
Proceedings of the
1999 ASME Design Engineering Technical Conferences

September 12–15, 1999, Las Vegas, Nevada

DETC99/CIE-9077

AN INTERNET-BASED DISTRIBUTED SERVICE ARCHITECTURE

Charles S. Han

Stanford University

John C. Kunz
Stanford University

Kincho H. Law
Stanford University

ABSTRACT
This paper describes a distributed architecture that enables

the delivery of design services over the Internet. The
architecture of an individual service is three-tiered. The first
tier is a common communication protocol interface. The
middle tier is the common product model interface. The third
tier is the core of the design service. Though fundamentally
decoupled, methods in the communication layer and the
product model layer have been formalized to enable the
aggregation of services and the support of problem
decomposition. In addition, with the standardization of the first
two tiers, it is possible to rapidly deploy various design
services, both new and legacy applications, that can be easily
made accessible via the Internet. As examples of design
services, the prototype implements a project manager service
with a companion CAD package, services that incorporate two
legacy applications (a building code analysis service and a
service that generates and displays an accessible path for a
given floor plan design using motion planning and animation
techniques), and a disabled access service that takes advantage
of the decomposable infrastructure.

INTRODUCTION

Traditional CAD systems are monolithic in that all
functions or “services” are bundled in a software package.
With the maturation of information and communication
technologies, the concept that distributed CAD services are
delivered over the Internet, Internet-based Computer-Aided
Design (I-CAD), is becoming a reality. Technologies are now
readily available to make the network-enabled CAD
environment possible. Specifically, the technologies include a
standard product model and a distributed object environment
that allows for the development and transfer of a design based
on the standard product model. In order to fully-leverage the
power of the Internet, engineering and design services should
be able to interact in a formal yet flexible manner. Services

should be able to combine existing services to provide added
functionality. This paper describes the developed service
infrastructure and the prototype implemented to illustrate a
framework that provides design services over the Internet.

The framework provides a means to distribute design
services in a modular and systematic way. The protocol
between services that has been developed specifies the manner
in which services can aggregate, and this aggregation supports
problem decomposition. In addition, users have the ability to
select appropriate design services as opposed to having to use a
large monolithic design tool. Furthermore, users can easily
replace a service if a superior service becomes available
without having to recompile the existing services being used.
The framework provides a means to seamlessly integrate a
legacy application as one of the modular design services in the
infrastructure. With the standardization of the communication
protocol and the exchange of product model data, integration of
legacy applications as well as deployment of new design
packages becomes a straightforward task.

In the prototype implementation, a project manager service
with a companion CAD package, two design applications with
companion viewers that incorporate legacy applications, and a
design application specifically tailored to take advantage of the
decompositional features of the infrastructure have been
developed. The project manager service acts as a design model
repository as well as a portal to direct a client application to
other services provided in the infrastructure. A companion
CAD package, a client service of the project manager service,
has access to the design repository of the project manager
service and queries the project manager service for the location
of other appropriate services available over the Internet. The
first two applications are examples of services that incorporate
legacy applications. The first design application is the
integration of a service that performs compliance checking of a
design against governmental regulations, in this case for
disabled accessibility (ADAAG 1997). The second design

 1 Copyright © 1999 by ASME

a
a
a
o

i
A
I
t
t

CAD service implementation as well as views of the data
generated by the design services, standard World-Wide Web
(WWW) browser technologies are employed although the use
of these technologies is not mandatory for the functionality of a
service or a view of a service within the infrastructure.
However, using a standard browser interface leverages the most
widely available Internet environment as well as being a
convenient means of quick prototyping.

Service Core
Communication

Interface

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Figure 1: A conceptual diagram of the distributed
service architecture.

INFRASTRUCTURE FOR THE DISTRIBUTED SERVICE
ARCHITECTURE

Figure 1 shows the conceptual network-enabled
framework for a distributed service. In this framework, each
individual service adheres to a two- or three-tiered architecture.
The first mandatory tier, a communication protocol interface,
gives applications a common means to register its services and
to send and receive data over the Internet. The optional middle
tier, the common product model interface, is a standard
protocol that describes the design data for a design service.
The mandatory third tier is the core of the service—if the
service is a design service, it extracts the appropriate
information of the building design through the common
product model interface and either modifies the design data or
generates a report based on the analysis of the data.

As shown in Figure 1, a non-design (brokering) service
does not need the product model interface that is present in the
design services. An application package can register its
services (the dashed line in Figure 1) with a brokering service
and advertise its services in the infrastructure. Another service
will query the brokering service for the existence of services in
the distributed service architecture. Note that a design service
can also register with another design service thus implying an
aggregation of services that supports problem decomposition.
The registration and query service is based on a pre-defined
constraint language. In the following, the design of the multi-
tiered architecture is examined in detail.

The Communication Protocol Interface
Methods that define the communication protocol interface

are illustrated in Figure 2. The methods are made publicly
available by a service. The communication protocol interface
is mandatory for the distributed service architecture. Following
the object-oriented paradigm, the “exposed” methods are the
points of entry into a service, but the actual implementation of

module DistributedServiceArchitecture
{
 interface Service;

 typedef sequence<boolean> BooleanArray;
 typedef sequence<Service> ServiceArray;
 typedef sequence<string> StringArray;

 interface Service
 {
 void registerService();
 Service getRegisteredService();
 ServiceArray getRegisteredServices();

 string getServiceId();
 string getServiceType();
 void putServiceType();
 void putServiceId();

 void execute ();
 boolean getStatus();
 void notifyService();

 void clear();
 boolean containsKey();
 BooleanArray containsKeys();
 string get();
 StringArray gets();
 void put();
 void puts();
 void remove();
 void removes();

 };
};

Figure 2: The communication protocol interface.
pplication is a service that generates and displays a wheelchair
ccessible route for a given floor plan design. The final design
pplication is a disabled access service that takes full advantage
f the decomposition features of the distributed infrastructure.

The distributed object environment layer of the services is
mplemented with the Common Object Request Broker
rchitecture (CORBA) (Vogel and Duddy 1997), and the

ndustry Foundation Class (IFC) product model proposed by
he International Alliance for Interoperability (IAI) is used for
he common product model layer (Industry 1997). For the

these methods is dependent on the individual broker or service.
The brokering portion of the interface defines two

methods, registerService() and getRegistered-
Service(). In addition, one service can execute a command
in another service using the execute() method, and the
called service can then notify the calling service when the
execution is complete using the notifyService() method.

When an application registers its services with the broker
or top-level service, it provides two arguments, the service that
is being registered and a string that describes the service. In
addition, to support problem decomposition, when an

2 Copyright © 1999 by ASME

application registers its services with a broker, it specifies when
it will be executed. For example, if the service is a child
service, it is executed along with the other registered child
services. When these child services notify the parent service
that their tasks are complete, non-child services that have
registered with the broker or top-level service will process the
data extracted from the child services.

When the broker is queried for a service, the broker returns
a registered service that matches the description of the query
argument. In a real implementation of this infrastructure, a
more sophisticated broker protocol would be necessary. For
example the client would need to provide client registration
information and, for building code analysis services,
geographic location and a more specific description of the type
of building code (structural, mechanical, electrical, etc). An
even more sophisticated protocol would involve a more
extensive communication sequence between a client and the
broker. For example, the client could query the broker for a set
of existing services that match a specific set of constraints, and
then the client could choose among the services returned by the
broker. For further description on a broker protocol, see the
discussion on the CORBA Trading Service by Vogel and
Duddy (1997).

Design data must be exchanged between services, and
puts() and gets() are the most important methods. The
puts() method sends the product model to the service with
two arguments, a string identifying the name of the model and a
stream of data that defines the model. The gets() method
returns a model with the name identified by the single string
argument. The gets() method retrieves data from an
invoked service once that invoked service has notified the
invoking application that it has completed its task. If several
child services have been invoked, the gets() method will be
invoked upon notification by all child services. The retrieved
data must be resolved by aggregation methods developed for
the product model.

Finally, services themselves have the ability to process a
query concerning the existence of other services through a
project manager service module. The motivation for providing
this ability is that in an enterprise environment, the user of a
CAD package may not be given the responsibility of knowing
what services should be used. The project manager service has
the responsibility of filtering the information given by the
broker. We also allow services to register and query other
services to provide the most flexibility and better distributed
functionality. Following the distributed service paradigm,
services may be distributed as processes of one CPU, processes
of a multi-processor system, or among workstations within a
cluster. When services register with a higher-level service, this
higher-level service can execute commands of the registered
services as threads. Finally, when a service is initiated, it can
be queried for its status with the status() method since a
service may not necessarily process the information or
complete the work immediately. With this small set of methods
for the broker and a service, the communication protocol layer

is fully functional and can be utilized by an application that
operates within the distributed network-based environment.

The Product Model Interface for Design Services
In order to create an infrastructure in which design services

can be incrementally added and since each service will have its
own representation of the design data, the availability of
multiple services suggests a mapping of each service’s design
data representation to a common model. Without this lingua
franca, a process that needs to use a specific service would
need to have a mapping of its representation of the design data
to the service’s design data representation, and the need to use a
new service would require additional mapping.

With the three-tiered service architecture illustrated in
Figure 1, the product model interface has been deliberately
decoupled from the communication protocol interface. Using a
distributed object paradigm, it would have been possible to
expose the objects or the design components of a common
product model in the communication protocol interface, thus
combining the communication protocol and product model
layers. However, if the objects (and their attributes and
relationships) are made public at the communication protocol
level, as the product model evolves, the communication
protocol must also evolve to take into account the product
model evolution. By decoupling the two layers, it is up to the
individual service whether the product model interface needs to
be modified to accommodate the product model evolution.
Finally, since some services do not require the product model
layer (thus optional for those services), separating it from the
communication layer allows for a smaller communication
protocol.

As previously noted, the puts() and gets() methods
of the communications protocol interface take as input and
output a stream of design data. In decoupling the two layers
and keeping the infrastructure general, the trade-off comes in
the efficiency of sending the design data. The integrated
approach of defining the objects at the communication protocol
layer would be much more efficient but requires the continuing
evolution of the communication protocol as the product model
evolves. Although there are no restrictions on how the
composition of the data stream is imposed by the infrastructure,
in the prototype, a string array describes the model in
EXPRESS format that conforms with the standard IFC product
model (Industry 1997).

The product model interface stores the design data
according to the individual service’s needs. In the
implementation of the prototype, all application services (as
well as the client CAD package) store the design data in a hash
table keyed by the component identification string. The critical
constraint is that each individual service is able to understand
the common product model that has been agreed upon a priori.
However, by making the product model storage consistent
across the infrastructure, it would be easier to reuse methods to
extract and to send the critical data from the product model to
the core of the design service for the appropriate analysis.

 3 Copyright © 1999 by ASME

Finally, even though the decoupling aspect of the
distributed service architecture has been emphasized, the
product model supports problem decomposition (and
recomposition) as described in the previous section.
Specifically, the model supports views that allow
decomposition of the problem according to the type of analysis
being performed. It also supports the recomposition and
resolution of the modified decomposed parts.

The Design Services
There is a distinction between the functionality of a non-

design and a design service core. For a non-design service, the
core layer will simply process queries and the registration of
services. Since there is no product model associated with a
non-design service, no transformation or modification of a
product model is required.

Any design service needs to extract a view or a diagram
from the product model (Clancy 1985). The transformation
from the product model to a view or a diagram is unique to the
application. The core of the design service needs to map the
common product model data to its own design data
representation. If part of the task of the design service is to
modify the product model that has been deposited into its
repository, the service must then perform a reverse mapping
from its own design data representation back to the common
product model to update the model. Otherwise, the service
simply generates a report.

In the top-level view of the implemented services, the first
two design applications simply generate a report after mapping
the common product model to their own design data
representation and performing some analyses. Therefore, each
of these services represents a one-way exchange of design data.
To generate their respective reports, these services translate
their own internal design data representations into human-
readable formats.

If the services were to report their findings directly to the
originating process, a two-way exchange of design data would
be required. The third design service is actually composed of a
hierarchy of services. Two-way communication between child
and parent services in the hierarchy is executed within the
communication layer, and the modified data is merged and
resolved within the product model layer. The project manager
is an example of a top-level service that performs both input
and output of a design model, a two-way exchange of design
data. Even though the project manager is only a repository and
does not modify the design data, it still must perform a
mapping and a reverse mapping corresponding to the input and
the output of a design model.

THE DISTRIBUTED SERVICE ARCHITECTURE
PROTOTYPE

This section describes the technologies used to implement
the distributed service architecture for a set of design services
as illustrated in Figure 3. CORBA provides a high-level

distributed object paradigm that is well-suited to implement a
network-based distributed service architecture. Specific
desirable features include interface implementation
independence, object access independent of the implemented
programming language, object access independent of location,
and access to standard distributed object services and facilities
(Vogel and Duddy 1997).

A combination of a simple, flexible generic product model
and the geometric properties of the IAI’s IFC model (Industry
1997) is employed as the common product model for the design
services. Presently, The IAI IFC product model effort is the
only product model that has the support of major CAD vendors
and manufacturers associated with the building industry. A
seamless interface between the communication layer and
standard product models would be critical for the proliferation
of design applications over the Internet.

Java is employed as the programming language to
implement most parts of the distributed service architecture,
both the services as well as the service clients. Java’s well-
designed object-oriented structure and platform independence
were the influencing factors in using it as the implementing
programming language.

The wide proliferation of the Internet can be attributed to
the ease of World-Wide Web access, so taking advantage of this
environment was appropriate. When interaction was needed
within the Web browser environment, Java applets could be
seamlessly integrated into the Java-written distributed
architecture. The client CAD package and the accessible path
viewer employ Java applets to create browser-based interfaces.

The disadvantage of Java’s implementation of platform
independence is execution speed. Thus, the motion planner
and the animator are application service programs written in
C++ for optimal computational performance. Since Java
provides simple methods for incorporating external processes,
the integration of the C++ applications within the Java-written
infrastructure was straightforward.

SERVICE:
Broker

CORBA

SERVICE
CAD UI

CORBA
IFC++

SERVICE
Project Mgr

CORBA
IFC++

SERVICE
Accessibility

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

SERVICE
Support Svc

CORBA
IFC++

CORBA
Naming Service

Internet

Figure 3: A distributed service architecture
implementation

 4 Copyright © 1999 by ASME

The Common Distributed Object Environment

ExpressEntity

GenericComponent

IfcGeometricRepresentation

IfcBoundingBox

IfcDirection

IfcPlacement

IfcPoint IfcCartesianPoint

IfcAxis2Placement2D

IfcAxis2Placement3D

Relationship

Table

Figure 4: The common product model hierarchy.

The communication protocol interface shown in Figure 2 is
a simplified Interface Definition Language (IDL) file used to
generate the CORBA-related Java source code—the arguments
of the methods are not shown. Though applications access
objects and their methods defined in the IDL file in a
distributed object environment across the Internet, from the
application’s point of view, these objects and methods are
treated as local entities. This concept underlines the power of
the CORBA paradigm.

One feature of CORBA is the Naming Service which
allows distributed objects or applications to register and locate
other distributed objects or applications at a common location
by name (Vogel and Duddy 1997). The order in which the
various distributed applications are launched is critical: The
Naming Service must be launched first. For the prototype, a
broker called “SimpleTrader” is the first process that registers
with the Naming Service since the design services will register
with the broker. The design services must be launched before
their respective clients (the CAD package is a client to the
project manager service, and the path-viewing is a client to the
path planning service). It is the responsibility of the project
manager service to query the broker for the availability of
design services. If a design service has not been launched (and
therefore has not registered with the broker), when the broker is
queried by the project manager service for that design service,
the broker will simply inform the project manager service that
the requested design service is not available.

When a design service is initialized, it queries the Naming
Service for the broker object. The Naming Service returns the
broker object to the design service, which can now register
with the broker. Similarly, when a client of a design service is
initialized, it queries the Naming Service for a specific design
service object. For example, the client CAD package queries
the Naming Service for the project manager service by its name
“ProjectManager”. Once the Naming Service returns the
service object to the client, the client can interact with the
service using the exposed methods that are described in the
IDL file.

The Common Product Model for Design Services
The communication protocol interface specifies methods

for sending and retrieving a product model from a service
without the interface having any knowledge about the
semantics of the design model. However, understanding the
semantics of the design model is the responsibility of the
product model interface. In the prototype, a generic and
flexible product model is used. A generic component,
GenericComponent, has only an identification string and
three fields defining its form, function, and behavior. The form
is described using the IAI’s IFC geometric representation
scheme. Figure 4 illustrates the product model hierarchy.

The product model interface constructs an internal
representation of the design data from the data stream. A Java
class structure that mirrors the IFC EXPRESS schema’s class

hierarchy, attributes, and relationships has been constructed for
the internal representation. The communication protocol
interface or the common product model interface does not
specify how the design data is stored, but in the prototype
implementation, the data is stored in a hash table keyed by the
identification string of the component. The only restriction
mandated by the common product model interface is that the
core of the design service accesses the components in the
repository by the name of the model and the name of the
component.

Components can be aggregated using the Relation-
ship object. The way in which the product model is
partitioned with Relationship objects effects the manner in
which the model is decomposed among child services. In
addition, the product model supports recomposition and
resolution of data modified by child services with a merge()
method.

The Design Services
A variety of the design services implemented using the

prototype infrastructure demonstrate the flexibility of the
distributed service architecture. The combination of the project
manager service and a client CAD package illustrates a new
application developed specifically for the distributed service
architecture, while the other two design services are legacy
applications to various degrees. As shown in Figure 3, the
client applications of the design services vary in their use of the
communication protocol interface and the product model
interface.

Top-Level Broker: a Non-Design Service
As previously noted, a non-design service does not require

the common product model interface, and the top-level broker
is an example of a non-design service (see Figure 3). The top-
level broker registers with the CORBA Naming Service and

 5 Copyright © 1999 by ASME

waits for other services (in this case, the design services) to

register with the top-level broker. When an application queries
the top-level broker about the existence of a particular
registered service, the top-level broker will reply by returning
the applicable service object to the querying application. Once
the querying application receives the applicable service object,
the querying application is able to interact with that applicable
service object by sending the appropriate design data.

Project Manager Service/Client CAD Service
The project manager is a very simple service to illustrate

the functionality of the communication protocol and product
model interface. Since the main function of the project
manager service is to act as a repository of design models, the
service core layer does not perform any design data extraction
and analysis from the design model that resides in the product
model interface.

The only other function the project manager service has is
to process queries from the registered client CAD service by
first passing the queries to the broker and then transferring the
service object that the broker has returned back to the CAD
package. In an enterprise environment, instead of simply
acting as a pass-through mechanism, the project manager
service would authenticate a CAD service when the CAD
service registers with the project manager. The project
manager would also act as a security agent that would filter the
CAD package’s service request depending on the constraints of
the specific project.

The client CAD service, a combination of a Java Applet
and a Virtual Reality Modeling Language (VRML)
(“Information” 1997) interface, is launched when its Web page
is accessed. Figure 5 depicts the details of the CAD package
architecture. The applet first retrieves the project manager
service object from the CORBA Naming Service and registers
with the project manager. It can then send requests to the
project manager using the gets() and puts() exposed

methods. The third tier or service core of the client CAD
package includes the UI.

Repository,
Filter

CORBA
Java
Application:

CAD core,
UI

CORBA

Internet

Java Applet:

VRML World:

Project Manager Service Client CAD Service

IFC++ IFC++

Figure 5: The program manager service and the
client CAD service.

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Client/Server
Pair:

Access Checking Service Checker Results

abcClient

abcServer

The Java applet handles the textual UI, and the applet
communicates with the VRML graphical UI using the VRML
External Authoring Interface (EAI) (Marrin 1997). The various
aforementioned Web browser-associated technologies allow
rapid prototyping of the client CAD package. Any commercial
IFC-compliant CAD package that could incorporate the
CORBA communication protocol could also be used.

Figure 6: The accessibility analysis service and
the generated report

The CAD package can retrieve building models either
from the project manager service repository or from a static
local model file, which is in EXPRESS file format. The
retrieved model can be viewed, modified, and saved back to the
project manager repository. In addition, the CAD package
queries the project manager for the available design
applications that have been registered, and it can send the
model that is currently being developed to the design
applications.

A Legacy Disabled Access Code Checking
Service
The disabled access code analysis service is an example of

a legacy client/server application (Han et. al. 1998) that is
wrapped by the service. Once wrapped, the legacy application
can be integrated into the distributed service architecture.
Therefore, the core of the Java’s application service is to map
the common product model to the legacy application’s product
model. Once the design data is mapped, the service launches
the legacy application which then sends the stream of design
data to the server where the code compliance checker resides.

The legacy server application receives the design data,
runs a code compliance analysis on the floor plan of a building,
and generates a Web page with a VRML model of the design
with redlines (see Figure 6). The redlines have hyperlinks to
code comments, and the code comments have hyperlinks to the
actual building code document, in this case, the Americans with
Disabilities Act Accessibility Guidelines (1997).

 6 Copyright © 1999 by ASME

A Legacy Accessible Path Generating Service The disabled access code analysis application is an
example of a set of hierarchically structured design services.
By structuring an application as a set of service modules, the

application can be distributed across a network of processors or
a cluster of workstations. If the service modules are initialized
on the same workstation, it is the responsibility of the
workstation’s operating system to distribute the modules as
separate processes in a single-processor machine or among the
processors of a multi-processor machine. Currently, to
distribute service modules of a particular application within a
cluster environment, the service modules have to be manually
initialized on separate workstations. Following the distributed
object paradigm of location transparency, a service that
registers other services does not know whether the registering
service resides on the same workstation or on a different
workstation in the cluster.

The accessible path generating service illustrated in Figure

7 incorporates two legacy applications, a motion planner and an
animation generator using techniques described by Latombe
(1991) and Han et. al. (1999), both of which are written in
C++. As illustrated in Figure 7, the Java application portion of
the service launches the motion planner and the animator
processes, a straightforward process using Java. The core of
the application service extracts the necessary design data from
the product model interface and sends it to the first legacy
application, the motion planner. The animator then reads the
path file generated by the motion planner, and it generates the
VRML animation. The client viewer’s communication
interface polls the path-planning service for the service’s status.
The viewer is notified when the service has completed its
analysis, and, if desired, then loads the animator-generated
VRML file.

Mapper,
Launcher

CORBA

IFC

Internet

Java
Application:

Legacy
Applications:

Motion
Planner

Animator

Poller,
UI

CORBA

Java Applet:

VRML World:

Path Planning Service Path Animation Viewer

Figure 7: The wheelchair path planning service
and the animation viewer

Service:
Top-Level

Broker

Service:
Path-Planner

Service:
Top-Level

Accessibility
Checker

Service:
Project-Level
Accessibility

Module

Service:
Site-Level

Accessibility
Module

Internet

Figure 8: The disabled access analysis service.

As shown in Figure 8, the top-level service of the disabled
access code analysis application registers with the top-level
broker service described above. Two service modules of the
disabled access application in turn register with the top-level
disabled access service. One of these modules is a path-
planning service that analyzes a design for the existence of an
accessible path using motion planning techniques described by
Latombe (1991). The other module initiates a chain of modules
that the disabled accessibility application uses to decompose
the design in a hierarchical manner. The chain consists of
modules that decompose the design on the project level, site
level, building level, story level, space level, and finally on a
cell or sub-space level. This hierarchy mirrors the implemented
product model hierarchy.

Before calling the motion planner, the design core interface
first extracts the design data from the product model interface
and creates a file composed of the positions of the obstacles, an
initial point, and a goal point. The walls and windows of the
building model are mapped to obstacles, the center of the entry
space is mapped to the initial point, and the space in front of a
designated fixture (the clearance space) is mapped to the goal
point.

The motion planner reads in the obstacles, initial point, and
goal point, and generates a predetermined number of
configuration-space potential-field maps based on the
granularity of the angular increment of the wheelchair robot.
The motion planner creates a file with the sequence of positions
of the wheelchair from the initial point to the goal point. The
animator reads in this two-dimensional information to generate
the motion of a wheelchair in VRML by calculating the major
and minor wheel movements and the arm motion of the
wheelchair occupant.

The top-level design service receives the design data from
another application (such as the previously described CAD
service). The top-level design service acts as a broker for the
path-planning service since it does not actually send design
data to it. The top-level design service does, however, send
design data through the chain of service modules. Each of
these modules uses the path-planning service by first querying
the top-level design service for the path-planning service
object. Once the particular service module in the chain The Disabled Access Code Analysis Service

 7 Copyright © 1999 by ASME

 8 Copyright © 1999 by ASME

receives the pertinent path-planning data, it further decomposes
the design model by sending parts of the design to the next
module in the chain.

DISCUSSION
This paper has described a distributed service architecture

that allows design services to be incorporated into a modular
network-enabled infrastructure. The infrastructure supports
aggregation of services and problem decomposition. Three
such services, a project manager and three design applications,
were implemented. By providing a modular infrastructure,
services can be added or updated without re-compilation or re-
initialization of existing services. While this work has focused
on automated disabled access building design analysis, other
building-design-related services can be implemented and linked
to the network infrastructure. For example, if a data warehouse
inventory service is implemented, a designer could query such
a service for the availability and pricing of a specific
component such as a fixture, an appliance, etc.

The infrastructure is contingent on two common interfaces,
the communication protocol interface and the common product
model interface. As demonstrated, standardizing a
communication protocol and decoupling it from the product
model interface has its advantages and drawbacks. The major
advantage is that the communication protocol interface does
not depend on changes (updates and evolution) of the product
model since the stream of design data is object-independent; it
is the responsibility of the product model protocol to parse the
design data stream. The major disadvantage is the inefficiency
of the transmission of the design data from service to service.
Standardization of the product model is more of a challenge.
While the services demonstrated have simple mappings from
the common product model to their own design representations
without loss of critical information, other services may need
more information than is provided in the standard product
model, thus bringing up issues such as object overloading.
There are at least two issues that need to be addressed. First,
the product model must have a formal mechanism to extend the
model with new attributes and relationships. Second, in order
to address the object overloading issue, there must be a formal
mechanism for a service to query the process that calls the
service to extract only the necessary attributes and relationships
of a building design model.

Finally, the distributed service architecture prototype
described in this paper does not address issues of security
raised by Regli (1997) and others (for example, see Wiederhold
et. al. (1997) and version control (Krishnamurthy 1996)).
Companies and IT vendors are actively investigating the
technical requirements that must be met in order to support
network-based collaborative design that can span multiple
organizations (InfoTEST 1997). Overly protected rigid
environment, such as “firewalls”, often make collaboration
difficult (Gong 1996). We believe that some of the security
issues could be addressed in the communication protocol

interface and the project manager service while version control
could be incorporated in the common product model interface.

ACKNOWLEDGMENTS
This research is partially sponsored by the Center for

Integrated Facility Engineering at Stanford University.

REFERENCES
Americans with Disabilities Act Accessibility Guidelines.

(1997). Access Board, U.S. Architectural and Transportation
Barriers Compliance Board, Washington, D.C.

Clancy, W. J. (1985). Heuristic classification in artificial
intelligence, Elsevier Publishers B.V., North-Holland.

Gong, L. (1996), “Enclave: enabling secure collaboration
over the internet,” Proc. Of the Sixth USENIX Security Symp.,
pp. 149-159.

Han, C.S., Kunz, J.C., and Law, K.H. (1998). “A
client/server framework for on-line building code checking,” J.
Comp. in Civ. Engrg., ASCE, 12(4), 181-194.

Han, Charles S., Kunz, J.C., Law, K.H. (1999), "Building
Design Services in a Distributed Architecture," J. of Comp. in
Civ. Engrg., ASCE, Vol. 13(1), pp. 12-22.

Industry foundation classes release 1.5, specifications
volumes 1-4. (1997). International Alliance for Interoperability,
Washington D.C.

“Information technology—computer graphics and image
processing—the virtual reality modeling language (VRML)—
Part 1: Functional specification and UTF-8 encoding.” (1997).
ISO/IEC 14772-1:1997, International Standards Organization,
Geneva, Switzerland.

InfoTEST International Enhanced Product Realization
Testbed (1997), a report by D.H. Brown Associates, Inc., Port
Chester, NY.

Krishnamurthy, K. (1996). “A data management model for
change control in collaborative design environments,” PhD
Thesis, Dept. of Civ. Engrg., Stanford University, Stanford,
Calif.

Latombe, J.C. (1991). Robot motion planning, Kluwer
Academic Publishers, Norwell, Mass.

Marrin, C. (1997). Proposal for a VRML 2.0 Informative
Annex: External Authoring Interface Reference, an
unpublished draft of a proposal to the ISO.

Regli, W.C. (1997). “Internet-Enabled Computer-Aided
Design,” IEEE Internet Computing, IEEE 1(1), 39-50.

Vogel, A., and Duddy, K. (1997). Java programming with
CORBA, John Wiley and Sons, Inc., New York, N.Y.

Wiederhold, G., Bilello, M., Sarathy, V., and Qian, X.L.
(1996). “Protecting Collaboration,” Proc., NISSC'96 National
Information Systems Security Conference, Baltimore Md., 561-
569

