is launched when its Web page is 

accessed (refer to Figure 5 for a detailed diagram of the CAD package architecture).  The 

CAD package has a three-tiered architecture that is very similar to the service 

architecture illustrated in Figure 3, but the CORBA communication protocol interface is 

the complement of the service communication protocol: it sends requests to the project 
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manager using the get() and put() exposed methods. The applet first retrieves the 

project manager service object from the CORBA Naming Service.  Since the CAD 

package has its own local repository of building components, its product model interface 

is identical to the service product model interface.  The third tier of the client CAD 

package includes the UI.  The Java applet handles the textual UI, and the applet 

communicates with the VRML graphical UI using the VRML External Authoring 

Interface (EAI) (Marrin 1997).  The various aforementioned Web browser-associated 

technologies allowed rapid prototyping of the client CAD package.  Any commercial 

IFC-compliant CAD package that could incorporate the CORBA communication 

protocol could also be used. 

The CAD package can retrieve building models either from the project manager service 

repository or from a static local model file, which is an IFC-compliant file in EXPRESS 

file format.  The retrieved model can be viewed, modified, and saved back to the project 

manager repository.  In addition, the CAD package queries the project manager for the 

available design applications that have been registered, and it can send the model that is 

currently being developed to the design application. 

The Disabled Access Code Analysis Service 

The disabled access code analysis service is an example of a legacy client/server 

application (Han et al. 1998) that is wrapped by the service.  Once wrapped, the legacy 

application can be integrated into the distributed service architecture.  The legacy 

client/server application shown in Figure 6 has its own proprietary communication 

protocol interface and a different product model interface, an earlier Release 1.0 version 

of the IAI IFC. Therefore, the core of the Java’s application service is to map the 

common product model to the legacy application’s product model.  Once the design data 

is mapped, the service launches the legacy application which then sends the stream of 

design data to the server where the code compliance checker resides. 

The legacy server application receives the design data, runs a code compliance analysis 

on the building model, and generates a Web page with a VRML model of the design with 

redlines.  The redlines have hyperlinks to code comments, and the code comments have 

 12



hyperlinks to the actual building code document, in this case, the Americans with 

Disabilities Act Accessibility Guidelines (1997). Note that since the report generated by 

the legacy application is a Web page with only simple hyperlink interaction, as illustrated 

in Figure 3 and Figure 6, the Web page report has no CORBA communication protocol 

or IFC product model interface. 

The Accessible Path Generating Service 

The accessible path generating service illustrated in Figure 7 incorporates legacy 

applications, a motion planner and an animation generator which are written in C++.  As 

illustrated in Figure 7, the Java application portion of the service launches the motion 

planner and the animator processes, a straightforward process using Java.  The core of the 

application service extracts the necessary design data from the product model interface 

and sends it to the first legacy application, the motion planner. The animator then reads 

the path file generated by the motion planner, and it generates the VRML animation.  The 

client viewer has a CORBA communication protocol interface, but no product model 

interface.  The client viewer’s communication interface polls the path-planning service 

for the service’s status.  The viewer is notified when the service has completed its 

analysis, and, if desired, then loads the animator-generated VRML file. 

Before calling the motion planner, the design core interface first extracts the design data 

from the product model interface and creates a file composed of the positions of the 

obstacles, an initial point, and a goal point.  The walls and windows of the building 

model are mapped to obstacles, the center of the entry space is mapped to the initial 

point, and the space in front of a designated fixture (the clearance space) is mapped to the 

goal point. 

The motion planning application was written incorporating the techniques described by 

Latombe (1991a, 1991b).  The motion planner reads in the obstacles, initial point, and 

goal point, and generates a predetermined number of configuration-space potential-field 

maps based on the granularity of the angular increment of the wheelchair robot.  Using 

these maps, the planner determines the path from the initial point to the goal point.    

Instead of using Reeds and Shepp curves (Reeds and Shepp 1991) as described by 
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Latombe (1991a, 1991b) to create the non-holonomic path from a generated holonomic 

path, the wheelchair robot is forced to go either forward or turn right or left at a 

predefined radius.  Thus, the path-planner creates a non-holonomic path from the 

beginning.  It uses a priority queue to prioritize the three choices in the event that the 

wheelchair robot follows a local minimal path. 

The motion planner creates a file with the sequence of positions of the wheelchair from 

the initial point to the goal point.  The animator reads in this two-dimensional 

information to generate the motion of a wheelchair in VRML by calculating the major 

and minor wheel movements and the arm motion of the wheelchair occupant. 

Example Scenario 

In this section, an example of how the distributed service architecture can be used is 

presented.  Referring to Figure 3, a broker process starts by registering itself with the 

CORBA Naming Service.  As noted earlier, the Naming Service is the mechanism that 

allows other services to locate the broker.  The two design services are initialized and 

they locate and register with the broker.  Finally, the project manager is initialized and 

registers with the Naming Service so that the client CAD package can in turn locate the 

project manager.  Although the project manager does not register with the broker, 

communications between the project manager and the broker are established in order to 

access the services that do register with the broker, in this case the two design 

applications.  

When the client CAD package is brought up in a Web browser, the CAD package 

establishes communications with the project manager.  Once this communication is 

established, the client CAD package can retrieve and save building designs to the project 

manager.  When the designer is interested in running a specific design service from the 

client CAD environment, the client CAD package queries the project manager whether 

that design service has been registered, and the project manager in turn queries the 

broker.  The broker returns the design service object to the client CAD package via the 
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project manager.  At this point, the client CAD package sends the design data to the 

design application and the design application can then proceed and perform the service 

required. 

A designer can retrieve a model from the project manager service or from a local file as 

illustrated in Figure 8 using the client CAD package.  As shown in the figure, there are 

two shelves included in the CAD model.  The IFC-compliant model was created in an 

IFC-enhanced AutoCAD environment (see Figure 9).  AutoCAD blocks are mapped to 

IFC building components; an AutoLisp program was written to extract this design data 

and generate the IFC EXPRESS text file.  When available, commercial IFC-compliant 

CAD packages could be linked to the distributed service infrastructure as clients to the 

project manager service by providing the communication protocol within the CAD 

environment (Since no commercial IFC-compliant CAD packages were available when 

the prototype was implemented, a simple browser-based IFC-compliant client CAD 

package was developed in this study). 

The designer executes the disabled access code-checking service to analyze the design 

for local geometric code violations.  The service generates the Web page shown in Figure 

10 reporting that one of the doors, door001, does not comply with a building code 

provision.  Specifically, shelf1 intrudes upon a maneuvering clearance of door001.  

When shelf1 is deleted and the disabled access code-checking service is run again, 

door001 now complies with the regulations as shown in Figure 11. 

To further explore the accessibility path from the entrance to the location of a building 

component, the designer runs the wheelchair path-generating service.  The generated path 

shows the wheelchair having to go through an extra room in order to reach the designated 

goal point, in this case a sink, because shelf2 blocks the middle hallway.  Figure 12 

illustrates the path generated by the motion planner, and Figure 13 illustrates the motion 

planning results presented in the client viewer’s Web page.  When the designer removes 

the shelf from the design and runs the wheelchair path-generating service again, the 

service generates the path illustrated in Figure 14 showing that the wheelchair can now 
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reach the room with the sink by going through the middle hallway.  Figure 15 shows a 

snapshot of the generated animation. 

Discussion 

This paper has described a distributed service architecture that allows design services to 

be incorporated into a modular network-enabled infrastructure.  Three such services, a 

project manager and two design applications, were implemented.  By providing a 

modular infrastructure, services can be added or updated without re-compilation or re-

initialization of existing services.  While this work has focused on automated disabled 

access building design analysis, other building-design-related services can be 

implemented and linked to the network infrastructure.  For example, if a building 

component inventory service is implemented, a designer could query such a service for 

the availability and pricing of a specific component such as a fixture, an appliance, etc. 

The infrastructure is contingent on two common interfaces, the communication protocol 

interface and the common product model interface.  As demonstrated, standardizing a 

communication protocol and decoupling it from the product model interface has its 

advantages and drawbacks.  The major advantage is that the communication protocol 

interface does not depend on changes (updates and evolution) of the product model since 

the stream of design data is object-independent; it is the responsibility of the product 

model protocol to parse the design data stream.  The major disadvantage is the 

inefficiency of the transmission of the design data from service to service.  

Standardization of the product model is more of a challenge.  While the services 

demonstrated have simple mappings from the common product model to their own design 

representations without loss of critical information, other services may need more 

information than is provided in the standard product model, thus bringing up issues such 

as object overloading.  There are at least two issues that need to be addressed.  First, the 

product model must have a formal mechanism to extend the model with new attributes 

and relationships.  Second, in order to address the object overloading issue, there must be 
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a formal mechanism for a service to query the process that calls the service to extract 

only the necessary attributes and relationships of a building design model. 

Finally, the distributed service architecture prototype described in this paper does not 

address issues of security raised by Regli (1997) and others (for example, see Wiederhold 

et al. (1997) and version control (Krishnamurthy 1996)).  Security issues could be 

addressed in the communication protocol interface and the project manager service while 

version control could be incorporated in the common product model interface. 
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// --------------------------------------------------------------------
//  Name: DistributedServiceArchitecture.idl
//  Author: Chuck Han
//
//  --------------------------------------------------------------------
//

module DistributedServiceArchitecture
{

typedef sequence<string> StringArray;

interface Service;

interface TradingService // the broker
{

void register(in Service service, in string serviceType);
Service query(in string serviceType);

};

interface Service // the service
{

void put(in string whichModel, in StringArray stringArray);
StringArray get(in string whichModel);
StringArray list();
void tradingService(in TradingService tradingService);
Service query(in string serviceType);
short status(in string session);

};
};
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Figure 1: A conceptual diagram of the distributed service architecture 
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// --------------------------------------------------------------------
//  Name: DistributedServiceArchitecture.idl
//  Author: Chuck Han
//
//  --------------------------------------------------------------------
//

module DistributedServiceArchitecture
{

typedef sequence<string> StringArray;

interface Service;

interface TradingService // the broker
{

void register(in Service service, in string serviceType);
Service query(in string serviceType);

};

interface Service // the service
{

void put(in string whichModel, in StringArray stringArray);
StringArray get(in string whichModel);
StringArray list();
void tradingService(in TradingService tradingService);
Service query(in string serviceType);
short status(in string session);

};
};

 

Figure 2: The communication protocol interface 
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Figure 3: A distributed service architecture implementation 
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Figure 4: The IFC hierarchy implemented for the common product model 
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Figure 5: The program manager service and the client CAD package 
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Figure 6: The accessibility analysis service and the generated report 
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Figure 8: An example client CAD package session with the shelves circled 
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Figure 9: The design generated in an IFC-enhanced AutoCAD environment 
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Figure 10: Accessibility Checker results with the non-compliant door circled 
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Figure 11: Accessibility Checker results of the revised design 
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Figure 12: The path generated by the motion planner after the first design revision 

 47



 

Figure 13: The animated view after the first design revision 
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Figure 14: The generated path after the second design revision 
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Figure 15: The animated view after the second design revision  
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