
8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

AN INTERNET-BASED DISTRIBUTED BUILDING DESIGN SERVICE
FRAMEWORK
Internet-Based Building Design Services

C.S. HAN, J.C. KUNZ, and K.H. LAW
Center for Integrated Facility Engineering, Stanford University, Stanford, CA 94305-
4020

Abstract

This paper describes a distributed service architecture that enables the delivery of
building design services over the Internet. With this architecture, it is possible to
rapidly deploy various services, both new and legacy applications, that can be easily
accessed via the Internet. As examples of services, the prototype implements a top-
level brokering service, a project manager service with a companion CAD package
service, and a set of disabled building code analysis services.

Keywords: automation, distributed object environment, World-Wide Web (WWW),
Computer-Aided Design (CAD), Industry Foundation Classes (IFC)

1 Introduction

Traditional CAD systems are monolithic in that all functions or “services” are
bundled in a software package. With the maturation of information and
communication technologies, the concept that distributed CAD services are delivered
over the Internet, Internet-based Computer-Aided Design, is becoming a reality.
Regli (1997) outlined the technologies that are now readily available to make the
network-enabled CAD environment possible. Specifically, the technologies include a
standard product model and a distributed object environment that allows for the
development and transfer of a design based on the standard product model.

This paper describes a prototype implemented to illustrate a framework that
provides building design services over the Internet. The framework provides a means
to distribute design services in a modular and systematic way. With this
infrastructure, users have the ability to select appropriate design services (as opposed
to having to use a large monolithic design tool) and can easily replace a service if a
superior service becomes available without having to recompile the existing services

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

being used. With the standardization of the communication protocol and the
exchange of product model data, integration of legacy applications as well as
deployment of new design packages becomes a straightforward task. As examples of
services, the prototype implements a top-level brokering service, project manager
service with a companion CAD package service, and a set of disabled building code
analysis services.

2 Infrastructure of the Framework

Fig. 1 shows the conceptual network-enabled framework for a distributed
service. In this framework, each individual service adheres to a two- or three-tiered
architecture. The first mandatory tier, a communication protocol interface, gives the
application services a common means to send and receive data over the Internet. The
optional middle tier, the common product model interface, is a standard protocol that
describes the design data for a design service. The mandatory third tier is the core of
the service—if the service is a design service, it extracts the appropriate information
of the building design through the common product model interface and either
modifies the design data or generates a report based on the analysis of the data.

Service Core
Communication

Interface

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Fig. 1: A conceptual diagram of the distributed service architecture.

As shown in Fig. 1, a non-design service does not need the product model
interface that is present in the design services. An application package can register its
services (the dashed line in Fig. 1) with a brokering service and advertise its services
in the infrastructure. Another service will query the brokering service for the
existence of services in the distributed service architecture. Note that a design service
can also act as a brokering service. The registration and query service is based on a
predetermined constraint language. In the following, the design of the multi-tiered
architecture is examined in detail.

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

2.1 The Mandatory Communication Protocol Interface

Methods that define the communication protocol interface that are made
publicly available by a service is illustrated in Fig. 2. Following the object-oriented
paradigm, the “exposed” methods are the points of entry into a service, but the actual
implementation of these methods is dependent on the individual broker or service.

module DistributedServiceArchitecture
{

interface Service;

typedef sequence<boolean> BooleanArray;
typedef sequence<Service> ServiceArray;
typedef sequence<string> StringArray;

interface Service
{

void registerService(in Service service);
Service getRegisteredService(in string serviceId, in string serviceType);
ServiceArray getRegisteredServices();

string getServiceId();
string getServiceType();
void putServiceType(in string serviceType);
void putServiceId(in string serviceId);

void execute (in Service callingService, in string sessionId, in string command);
boolean getStatus(in Service callingService, in string sessionId);
void notifyService(in Service calledService, in string sessionId, in StringArray data);

void clear(in Service callingService, in string sessionId);
boolean containsKey(in Service callingService, in string sessionId, in string key);
BooleanArray containsKeys(in Service callingService, in string sessionId, in StringArray keys);
string get(in Service callingService, in string sessionId, in string key);
StringArray gets(in Service callingService, in string sessionId, in StringArray keys);
void put(in Service callingService, in string sessionId, in string key, in string data);
void puts(in Service callingService, in string sessionId, in StringArray keys, in StringArray data);
void remove(in Service callingService, in string sessionId, in string key);
void removes(in Service callingService, in string sessionId, in StringArray keys);

};
};

Fig. 2: The communication protocol interface.

In the simple prototype implementation, the brokering portion of the interface
defines two methods, registerService() and getRegisteredService().
For the purposes of the prototype, this simple interface is sufficient to illustrate the
minimum specification of a broker. In addition, one service can execute a command
in another service using the execute()method, and the called service can then
notify the calling service when the execution is complete using the
notifyService()method.

The interface for communication of design data is also very simple with
puts() and gets() being the most important methods. The puts() method
sends the product model to the service with two arguments, a string identifying the
name of the model and a stream of data that defines the model. The gets() method
returns a model with the name identified by the single string argument.

In a previous prototype, the brokering methods were contained in a separate
brokering object than the service object (Han 1999). However, allowing services to
register and query other services provides the most flexibility and better distributed
functionality. Following the distributed service paradigm, services may be distributed
as processes of one CPU, processes of a multi-processor system, or among
workstations within a cluster. When services register with a higher-level service, this

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

higher-level service can execute commands of the registered services as threads.
With this small set of methods, the communication protocol layer is fully functional
and can be utilized by an application that operates within the distributed network-
based environment.

2.2 The Optional Product Model Interface for Design Services
The availability of multiple design services suggests a mapping of each

service’s design data representation to a common model. Without this lingua franca,
a process that needs to use a specific service would need to have a mapping of its
representation of the design data to the service’s design data representation, and the
need to use a new service would require additional mapping.

With the multi-tiered service architecture illustrated in Fig. 1, the product model
interface has been deliberately decoupled from the communication protocol interface.
Using a distributed object paradigm, it would have been possible to expose the
objects or building components of a common product model in the communication
protocol interface, thus combining the communication protocol and product model
layers. However, if the objects (and their attributes and relationships) are made
public at the communication protocol level, as the product model evolves, the
communication protocol must also evolve to take into account the product model
evolution. By decoupling the two layers, it is up to the individual service whether the
product model interface needs to be modified to accommodate the product model
evolution. Finally, since some services do not require the product model layer,
separating it from the communication layer allows for a smaller communication
protocol.

As previously noted, the puts() and gets() methods of the communications
protocol interface take as input and output a stream of design data as strings. In
decoupling the two layers and keeping the infrastructure general, the trade-off comes
in the efficiency of sending the design data. Although there are no restrictions on
how the string array is imposed by the infrastructure itself, in the prototype, the string
array is a description of the model in EXPRESS format.

2.3 The Mandatory Service Core
There is a distinction between the functionality of a non-design and a design

service core. For a non-design service, the core layer will simply process queries and
the registration of services. Since there is no product model associated with a non-
design service, no transformation or modification of a product model is required.

Any design service needs to extract a view or a diagram from the product model
(Clancy 1985). The transformation from the product model to a view or a diagram is
unique to the application. The core of the design service needs to map the common
product model data to its own design data representation. If part of the task of the
design service is to modify the product model that has been deposited into its
repository, the service must then perform a reverse mapping from its own design data
representation back to the common product model to update the model. Otherwise,
the service simply generates a report.

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

3 The Distributed Service Architecture Prototype

This section describes the technologies used to implement the distributed
service architecture for building design services as illustrated in Fig. 3. The service
communication protocol layer is implemented using CORBA. CORBA provides a
high-level distributed object paradigm that is well-suited to implement a network-
based distributed service architecture. A combination of a simple, flexible generic
product model and the geometric properties of the International Alliance of
Interoperability (IAI) Industry Foundation Classes (IFC) (Industry 1997) is employed
as the common product model for the design services.

SERVICE:
Broker

CORBA

SERVICE
CAD UI

CORBA
IFC++

SERVICE
Project Mgr

CORBA
IFC++

SERVICE
Accessibility

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

CORBA
Naming Service

Internet

Fig. 3: A distributed service architecture implementation

Java is employed as the programming language to implement most parts of the
distributed service architecture. Java’s well-designed object-oriented structure and
platform independence were the influencing factors in using it as the implementing
programming language. The wide proliferation of the Internet can be attributed to the
ease of World-Wide Web access, so taking advantage of this environment was
appropriate. When interaction was needed within the Web browser environment,
Java applets could be seamlessly integrated into the Java-written distributed
architecture. The CAD service employs a Java applet to create browser-based
interfaces.

3.1 The Common Distributed Object Environment
The communication protocol interface shown in Fig. 2 is the Interface

Definition Language (IDL) file used to generate the CORBA-related Java source
code. Though applications access objects and their methods defined in the IDL file in
a distributed object environment across the Internet, from the application’s point of
view, these objects and methods are treated as local entities. This concept underlines
the power of the CORBA paradigm.

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

One feature of CORBA is the Naming Service which allows distributed objects
or applications to register and locate other distributed objects or applications at a
common location by name (Vogel and Duddy 1997). The order in which the various
distributed applications are launched is critical: The Naming Service must be
launched first. For the prototype, a top-level broker service called “SimpleTrader” is
the first process that registers with the Naming Service since the design services will
register with the broker. The design services must be launched before their respective
clients (the CAD service is a client to the project manager service). One
responsibility of the project manager service to query the broker for the availability of
design services. If a design service has not been launched (and therefore has not
registered with the broker), when the broker is queried by the project manager service
for that design service, the broker will simply inform the project manager service that
the requested design service is not available.

3.2 The Common Building Product Model for Design Services
The communication protocol interface specifies methods for sending and

retrieving a building model from a service without the interface having any
knowledge about the semantics of the building model. However, understanding the
semantics of the building model is the responsibility of the product model interface.
In the prototype, a generic and flexible product model is used. A generic building
component, GenericComponent, has only an identification string and three fields
defining its form, function, and behavior. The form is described using the IAI IFC
geometric representation scheme. Fig. 4 illustrates the product model hierarchy.

ExpressEntity

GenericComponent

IfcGeometricRepresentation

IfcBoundingBox

IfcDirection

IfcPlacement

IfcPoint IfcCartesianPoint

IfcAxis2Placement2D

IfcAxis2Placement3D

Relationship

Table

Fig. 4: The common product model hierarchy.

The product model interface constructs an internal representation of the design
data from the data stream. The only restriction mandated by the common product
model interface is that the core of the design service accesses the building

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

components in the repository by the name of the model and the name of the building
component.

4 The Services

4.1 The Top-Level Broker: a Non-Design Service
As previously noted, a non-design service does not require the common product

model interface, and the top-level broker is an example of a non-design service (see
Fig. 3). The top-level broker registers with the CORBA Naming Service and waits
for other services (in this case, the design services) to register with the top-level
broker. When an application queries the top-level broker about the existence of a
particular registered service, the top-level broker will reply by returning the
applicable service object to the querying application. Once the querying application
receives the applicable service object, the querying application is able to interact with
that applicable service object by sending the appropriate design data.

4.2 The Project Manager Service with a Client CAD Service
The project manager is a very simple service to illustrate the functionality of the

communication protocol and product model interface. Since the main function of the
project manager service is to act as a repository of building models, the service core
layer does not perform any design data extraction and analysis from the building
model that resides in the product model interface. The only other function the project
manager service has is to process queries from the registered client CAD service by
first passing the queries to the broker and then transferring the service object that the
broker has returned back to the CAD package. In an enterprise environment, instead
of simply acting as a pass-through mechanism, the project manager service would
authenticate a CAD service when the CAD service registers with the project manager.
The project manager would also act as a security agent that would filter the CAD
package’s service request depending on the constraints of the specific project.

The client CAD service, a combination of a Java Applet and a Virtual Reality
Modeling Language (VRML) (“Information” 1997) interface, is launched when its
Web page is accessed. Fig. 5 depicts the details of the CAD package architecture.
The applet first retrieves the project manager service object from the CORBA
Naming Service and registers with the project manager. It can then send requests to
the project manager using the gets() and puts() exposed methods. The third tier
or service core of the client CAD package includes the UI. The Java applet handles
the textual UI, and the applet communicates with the VRML graphical UI using the
VRML External Authoring Interface (EAI) (Marrin 1997). The various
aforementioned Web browser-associated technologies allow rapid prototyping of the
client CAD package.

The CAD package can retrieve building models either from the project manager
service repository or from a static local model file, which is in EXPRESS file format.
The retrieved model can be viewed, modified, and saved back to the project manager
repository. In addition, the CAD package queries the project manager for the

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

available design applications that have been registered, and it can send the model that
is currently being developed to the design applications.

Repository,
Filter

CORBA
Java
Application:

CAD core,
UI

CORBA

Internet

Java Applet:

VRML World:

Project Manager Service Client CAD Service

IFC++ IFC++

Fig. 5: The program manager service and the client CAD service.

4.3 The Disabled Access Code Analysis Application Services
The disabled access code analysis application is an example of a set of

hierarchically structured design services. By structuring an application as a set of
service modules, the application can be distributed across a network of processors or
a cluster of workstations. If the service modules are initialized on the same
workstation, it is the responsibility of the workstation’s operating system to distribute
the modules as separate processes in a single-processor machine or among the
processors of a multi-processor machine. Currently, to distribute service modules of
a particular application within a cluster environment, the service modules have to be
manually initialized on separate workstations. Following the distributed object
paradigm of location transparency, a service that registers other services does not
know whether the registering service resides on the same workstation or on a
different workstation in the cluster.

As shown in Fig. 6, the top-level service of the disabled access code analysis
application registers with the top-level broker service described in Section 4.1. Two
service modules of the disabled access application in turn register with the top-level
disabled access service. One of these modules is a path-planning service that
analyzes a design for the existence of an accessible path using motion planning
techniques described by Latombe (1991) and Han (1999). The other module initiates
a chain of modules that the disabled accessibility application uses to decompose the
design in a hierarchical manner. The chain consists of modules that decompose the
design on the project level, site level, building level, story level, space level, and
finally on a cell or sub-space level. This hierarchy mirrors the implemented product
model hierarchy.

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

The top-level design service receives the design data from another application
(such as the previously described CAD service). The top-level design service acts as
a broker for the path-planning service since it does not actually send design data to it.
The top-level design service, does however, send design data through the chain of
service modules. Each of these modules uses the path-planning service by first
querying the top-level design service for the path-planning service object. Once the
particular service module in the chain receives the pertinent path-planning data, it
further decomposes the design model by sending parts of the design to the next
module in the chain.

Service:
Top-Level

Broker

Service:
Path-Planner

Service:
Top-Level

Accessibility
Checker

Service:
Project-Level
Accessibility

Module

Service:
Site-Level

Accessibility
Module

Internet

Fig. 6: The accessibility analysis service and the generated report.

5 Discussion

This paper has described a distributed service architecture that allows design
services to be incorporated into a modular network-enabled infrastructure. By
providing a modular infrastructure, services can be added or updated without re-
compilation or re-initialization of existing services. In addition, by allowing portions
of a service to be further modularized and to register with a parent service, separate
tasks of an application can be distributed over the network. Other building-design-
related services than the ones described can be implemented and linked to the
network infrastructure. For example, if a building component inventory service is
implemented, a designer could query such a service for the availability and pricing of
a specific component such as a fixture, an appliance, etc.

The infrastructure is contingent on the interfaces for the communication
protocol and the common product model that is required for design services.
Standardizing a communication protocol and decoupling it from the product model
interface has its advantages and drawbacks. The major advantage is that the

8th INTERNATIONAL CONFERENCE ON DURABILITY OF BUILDING
MATERIALS AND COMPONENTS
May 30 - June 3, 1999 Vancouver, Canada

communication protocol interface does not depend on changes (updates and
evolution) of the product model since the stream of design data is object-independent;
it is the responsibility of the product model protocol to parse the design data stream.
The major disadvantage is the inefficiency of the transmission of the design data from
service to service.

Finally, the distributed service architecture prototype described in this paper
does not address issues of security raised by Regli (1997) and others (for example,
see Wiederhold et al. (1997) and version control (Krishnamurthy 1996)). Security
issues could be addressed in the communication protocol interface and the project
manager service while version control could be incorporated in the common product
model interface.

6 Acknowledgments

This research is partially sponsored by the Center for Integrated Facility
Engineering at Stanford University.

7 References

Clancy, W. J. (1985). Heuristic classification in artificial intelligence, Elsevier
Publishers B.V., North-Holland.

Han, C.S., Kunz, J.C., and Law, K.H. (1999). "Building Design Services in a
Distributed Architecture," Journal of Computing in Civil Engineering, ASCE, Vol.
13, No. 1, pp. 12-22.

Industry foundation classes release 1.5, specifications volumes 1-4. (1997).
International Alliance for Interoperability, Washington D.C.

“Information technology—computer graphics and image processing—the
virtual reality modeling language (VRML)—Part 1: Functional specification and
UTF-8 encoding.” (1997). ISO/IEC 14772-1:1997, International Standards
Organization, Geneva, Switzerland.

Krishnamurthy, K. (1996). “A data management model for change control in
collaborative design environments,” PhD Thesis, Dept. of Civ. Engrg., Stanford
University, Stanford, Calif.

Latombe, J.C. (1991). “A fast planner for a car-like indoor mobile robot,” Proc.,
Ninth National Conference on Artificial Intelligence, Anaheim, Calif., 659-665.

Marrin, C. (1997). Proposal for a VRML 2.0 Informative Annex: External
Authoring Interface Reference, an unpublished draft of a proposal to the ISO.

Regli, W.C. (1997). “Internet-Enabled Computer-Aided Design,” IEEE Internet
Computing, IEEE 1(1), 39-50.

Vogel, A., and Duddy, K. (1997). Java programming with CORBA, John Wiley
and Sons, Inc., New York, N.Y.

Wiederhold, G., Bilello, M., Sarathy, V., and Qian, X.L. (1996). "Protecting
Collaboration,” Proc., NISSC'96 National Information Systems Security Conference,
Baltimore Md., 561-569.

	Introduction
	Infrastructure of the Framework
	The Mandatory Communication Protocol Interface
	The Optional Product Model Interface for Design Services
	The Mandatory Service Core

	The Distributed Service Architecture Prototype
	The Common Distributed Object Environment
	The Common Building Product Model for Design Services

	The Services
	The Top-Level Broker: a Non-Design Service
	The Project Manager Service with a Client CAD Service
	The Disabled Access Code Analysis Application Services

	Discussion
	Acknowledgments
	References

