
Building Design Services in a Distributed Service Architecture

Charles S. Han1, John C. Kunz2, Kincho H. Law3

Center for Integrated Facility Engineering
Stanford University
Stanford, CA 94305-4020

Abstract

This paper describes a distributed service architecture that enables the delivery of

building design services over the Internet. The architecture of an individual service is

three-tiered. The first tier is a common communication protocol interface. The middle

tier is the common product model interface. The third tier is the core of the design

service. With the standardization of the first two tiers, it is possible to rapidly deploy

various design services, both new and legacy applications, that can be easily accessed via

the Internet. As examples of building design services, the prototype implements a project

manager service with a companion CAD package, a disabled building code analysis

service, and a service that generates and displays an accessible path for a wheelchair for a

given building design using motion planning and animation techniques.

Key Words

automation, distributed object environment, Common Object Request Broker

Architecture (CORBA), World-Wide Web (WWW), Computer-Aided Design (CAD),

disabled access, robotics, motion planning, animation, Virtual Reality Modeling

Language (VRML), product model, Industry Foundation Classes (IFC)

1 Graduate Student, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305,
csh@galerkin.stanford.edu
2 Senior Research Associate, Center for Integrated Facility Engineering, Stanford University, Stanford, CA 94305,
kunz@cive.stanford.edu
3 Professor, Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, law@cive.stanford.edu

 1

Introduction

Traditional CAD systems are monolithic in that all functions or “services” are bundled in

a software package. With the maturation of information and communication

technologies, the concept that distributed CAD services are delivered over the Internet,

Internet-based Computer-Aided Design (I-CAD), is becoming a reality. Regli (1997)

outlined the technologies that are now readily available to make the network-enabled

CAD environment possible. Specifically, the technologies include:

1. A standard product model.

2. A distributed object environment that allows for the development and transfer of a

design based on the standard product model.

This paper describes a prototype implemented to illustrate a framework that provides

building design services over the Internet.

The benefits of the framework for distributed design services are at least twofold. First,

the framework provides a means to distribute design services in a modular and systematic

way. With this infrastructure, users have the ability to select appropriate design services

(as opposed to having to use a large monolithic design tool) and can easily replace a

service if a superior service becomes available without having to recompile the existing

services being used. Second, it provides a means to seamlessly integrate a legacy

application as one of the modular design services in the infrastructure. With the

standardization of the communication protocol and the exchange of product model data,

integration of legacy applications as well as deployment of new design packages

becomes a straightforward task.

In the prototype implementation, a project manager service with a companion CAD

package and two design applications with companion viewers have been developed to

demonstrate the operation of the infrastructure. The project manager service acts as a

building design (model) repository as well as a portal to direct a client application to

other services provided in the infrastructure. A companion CAD package, a client

 2

application of the project manager service, has access to the building design repository of

the project manager service and queries the project manager service for the location of

other appropriate services available over the Internet. The first design application is the

integration of a service that performs compliance checking of a design against a building

code for disabled accessibility (Han et al.1998). The second design application is a

service that generates and displays a wheelchair accessible route for a given floor plan

design.

The distributed object environment layer of the services is implemented with the

Common Object Request Broker Architecture (CORBA) (Vogel and Duddy 1997), and

the International Alliance for Interoperability (IAI) Industry Foundation Class (IFC)

product model is used for the common product model layer (Industry 1997). For the

CAD service implementation as well as views of the data generated by the design

services, standard World-Wide Web (WWW) browser technologies are employed

although the use of these technologies is not mandatory for the functionality of a service

or a view of a service within the infrastructure. However, using a standard browser

interface leverages the most widely available Internet environment as well as being a

convenient means of quick prototyping.

Infrastructure Framework

Figure 1 shows the conceptual network-enabled framework for a distributed service with

three application services and a broker. In this framework, each individual service

adheres to a three-tiered architecture. The first tier, a communication protocol interface,

gives the application services a common means to send and receive design data over the

Internet. The middle tier, the common product model interface, is a standard protocol

that describes the design data. The third tier is the core of the design service—the design

service extracts the appropriate information of the building design through the common

product model interface and either modifies the design data or generates a report based

on the analysis of the data. As shown in Figure 1, the broker does not need the product

model interface that is present in the services. An application package will register with

 3

the broker to advertise its services in the infrastructure. Another service will query the

broker for the existence of services in the distributed service architecture. The

registration and query service is based on a predetermined constraint language, but the

broker does not have to be aware of the underlying product model that is being used to

exchange design data between services. In the following, the design of the three-tiered

architecture is examined in detail.

The Communication Protocol Interface

Methods that define the communication protocol interface that are made publicly

available by the broker and the services are illustrated in Figure 2. Following the object-

oriented paradigm, the “exposed” methods are the points of entry into the broker and the

services, but the actual implementation of these methods is dependent on the individual

broker or service. The following discussion describes the minimum requirements for the

communication protocol.

In the simple prototype implementation, the broker interface defines only two methods,

register() and query(). When an application registers its services with the

broker, it provides two arguments, the service that is being registered and a string that

describes the service. When the broker is queried for a service, the broker returns a

registered service that matches the description of the query argument. In a real

implementation of this infrastructure, a more sophisticated broker protocol would be

necessary. For example the client would need to provide client registration information

and, for building code analysis services, geographic location and a more specific

description of the type of building code (structural, mechanical, electrical, etc). An even

more sophisticated protocol would involve a more extensive communication sequence

between a client and the broker. For example, the client could query the broker for a set

of existing services that match a specific set of constraints, and then the client could

choose among the services returned by the broker. For the purposes of the prototype, this

simple interface is sufficient to illustrate the minimum specification of the broker. For

further description on a broker protocol, see the discussion on the CORBA Trading

Service by Vogel and Duddy (1997).

 4

The service interface for communication is also very simple with put() and get()

being the most important methods. The put() method sends the product model to the

service with two arguments, a string identifying the name of the model and a stream of

data that defines the model. The get() method returns a model with the name

identified by the single string argument.

Services themselves have the ability to process a query concerning the existence of other

services through a project manager service module. The motivation for providing this

ability is that in an enterprise environment, the user of a CAD package may not be given

the responsibility of knowing what services should be used. The project manager service

has the responsibility of filtering the information given by the broker.

Finally, when a service is initiated, it can be queried for its status with the status()

method since a service may not necessarily process the information or complete the work

immediately. With this small set of methods for the broker and a service, the

communication protocol layer is fully functional and can be utilized by an application

that operates within the distributed network-based environment.

The Product Model Interface

In order to create an infrastructure in which design services can be incrementally added

and since each service will have its own representation of the design data, the availability

of multiple services suggests a mapping of each service’s design data representation to a

common model. Without this lingua franca, a process that needs to use a specific service

would need to have a mapping of its representation of the design data to the service’s

design data representation, and the need to use a new service would require additional

mapping.

With the three-tiered service architecture illustrated in Figure 1, the product model

interface has been deliberately decoupled from the communication protocol interface.

Using a distributed object paradigm, it would have been possible to expose the objects or

building components of a common product model in the communication protocol

 5

interface, thus combining the communication protocol and product model layers.

However, if the objects (and their attributes and relationships) are made public at the

communication protocol level, as the product model evolves, the communication protocol

must also evolve to take into account the product model evolution. By decoupling the

two layers, it is up to the individual service whether the product model interface needs to

be modified to accommodate the product model evolution.

As previously noted, the put() and get() methods of the communications protocol

interface take as input and output a stream of design data as strings. In decoupling the

two layers and keeping the infrastructure general, the trade-off comes in the efficiency of

sending the design data. The integrated approach of defining the objects at the

communication protocol layer would be much more efficient but requires the continuing

evolution of the communication protocol as the product model evolves. Although there

are no restrictions on how the string array is imposed by the infrastructure itself, in the

prototype, the string array is a description of the model in EXPRESS format to conform

with the standard IFC product model (Industry 1997).

The product model interface stores the design data according to the individual service’s

needs. In the implementation of the prototype, all application services (as well as the

client CAD package) store the design data in a hash table keyed by the building

component identification string. The critical constraint is that each individual service is

able to understand the common product model that has been agreed upon a priori.

However, by making the product model storage consistent across the infrastructure, it

would be easier to reuse methods to extract and to send the critical data from the product

model to the core of the design service for the appropriate analysis.

The Core of the Design Service

Any application service needs to extract a view or a diagram from the product model

(Clancy 1985). The transformation from the product model to a view or a diagram is

unique to the application. The core of the design service needs to map the common

product model data to its own design data representation. If part of the task of the design

 6

service is to modify the product model that has been deposited into its repository, the

service must then perform a reverse mapping from its own design data representation

back to the common product model to update the model. Otherwise, the service simply

generates a report.

In the prototype, the two design applications simply generate a report after mapping the

common product model to their own design data representation and performing some

analysis. Therefore, each of these services represents a one-way exchange of design data.

To generate their respective reports, these services translate their own internal design

data representations into human-readable formats. If the services were to report their

findings directly to the originating process, a two-way exchange of design data would be

required. The project manager is an example of a service that performs both input and

output of a design model, a two-way exchange of design data. Even though the project

manager is only a repository and does not modify the design data, it still must perform a

mapping and a reverse mapping corresponding to the input and the output of a building

model.

The Distributed Service Architecture Prototype

This section describes the technologies used to implement the distributed service

architecture for building design services as illustrated in Figure 3. For the design

services, the communication protocol layer is implemented using CORBA, and the IAI

IFC (Industry 1997) is employed as the common product model. A seamless interface

between CORBA and the IAI IFC would be critical for the proliferation of

communication and services across the Internet for building design applications. The IAI

IFC product model effort is the only building product model that has the support of major

CAD vendors and manufacturers associated with the building industry.

CORBA provides a high-level distributed object paradigm that is well-suited to

implement a network-based distributed service architecture. Specific desirable features

include interface implementation independence, object access independent of the

 7

implemented programming language, object access independent of location, and access

to standard distributed object services and facilities (Vogel and Duddy 1997).

Java is employed as the programming language to implement most parts of the

distributed service architecture, both the services as well as the service clients. Java’s

well-designed object-oriented structure and platform independence were the influencing

factors in using it as the implementing programming language. The wide proliferation of

the Internet can be attributed to the ease of World-Wide Web access, so taking advantage

of this environment was appropriate. When interaction was needed within the Web

browser environment, Java applets could be seamlessly integrated into the Java-written

distributed architecture. The client CAD package and the accessible path viewer employ

Java applets to create browser-based interfaces.

The disadvantage of Java’s implementation of platform independence is execution speed.

Thus, the motion planner and the animator are application service programs written in

C++ for optimal computational performance. Since Java provides simple methods for

incorporating external processes, the integration of the C++-written applications within

the Java-written infrastructure was straightforward.

The Common Distributed Object Environment

The communication protocol interface shown in Figure 2 is the Interface Definition

Language (IDL) file used to generate the CORBA-related Java source code. Using an

IDL-to-Java generator (provided by the Java Development Kit 1.2 from Sun

Microsystems), source code known as stubs and skeletons is generated for the broker and

the services. Note that a service is an application program that interacts with the broker

in the form of registration and queries, and the CAD client is the program that interacts

with the project manager service. Once the stubs and skeletons associated with the IDL

file are generated, the developer can simply implement the exposed methods following

the object-oriented paradigm. Though applications access objects and their methods

defined in the IDL file in a distributed object environment across the Internet, from the

 8

application’s point of view, these objects and methods are treated as local entities. This

concept underlines the power of the CORBA paradigm.

One feature of CORBA is the Naming Service which allows distributed objects or

applications to register and locate other distributed objects or applications at a common

location by name (Vogel and Duddy 1997). The order in which the various distributed

applications are launched is critical: The Naming Service must be launched first. For the

prototype, a broker called “SimpleTrader” is the first process that registers with the

Naming Service since the design services will register with the broker. The design

services must be launched before their respective clients (the CAD package is a client to

the project manager service, and the path-viewing is a client to the path planning service).

It is the responsibility of the project manager service to query the broker for the

availability of design services. If a design service has not been launched (and therefore

has not registered with the broker), when the broker is queried by the project manager

service for that design service, the broker will simply inform the project manager service

that the requested design service is not available.

When a design service is initialized, it queries the Naming Service for the broker object.

The Naming Service returns the broker object to the design service, which can now

register with the broker. Similarly, when a client of a design service is initialized, it

queries the Naming Service for a specific design service object. For example, the client

CAD package queries the Naming Service for the project manager service by its name

“ProjectManager”. Once the Naming Service returns the service object to the client, the

client can interact with the service using the exposed methods that are described in the

IDL file.

The Common Building Product Model

The communication protocol interface specifies methods for sending and retrieving a

building model from a service without the interface having any knowledge about the

semantics of the building model. However, understanding the semantics of the building

model is the responsibility of the product model interface. There have been several

 9

research efforts to develop object-oriented CAD systems and object-oriented building

models that contain the necessary geometric, functional, and behavioral relationships of

building components (de Waard 1992, Garrett et al. 1989, Ito et al. 1989). Currently,

there is an effort by the International Alliance of Interoperability (IAI), a consortium of

CAD vendors and other AEC industry partners, to develop standards for a three-

dimensional project model that enables interoperability between applications by different

software vendors (Industry 1997). The development of IFC-compliant CAD and analysis

packages to enable interoperability is the main goal of the IAI. The same motivation for

developing a standard building product model applies to the development of the

distributed service architecture. The IAI’s effort includes defining a set of objects called

Industry Foundation Classes (IFCs) that adhere to the object-oriented paradigm.

IAI defines two standard formats for IFCs for sharing project data: a standard EXPRESS

file format and a distributed object specification using IDL. The IFC (Release 1.5)

project model is used as the point of departure for the common product model interface.

However, the EXPRESS file format (in the form of a data stream as opposed to a static

file) was chosen over the IDL specification to decouple the communication protocol

interface and the common product model interface.

The IFC-compliant design data stream transfers from one application via the

communication protocol interface to the product model interface of another service. The

product model interface constructs an IFC-compliant internal representation of the design

data from the data stream. A Java class structure that mirrors the IFC EXPRESS

schema’s class hierarchy, attributes, and relationships has been constructed for the

internal representation (see Figure 4). The communication protocol interface or the

common product model interface does not specify how the design data is stored, but in

the prototype implementation, the data is stored in a hash table keyed by the

identification string of the building component. The only restriction mandated by the

common product model interface is that the core of the design service accesses the

building components in the repository by the name of the model and the name of the

building component. Once the building components are stored in the hash table, the core

 10

of the design service can extract the necessary data from the table to perform a particular

analysis.

The Design Services

A variety of the design services implemented using the prototype infrastructure

demonstrate the flexibility of the distributed service architecture. The combination of the

project manager service and a client CAD package illustrates a new application

developed specifically for the distributed service architecture, while the two design

services are legacy applications to various degrees. As shown in Figure 3, the client

applications of the design services vary in their use of the communication protocol

interface and the product model interface.

The Project Manager Service with a Client CAD Package

The project manager is a very simple service to illustrate the functionality of the

communication protocol and product model interface. Since the main function of the

project manager service is to act as a repository of building models, the service core layer

does not perform any design data extraction and analysis from the building model that

resides in the product model interface. The only other function the project manager

service has is to process queries from the client CAD package by first passing the queries

to the broker and then transferring the service object that the broker has returned back to

the CAD package. In an enterprise environment, instead of simply acting as a pass-

through mechanism, the project manager service may act as a security agent that would

filter the CAD package’s service request depending on the constraints of the specific

project.

The client CAD package, a combination of a Java Applet and a Virtual Reality Modeling

Language (VRML) (“Information” 1997) interface, is launched when its Web page is

accessed (refer to Figure 5 for a detailed diagram of the CAD package architecture). The

CAD package has a three-tiered architecture that is very similar to the service

architecture illustrated in Figure 3, but the CORBA communication protocol interface is

the complement of the service communication protocol: it sends requests to the project

 11

manager using the get() and put() exposed methods. The applet first retrieves the

project manager service object from the CORBA Naming Service. Since the CAD

package has its own local repository of building components, its product model interface

is identical to the service product model interface. The third tier of the client CAD

package includes the UI. The Java applet handles the textual UI, and the applet

communicates with the VRML graphical UI using the VRML External Authoring

Interface (EAI) (Marrin 1997). The various aforementioned Web browser-associated

technologies allowed rapid prototyping of the client CAD package. Any commercial

IFC-compliant CAD package that could incorporate the CORBA communication

protocol could also be used.

The CAD package can retrieve building models either from the project manager service

repository or from a static local model file, which is an IFC-compliant file in EXPRESS

file format. The retrieved model can be viewed, modified, and saved back to the project

manager repository. In addition, the CAD package queries the project manager for the

available design applications that have been registered, and it can send the model that is

currently being developed to the design application.

The Disabled Access Code Analysis Service

The disabled access code analysis service is an example of a legacy client/server

application (Han et al. 1998) that is wrapped by the service. Once wrapped, the legacy

application can be integrated into the distributed service architecture. The legacy

client/server application shown in Figure 6 has its own proprietary communication

protocol interface and a different product model interface, an earlier Release 1.0 version

of the IAI IFC. Therefore, the core of the Java’s application service is to map the

common product model to the legacy application’s product model. Once the design data

is mapped, the service launches the legacy application which then sends the stream of

design data to the server where the code compliance checker resides.

The legacy server application receives the design data, runs a code compliance analysis

on the building model, and generates a Web page with a VRML model of the design with

redlines. The redlines have hyperlinks to code comments, and the code comments have

 12

hyperlinks to the actual building code document, in this case, the Americans with

Disabilities Act Accessibility Guidelines (1997). Note that since the report generated by

the legacy application is a Web page with only simple hyperlink interaction, as illustrated

in Figure 3 and Figure 6, the Web page report has no CORBA communication protocol

or IFC product model interface.

The Accessible Path Generating Service

The accessible path generating service illustrated in Figure 7 incorporates legacy

applications, a motion planner and an animation generator which are written in C++. As

illustrated in Figure 7, the Java application portion of the service launches the motion

planner and the animator processes, a straightforward process using Java. The core of the

application service extracts the necessary design data from the product model interface

and sends it to the first legacy application, the motion planner. The animator then reads

the path file generated by the motion planner, and it generates the VRML animation. The

client viewer has a CORBA communication protocol interface, but no product model

interface. The client viewer’s communication interface polls the path-planning service

for the service’s status. The viewer is notified when the service has completed its

analysis, and, if desired, then loads the animator-generated VRML file.

Before calling the motion planner, the design core interface first extracts the design data

from the product model interface and creates a file composed of the positions of the

obstacles, an initial point, and a goal point. The walls and windows of the building

model are mapped to obstacles, the center of the entry space is mapped to the initial

point, and the space in front of a designated fixture (the clearance space) is mapped to the

goal point.

The motion planning application was written incorporating the techniques described by

Latombe (1991a, 1991b). The motion planner reads in the obstacles, initial point, and

goal point, and generates a predetermined number of configuration-space potential-field

maps based on the granularity of the angular increment of the wheelchair robot. Using

these maps, the planner determines the path from the initial point to the goal point.

Instead of using Reeds and Shepp curves (Reeds and Shepp 1991) as described by

 13

Latombe (1991a, 1991b) to create the non-holonomic path from a generated holonomic

path, the wheelchair robot is forced to go either forward or turn right or left at a

predefined radius. Thus, the path-planner creates a non-holonomic path from the

beginning. It uses a priority queue to prioritize the three choices in the event that the

wheelchair robot follows a local minimal path.

The motion planner creates a file with the sequence of positions of the wheelchair from

the initial point to the goal point. The animator reads in this two-dimensional

information to generate the motion of a wheelchair in VRML by calculating the major

and minor wheel movements and the arm motion of the wheelchair occupant.

Example Scenario

In this section, an example of how the distributed service architecture can be used is

presented. Referring to Figure 3, a broker process starts by registering itself with the

CORBA Naming Service. As noted earlier, the Naming Service is the mechanism that

allows other services to locate the broker. The two design services are initialized and

they locate and register with the broker. Finally, the project manager is initialized and

registers with the Naming Service so that the client CAD package can in turn locate the

project manager. Although the project manager does not register with the broker,

communications between the project manager and the broker are established in order to

access the services that do register with the broker, in this case the two design

applications.

When the client CAD package is brought up in a Web browser, the CAD package

establishes communications with the project manager. Once this communication is

established, the client CAD package can retrieve and save building designs to the project

manager. When the designer is interested in running a specific design service from the

client CAD environment, the client CAD package queries the project manager whether

that design service has been registered, and the project manager in turn queries the

broker. The broker returns the design service object to the client CAD package via the

 14

project manager. At this point, the client CAD package sends the design data to the

design application and the design application can then proceed and perform the service

required.

A designer can retrieve a model from the project manager service or from a local file as

illustrated in Figure 8 using the client CAD package. As shown in the figure, there are

two shelves included in the CAD model. The IFC-compliant model was created in an

IFC-enhanced AutoCAD environment (see Figure 9). AutoCAD blocks are mapped to

IFC building components; an AutoLisp program was written to extract this design data

and generate the IFC EXPRESS text file. When available, commercial IFC-compliant

CAD packages could be linked to the distributed service infrastructure as clients to the

project manager service by providing the communication protocol within the CAD

environment (Since no commercial IFC-compliant CAD packages were available when

the prototype was implemented, a simple browser-based IFC-compliant client CAD

package was developed in this study).

The designer executes the disabled access code-checking service to analyze the design

for local geometric code violations. The service generates the Web page shown in Figure

10 reporting that one of the doors, door001, does not comply with a building code

provision. Specifically, shelf1 intrudes upon a maneuvering clearance of door001.

When shelf1 is deleted and the disabled access code-checking service is run again,

door001 now complies with the regulations as shown in Figure 11.

To further explore the accessibility path from the entrance to the location of a building

component, the designer runs the wheelchair path-generating service. The generated path

shows the wheelchair having to go through an extra room in order to reach the designated

goal point, in this case a sink, because shelf2 blocks the middle hallway. Figure 12

illustrates the path generated by the motion planner, and Figure 13 illustrates the motion

planning results presented in the client viewer’s Web page. When the designer removes

the shelf from the design and runs the wheelchair path-generating service again, the

service generates the path illustrated in Figure 14 showing that the wheelchair can now

 15

reach the room with the sink by going through the middle hallway. Figure 15 shows a

snapshot of the generated animation.

Discussion

This paper has described a distributed service architecture that allows design services to

be incorporated into a modular network-enabled infrastructure. Three such services, a

project manager and two design applications, were implemented. By providing a

modular infrastructure, services can be added or updated without re-compilation or re-

initialization of existing services. While this work has focused on automated disabled

access building design analysis, other building-design-related services can be

implemented and linked to the network infrastructure. For example, if a building

component inventory service is implemented, a designer could query such a service for

the availability and pricing of a specific component such as a fixture, an appliance, etc.

The infrastructure is contingent on two common interfaces, the communication protocol

interface and the common product model interface. As demonstrated, standardizing a

communication protocol and decoupling it from the product model interface has its

advantages and drawbacks. The major advantage is that the communication protocol

interface does not depend on changes (updates and evolution) of the product model since

the stream of design data is object-independent; it is the responsibility of the product

model protocol to parse the design data stream. The major disadvantage is the

inefficiency of the transmission of the design data from service to service.

Standardization of the product model is more of a challenge. While the services

demonstrated have simple mappings from the common product model to their own design

representations without loss of critical information, other services may need more

information than is provided in the standard product model, thus bringing up issues such

as object overloading. There are at least two issues that need to be addressed. First, the

product model must have a formal mechanism to extend the model with new attributes

and relationships. Second, in order to address the object overloading issue, there must be

 16

a formal mechanism for a service to query the process that calls the service to extract

only the necessary attributes and relationships of a building design model.

Finally, the distributed service architecture prototype described in this paper does not

address issues of security raised by Regli (1997) and others (for example, see Wiederhold

et al. (1997) and version control (Krishnamurthy 1996)). Security issues could be

addressed in the communication protocol interface and the project manager service while

version control could be incorporated in the common product model interface.

Acknowledgments

This research is partially sponsored by the Center for Integrated Facility Engineering at

Stanford University.

References

Americans with Disabilities Act accessibility guide. (1997). Access Board, U.S.

Architectural and Transportation Barriers Compliance Board, Washington, D.C.

Clancy, W. J. (1985). Heuristic classification in artificial intelligence, Elsevier

Publishers B.V., North-Holland.

de Waard, M. (1992). “Computer aided conformance checking: checking residential

building designs against building regulations with the aid of computers,” PhD thesis,

Technische Universiteit Delft, The Hague, The Netherlands.

Garrett, J.H., Basten, J., Breslin, J., and Andersen, T. (1989). “An object-oriented model

for building design and construction,” Proc., Struct.Congress, ASCE, Reston, Va., 332-

341.

Han, C.S., Kunz, J.C., and Law, K.H. (1998). “A client/server framework for on-line

building code checking,” J. Comp. in Civ. Engrg., ASCE, 12(4), 181-194.

 17

Industry foundation classes release 1.5, specifications volumes 1-4. (1997). International

Alliance for Interoperability, Washington D.C.

“Information technology—computer graphics and image processing—the virtual reality

modeling language (VRML)—Part 1: Functional specification and UTF-8 encoding.”

(1997). ISO/IEC 14772-1:1997, International Standards Organization, Geneva,

Switzerland.

Ito, K., Ueno, Y., Levitt, R.E., and Darwiche, A. (1989). “Linking knowledge-based

systems to CAD design data with an object-oriented building product model,” Tech. Rep.

17, Ctr. for Integrated Fac. Engrg., Stanford University, Stanford, Calif.

Krishnamurthy, K. (1996). “A data management model for change control in

collaborative design environments,” PhD Thesis, Dept. of Civ. Engrg., Stanford

University, Stanford, Calif.

Latombe, J.C. (1991a). Robot motion planning, Kluwer Academic Publishers, Norwell,

Mass.

Latombe, J.C. (1991b). “A fast planner for a car-like indoor mobile robot,” Proc., Ninth

National Conference on Artificial Intelligence, Anaheim, Calif., 659-665.

Marrin, C. (1997). Proposal for a VRML 2.0 Informative Annex: External Authoring

Interface Reference, an unpublished draft of a proposal to the ISO.

Reeds, J.A., and Shepp, R.A. (1991). “Optimal Paths for a Car that Goes both Forward

and Backaward,” Pacific J. Math., 145(2), 367-393.

Regli, W.C. (1997). “Internet-Enabled Computer-Aided Design,” IEEE Internet

Computing, IEEE 1(1), 39-50.

Vogel, A., and Duddy, K. (1997). Java programming with CORBA, John Wiley and

Sons, Inc., New York, N.Y.

 18

Wiederhold, G., Bilello, M., Sarathy, V., and Qian, X.L. (1996). "Protecting

Collaboration,” Proc., NISSC'96 National Information Systems Security Conference,

Baltimore Md., 561-569.

 19

Broker Core
Communication

Interface

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

 20

// --
// Name: DistributedServiceArchitecture.idl
// Author: Chuck Han
//
// --
//

module DistributedServiceArchitecture
{

typedef sequence<string> StringArray;

interface Service;

interface TradingService // the broker
{

void register(in Service service, in string serviceType);
Service query(in string serviceType);

};

interface Service // the service
{

void put(in string whichModel, in StringArray stringArray);
StringArray get(in string whichModel);
StringArray list();
void tradingService(in TradingService tradingService);
Service query(in string serviceType);
short status(in string session);

};
};

 21

CORBA
Naming Service

SERVICE
Path Planner

CORBA

IFC

BROKER:
Trading Service

CORBA

SERVICE
Accessibility

CORBA

IFC

SERVICE
Project Mgr

CORBA

IFC

CLIENT
CAD UI

CORBA

IFC

Internet

CLIENT
Viewer

CLIENT
Viewer

CORBA

 22

IfcRoot

IfcModelingAid

IfcRelationship

IfcObject

IfcLocalPlacement

IfcGeometricRepresentation

IfcRelationship1toN

IfcProduct
IfcSpatialElement

IfcElement

IfcRelVoidsElements

IfcRelFillsElements

IfcSpace

IfcOpeningElement

IfcBuildingElement
IfcBoundingBox

IfcDirection

IfcPlacement

IfcPoint IfcCartesianPoint

IfcAxis2Placement2D

IfcAxis2Placement3D

IfcDoor

IfcFixture
IfcFloor

IfcRoofSlab

IfcWall
IfcWindow

 23

Repository,
Filter

CORBA

IFCJava
Application:

CAD core,
UI

CORBA

IFC

Internet

Java Applet:

VRML World:

Project Manager Service Client CAD Package

 24

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Client/Server
Pair:

Access Checking Service Checker Results

abcClient

abcServer

 25

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Applications:

Motion
Planner

Animator

Poller,
UI

CORBA

Java Applet:

VRML World:

Path Planning Service Path Animation Viewer

 26

SHELF2
SHELF1

 27

 28

door001

 29

door001

 30

 31

 32

 33

 34

List of Figures

Figure 1: A conceptual diagram of the distributed service architecture

Figure 2: The communication protocol interface

Figure 3: A distributed service architecture implementation

Figure 4: The IFC hierarchy implemented for the common product model

Figure 5: The program manager service and the client CAD package

Figure 6: The accessibility analysis service and the generated report

Figure 7: The wheelchair path planning service and the animation viewer

Figure 8: An example client CAD package session with the shelves circled

Figure 9: The design generated in an IFC-enhanced AutoCAD environment

Figure 10: Accessibility Checker results with the non-compliant door circled

Figure 11: Accessibility Checker results of the revised design

Figure 12: The path generated by the motion planner after the first design revision

Figure 13: The animated view after the first design revision

Figure 14: The generated path after the second design revision

Figure 15: The animated view after the second design revision

 35

Broker Core
Communication

Interface

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Figure 1: A conceptual diagram of the distributed service architecture

 36

// --
// Name: DistributedServiceArchitecture.idl
// Author: Chuck Han
//
// --
//

module DistributedServiceArchitecture
{

typedef sequence<string> StringArray;

interface Service;

interface TradingService // the broker
{

void register(in Service service, in string serviceType);
Service query(in string serviceType);

};

interface Service // the service
{

void put(in string whichModel, in StringArray stringArray);
StringArray get(in string whichModel);
StringArray list();
void tradingService(in TradingService tradingService);
Service query(in string serviceType);
short status(in string session);

};
};

Figure 2: The communication protocol interface

 37

CORBA
Naming Service

SERVICE
Path Planner

CORBA

IFC

BROKER:
Trading Service

CORBA

SERVICE
Accessibility

CORBA

IFC

SERVICE
Project Mgr

CORBA

IFC

CLIENT
CAD UI

CORBA

IFC

Internet

CLIENT
Viewer

CLIENT
Viewer

CORBA

Figure 3: A distributed service architecture implementation

 38

IfcRoot

IfcModelingAid

IfcRelationship

IfcObject

IfcLocalPlacement

IfcGeometricRepresentation

IfcRelationship1toN

IfcProduct
IfcSpatialElement

IfcElement

IfcRelVoidsElements

IfcRelFillsElements

IfcSpace

IfcOpeningElement

IfcBuildingElement
IfcBoundingBox

IfcDirection

IfcPlacement

IfcPoint IfcCartesianPoint

IfcAxis2Placement2D

IfcAxis2Placement3D

IfcDoor

IfcFixture
IfcFloor

IfcRoofSlab

IfcWall
IfcWindow

Figure 4: The IFC hierarchy implemented for the common product model

 39

Repository,
Filter

CORBA

IFCJava
Application:

CAD core,
UI

CORBA

IFC

Internet

Java Applet:

VRML World:

Project Manager Service Client CAD Package

Figure 5: The program manager service and the client CAD package

 40

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Client/Server
Pair:

Access Checking Service Checker Results

abcClient

abcServer

Figure 6: The accessibility analysis service and the generated report

 41

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Applications:

Motion
Planner

Animator

Poller,
UI

CORBA

Java Applet:

VRML World:

Path Planning Service Path Animation Viewer

Figure 7: The wheelchair path planning service and the animation viewer

 42

SHELF2
SHELF1

Figure 8: An example client CAD package session with the shelves circled

 43

Figure 9: The design generated in an IFC-enhanced AutoCAD environment

 44

door001

Figure 10: Accessibility Checker results with the non-compliant door circled

 45

door001

Figure 11: Accessibility Checker results of the revised design

 46

Figure 12: The path generated by the motion planner after the first design revision

 47

Figure 13: The animated view after the first design revision

 48

Figure 14: The generated path after the second design revision

 49

Figure 15: The animated view after the second design revision

 50

	Building Design Services in a Distributed Service Architecture
	
	Abstract
	Key Words

	Introduction
	Infrastructure Framework
	The Communication Protocol Interface
	The Product Model Interface
	The Core of the Design Service

	The Distributed Service Architecture Prototype
	The Common Distributed Object Environment
	The Common Building Product Model
	The Design Services
	The Project Manager Service with a Client CAD Package
	The Disabled Access Code Analysis Service
	The Accessible Path Generating Service

	Example Scenario
	Discussion
	Acknowledgments
	References

