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ABSTRACT 
This paper describes a distributed architecture that enables 

the delivery of design services over the Internet.  The 
architecture of an individual service is three-tiered.  The first 
tier is a common communication protocol interface.  The 
middle tier is the common product model interface.  The third 
tier is the core of the design service.  Though fundamentally 
decoupled, methods in the communication layer and the 
product model layer have been formalized to enable the 
aggregation of services and the support of problem 
decomposition.  In addition, with the standardization of the first 
two tiers, it is possible to rapidly deploy various design 
services, both new and legacy applications, that can be easily 
made accessible via the Internet.  As examples of design 
services, the prototype implements a project manager service 
with a companion CAD package, services that incorporate two 
legacy applications (a building code analysis service and a 
service that generates and displays an accessible path for a 
given floor plan design using motion planning and animation 
techniques), and a disabled access service that takes advantage 
of the decomposable infrastructure. 

 
INTRODUCTION 

Traditional CAD systems are monolithic in that all 
functions or “services” are bundled in a software package.   
With the maturation of information and communication 
technologies, the concept that distributed CAD services are 
delivered over the Internet, Internet-based Computer-Aided 
Design (I-CAD), is becoming a reality.  Technologies are now 
readily available to make the network-enabled CAD 
environment possible.  Specifically, the technologies include a 
standard product model and a distributed object environment 
that allows for the development and transfer of a design based 
on the standard product model. In order to fully-leverage the 
power of the Internet, engineering and design services should 
be able to interact in a formal yet flexible manner.  Services 

should be able to combine existing services to provide added 
functionality.  This paper describes the developed service 
infrastructure and the prototype implemented to illustrate a 
framework that provides design services over the Internet.  

The framework provides a means to distribute design 
services in a modular and systematic way.  The protocol 
between services that has been developed specifies the manner 
in which services can aggregate, and this aggregation supports 
problem decomposition.  In addition, users have the ability to 
select appropriate design services as opposed to having to use a 
large monolithic design tool.  Furthermore, users can easily 
replace a service if a superior service becomes available 
without having to recompile the existing services being used.  
The framework provides a means to seamlessly integrate a 
legacy application as one of the modular design services in the 
infrastructure.  With the standardization of the communication 
protocol and the exchange of product model data, integration of 
legacy applications as well as deployment of new design 
packages becomes a straightforward task. 

In the prototype implementation, a project manager service 
with a companion CAD package, two design applications with 
companion viewers that incorporate legacy applications, and a 
design application specifically tailored to take advantage of the 
decompositional features of the infrastructure have been 
developed.  The project manager service acts as a design model 
repository as well as a portal to direct a client application to 
other services provided in the infrastructure.  A companion 
CAD package, a client service of the project manager service, 
has access to the design repository of the project manager 
service and queries the project manager service for the location 
of other appropriate services available over the Internet.  The 
first two applications are examples of services that incorporate 
legacy applications.  The first design application is the 
integration of a service that performs compliance checking of a 
design against governmental regulations, in this case for 
disabled accessibility (ADAAG 1997).  The second design 
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CAD service implementation as well as views of the data 
generated by the design services, standard World-Wide Web 
(WWW) browser technologies are employed although the use 
of these technologies is not mandatory for the functionality of a 
service or a view of a service within the infrastructure.  
However, using a standard browser interface leverages the most 
widely available Internet environment as well as being a 
convenient means of quick prototyping. 
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Figure 1: A conceptual diagram of the distributed 
service architecture.  

INFRASTRUCTURE FOR THE DISTRIBUTED SERVICE 
ARCHITECTURE 

Figure 1 shows the conceptual network-enabled 
framework for a distributed service.  In this framework, each 
individual service adheres to a two- or three-tiered architecture.  
The first mandatory tier, a communication protocol interface, 
gives applications a common means to register its services and 
to send and receive data over the Internet.  The optional middle 
tier, the common product model interface, is a standard 
protocol that describes the design data for a design service.  
The mandatory third tier is the core of the service—if the 
service is a design service, it extracts the appropriate 
information of the building design through the common 
product model interface and either modifies the design data or 
generates a report based on the analysis of the data. 

As shown in Figure 1, a non-design (brokering) service 
does not need the product model interface that is present in the 
design services.  An application package can register its 
services (the dashed line in Figure 1) with a brokering service 
and advertise its services in the infrastructure.  Another service 
will query the brokering service for the existence of services in 
the distributed service architecture.  Note that a design service 
can also register with another design service thus implying an 
aggregation of services that supports problem decomposition.  
The registration and query service is based on a pre-defined 
constraint language.  In the following, the design of the multi-
tiered architecture is examined in detail. 

The Communication Protocol Interface 
Methods that define the communication protocol interface 

are illustrated in Figure 2.  The methods are made publicly 
available by a service.  The communication protocol interface 
is mandatory for the distributed service architecture.  Following 
the object-oriented paradigm, the “exposed” methods are the 
points of entry into a service, but the actual implementation of 

 

 
module DistributedServiceArchitecture 
{ 
 interface Service; 
 
 typedef sequence<boolean> BooleanArray; 
 typedef sequence<Service> ServiceArray; 
 typedef sequence<string> StringArray; 
 
 interface Service 
 { 
  void  registerService(); 
  Service  getRegisteredService(); 
  ServiceArray getRegisteredServices(); 
 
  string  getServiceId(); 
  string  getServiceType(); 
  void  putServiceType(); 
  void  putServiceId(); 
 
  void  execute (); 
  boolean  getStatus(); 
  void  notifyService(); 
 
  void  clear(); 
  boolean  containsKey(); 
  BooleanArray containsKeys(); 
  string  get(); 
  StringArray  gets(); 
  void  put(); 
  void  puts(); 
  void  remove(); 
  void  removes(); 
 
 }; 
}; 
 

Figure 2: The communication protocol interface. 
pplication is a service that generates and displays a wheelchair 
ccessible route for a given floor plan design.  The final design 
pplication is a disabled access service that takes full advantage 
f the decomposition features of the distributed infrastructure. 

The distributed object environment layer of the services is 
mplemented with the Common Object Request Broker 
rchitecture (CORBA) (Vogel and Duddy 1997), and the 

ndustry Foundation Class (IFC) product model proposed by 
he International Alliance for Interoperability (IAI) is used for 
he common product model layer (Industry 1997).  For the 

these methods is dependent on the individual broker or service. 
The brokering portion of the interface defines two 

methods, registerService() and getRegistered-
Service().  In addition, one service can execute a command 
in another service using the execute() method, and the 
called service can then notify the calling service when the 
execution is complete using the notifyService() method. 

When an application registers its services with the broker 
or top-level service, it provides two arguments, the service that 
is being registered and a string that describes the service.  In 
addition, to support problem decomposition, when an 
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application registers its services with a broker, it specifies when 
it will be executed.  For example, if the service is a child 
service, it is executed along with the other registered child 
services.  When these child services notify the parent service 
that their tasks are complete, non-child services that have 
registered with the broker or top-level service will process the 
data extracted from the child services. 

When the broker is queried for a service, the broker returns 
a registered service that matches the description of the query 
argument.  In a real implementation of this infrastructure, a 
more sophisticated broker protocol would be necessary.  For 
example the client would need to provide client registration 
information and, for building code analysis services, 
geographic location and a more specific description of the type 
of building code (structural, mechanical, electrical, etc).  An 
even more sophisticated protocol would involve a more 
extensive communication sequence between a client and the 
broker.  For example, the client could query the broker for a set 
of existing services that match a specific set of constraints, and 
then the client could choose among the services returned by the 
broker.  For further description on a broker protocol, see the 
discussion on the CORBA Trading Service by Vogel and 
Duddy (1997). 

Design data must be exchanged between services, and 
puts() and gets() are the most important methods.  The 
puts() method sends the product model to the service with 
two arguments, a string identifying the name of the model and a 
stream of data that defines the model.  The gets() method 
returns a model with the name identified by the single string 
argument.  The gets() method retrieves data from an 
invoked service once that invoked service has notified the 
invoking application that it has completed its task.   If several 
child services have been invoked, the gets() method will be 
invoked upon notification by all child services.  The retrieved 
data must be resolved by aggregation methods developed for 
the product model. 

Finally, services themselves have the ability to process a 
query concerning the existence of other services through a 
project manager service module.  The motivation for providing 
this ability is that in an enterprise environment, the user of a 
CAD package may not be given the responsibility of knowing 
what services should be used.  The project manager service has 
the responsibility of filtering the information given by the 
broker.  We also allow services to register and query other 
services to provide the most flexibility and better distributed 
functionality.  Following the distributed service paradigm, 
services may be distributed as processes of one CPU, processes 
of a multi-processor system, or among workstations within a 
cluster.  When services register with a higher-level service, this 
higher-level service can execute commands of the registered 
services as threads.  Finally, when a service is initiated, it can 
be queried for its status with the status() method since a 
service may not necessarily process the information or 
complete the work immediately.  With this small set of methods 
for the broker and a service, the communication protocol layer 

is fully functional and can be utilized by an application that 
operates within the distributed network-based environment. 

The Product Model Interface for Design Services 
In order to create an infrastructure in which design services 

can be incrementally added and since each service will have its 
own representation of the design data, the availability of 
multiple services suggests a mapping of each service’s design 
data representation to a common model.  Without this lingua 
franca, a process that needs to use a specific service would 
need to have a mapping of its representation of the design data 
to the service’s design data representation, and the need to use a 
new service would require additional mapping. 

With the three-tiered service architecture illustrated in 
Figure 1, the product model interface has been deliberately 
decoupled from the communication protocol interface.  Using a 
distributed object paradigm, it would have been possible to 
expose the objects or the design components of a common 
product model in the communication protocol interface, thus 
combining the communication protocol and product model 
layers.  However, if the objects (and their attributes and 
relationships) are made public at the communication protocol 
level, as the product model evolves, the communication 
protocol must also evolve to take into account the product 
model evolution.  By decoupling the two layers, it is up to the 
individual service whether the product model interface needs to 
be modified to accommodate the product model evolution.  
Finally, since some services do not require the product model 
layer (thus optional for those services), separating it from the 
communication layer allows for a smaller communication 
protocol. 

As previously noted, the puts() and gets() methods 
of the communications protocol interface take as input and 
output a stream of design data.  In decoupling the two layers 
and keeping the infrastructure general, the trade-off comes in 
the efficiency of sending the design data.  The integrated 
approach of defining the objects at the communication protocol 
layer would be much more efficient but requires the continuing 
evolution of the communication protocol as the product model 
evolves.  Although there are no restrictions on how the 
composition of the data stream is imposed by the infrastructure, 
in the prototype, a string array describes the model in 
EXPRESS format that conforms with the standard IFC product 
model (Industry 1997). 

The product model interface stores the design data 
according to the individual service’s needs.  In the 
implementation of the prototype, all application services (as 
well as the client CAD package) store the design data in a hash 
table keyed by the component identification string.  The critical 
constraint is that each individual service is able to understand 
the common product model that has been agreed upon a priori.  
However, by making the product model storage consistent 
across the infrastructure, it would be easier to reuse methods to 
extract and to send the critical data from the product model to 
the core of the design service for the appropriate analysis. 
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Finally, even though the decoupling aspect of the 
distributed service architecture has been emphasized, the 
product model supports problem decomposition (and 
recomposition) as described in the previous section.  
Specifically, the model supports views that allow 
decomposition of the problem according to the type of analysis 
being performed.  It also supports the recomposition and 
resolution of the modified decomposed parts. 

The Design Services 
There is a distinction between the functionality of a non-

design and a design service core.  For a non-design service, the 
core layer will simply process queries and the registration of 
services.  Since there is no product model associated with a 
non-design service, no transformation or modification of a 
product model is required. 

Any design service needs to extract a view or a diagram 
from the product model (Clancy 1985).  The transformation 
from the product model to a view or a diagram is unique to the 
application.  The core of the design service needs to map the 
common product model data to its own design data 
representation.  If part of the task of the design service is to 
modify the product model that has been deposited into its 
repository, the service must then perform a reverse mapping 
from its own design data representation back to the common 
product model to update the model.  Otherwise, the service 
simply generates a report.   

In the top-level view of the implemented services, the first  
two design applications simply generate a report after mapping 
the common product model to their own design data 
representation and performing some analyses. Therefore, each 
of these services represents a one-way exchange of design data.  
To generate their respective reports, these services translate 
their own internal design data representations into human-
readable formats. 

If the services were to report their findings directly to the 
originating process, a two-way exchange of design data would 
be required.  The third design service is actually composed of a 
hierarchy of services.  Two-way communication between child 
and parent services in the hierarchy is executed within the 
communication layer, and the modified data is merged and 
resolved within the product model layer. The project manager 
is an example of a top-level service that performs both input 
and output of a design model, a two-way exchange of design 
data.  Even though the project manager is only a repository and 
does not modify the design data, it still must perform a 
mapping and a reverse mapping corresponding to the input and 
the output of a design model. 

THE DISTRIBUTED SERVICE ARCHITECTURE 
PROTOTYPE 

This section describes the technologies used to implement 
the distributed service architecture for a set of design services 
as illustrated in Figure 3. CORBA provides a high-level 

distributed object paradigm that is well-suited to implement a 
network-based distributed service architecture.  Specific 
desirable features include interface implementation 
independence, object access independent of the implemented 
programming language, object access independent of location, 
and access to standard distributed object services and facilities 
(Vogel and Duddy 1997). 

A combination of a simple, flexible generic product model 
and the geometric properties of the IAI’s IFC model  (Industry 
1997) is employed as the common product model for the design 
services.  Presently, The IAI IFC product model effort is the 
only product model that has the support of major CAD vendors 
and manufacturers associated with the building industry.  A 
seamless interface between the communication layer and 
standard product models would be critical for the proliferation 
of design applications over the Internet. 

Java is employed as the programming language to 
implement most parts of the distributed service architecture, 
both the services as well as the service clients.  Java’s well-
designed object-oriented structure and platform independence 
were the influencing factors in using it as the implementing 
programming language. 

The wide proliferation of the Internet can be attributed to 
the ease of World-Wide Web access, so taking advantage of this 
environment was appropriate.  When interaction was needed 
within the Web browser environment, Java applets could be 
seamlessly integrated into the Java-written distributed 
architecture.  The client CAD package and the accessible path 
viewer employ Java applets to create browser-based interfaces. 

The disadvantage of Java’s implementation of platform 
independence is execution speed.  Thus, the motion planner 
and the animator are application service programs written in 
C++ for optimal computational performance.  Since Java 
provides simple methods for incorporating external processes, 
the integration of the C++ applications within the Java-written 
infrastructure was straightforward. 

SERVICE:
Broker

CORBA

SERVICE
CAD UI

CORBA
IFC++

SERVICE
Project Mgr

CORBA
IFC++

SERVICE
Accessibility

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

CORBA
Naming Service

Internet

Figure 3: A distributed service architecture 
implementation 
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The Common Distributed Object Environment 
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GenericComponent
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IfcAxis2Placement3D
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Table

Figure 4: The common product model hierarchy. 
 

The communication protocol interface shown in Figure 2 is 
a simplified Interface Definition Language (IDL) file used to 
generate the CORBA-related Java source code—the arguments 
of the methods are not shown.  Though applications access 
objects and their methods defined in the IDL file in a 
distributed object environment across the Internet, from the 
application’s point of view, these objects and methods are 
treated as local entities.  This concept underlines the power of 
the CORBA paradigm. 

One feature of CORBA is the Naming Service which 
allows distributed objects or applications to register and locate 
other distributed objects or applications at a common location 
by name (Vogel and Duddy 1997).  The order in which the 
various distributed applications are launched is critical: The 
Naming Service must be launched first.   For the prototype, a 
broker called “SimpleTrader” is the first process that registers 
with the Naming Service since the design services will register 
with the broker.  The design services must be launched before 
their respective clients (the CAD package is a client to the 
project manager service, and the path-viewing is a client to the 
path planning service).  It is the responsibility of the project 
manager service to query the broker for the availability of 
design services.  If a design service has not been launched (and 
therefore has not registered with the broker), when the broker is 
queried by the project manager service for that design service, 
the broker will simply inform the project manager service that 
the requested design service is not available. 

When a design service is initialized, it queries the Naming 
Service for the broker object.  The Naming Service returns the 
broker object to the design service, which can now register 
with the broker.  Similarly, when a client of a design service is 
initialized, it queries the Naming Service for a specific design 
service object.  For example, the client CAD package queries 
the Naming Service for the project manager service by its name 
“ProjectManager”.  Once the Naming Service returns the 
service object to the client, the client can interact with the 
service using the exposed methods that are described in the 
IDL file. 

The Common Product Model for Design Services 
The communication protocol interface specifies methods 

for sending and retrieving a product model from a service 
without the interface having any knowledge about the 
semantics of the design model.  However, understanding the 
semantics of the design model is the responsibility of the 
product model interface. In the prototype, a generic and 
flexible product model is used.  A generic component, 
GenericComponent, has only an identification string and 
three fields defining its form, function, and behavior.  The form 
is described using the IAI’s IFC geometric representation 
scheme.  Figure 4 illustrates the product model hierarchy. 

The product model interface constructs an internal 
representation of the design data from the data stream. A Java 
class structure that mirrors the IFC EXPRESS schema’s class 

hierarchy, attributes, and relationships has been constructed for 
the internal representation.  The communication protocol 
interface or the common product model interface does not 
specify how the design data is stored, but in the prototype 
implementation, the data is stored in a hash table keyed by the 
identification string of the component.  The only restriction 
mandated by the common product model interface is that the 
core of the design service accesses the components in the 
repository by the name of the model and the name of the 
component. 

Components can be aggregated using the Relation-
ship object.  The way in which the product model is 
partitioned with Relationship objects effects the manner in 
which the model is decomposed among child services.  In 
addition, the product model supports recomposition and 
resolution of data modified by child services with a merge() 
method. 

The Design Services 
A variety of the design services implemented using the 

prototype infrastructure demonstrate the flexibility of the 
distributed service architecture.  The combination of the project 
manager service and a client CAD package illustrates a new 
application developed specifically for the distributed service 
architecture, while the other two design services are legacy 
applications to various degrees. As shown in Figure 3, the 
client applications of the design services vary in their use of the 
communication protocol interface and the product model 
interface. 

Top-Level Broker: a Non-Design Service  
As previously noted, a non-design service does not require 

the common product model interface, and the top-level broker 
is an example of a non-design service (see Figure 3).  The top-
level broker registers with the CORBA Naming Service and 
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waits for other services (in this case, the design services) to 

register with the top-level broker.  When an application queries 
the top-level broker about the existence of a particular 
registered service, the top-level broker will reply by returning 
the applicable service object to the querying application.  Once 
the querying application receives the applicable service object, 
the querying application is able to interact with that applicable 
service object by sending the appropriate design data.  

Project Manager Service/Client CAD Service 
The project manager is a very simple service to illustrate 

the functionality of the communication protocol and product 
model interface.  Since the main function of the project 
manager service is to act as a repository of design models, the 
service core layer does not perform any design data extraction 
and analysis from the design model that resides in the product 
model interface. 

The only other function the project manager service has is 
to process queries from the registered client CAD service by 
first passing the queries to the broker and then transferring the 
service object that the broker has returned back to the CAD 
package.  In an enterprise environment, instead of simply 
acting as a pass-through mechanism, the project manager 
service would authenticate a CAD service when the CAD 
service registers with the project manager.  The project 
manager would also act as a security agent that would filter the 
CAD package’s service request depending on the constraints of 
the specific project. 

The client CAD service, a combination of a Java Applet 
and a Virtual Reality Modeling Language (VRML) 
(“Information” 1997) interface, is launched when its Web page 
is accessed.  Figure 5 depicts the details of the CAD package 
architecture.  The applet first retrieves the project manager 
service object from the CORBA Naming Service and registers 
with the project manager.  It can then send requests to the 
project manager using the gets() and puts() exposed 

methods. The third tier or service core of the client CAD 
package includes the UI. 

Repository,
Filter

CORBA
Java
Application:

CAD core,
UI

CORBA

Internet

Java Applet:

VRML World:

Project Manager Service Client CAD Service

IFC++ IFC++

Figure 5: The program manager service and the 
client CAD service. 
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abcClient
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The Java applet handles the textual UI, and the applet 
communicates with the VRML graphical UI using the VRML 
External Authoring Interface (EAI) (Marrin 1997).  The various 
aforementioned Web browser-associated technologies allow 
rapid prototyping of the client CAD package.  Any commercial 
IFC-compliant CAD package that could incorporate the 
CORBA communication protocol could also be used. 

Figure 6: The accessibility analysis service and 
the generated report 

The CAD package can retrieve building models either 
from the project manager service repository or from a static 
local model file, which is in EXPRESS file format.  The 
retrieved model can be viewed, modified, and saved back to the 
project manager repository.  In addition, the CAD package 
queries the project manager for the available design 
applications that have been registered, and it can send the 
model that is currently being developed to the design 
applications. 

A Legacy Disabled Access Code Checking 
Service 
The disabled access code analysis service is an example of 

a legacy client/server application (Han et. al. 1998) that is 
wrapped by the service.  Once wrapped, the legacy application 
can be integrated into the distributed service architecture.  
Therefore, the core of the Java’s application service is to map 
the common product model to the legacy application’s product 
model.  Once the design data is mapped, the service launches 
the legacy application which then sends the stream of design 
data to the server where the code compliance checker resides. 

The legacy server application receives the design data, 
runs a code compliance analysis on the floor plan of a building, 
and generates a Web page with a VRML model of the design 
with redlines (see Figure 6).  The redlines have hyperlinks to 
code comments, and the code comments have hyperlinks to the 
actual building code document, in this case, the Americans with 
Disabilities Act Accessibility Guidelines (1997). 
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A Legacy Accessible Path Generating Service The disabled access code analysis application is an 
example of a set of hierarchically structured design services.  
By structuring an application as a set of service modules, the 

application can be distributed across a network of processors or 
a cluster of workstations.  If the service modules are initialized 
on the same workstation, it is the responsibility of the 
workstation’s operating system to distribute the modules as 
separate processes in a single-processor machine or among the 
processors of a multi-processor machine.  Currently, to 
distribute service modules of a particular application within a 
cluster environment, the service modules have to be manually 
initialized on separate workstations.  Following the distributed 
object paradigm of location transparency, a service that 
registers other services does not know whether the registering 
service resides on the same workstation or on a different 
workstation in the cluster. 

The accessible path generating service illustrated in Figure 

7 incorporates two legacy applications, a motion planner and an 
animation generator using techniques described by Latombe 
(1991) and Han et. al. (1999), both of which are written in 
C++.  As illustrated in Figure 7, the Java application portion of 
the service launches the motion planner and the animator 
processes, a straightforward process using Java.  The core of 
the application service extracts the necessary design data from 
the product model interface and sends it to the first legacy 
application, the motion planner. The animator then reads the 
path file generated by the motion planner, and it generates the 
VRML animation.  The client viewer’s communication 
interface polls the path-planning service for the service’s status.  
The viewer is notified when the service has completed its 
analysis, and, if desired, then loads the animator-generated 
VRML file. 

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Applications:

Motion
Planner

Animator

Poller,
UI

CORBA

Java Applet:

VRML World:

Path Planning Service Path Animation Viewer

Figure 7: The wheelchair path planning service 
and the animation viewer 
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Service:
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Accessibility
Module

Internet

Figure 8: The disabled access analysis service. 

As shown in Figure 8, the top-level service of the disabled 
access code analysis application registers with the top-level 
broker service described above. Two service modules of the 
disabled access application in turn register with the top-level 
disabled access service.  One of these modules is a path-
planning service that analyzes a design for the existence of an 
accessible path using motion planning techniques described by 
Latombe (1991).  The other module initiates a chain of modules 
that the disabled accessibility application uses to decompose 
the design in a hierarchical manner.  The chain consists of 
modules that decompose the design on the project level, site 
level, building level, story level, space level, and finally on a 
cell or sub-space level.  This hierarchy mirrors the implemented 
product model hierarchy. 

Before calling the motion planner, the design core interface 
first extracts the design data from the product model interface 
and creates a file composed of the positions of the obstacles, an 
initial point, and a goal point.  The walls and windows of the 
building model are mapped to obstacles, the center of the entry 
space is mapped to the initial point, and the space in front of a 
designated fixture (the clearance space) is mapped to the goal 
point. 

The motion planner reads in the obstacles, initial point, and 
goal point, and generates a predetermined number of 
configuration-space potential-field maps based on the 
granularity of the angular increment of the wheelchair robot.  
The motion planner creates a file with the sequence of positions 
of the wheelchair from the initial point to the goal point.  The 
animator reads in this two-dimensional information to generate 
the motion of a wheelchair in VRML by calculating the major 
and minor wheel movements and the arm motion of the 
wheelchair occupant. 

The top-level design service receives the design data from 
another application (such as the previously described CAD 
service).  The top-level design service acts as a broker for the 
path-planning service since it does not actually send design 
data to it.  The top-level design service does, however, send 
design data through the chain of service modules.  Each of 
these modules uses the path-planning service by first querying 
the top-level design service for the path-planning service 
object.  Once the particular service module in the chain The Disabled Access Code Analysis Service 
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receives the pertinent path-planning data, it further decomposes 
the design model by sending parts of the design to the next 
module in the chain. 

DISCUSSION 
This paper has described a distributed service architecture 

that allows design services to be incorporated into a modular 
network-enabled infrastructure.  The infrastructure supports 
aggregation of services and problem decomposition.  Three 
such services, a project manager and three design applications, 
were implemented.  By providing a modular infrastructure, 
services can be added or updated without re-compilation or re-
initialization of existing services.  While this work has focused 
on automated disabled access building design analysis, other 
building-design-related services can be implemented and linked 
to the network infrastructure.  For example, if a data warehouse 
inventory service is implemented, a designer could query such 
a service for the availability and pricing of a specific 
component such as a fixture, an appliance, etc. 

The infrastructure is contingent on two common interfaces, 
the communication protocol interface and the common product 
model interface.  As demonstrated, standardizing a 
communication protocol and decoupling it from the product 
model interface has its advantages and drawbacks.  The major 
advantage is that the communication protocol interface does 
not depend on changes (updates and evolution) of the product 
model since the stream of design data is object-independent; it 
is the responsibility of the product model protocol to parse the 
design data stream.  The major disadvantage is the inefficiency 
of the transmission of the design data from service to service.  
Standardization of the product model is more of a challenge.  
While the services demonstrated have simple mappings from 
the common product model to their own design representations 
without loss of critical information, other services may need 
more information than is provided in the standard product 
model, thus bringing up issues such as object overloading.  
There are at least two issues that need to be addressed.  First, 
the product model must have a formal mechanism to extend the 
model with new attributes and relationships.  Second, in order 
to address the object overloading issue, there must be a formal 
mechanism for a service to query the process that calls the 
service to extract only the necessary attributes and relationships 
of a building design model. 

Finally, the distributed service architecture prototype 
described in this paper does not address issues of security 
raised by Regli (1997) and others (for example, see Wiederhold 
et. al. (1997) and version control (Krishnamurthy 1996)).  
Companies and IT vendors are actively investigating the 
technical requirements that must be met in order to support 
network-based collaborative design that can span multiple 
organizations (InfoTEST 1997).  Overly protected rigid 
environment, such as “firewalls”, often make collaboration 
difficult (Gong 1996).  We believe that some of the security 
issues could be addressed in the communication protocol 

interface and the project manager service while version control 
could be incorporated in the common product model interface. 
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