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Abstract 

Designing a facility entails generating a configuration that satisfies a set of usability 

constraints.  This research develops computer models and methods providing designers 

with disabled access analysis tools to test the usability of a facility.  Among the usability 

constraints, building code regulations are considered the most critical.  The design intent 

of building codes include the provision of minimum standards to safeguard life or limb, 

health, property and public welfare.  The statements or provisions in building codes often 

contain “prescriptive” specifications of these objectives. However, prescriptive-based 

codes can be ambiguous, contradictory, complex, and unduly restrictive.  In this research, 

performance-based methods are developed to provide designers with analysis 

complementary to the prescriptive-based disabled access code, the Americans with 

Disabilities Act Accessibility Guidelines (ADAAG). 

The research develops a design-aid framework to support the disabled access analysis 

utilizing three models: 

• A design-intent model that organizes computer methods to analyze a facility design. 

• A product model that describes the facility design. 

• A document model tightly integrated with the intent model that extracts the relevant 

provisions to inform the designer of code violations of a facility design. 
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The design-intent or objective-based approach used by the design-aid framework depends 

on the clear intent or objectives of the code or standard and the ability to decompose the 

intent and objectives into testable code-compliant or usability methods.  

In addition, as part of the performance-based approach, this research also utilizes motion-

planning techniques to test the wheelchair usability of a facility.  This new framework 

also provides an Internet-based design environment for users or designers to interact 

virtually with the design of a facility.  An additional component of the framework, an 

interactive environment, also addresses the deficiencies of the performance-based 

approach related to the difficulties in accurately modeling all the relevant behaviors. 
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Chapter 1  

Introduction 

1.1 Problem Statement 

Designing a facility entails generating a configuration that satisfies a set of usability 

constraints.   Among these usability constraints, building code regulations are considered 

the most critical.  The design intent or objective of building codes includes the provision 

of minimum standards to safeguard life or limb, health, property and public welfare [58]. 

Many of the provisions in building codes such as the Uniform Building Code (UBC) [58] 

and the Americans with Disabilities Act Accessibility Guidelines (ADAAG) [1] contain 

“prescriptive” specifications of these objectives.  For example, the following ADAAG 

provision prescribes the acceptable width of a doorway for a wheelchair user: 

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm) 
with the door open 90 degrees, measured between the face of the door and the opposite 
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall 
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)). 

Advantages of using prescriptive provisions include straightforward evaluation of a 

design using the prescribed parameters and having the ability to make this evaluation 

1 
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without needing high-level engineering knowledge about the specific analysis.  However, 

prescriptive-based codes can be ambiguous, contradictory, complex, and unduly 

restrictive [20,23,39].  Solutions constrained by prescriptive-based codes address only a 

fraction of the possible solutions that meet the design intent or objectives of these codes.  

Furthermore, instances exist where adhering to these prescriptive provisions produces a 

design that may not satisfy usability. 

As a partial solution to the problems that exist in prescriptive-based building codes, many 

jurisdictions have adopted or are moving toward the adoption of “performance-based” 

codes [23,57].  As opposed to prescriptive-based codes that provide solutions abstracted 

from the design intent or objective of a building code, performance-based codes attempt 

to directly capture the behaviors that conform to the intent of the design codes or 

regulations.  This direct performance-based approach accepts design solutions that satisfy 

the usability constraints, including those solutions that do not comply with the 

prescriptive-based constraints specified by a design code.  On the other hand, when a 

performance-based approach accurately models usability, this approach will identify and 

reject design solutions that are not usable—as noted earlier, some unusable designs may 

be accepted by an analysis utilizing the prescriptive-based constraints specified by a 

design code. 

Limitations of the performance-based approach include the difficulty in defining all the 

quantitative levels or modeling all the relevant behaviors of performance: 

• If a particular behavior is inadequately modeled, the performance-based analysis may 

reject a design solution that satisfies the design intent or objectives of the code. 

• If a particular behavior is incorrectly modeled, the performance-based analysis may 

accept a solution that does not satisfy the intent of the code or reject a solution that 

does satisfy the intent of the code. 
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Table 1.1: Prescription versus Performance of a Design Code (modified from [23]). 
Code Type Advantages Disadvantages

Prescriptive Codes Straightforward evaluation of compliance with Requirements specified without statement
established requirements of objectives

No requirements of high level engineering Complexity of and conflicts within the
expertise structure of existing codes

Overly restrictive

Sometimes compliance does not insure
meeting of code intent

Performance Codes Establishment of clear goals Difficult to define quantitative levels of
performance

Facilitating use of new knowledge when available
Difficult to capture relevant behavior

Non-complex documents
Difficult to evaluate compliance with

Permitting prompt introduction of new established requirements
technologies to the market place

Need for validation of the tools used for
quantification

 

Table 1.1 summarizes the advantages and disadvantages of prescriptive- and 

performance-based building codes, and Figure 1.1 depicts the relationship among the 

design solution space given a set of usability constraints and the solution spaces based on 

the prescriptive-based and performance-based formulations of these usability constraints.  

Designs that are in compliance with prescriptive-based codes may represent a small 

number of all possible designs, and not all of them necessarily meet design objectives.  

Designs based on performance-based codes, ideally, include a larger portion of desirable 

designs since they directly fulfill the design objectives and requirements. 

This research develops computer models and methods providing designers with disabled 

access analysis tools to test the usability of a facility.  Specifically, the developed 

computer environment allows designers to input the design of a facility and test the 
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Design Solution Space
Prescriptive-Based Solution Space
Performance-Based Solution Space

 

Figure 1.1: The relationship among the three design solution spaces. 

wheelchair usability of the design.  The developed performance-based methods provide 

designers with analysis complementary to the prescriptive-based ADAAG.  The research 

utilizes the performance-based approach to develop the usability analysis while 

minimizing the deficiencies associated with this approach and develops a design-aid 

framework that utilizes three models: 

• A design-intent model that organizes computer methods to analyze a facility design. 

• A product model that describes the facility design. 

• A document model of the building code tightly integrated with the intent model that 

extracts the relevant provisions to inform the designer of code violations of a facility 

design. 

The design-intent or objective-based approach used by the design-aid framework depends 

on the clear intent or objectives of the code or standard and the ability to decompose the 

intent and objectives into testable code-compliant or usability methods. The hierarchical 

structure of intents and the decomposition of these intents into sub-intents consist of 
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analysis methods associated with prescriptive provisions, but the hierarchical 

organization of the intent or objectives of the code allows these prescriptive analysis 

methods to be substituted with performance-based methods.  Furthermore, while several 

prescriptive provisions may be needed to describe a sub-intent of the code (often 

increasing the complexity and creating contractions among provisions of the code), as 

this research demonstrates, a single performance-based method can replace a set of 

prescriptive provisions thus alleviating possible complexity and contradiction.  This new 

framework also provides an environment for users or designers to interact virtually with 

the design of a facility.  An additional component of the framework, an interactive 

environment, also addresses the deficiencies of the performance-based approach related 

to the difficulties in accurately modeling all the relevant behaviors. 

Working within this framework, this research develops performance-based methods to 

demonstrate wheelchair usability in a facility.  Specifically, the research leverages 

motion-planning techniques in an attempt to directly capture wheelchair motion and 

behavior.  The performance-based methods and the design-aid framework are 

demonstrated using a simple test case as well as with an analysis of a university facility. 

1.2 Related Research 

Design standards and product and process modeling have been active research areas for 

several decades.  To review all relevant works is beyond the scope of this thesis.  For a 

United States perspective, see [14].  This section presents both an overview and compares 

and contrasts the related research with this research effort. Section 1.2.1 presents an 

overview of building standards research. Section 1.2.2 presents the relevant product and 

process model research since the ability to automate the analysis of a designed facility is 

dependent on the description of the facility.   
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1.2.1 Building Standards Research 

1.2.1.1 Decision Tables and Standards Analysis, Synthesis and Evaluation 
Fenves demonstrated the use of decision tables to represent design standards provisions 

[13].  The structure of decision tables naturally lends itself to the organization of a set of 

conditions on data items that make up a provision.  As shown in Table 1.2, a decision 

table is divided into four quadrants with each quadrant separated with a double line.  The 

upper left quadrant contains the conditional stubs or the list of logical variables of the 

provision.  The upper right quadrant contains the conditional entries of these variables.  

The lower left quadrant contains the action stubs, and the lower right quadrant contains 

the action entries. 

Conditional entries use the following nomenclature [15]: “T” or “Y” means the condition 

must be true, and “F” or “N” means the condition must be false for the rule to apply.  “I” 

or “.” means the condition is immaterial.  “-” or “+” indicate that the condition is 

respectively implicitly false or true.  An “X” in the action entry indicates the action to be 

taken for the given rule.  Table 1.3 shows the use of the decision table nomenclature for a 

table concerning the maximum height of a building. 

Table 1.4 illustrates a requirement for stair dimensions.  For this table, if a stair does not 

satisfy all three conditions of stair width, riser height, and tread width (in this case, the 

conditions need to be false), the stair violates the requirement.  Note that this table 

contains an “E” rule column representing the else rule (similarly, columns 5 through 10 

in Table 1.3 can be replaced with an else rule column). 

While decision tables can concisely represent provision requirements, an individual 

decision table alone does not provide a means to address the overall organization 

(including relationships among provisions) of a design standard.  Fenves et al. addressed 

this deficiency with the development of the Standards Analysis, Synthesis and Evaluation 

(SASE) methodology [15].  SASE provided a formal methodology to represent individual 

provisions (with data items and decision tables), relationships among provisions (the 
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Table 1.2: Regions of a decision table (from [15]). 

CONDITION STUB CONDITION ENTRY

ACTION STUB ACTION ENTRY

 

Table 1.3: Checking the maximum height (from [15]). 

1 2 3 4 5 6 7 8 9 10

1 Clearance < 6' T T T T T T T T T F

2 Sign Const. = closed T T F F T T F F I I

3 Bldg. Type = 1 or 2 T - T - T - T - F I

4 Bldg. Type = 3 - T - T - T - T F I

5 Height > 35' I F I I - T + + I I

6 Height > 50' F - I I T I + + I I

7 Height > 60' - - I F I I + T I I
8 Height > 100' - - F - I I T I I I

1 Height acceptable X X X X

2 Height not acceptable X X X X X X  

Table 1.4: A stair requirements decision table (variation of table from [15]). 

1 E

1 Stair width < 22 inches F

2 Riser height > 8 inches F
3 Tread width < 8 inches F

1 Requirement - satisfied X

2 Requirement - violated X  
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information network), and the organization of the standard.  Finally, SASE’s information 

network structure connects data items in a standard through precedence relationships. 

1.2.1.2 An Object-Oriented Approach 
Garrett and Hakim point out two deficiencies in the SASE approach to modeling design 

standards which uses decision tables composed of data items as the primary means of 

logic representation [18].  First, with no formal model of the design objects, a standard 

becomes a “large, unwieldy” set of decision tables.  Second, lack of evaluation methods 

other than decision tables leads to inefficiencies such as forcing conditional decision-

making upon unconditional items such as design functions. 

To address these issues, Garrett and Hakim developed an object-oriented approach 

organizing a design standard around design objects pertinent to the design standard.  This 

object-oriented approach uses the following main groups of objects: 

• A group of several hierarchies of objects merged together which defines design-

specific attributes and hierarchies as well as attributes such as shape, function, and 

material that may not be influenced by the design standard in question. 

• A performance-limitation hierarchy that defines the performance or behavioral 

constraints on the design objects. 

• A data-item hierarchy that provides a structure for classifying and describing a piece 

of information (for example, a basic data item, a rule, or a function), and a data-item-

instance network that expresses the relationships among data items. 

Garrett and Hakim’s incorporation of design objects within the analysis process provides 

a logical extension to the SASE methodology. 

De Ward offers a slightly different object-oriented approach to design standard 

processing [9]. Garrett and Hakim tightly couple the design object structure to the 

particular design standard.  De Waard first develops the product model (a description of 
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design objects or building components and their relationships among one another) for 

residential buildings.  Using the developed residential product model, de Waard contends 

that modeling design standards must consider the building model implicit in the 

regulations.  To illustrate this point, de Waard models several provisions (referred to as 

Building Decrees) extending and adjusting the relationships developed in the residential 

product model. 

1.2.1.3 The Hyper-Object-Logic Model 
Yabuki uses an object-logic model to represent design standards for design application 

and standards analysis combined with a hypertext document model structure that can 

store relevant design standard provisions and related information [60].  Figure 1.2 shows 

the object-logic framework.  The object-logic system consists of two sets of object-

oriented hierarchies (the standards base that consists of a “member class” and a “method 

object” hierarchy and CAD object database that consists of an “object model” and “data 

objects” hierarchy). Yabuki’s research focused on the American Institute of Steel 

Construction (AISC) Load and Resistance Factor Design (LRFD) specification for steel 

construction [44].  In Yabuki’s implementation, a (steel) “member” is a subclass of a 

generic object.  In addition, the object-logic model contains two design applications (a 

conformance-checking module and a component-design module), and a standards-

analysis module. 

The standards base includes method objects written in object-logic sentences that are 

associated with a class in a “member” class hierarchy (method objects represent the 

provisions of the design standard).  The method object hierarchy has a “method” root 

object with a “requirements,” a “determinants,” and a “classifications” subclass, and 

Yabuki made the observation that a “requirements” method object class can only be 

associated with a leaf node in the member class hierarchy.  The CAD object database 

uses object-logic sentences to express external constraints to a design member object. 
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Figure 1.2: Overview of Yabuki’s Hyper-Object-Logic model. 

Yabuki implements two design applications and a standards-analysis module to validate 

the developed object-logic framework.  The two design applications take a user-defined 

design object (a steel member) from the CAD object database and check the design for 

conformance in the standards base by traversing the member class hierarchy and using 

logic resolution and message passing among the method objects associated with each 

traversed class.  Before checking for conformance, the component-design module 
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generates a component based on heuristics derived from the requirement of the user’s 

preliminary choice of a possible member, again utilizing the CAD object database for the 

member generation.  The standards-analysis module does not depend on the CAD object 

database to check the completeness, uniqueness and correctness of the standard at both 

the provision level and the organization level—the module traverses the member class 

hierarchy examining the method objects associated with the traversed classes. 

Finally Yabuki connects the object-logic model with a hyperlink-based document system 

he calls the “HyperDocument” system implemented using HyperCard on a Macintosh 

computer.  The ubiquity of the World Wide Web has made hyperlink-based documents 

and the associated navigation model commonplace.  However, Yabuki imposes a formal 

system of linking the method objects from the object-logic model to the relevant 

provisions in the document base.  Thus, the standards base in the object-logic model 

associates the methods of instantiated method objects with classes in the standards base 

member class hierarchy, and, simultaneously, the HyperDocument system links these 

method object instantiations with provisions in the HyperDocument provisions document 

base.  In addition, the provisions document base has links to a background base module 

and an extended program module that are both components of the HyperDocument 

system.   

1.2.1.4 Performance- and Objective-based Codes 
In 1972, the International Union of Testing and Research Laboratories for Materials and 

Structures (RILEM), the American Society for Testing and Materials (ASTM), and the 

International Council for Building Research Studies and Documentation (CIB) jointly 

sponsored a symposium entitled “Performance Concept in Buildings” [49].  Proceedings 

from this symposium represent the organization of the research around the time of the 

symposium to formalize the performance concept. 

Code-related proceedings from this symposium include discussions on structural analysis 

[61], energy use [43], and fire-resistance [56].  Interestingly, many of the performance-
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based criteria seem prescriptive in nature.  For example, Yokel prescribes criteria for load 

capacity using sums of factored loads [61], and Seigel proposes prescribing temperature 

limits for building materials [56].  Finally, Eberhard discusses computer-based code 

systems using the performance concept including proposals for simulation-based analysis 

[12]. 

More recently, there have been several research efforts related to performance-based 

analysis of buildings in the areas of structural, energy, and fire analysis.  Krawinkler 

discusses the rationale and challenges to performance-based earthquake engineering 

(PBEE) [41].  Krawinkler holds the prescriptive codes accountable for stifling innovation 

because new concepts are difficult to fit into the rigid prescribed framework, and cites the 

example of the slow acceptance of base isolation. 

Efforts in performance-based energy analysis include the Design Tools Project (DTP) at 

Pacific Northwest National Laboratory (PNNL).  Currently, PNNL provides an energy 

analysis package that works within the AutoCAD environment, and the lab intends to 

incorporate the Industry Foundation Class product model into subsequent versions of the 

analysis package.1  As noted earlier in this chapter, some jurisdictions have adopted or 

are moving toward the adoption of performance-based codes including California with 

respect to the Title 24 Energy Efficiency Standards [57].  With Title 24, users have the 

option of using either the well-established prescriptive-based calculation methods or a 

performance-based analysis method.  Other research efforts include a web-based 

client/server energy calculation program [16]. 

Performance- and simulation-based analysis of fire is a widely researched area.  

Hadjisophocleous discusses building-code-related fire safety criteria based on 

deterministic and probabalistic approaches [23].  Recent simulation research includes fire 

and smoke simulation [7,47].  In addition, the Building and Fire Research Laboratory 

(BRFL) of the National Institute of Standards and Technology (NIST) is developing an 

                                                 
1 See online documentation at http://www.energytech.pnl.gov:2080/dtp/dtp.html for a detailed description 

of PNNL’s Design Tools Project. 
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Figure 1.3: A proposal for the CCBFC objective-based disabled access code, Part A. 

Industrial Fire Simulation System (IFSS) that models fire and fuel-burning and 

suppression characteristics and develops a data-exchange semantics.2 

Several countries have begun to develop performance-based building codes.  As the 

realization of a 1995 Strategic Plan, the Canadian Commission on Building and Fire 

Codes (CCBFC) called for the migration of its prescriptive-based building codes to an 

objective-based format, and toward this goal, the CCBFC formed the Task Group on 

Planning For Objective-Based Codes.3  The Task Group’s current vision of object-based 

codes includes a two-part document: 

• Part A (shown in Figure 1.3) will describe the objectives that the code addresses and 

the qualitative functional requirements for solutions. 

                                                 
2 See online documentation at http://www.bfrl.nist.gov/860/ps98/ifss.htm for a detailed description of IFSS.  
3 The Task Group on Planning For Objective-Based Codes publishes its documents online at 

http://www.nrc.ca/ccbfc/tgs/obc/index_E.shtml, and these online documents have contributed to the 
discussion on the CCBFC objective-based code development. 
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Figure 1.4: Portions of the CCBFC disabled-access code, Part B. 

• Part B (shown in Figure 1.4) will describe the quantitative performance criteria with 

which solutions must comply. 

Note, however, that in Part B, the quantitative performance criteria seem to be more 

prescriptive in nature as these quantities are taken from the current version of the code. 
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1.2.2 Product and Process Model Research 
There have been several research efforts to develop object-oriented CAD systems and 

object-oriented building models that contain the necessary geometric, functional, and 

behavioral relationships of building components [9,28,36].  Eastman provides a 

comprehensive look at the context, history, and current efforts in product model research 

as it relates to building design and construction [11].  Eastman writes that the purpose and 

challenge of developing product models is: 

To develop an electronic representation of a building, in a form capable of 
supporting all major activities throughout the building lifecycle. 

The goal of constructing product models is to exchange building information, and 

Eastman appropriately describes the emergence of several CAD systems along with early 

data exchange standards.  Specifically, he describes DXF, the exchange of Autodesk’s 

AutoCAD DWG file information, Autodesk’s proprietary CAD file format [4], and IGES, 

a CAD/CAM data exchange effort initiated by Robert Fulton, General Electric, and 

Boeing, and transferred to the National Institute for Standards and Technology (NIST) 

[30]. 

Eastman reviews both past and current product modeling efforts [11].  He enumerates 

many early efforts and describes three object-based (a building as a set of related 

components) systems in detail: 

• A system developed by SSHA focusing on housing unit design and housing estate site 

planning [5]. 

• OXSYS CAD, a system to support hospital design using the Oxford Method for a 

post-and-beam and slab system [27]. 

• GLIDE-II, a portable engineering database language and successor to GLIDE 

(Graphical Language for Interactive Design), an interpretive language and permanent 
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storage system that allowed defining and storing building schemas with complex 

geometry [11]. 

1.2.2.1 Standard Exchange of Product Model Data (STEP) and Related 

Efforts 
Many of the current product modeling projects use the concepts from the International 

Standards Organization (ISO) Standard for the Exchange of Product Model Data (STEP) 

effort [50].  Eastman dedicates several chapters to STEP and related technologies [11]. 

The objectives of STEP included the incorporation of object-oriented programming 

concepts and formal specifications of the defined structures, separation of the data model 

and the physical file format, supporting subsets of the total model, and the sharing of 

reference models among these subsets. 

The STEP Committee defines the Application Protocols (APs) (the subsets) first, and the 

APs are later incorporated into the total model.  An AP has two parts: 

• The Application Reference Model (ARM) that represents the requirements of an 

application using the IDEF1X [35], NIAM (Nijssen’s Information Analysis Method) 

[48], and EXPRESS-G models [54] 

• The Application Interpreted Model (AIM) that uses EXPRESS [52] to specify the 

structure of the ARM data (the STEP Committee specifically commissioned the 

development of EXPRESS for this purpose) 

Building-industry related APs include Part 225 (building elements), Part 228 (HVAC), 

and Part 230 (steelwork).  Interpreted (shared) Resources include Part 41, the application 

context, and Part 42, geometric representation. 

Eastman divides current building product modeling efforts into two categories [11]: 

aspect models that address a specific domain in the building industry, and framework 
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models that address the whole structure of a building.  He describes in detail three 

building aspect models that make use of several STEP technologies: 

• The European CIMsteel effort for structural steel [8] 

• COMBINE (Computer Models for the Building Industry in Europe), the European 

Union (EU) energy modeling effort [2,3] 

• Part 225, the STEP AP that describes the building elements using explicit shape 

representation [53] 

Eastman also describes the following building framework models: 

• The Finish RATAS national building model project [6] 

• Part 106, the STEP Building Core Construction Model (BCCM) [51]. 

BCCM utilizes the General Architecture, Engineering, and Construction (AEC) 

Reference Model (GARM) [21]. The GARM methodology views the product model as 

functional units associated with a functional requirement, and a matching set of one or 

more technical solutions.  Furthermore, a technical solution can be decomposed into a set 

of lower order functional units, and the decomposition can be repeated for a technical 

solution associated with a functional unit as necessary.  DeWard also uses the GARM in 

his residential building code-checking research [9]. 

1.2.2.2 Industry Foundation Classes 
Currently, there is an effort by the International Alliance of Interoperability (IAI), a 

consortium of CAD vendors and other Architecture-Engineering-Construction/Facilities 

Management (AEC/FM) industry partners, to develop standards for a three-dimensional 

project model that enables interoperability between applications by different software 

vendors.  The IAI’s effort includes defining a set of objects called Industry Foundation 

Classes (IFC) that conform to current object-oriented philosophy [31][32][33]. 
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Figure 1.5: IFC Release 1.5 model architecture (from [32]). 

The IFC model adopts terminology from the British Standard Institute (BSI) [22] and 

external sources from STEP. Figure 1.5 illustrates the decomposition of the IFC model 

architecture.  The IFC model decomposes into four layers or modules.  The lowest layer, 

the Resource Layer, defines resources such as units of measure, geometric representation, 

and other fundamental types.  The next layer, the Core Layer, defines the Kernel and 

Core Extensions.  The Kernel contains objects that are not AEC/FM-specific such as the 

IfcProduct, IfcProcess, IfcModelingAid, and IfcDocument objects.  The 
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Core Extensions include AEC/FM-specific extensions to the Kernel objects.  The 

Interoperability Layer contains Shared Building Elements and Shared Building Service 

Elements, and the final layer or module provides further detail in specific domains such 

as Architecture and Facilities Management.   

Currently, the IFC model is expressed in the EXPRESS language format [54].  Efforts 

have been initiated to establish the IFC model in terms of aecXML, the Extensible 

Markup Language (XML) “schema for project and business-to-business communication 

for architecture, engineering, construction, and facility management (AEC+FM) 

transactions.”4  

This research develops a product model using the concepts and semantics of the IFC 

model.  However, the product model utilizes a much simpler object hierarchy than the 

IFC hierarchy. 

1.2.2.3 The Primitive-composite Approach 
Howard et al. develop a primitive-composite (P-C) approach to address some of the 

object-oriented data modeling problems such as overuse of aggregation hierarchies and 

non-homogeneous characterization hierarchies (referring to the complex single-

inheritance subclassing deficiencies) [28].  The P-C approach attempts to address these 

problems by developing rules to restrict the creation of complex objects.  Rules include 

how to create primitive classes with strict subclassing restrictions, the preference for the 

reification of relationships over subclassing, and not allowing new attributes in the 

construction of composite classes from primitive classes.  Primitive classes depend on 

descriptions of form (the description of an object’s physical characteristics), function (the 

role or purpose of the object), and behavior (the way the object responds to 

environmental stimuli) which has also been proposed by Luth to organize engineering 

knowledge and concepts in structural design [38]. 

                                                 
4 See online documentation at http://www.aecxml.org/iaiadopt.htm for the aecxml.org press release. 

 



CHAPTER 1. INTRODUCTION 20 

This research uses an object similar in concept to the primitive object (the 

GenericComponent) as the main component in the product model and makes use of 

relationships to define views of GenericComponent instances.  FORM, FUNCTION, 

and BEHAVIOR are attributes of the GenericComponent object as opposed to being 

primitive constructs. 

1.2.2.4 A Design Rationale Model to Capture the Design Process 
Garcia explored a design rationale model that is similar in philosophy to the design intent 

model developed in this research [17].  Her work investigated the use of “Active Design 

Documents” (ADD) to assist in the documentation of Heating, Ventilation, and Air 

Conditioning Systems (HVAC) preliminary design.  The ADD assists both the designer 

and the design document user by focusing on design rationale.  As opposed to static 

design documents, the ADD shows the designer or user the design rationale factors 

considered in arriving at a design decision.  The model also allows the designer to either 

modify existing or add new parameters that affect the design decision-making process. 

Garcia used field studies to establish the baseline HVAC design rationale parameters and 

dependencies.  She notes that typical HVAC design is comprised of about 150 

interdependent parameters.  The ADD is a frame-based knowledge-engineering 

application in which the nodes (decision, alternatives, evaluation, criteria, constraints, 

topics, fixes, impacts previous cases, goal, design context, and design agents) are 

represented as frames and the relationships (generates, constrains, evaluates, selects) are 

represented as procedures. 

1.3 The Design-intent Model for Disabled Access 

As noted earlier, performance-based design code is emerging as an alternative to the 

traditional prescriptive-based codes.  To properly define and measure the performance, 

the “intent” of the design code should be explicitly modeled. 
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Figure 1.6: The design-intent disabled access code model used in this research. 

One of the key objectives of this research is to develop a design-intent code model for 

disabled access using the Americans with Disabilities Act Accessibility Guidelines 

(ADAAG) [1].  The following statement from this document states the main purpose of 

the ADAAG: 

1. PURPOSE.  This document sets guidelines for accessibility to places of public 
accommodation and commercial facilities by individuals with disabilities…  

 
The intent of this document can be decomposed into two sub-intents: equivalent safety 

and equivalent access to facilities for disabled persons.  This research focuses on the 

issues related to equivalent access to facilities.  The equivalent access to facilities can be 

further decomposed into two parts: the existence of an accessible route to the building 

components within the facility and the usability of these building components by disabled 

persons. 

Figure 1.6 depicts a high-level view of the design-intent approach modeling the disabled 

access code.  The accessible route analysis represents a “first-order” analysis of the 

disabled access code’s equivalent access to facilities.  Figure 1.7 illustrates an example of 

an accessible route in a bathroom facility between the entrance and a water closet.  To 

determine if the whole system of a design is usable, the whole system of accessible routes 
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Figure 1.7: An example of an accessible route. 

must be examined.  An individual route or lack of an accessible route to an individual 

building component must be considered in the complete context of the designed facility.  

For example, in the bathroom facility shown in Figure 1.7, the ADAAG accepts the lack 

of accessible routes to the toilets in the smaller stalls as long as there is one toilet with an 

accessible route. This system-wide analysis represents a “second-order” analysis of 

usability. 

This research develops two control models (the design-intent model of a disabled access 

building code and the product model) for the analysis of the equivalent access to 

facilities. The accessible route analysis module uses a combination of motion-planning 
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Figure 1.8: The design-intent disabled access code analysis process. 

simulations and “rules” to determine the existence of an accessible route in the facility.  

The system-wide usability analysis also uses rules operating on the information garnered 

from the accessible route analysis module.   

Both the accessible route analysis and the system-wide usability analysis modules must 

understand the semantics or the description of the facility design in question, and the 

developed product model defines this description.  From an architectural point of view, 

the functions of a facility can be decomposed hierarchically into buildings, stories, and 

spaces, and the product model captures this architectural decomposition.  Both modules 

include the facility design (an instance of the product model) and the disabled access 

code as input, and both modules use the product model to store the analyses results.  

Figure 1.8 illustrates the interaction of the two analysis modules and the process for the 

disabled access code analysis. 

Using motion-planning techniques, this research develops two accessible route models: 

the prescriptive-based model based on the ADAAG accessible route provisions and the 
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performance-based model that attempts to directly capture wheelchair motion behavior.  

The research provides specific examples illustrating the deficiencies in the prescriptive-

based formulation of the wheelchair usability constraints.  Examples include designs that 

are code-compliant but not usable and designs that are non-compliant but usable. 

1.4 Organization of the Thesis 

The objective of this research is to develop a computational framework for the design-

intent approach of ADAAG compliance checking utilizing both performance- and 

prescriptive-based approaches.  This thesis first develops the design-aid framework for 

disabled access design assistance.  Next, the thesis describes the implementation of 

prescriptive- and performance-based approaches of accessible route analysis, how these 

analyses are incorporated into the design-aid framework, and provides a contrast between 

the two approaches.  The thesis completes the design-aid framework by describing the 

user-interactive environment. 

This thesis is organized as follows: 

• Chapter 2 presents an overview of the design-aid framework developed in this thesis.  

The overview describes the design-intent model, the product model, and the 

document model and introduces the disabled access analysis elements that will be 

incorporated into the framework. 

• Chapter 3 first steps through the manual disabled access of a bathroom facility.  

Detailed examination of the manual process provides insight into the disabled access 

code intent, the prescriptive-based disabled access checking process, and the 

development of the automated analysis methods. The chapter then develops the 

product model and formalizes the hierarchical structure of the design-intent model 

utilized by the automated disabled access analysis. 

 



CHAPTER 1. INTRODUCTION 25 

• A major goal of this thesis is to validate a performance-based analysis as a 

complementary component to the prescriptive-based code-compliance.  Toward this 

goal, Chapter 4 first develops a prescriptive-based accessible route analysis using 

motion-planning techniques.  These analysis methods test for a code-compliant 

accessible route within a facility.  Next, the chapter develops a performance-based 

accessible route analysis. The motion-planning simulations developed for the 

performance-based approach directly model wheelchair behavior.  The chapter 

compares the results of the prescriptive-based and performance-based computer 

analysis methods to illustrate the advantages of the performance-based approach. In 

addition, the chapter discusses the power and the flexibility of the performance-based 

computer methods and how they can be applied to situations above and beyond the 

wheelchair behavior assumed by the code.  Finally, the chapter describes the 

developed interactive and visualization techniques that give the designer additional 

disabled access analysis design tools and provide more qualitative information than 

the performance-based methods. 

• While the main goal of this thesis is to develop the methods and framework for 

disabled access usability analysis, the thesis also investigates the actual delivery of 

the framework and analysis to the designer.  Chapter 5 describes a modular integrated 

Internet-based design-aid framework.  The chapter develops and describes the 

implementation of the interactive environment that allows a designer to transfer the 

design data from a commercial CAD package, run and visualize the analyses, and 

manipulate a wheelchair through the facility design. 

• Chapter 6 describes the performance-based analysis of a facility on the Stanford 

University campus to validate the developed framework and methods.  The facility 

violates the usability tests, and is subsequently modified to pass the performance-

based analysis.  The test case represents a retrospective study and, in addition, since 

recommendations to the University emerged from this study that will be taken into 

consideration, the test case also represents an intervention study. 
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• Chapter 7, the final chapter, contains a summary and discussion of the material 

presented in this thesis.  The chapter summarizes the research contributions and 

includes specific provision recommendations to the ADAAG.  In addition, the chapter 

discusses possible future extensions as well as some of the limitations of the 

presented research. 

 



 

Chapter 2  

The Design-aid Framework 

One of the research goals is to provide the designer with a set of disabled access analysis 

tools to test the usability of a designed facility.  Toward this goal, the research develops a 

modular framework that provides the interface between the designer and three interacting 

components that provide the analysis: the description of the designed facility, the 

organization of the analysis tools, and the generated analysis report. 

This chapter develops a design-aid framework to provide the designer with a flexible 

array of design tools including code-checking and usability analysis.  In this chapter, a 

brief overview of the design-aid framework is provided.  In addition, the chapter 

introduces the applications that provide the interface between the user and the 

framework. The design-aid framework consists of three main component models: a 

product model, a design-intent model, and a document model.  Figure 2.1 depicts the 

overall design-aid framework and the three components. 

The objective of this chapter is to provide an overview of the framework, its component 

modules, and their interactions.  Details of each component module are described in 

subsequent chapters.  The three components form the foundation to develop the different 

types of design-aid analysis, and the chapter describes these components as follows: 

27 
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Figure 2.1: The design-aid framework. 

• Section 2.1 introduces the product model.  The product model describes the facility 

design, and the design-intent model analysis methods extract, modify, and insert 

information into the product model. 

• Section 2.2 introduces the design-intent model, an object-oriented model that captures 

the intent of a building code that organizes the analysis structure used to execute the 

prescriptive- and performance-based analyses approaches described later in the thesis.  

A more detailed description of the design-intent model will be presented in Chapter 3. 
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• Section 2.3 describes the document model that contains the standard or code 

document relevant to the target analysis of the instantiated design-intent model.  The 

document model generates the analysis report. 

• Section 2.4 gives an overview of the prototype implementation.  The description of 

the prototype gives the reader an understanding of the actual implementation and 

delivery of the analysis to the designer using current technology.  Detailed 

implementation of the system is given in Chapter 5. 

2.1 The Product Model 

This research develops a product model that is flexible enough to describe the design of a 

facility and that also acts as a repository for the data derived from the analysis methods of 

the design-intent model.  Toward this goal, the product model reifies three main objects: 

• A Table object that associates a “key” object (such as a string) in a table with a 

“value” object in the same table. 

• A GenericComponent object, a subclass of the Table object. 

• A Relationship object, also a subclass of the Table object. 

The Table object is a subclass of a root object, ExpressEntity, and Figure 2.1 

shows this developed product model hierarchy in the “Product Model Hierarchy” box 

(the developed product model hierarchy references the generic IFC geometry hierarchy 

shown in this box to describe the form of a building component).  The 

GenericComponent object is flexible enough to describe either a building component 

or an analysis concept.  A doorway is an example of a building component, and 

“maneuvering clearance” is an example of an analysis concept (a wheelchair user 

maneuvers through this clearance to gain access to a building component).  The 

Relationship object explicitly creates views or relationships among 
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Figure 2.2: The design-intent disabled access code model. 

GenericComponent instances of both the building components of the facility and the 

concepts generated by the analysis methods. 

This research develops the GenericComponent and the Relationship object 

extending the capabilities of the IfcBuildingElement object and the 

IfcRelationship object in the IFC product model.  These main objects along with 

a set of supporting objects (for example, the descriptions of geometry taken from the IFC 

model) sufficiently describe both the design of the facility and the analysis information.  

While the product model follows the object-oriented paradigm, objects in the product 

model do not have associated methods.  All methods are exclusively associated with the 

design-intent model. 

2.2 The Design-intent Model 

The design-intent model organizes the intent of a standard or code to enable automated 

usability or code-compliance analysis of a facility.  The intent of a standard or code can 

be refined and decomposed into sub-intents, and the design-intent model uses this 

hierarchical structure with Intent objects, the reification of the intent, in this structure.  

Figure 2.2 illustrates the hierarchical structure of the disabled access code organized with 
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the design-intent model.  The intent of the disabled access code decomposes into the 

intents of equivalent safety and equivalent access to facilities.  The equivalent access to 

facilities sub-intent further decomposes into the intents of providing accessible routes and 

system-wide usability throughout the facility.  This research focuses on the intent of the 

disabled access code regarding equivalent access to facilities. 

The key object of the implementation of the design-intent model is the Intent object.  

The attributes in the Intent object include: 

• A state variable (state) that keeps the state of the Intent instance.  The possible 

values are FULFILLED, UNFULFILLED, and UNKNOWN. 

• A set of child sub-intents to the Intent instance that represents a hierarchical 

design-intent structure. 

• A set of pointers to relevant provisions in the implemented standard or code 

document. 

The Intent instance determines its state by running the Analyze() method associated 

with the instance.  This method examines the facility design described by the product 

model, and, if necessary, inserts analysis-related information into the product model that 

may be critical for its own, a parent’s, or a sibling’s Intent instance Analyze() process.  

In addition, the Analyze() method traverses a hierarchical structure by recursively 

executing the Analyze() methods of the child sub-intents.  After traversing the child 

sub-intents, the child-intents’ Analyze() methods may have inserted necessary 

analysis information for the parent Analyze() to process the parent Intent instance. 

Even after recursively traversing the child sub-intents, the Analyze() method may not 

have sufficient information stored in the product model to make either the FULFILLED 

or UNFULFILLED determination of the Intent instance’s state, and the Intent 

instance remains in the UNKNOWN state.  Lack of information occurs when the analysis of 
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a specific building component needs to be made in the broader context of the facility 

system.  For instance, the state of this particular Intent instance will be determined 

higher up in the hierarchical Intent structure.  The results (FULLFILLED, 

UNFULFILLED, or UNKNOWN) are directly stored in the product model. 

2.2.1 Accessible Route Analysis 
Figure 2.2 shows two sub-intents of the equivalent access to facilities intent.  This section 

introduces the first sub-intent, the accessible route.  In developing the proposed design-

aid framework, this research formalizes the first-order analysis required for equivalent 

access to facilities analysis, the accessible route. The ADAAG defines the accessible 

route as: 

3.5 Definitions.  Accessible Route.  A continuous unobstructed path connecting all 
accessible elements and spaces of a building or facility. Interior accessible routes may 
include corridors, floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior 
accessible routes may include parking access aisles, curb ramps, crosswalks at vehicular 
ways, walks, ramps, and lifts.  

The existence of an accessible route ensures the usability of a facility for wheelchair-

bound users, and in most cases, the wheelchair user should be able to negotiate the 

accessible route using only forward motion.  

Determining the existence of accessible routes in a facility design requires the design-

intent code model to further decompose the accessible route analysis.  The components 

generated from this decomposition are mapped to the prescribed provisions that the 

accessible route analysis module uses to analyze the design.  The accessible route 

analysis uses geometric interference rules to determine the accessibility of some of the 

accessible route components and motion-planning simulations to generate code-

compliant paths.   
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Table 2.1: Accessible route analysis models and methods. 
Approach Models Methods

Prescriptive-based Code-compliant Accessible Route Model Code-compliant Motion Planning Simulations
Supporting Product Model Code-compliant Rule-based Approach

Performance-based Usable Accessible Route Model Usability Motion Planning Simulations
Supporting Product Model Usability Rule-based Approach

 

For the performance-based approach, this research utilizes the same accessible route 

model (and the supporting product model).  However, as opposed to using motion-

planning techniques to show compliance with the prescribed provisions, the performance-

based motion-planning techniques directly model wheelchair behavior to generate the 

paths. 

Table 2.1 summarizes the models and methods for the development of the design-aid 

framework using the prescriptive-based or performance-based formulation of the 

usability constraints along with the interactive environment. 

2.2.1.1 Analyzing an Accessible Route for Prescriptive-based Code-

Compliance 
One advantage of prescriptive-based codes is the straightforward evaluation of 

compliance with established requirements explicitly stated in the code provisions.  

Indeed, automated evaluation of accessible routes is straightforward if the designer is 

required to indicate the routes through a facility.  If the designer explicitly provides the 

accessible routes to the automated analysis, the routes could be evaluated by a computer 

application with a set of geometric interference tests.  However, analysis based on a 

manually-defined accessible route has two deficiencies: 
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1. In practice, designers are not required to delineate the accessible routes in a facility 

since delineating the connections of all accessible building components to accessible 

routes is not practical.  Rather, a building official will typically inspect a plan and 

determine the existence of accessible routes to all the accessible building components. 

2. A design with mislabeled or missing accessible routes does not necessarily imply 

there is no accessible route since the designer may have failed to label or recognize a 

code-compliant or usable route. 

Computer-based motion-planning techniques naturally translate to searching for an 

accessible path between building components representing the initial and goal points and 

the obstacles in the space.  The geometric requirements listed in the prescriptive 

provisions map to the robot’s geometric and motion parameters.  Since the geometric 

requirements prescribed in the provisions are abstractions of the design intent of the 

accessible route, the robot captures these abstract behaviors as opposed to directly 

capturing wheelchair geometric and motion behavior. 

2.2.1.2 Analyzing an Accessible Route for Performance-based Usability 
As noted, the design-intent modeling approach allows the substitution of prescriptive 

methods with performance-based methods.  This research determines the accessible route 

using a performance-based method.  To analyze a facility for the existence of the required 

accessible routes, the research directly models wheelchair behavior using motion-

planning techniques. As opposed to the prescriptive-based analysis in which the 

prescribed geometric requirements are modeled, the performance-based analysis models 

the actual wheelchair geometry and wheelchair movement parameters. 

The performance-based motion planning simulation uses the wheelchair geometry 

prescribed by the disabled access code and restricts the motion parameters of the 

wheelchair to reflect the compliance/non-compliance threshold for configurations 

prescribed by the disabled access code.  This simulation reveals both the deficiency in a 
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prescriptive-based approach and the advantage of a performance-based approach of 

wheelchair use: 

• A prescriptive-based approach represents an approximation and summary of behavior 

for a model wheelchair. 

• The performance-based approach can vary the wheelchair parameters to analyze the 

performance of specific wheelchair models. 

2.2.2 System-wide Usability Analysis 
The accessible route analysis passes the generated route information to the system-wide 

usability analysis, the second sub-intent of the equivalent access to facilities intent shown 

in Figure 2.2.  This module determines the overall accessibility for a collection of 

building components based on the accessible route information. 

Note that not all of the building components within the collection need to have accessible 

routes in order for the collection to be accessible.  For example, for the bathroom facility 

illustrated in Figure 2.3, only one of the water closets has a valid accessible route (as 

shown by the dashed line), but the bathroom still complies with disabled access 

requirements.  From the ADAAG: 

4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard 
toilet stall complying with 4.17…  

The system-wide usability analysis module must examine components in the entire 

system to determine whether the system is usable even if one or more of the individual 

components within the system are not usable.  In this example, two of the water closets 

do not have valid accessible routes (there are also non-accessible-route-related issues that 

make these water closets unusable for disabled persons), yet in compliance with the intent 

of the code, a disabled person can still effectively use the facility.  Thus, the system-wide 
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Figure 2.3: The bathroom facility example with one accessible water closet. 

usability module is an integral part of the design-intent formulation of the disabled access 

code. 

2.3 The Document Model 

Figure 2.4 shows the user interface generated from the document model.  The document 

model consists of two components: 

• The standard or code document stored in HTML format. 
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Figure 2.4: The report generated from the document model (from [24]). 

• A report stored in HTML format generated by the design-intent model analysis that 

contains analysis comments and hypertext links to the standard or code document. 
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As illustrated in Figure 2.1, the Analyze() associated with the “Analysis” methods of 

individual Intent objects within the instantiated design-intent model contain pointers 

to the relevant provisions in the standard or code document.  In addition to generating the 

report, the Analyze() methods populate the product model with links to the report, and 

the user activates these links through the graphical interface. 

Han et al. first describe this document model in [24]. As shown in Figure 2.4, the left 

frame in the browser window contains the graphical model of the facility design.  In this 

example, the dark transparent box (circled) represents a clearance violation, and it 

contains a hyperlink to one of the generated report that appears in the bottom frame in the 

browser window.  The report, in turn, contains a hyperlink to the referenced provision 

from the standard that is displayed in the right frame in the browser window.  In the 

figure, the user has clicked on a referenced provision in the comment window, and the 

relevant provision appears in the standard document window. 

2.3.1 The Standard or Code Document 
Currently, the World Wide Web uses HTML as the standard for publishing text-based 

information.  Users view HTML documents using an HTML-compliant web browser (the 

browser window’s right frame in Figure 2.4 shows the ADAAG).  Among its features, 

HTML provides an anchor feature that allows the navigation to a specific position in a 

document.  Figure 2.5 illustrates an ADAAG provision in HTML format, and the line in 

bold text illustrates the anchor syntax. 

The anchor feature along with the ubiquity of web browsers and HTML-based documents 

makes web-based delivery the logical choice for the standard or code document.  The 

online version of the ADAAG is published using the HTML standard.5 

                                                 
5 See http://www.access-board.gov/bfdg/adaag.htm. 
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<dt> 
<a name="4.13.6">4.13.6</a> 
<b>Maneuvering Clearances at Doors</b>. 
Minimum maneuvering clearances at doors that are not 
automatic or power-assisted shall be as shown in <a 
href="fig25.html">Fig. 25</a>. The floor or ground 
area within the required clearances shall be level and 
clear. 

</dt> 
<dd> 

EXCEPTION: Entry doors to acute care hospital bedrooms 
for in-patients shall be exempted from the requirement 
for space at the latch side of the door (<a 
href="fig25.html">see dimension &quot;x&quot; in Fig. 
25</a>) if the door is at least 44 in (1120 mm) wide. 

</dd> 

Figure 2.5: An example provision in HTML format. 

2.3.2 The Report 
The design-intent model generates the report component of the document model shown in 

the browser window’s bottom frame in Figure 2.4.  If an Intent instance cannot be 

fulfilled, the analysis method associated with the Intent instance generates a comment 

in the report that references the required provisions that have not been fulfilled.  

Otherwise, if the Intent instance can be fulfilled, the analysis method associated with 

the Intent instance generates a comment that references the provision that has been 

fulfilled.   

As noted in Section 2.2, the Intent instance has a set of pointers to the relevant 

provisions.  Since the document model uses HTML as its document format, these 

pointers take the form of HTML-compliant references to anchors within the standard or 

code document.  Part of the comment generated for the report will contain these hypertext 

references so that the user can click on a reference as illustrated in Figure 2.4 and see the 

associated provision that has been violated. 
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The comment lines, in turn, contain HTTP-compliant anchors so the user can see the 

associated comment when clicking the relevant feature in the graphical interface.  In 

addition to generating the report, the design-intent model analysis methods insert this 

hyperlink information into the product model, and the graphical interface makes use of 

this hyperlink information as illustrated in Figure 2.4. 

2.4 The Prototype 

This section gives a brief overview of the prototype implementation.  Chapter 5 describes 

the implementation in detail.  The choice of platform and programming languages for the 

prototype system reflects the following considerations, all of which are inter-related: 

• The prototype takes advantage of the ubiquity of the World Wide Web. 

• The prototype utilizes object-oriented programming languages in developing the 

various hierarchical model structures. 

• The prototype uses a state-of-the-art distributed object platform that can be integrated 

with the World Wide Web environment as well as the choice of programming 

languages. 

Toward the first goal, the prototype adopts the web browser as the user interface and uses 

Java applet technology allowing the user to interact with the design information and the 

analysis programs.  In addition, the Visual Interactive Environment/Workbench (VIEW) 

uses the Virtual Reality Modeling Language (VRML) [34] to provide the graphical 

interface to the facility model, and a Java-VRML interface, the External Authoring 

Interface (EAI) allows for the flexible user interaction with the graphical model [45]. 

This research implements the prototype using the Java and C++ programming languages.  

The web-based interactive environment between the analysis programs and the graphical 

user interface is implemented in Java.  The prototype also utilizes Java to implement the 
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product model and the design-intent model, both for modeling the objects and for 

implementing the analysis methods associated with the Intent instances. 

Computationally intensive algorithms such as the motion planning simulations are 

implemented in C++, and the appropriate Java interfaces provide the link between Java 

and C++. 

Use of the World Wide Web and several design processes naturally lend themselves to 

leveraging the power of distributed object environments [25].  Furthermore, the 

hierarchical analysis structure further suggests the use of distributed objects.  The 

prototype uses the Common Object Request Broker Architecture (CORBA) to connect 

the analysis modules and the instantiated design-intent model’s hierarchical structure as 

well as the analysis of the Intent instances within an instantiated design intent 

structure.  In addition CORBA provides interfaces to the Java-developed models [59]. 

Finally, the document model components conform to HTML format and can be viewed 

using the web-browser environment.  Figure 2.6 illustrates the implemented interfaces, 

programming languages, and environments used by the prototype. 

Figure 2.7 illustrates the VIEW.  It acts as the user interface between the designer and the 

design-aid framework.  The VIEW provides the designer with a graphical view of the 

facility as described by the productmodel.  A designer can generate the design using an 

external CAD package and upload the design to the product model module of the design-

aid framework or upload a design from a model repository directly to the product model 

module. 

From the VIEW, the designer can modify the design, interact with the design, or execute 

an analysis program associated with an instantiated design-intent model.  The execution 

of an analysis program generates the links between the graphical model of the design 

(viewed in the VIEW) and the generated analysis report and the standard document in the 

document model. 
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Figure 2.6: The prototype implementation. 

Disabled access codes provide guidelines for the equivalent access to facilities for 

disabled persons, and the accessible route is a main component of this concept [1].  

However, the concept of equivalent access cannot be completely mapped to either the 

prescriptive- or performance-based approach.  Thus, the research also provides an 

interactive environment in which the designer can manipulate a virtual wheelchair 

through a facility design.  The manipulation techniques that utilize the behavior captured 

by performance-based methods can help the designer further determine the equivalent 

facilitation of a particular design or configuration.  The interactive environment provides 

the insight that is difficult to quantify such as maneuvering along the accessible route 

from the wheelchair user’s point of view or relaxing the forward-motion constraint by 

allowing multiple wheelchair backups. 
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Figure 2.7: The Visual Interactive Environment/Workbench (VIEW).  

2.5 Summary 

The design-aid framework presented in this chapter consists of three components: a 

product model, a design-intent model, and a document model.  This research uses this 

design-aid framework to automate disabled access analysis and to provide an interactive 

wheelchair-manipulation environment. 

This chapter introduced the disabled access design-intent model that supports the 

automated disabled access process.  The automated disabled access analysis decomposes 

into two components: accessible route analysis and system-wide analysis of the facility 
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design.  The chapter introduced the two approaches to accessible route analysis.  The 

prescriptive-based approach attempts to capture the prescriptive-based provisions of the 

ADAAG, and the performance-based approach attempts to directly model wheelchair 

behavior. 

The Visual Interactive Environment/Workbench (VIEW) displays the facility design that 

it extracts from the product model.  From the VIEW, a designer can manipulate the 

facility design or interact with the design with a simulated wheelchair user.  In addition, 

the designer can send the facility design to the design-intent model to analyze the facility 

design.  The design-intent model extracts the facility design information from the product 

model, and the design-intent model processes this information in the automated analysis 

process.  The design-intent model then reports the results of the analysis using the 

document model. 

The design-aid framework is strongly influenced by the Hyper-Object-Logic model [60].  

In the Hyper-Object-Logic model, the object-logic model aggregates the standards base 

and the CAD object database.  The design-aid framework conceptually separates the 

design-intent model (that is analogous to the standards base) and the product model (that 

is analogous to the CAD object database).  In addition, an implementation of the Hyper-

Object-Logic model explicitly creates subclasses of the standards base member hierarchy 

and the CAD object database object model.  In contrast, the design-aid framework in this 

work does not create subclasses of the main components of the design-intent model (the 

Intent object) and the product model (a generic component, GenericComponent).  

Instead, populating the various attributes of each respective object differentiates them 

from one another.  This approach provides a more global template to the approach of 

creating subclasses of the main components. 

While the Hyper-Object-Logic model uses object-logic sentences to define methods 

associated with the standards base method objects, no such restriction exists for the 

analysis methods associated with the Intent object instances.  Removing this 

restriction allows integrating more powerful and flexible methods such as the motion-
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planning simulations directly into the design-intent model.  These analysis methods 

contribute to the determination of an Intent instance’s final state (fulfilled, unfulfilled, 

or unknown), and the results of these analyses are stored directly in the product model. 

The design-aid framework uses a much simpler document model than Yabuki’s Hyper-

Object-Logic HyperDocument model.  The design-intent model structure consisting of 

Intent object instances contain pointers to the relevant standard document.  The 

standard document that is fully-contained by the document model adheres to the 

hypertext markup language (HTTP) standard, the document standard for perusing 

documents using the hypertext transfer protocol over the World Wide Web. 

The design-intent model developed in this research is similar to Garcia’s Active Design 

Documents Model (ADD) [17].  Garcia acquires HVAC design rationale to drive the 

HVAC design decision-making process, and this research extracts intent from the 

disabled access building code to produce a hierarchical structure that enables automated 

analysis of a facility design.  Garcia used the ADD to dynamically acquire and organize 

the design rationale and the associated decisions, and the design-intent model organizes 

an immutable hierarchy of the design-intent of a specific standards or code document. 

To use the ADD, the designer explicitly declares the critical design parameters (for 

example, the number of stories in the building, the duct ceiling space provided), and the 

ADD analyzes these parameters using the ADD design rationale network.  In contrast, the 

design-aid framework uses analysis methods that populate the design intent model to 

analyze an instance of a symbolic product model that represents a facility design. 

Finally, a case-specific ADD represents an evolving ad hoc network of inter-dependent 

design rationales whereas the design-intent model attempts to organize the intent of a 

standards document in a structure that can be traversed in a sequential manner.  The ad 

hoc nature of the design rational structure allows the designer to modify existing or insert 

new parameters based on personal experience or case-specific information.  In contrast, 

the hierarchical structure of the design intent model is immutable, but as will be shown in 
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Chapter 4, the methods that test the intents can be interchanged.  The research uses this 

flexibility to populate the same design-intent model with either the prescriptive-based and 

performance-based analysis methods.     

 



Chapter 3  

A Disabled Access Analysis Design-
aid Framework  

This chapter examines the manual disabled access analysis of a bathroom facility, and, 

from this analysis, develops an automated analysis process.  Detailed examination of the 

manual process provides insight into the disabled access code intent and the prescriptive-

based disabled access checking process.  Examining the manual checking process 

provides the understanding and the decomposition of the accessible route and helps  

develop the automated accessible route analysis.  As a result, the accessible route analysis 

can be cast into the context of the system wide facility analysis. 

This chapter is organized as follows:   

• Section 3.1 describes a typical manual process that is commonly employed in 

analyzing a facility.  The bathroom facility example will be employed to illustrate the 

process.  

• Section 3.2 develops the product model used to describe the facility and store the 

analysis information. 

47 
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• Section 3.3 develops a design-intent code model using the concepts taken from the 

manual analysis. 

• Section 3.4 decomposes the accessible route analysis according to the intent for 

equivalent access to facilities.  The accessible route analysis tries to generate an 

accessible route to all building components. The accessible route analysis represents a 

first-pass for the disabled access analysis problem and is hereby called first-order 

analysis. 

• The accessible route analysis generates the routes, and these routes must then be 

examined by the usability analysis.  Section 3.5 describes the system-wide usability 

analysis incorporating the design-intent code model.  The system-wide analysis of 

accessibility and usability is hereby called second-order analysis. 

• Finally, Section 3.6 illustrates the automated analysis process for a bathroom facility. 

3.1 The Manual Disabled Access Analysis Process 

This section describes a typical manual compliance checking for disabled access using 

the bathroom facility illustrated in Figure 3.1. A building official or designer examines 

the building components labeled A through K to determine disabled access code-

compliance by asking questions about the facility design in a roughly hierarchical 

manner.  Provisions from the ADAAG illustrate specific arguments supporting the 

analysis with the pertinent points from these provisions italicized. 

3.1.1 Manual Analysis of the Bathroom Facility 
A. Top Level:  

Question: Is this facility subject to the ADAAG disabled access code? 
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Figure 3.1: The example bathroom facility. 

Analysis: The facility is a newly-constructed bathroom building of a middle 

school. 

Relevant ADAAG provisions: 
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1. PURPOSE.  This document sets guidelines for accessibility to places of public 
accommodation and commercial facilities by individuals with disabilities. 

 
4.1.1 Application.  (1) General. All areas of newly designed or newly constructed 
buildings and facilities required to be accessible by 4.1.2 and 4.1.3 and altered portions of 
existing buildings and facilities required to be accessible by 4.1.6 shall comply with these 
guidelines, 4.1 through 4.35, unless otherwise provided in this section or as modified in a 
special application section. 

Answer: Yes. 

A.1 Building/Story Level (there is only one story): 

Question: What spaces in this building must be accessible? 

Analysis: Bathrooms need to be accessible.  Utility spaces do not. 

Relevant ADAAG provisions: 

4.1.1 Application. (1) General. All areas of newly designed or newly constructed 
buildings and facilities required to be accessible by 4.1.2 and 4.1.3… 

 
4.1.2 Accessible Sites and Exterior Facilities: New Construction. An accessible site 
shall meet the following minimum requirements:…(6) If toilet facilities are provided on a 
site, then each such public or common use toilet facility shall comply with 4.22. If 
bathing facilities are provided on a site, then each such public or common use bathing 
facility shall comply with 4.23… 

 
4.23.1 Minimum Number. Bathrooms, bathing facilities, or shower rooms required to be 
accessible by 4.1 shall comply with 4.23 and shall be on an accessible route. 

 
4.1.1 Application.  (5) General Exceptions.  (b) Accessibility is not required…(ii) in 
non-occupiable spaces…frequented only by service personnel for repair purposes…  

Answer: Men’s Bathroom, Women’s Bathroom. 

A.1.1 Space Level: Men’s Bathroom (only the Men’s Bathroom is analyzed here): 
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Question: Does the bathroom comply with clear floor space requirements? 

Analysis: A 60-inch turning circle fits into the space. 

Relevant ADAAG provisions: 

4.23.3 Clear Floor Space. … An unobstructed turning space complying with 4.2.3 shall 
be provided within an accessible bathroom…  

 
4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped 
space (see Fig. 3(b)).  

Answer: Yes. 

Question: What building components need to be accessible? 

Analysis: See cited provisions below. 

Relevant ADAAG provisions: 

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall 
meet the following minimum requirements:…(7) Doors:…(b) Within a building or 
facility, at least one door at each accessible space shall comply with 4.13.  

 
4.23.2 Doors. Doors to accessible bathrooms shall comply with 4.13. Doors shall not 
swing into the floor space required for any fixture.  

 
4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard 
toilet stall complying with 4.17…  

 
4.23.5 Urinals. If urinals are provided, then at least one shall comply with 4.18.  

 
4.23.6 Lavatories and Mirrors. If lavatories and mirrors are provided, then at least one 
of each shall comply with 4.19.  
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Answer: Doors (including the entry door), at least one water closet, at least 

one urinal, and at least one lavatory. 

A.1.1.1 Building Component Level: Door A 

Question: Is Door A accessible (if this door is not accessible, the bathroom is 

not accessible)? 

Analysis: It has sufficient clear width, any approach maneuvering clearance 

outside the bathroom, and side-approach maneuvering clearance 

inside the bathroom. 

Relevant ADAAG provisions: 

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm) 
with the door open 90 degrees, measured between the face of the door and the opposite 
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall 
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)). 

 
4.13.6 Maneuvering Clearances at Doors. Minimum maneuvering clearances at doors 
that are not automatic or power-assisted shall be as shown in Fig. 25. The floor or ground 
area within the required clearances shall be level and clear.  

Answer: Yes. 

A.1.1.2 Building Component Level: water closets. 

Question: Is there at least one accessible water closet? 

Analysis: Grab Bars: All water closets are in stalls, and Water Closets G and H 

do not have grab bars, so they are not accessible.  Water Closet K has 

grab bars that comply with requirements. 

Relevant ADAAG provision: 
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4.17.6 Grab Bars. Grab bars complying with the length and positioning shown in Fig. 
30(a), (b), (c), and (d) shall be provided. Grab bars may be mounted with any desired 
method as long as they have a gripping surface at the locations shown and do not obstruct 
the required clear floor area. Grab bars shall comply with 4.26.   

Analysis: Clear Floor Space: Water Closet K has sufficient diagonal approach 

clearance. 

Relevant ADAAG provision: 

4.16.2 Clear Floor Space. Clear floor space for water closets not in stalls shall comply 
with Fig. 28. Clear floor space may be arranged to allow either a left-handed or right-
handed approach.  

Analysis: Accessible Route: There is an accessible route between Door A and 

Water Closet K through Door B (see A.1.1.3). 

Relevant ADAAG provisions: 

3.5 Definitions.  Accessible Route. A continuous unobstructed path connecting all 
accessible elements and spaces of a building or facility. Interior accessible routes may 
include corridors, floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior 
accessible routes may include parking access aisles, curb ramps, crosswalks at vehicular 
ways, walks, ramps, and lifts. 

 
4.3.2 Location. (3) At least one accessible route shall connect accessible building or 
facility entrances with all accessible spaces and elements and with all accessible dwelling 
units within the building or facility.  

 
4.3.3 Width. The minimum clear width of an accessible route shall be 36 in (915 mm) 
except at doors (see 4.13.5 and 4.13.6). If a person in a wheelchair must make a turn 
around an obstruction, the minimum clear width of the accessible route shall be as shown 
in Fig. 7(a) and (b). 

Answer: Yes, Water Closet K is accessible. 

A.1.1.3 Building Component Level: Door B 
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Question: Is Door B accessible? 

Analysis: It has sufficient clear width, front approach maneuvering clearance 

outside the toilet stall, and side-approach maneuvering clearance 

inside the toilet stall. 

Answer: Yes. 

A.1.1.4 Building Component Level: urinals. 

Question: Is there at least one accessible urinal? 

Analysis: Clear Space: Both urinals have sufficient clear space. 

Relevant ADAAG provision: 

4.18.3 Clear Floor Space. A clear floor space 30 in by 48 in (760 mm by 1220 mm) 
shall be provided in front of urinals to allow forward approach. This clear space shall 
adjoin or overlap an accessible route and shall comply with 4.2.4… 

Analysis: Accessible Route: There is an accessible route between Door A and 

both urinals. 

Answer: Yes, both are accessible. 

A.1.1.5 Building Component Level: lavatories. 

Question: Is there at least one accessible lavatory? 

Analysis: Clear Space: Both lavatories have sufficient clear space. 

Relevant ADAAG provision: 

4.19.3 Clear Floor Space. A clear floor space 30 in by 48 in (760 mm by 1220 mm) 
complying with 4.2.4 shall be provided in front of a lavatory to allow forward approach. 
Such clear floor space shall adjoin or overlap an accessible route and shall extend a 
maximum of 19 in (485 mm) underneath the lavatory (see Fig. 32).  
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Analysis: Accessible Route: There is an accessible route between Door A and 

both lavatories. 

Answer: Yes, both are accessible. 

A.1.1.6 Building Component Level: Door C and Door D 

Analysis: These doors do not have sufficient clear space in the toilet stalls.  

However, since Water Closets G and H do not have to be accessible 

(see A.1.1.2), these doors do not have to be accessible. 

3.1.2 Discussion 
The above design analysis follows roughly a hierarchical procedure.  The strict 

hierarchical structure breaks down when certain decisions that had to be deferred until the 

analysis of other components needed to be completed.  For example, the accessibility of 

Water Closet K depends on an accessible route, but the accessible route to K cannot be 

determined until the designer or building official determines the accessibility of Door B. 

A designer or building official could follow the strict hierarchical decomposition by first 

examining all components that possibly participate in the accessible routes, in this case, 

examining all the doors first.  Indeed, the automated analysis approach taken in this 

chapter follows this brute-force procedure of examining all of the building components.  

The disadvantage of this procedure manifests itself in the unnecessary analysis of certain 

building components such as Doors C and D. 
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3.2 A Product Model to Support Disabled Access 

Analysis 

In order to support disabled access analysis, a product model needs to be flexible enough 

to describe the design of a facility as well as serve as a repository for the data derived 

from the analysis methods of the design-intent model module. Product modeling 

requirements depend on the type of analysis.  This research adopts the definitions of 

form, function, and behavior as described by Howard et al. [28]. 

The geometric description or the form of the building components is a critical attribute 

for accessible route and usability determination since the generation of an accessible 

route depends on geometric constraints.  Equally important is the description of the 

function and behavior of a building component or a set of building components.  Though 

some functions can be easily derived from the form of an element (for example, an 

element’s form determines its function as an obstacle), making an element’s function 

explicit alleviates the need for the analysis program to derive more complicated 

functions.  For example, it is simpler to declare an object as a water closet as opposed to 

deriving this function from an element or group of elements.  Attaching function to an 

element has liabilities, such as incorrectly labeling the functionality.  Given a declaration 

of an element’s function, an analysis program should first verify that an element 

functions correctly.  For example, a program should verify that a grab bar is attached to a 

wall and is not floating in space.  Finally, explicitly labeling the architectural space 

functions (Men’s Bathroom, Women’s Bathroom, and Utility Rooms) is necessary for 

this accessibility analysis. 

Relationships among building components also define the functionality and behavior of 

the components.  Reifying these relationships simplifies the manipulation of features of a 

building.  For example, if the concept of an opening is reified, and a relationship between 

the opening and the wall is established, the size or placement of the opening in the wall 
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Figure 3.2: The product model hierarchy of objects. 

can easily be modified to change the functionality or behavior of the wall.  Similarly, 

reification of certain relationships simplifies the analysis of elements in a design. 

This research uses the conceptual structure of the IFC product model described in [33].  

Figure 3.2 illustrates the product model hierarchy used that supports the disabled access 

analysis as well as the geometrical representation hierarchy taken from the IFC geometry.  

The root object in the hierarchy, ExpressEntity, contains an index field taken 

directly from the EXPRESS methodology of relating EXPRESS schema objects to one 

another in a generated static file [52].  In addition, there are additional flags that relate to 

revision information.  The Table subclass is a table structure that holds a table of keys 

and their associated values.  Figure 3.3 illustrates the EXPRESS schema for these two 

objects, and Figure 3.4 shows an example of an instantiated Table object, a table that 

represents the form of an OPENING object. 

The id of the Table instance shown in Figure 3.4 is FORM/OPENE-N02, keys are 

SOLID, LOCALPLACEMENT, and PRODUCTSHAPE, and the associated values are 

FALSE, #640, and #635 (the numbers #640 and #635 refer to other instantiated 
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ENTITY ExpressEntity
ABSTRACT SUPERTYPE OF (Table);

index : INTEGER;
insert : BOOLEAN;
delete : BOOLEAN;
replace : BOOLEAN;
proxy : BOOLEAN;

END_ENTITY;

ENTITY Table
SUPERTYPE OF (ONEOF (

GenericComponent,
Relationship

))
SUBTYPE OF (ExpressEntity);

id : STRING;
keys : LIST [0:N] OF ANY
values : LIST [0:M] OF ANY

WHERE
WR1: N=M;

END_ENTITY;  

Figure 3.3: EXPRESS schema for the ExpressEntity and Table objects. 

#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));  

Figure 3.4: An example Table instance. 

objects). LOCALPLACEMENT and PRODUCTSHAPE refer to IFC geometry objects.  The 

next two subsections describe the concepts and the extensions to the IFC product model 

employed in this research. 
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ENTITY GenericComponent
SUBTYPE OF (Table);
WHERE

WR1: keys[0] = "FORM",
keys[1] = "FUNCTION",
keys[2] = "BEHAVIOR";

END_ENTITY;  

Figure 3.5: EXPRESS schema for the GenericComponent object. 

3.2.1 Reification of Components 
The product model has a generalized object structure as illustrated in the top figure of 

Figure 3.2.  A building element is an instantiation of the object GenericComponent, a 

subclass of the Table object, which restricts the keys of the table to FORM (a 

GenericComponent uses the IFC geometric representation objects to capture the 

form), FUNCTION, and BEHAVIOR.  Figure 3.5 illustrates the EXPRESS schema for the 

GenericComponent object. 

The IFC model explicitly reifies certain objects.  For example, an opening in the IFC 

model is represented by an IfcOpeningElement.  As opposed to explicitly defining 

certain building component objects, a GenericComponent instance represents a 

specific building component as a key/value associated with the FUNCTION and 

BEHAVIOR keys.  For example, a GenericComponent that represents an opening has 

an OPENING key/value in Table instances associated with the component’s 

FUNCTION and BEHAVIOR keys.  By using this model, any IFC building element and 

any new building components such as ramps (which are not explicitly reified in the IFC 

Release 1.5 model6) can easily be added to the product model.  Conversely, since the IFC 

model explicitly reifies certain objects and their attributes, an analysis program can be 
 

                                                 
6 A ramp object (IfcRamp) is reified in the IFC Release 2.0 model, but the issue of adding reified objects 

versus providing an object structure to easily incorporate new objects is still valid. 
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#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));
#642 = TABLE ('FUNCTION/OPENE-N02', (OPENING), (OPENING));
#643 = TABLE ('BEHAVIOR/OPENE-N02', (OPENING), (OPENING));
#644 = GENERICCOMPONENT ('OPENE-N02', #641, #642, #643);  

Figure 3.6: A GenericComponent and supporting Table instances for an opening. 

written to efficiently parse IFC building elements a priori by making the function and 

behavior implicit in the code. 

In this research, all the subclasses of the IFC Release 1.5 IfcBuildingElement 

object are represented by equivalent GenericComponent objects [33].  For 

accessibility analysis, the product model needs to support the description of building 

components such as openings, doors, water closets, lavatories, and urinals.  For example, 

Figure 3.6 describes an instance of an opening object along with the associated Table 

instances.  The string OPENE-N02 denotes the component’s id, and the three numbers 
  

indicate pointers to Table objects representing the FORM, FUNCTION, and BEHAVIOR 

of the component (note that #641 is the Table object described in Figure 3.4). 

An analysis method extracts the information from a GenericComponent and the 

supporting Table instances.  For example, when an analysis method examines the 

GenericComponent shown in Figure 3.6, the method discovers that the 

GenericComponent is an opening from the supporting FUNCTION and BEHAVIOR 

Table instances.  In this example, the supporting FUNCTION and BEHAVIOR Table 

instances contain the information that this building component functions and behaves like 

an opening. 

Container objects describe specific GenericComponent objects that group sets of 

GenericComponent instances. The development of these container objects in the 
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#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));
#642 = TABLE ('FUNCTION/OPENE-N02', (OPENING), (OPENING));
#643 = TABLE ('BEHAVIOR/OPENE-N02', (OPENING,
ACCESSIBILITY), (OPENING, #10000));
#644 = GENERICCOMPONENT ('OPENE-N02', #641, #642, #643);
#10000 = TABLE ('ACCESSIBILITY/BEHAVIOR/OPENE-N02',
(ACCESSIBLE), (NULL));  

Figure 3.7: The modified GenericComponent and Table instances. 

context of the Relationship object is discussed in the next section.  Container objects 

support the functional view assumed by different architectural design analyses such as 

disabled access.  As noted in the manual analysis of the bathroom facility in Chapter 3, 

the disabled access code assumes the description of buildings, stories, and spaces (for 

example, the Men’s Bathroom) in the facility documentation. 

Finally, the product model has been designed to be flexible enough for the analysis 

methods of the design-intent model module to deposit analysis information into the 

product model by dynamically adding additional keys and associated Table instances to 

an existing Table instance.  For example, an analysis method can modify the behavior 

of the relevant opening component by creating an “accessibility” Table instance that 

becomes part of the opening’s behavior.  Initially, the values for the “accessibility” 

Table cannot be determined, and hence, these fields are undefined.  Figure 3.7 

illustrates the same opening component shown in Figure 3.6 incorporating a simplified 

“accessibility” Table instance, #10000.  When a subsequent analysis method examines 

this modified GenericComponent, this building component contains the additional 

accessibility analysis information. 
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ENTITY Relationship
SUBTYPE OF (Table);
WHERE

WR1: keys[i] : GenericComponent,
values[i] : LIST [0:N] OF

GenericComponent;
END_ENTITY;  

Figure 3.8: EXPRESS schema for the Relationship object. 

3.2.2 Reification of Component Relationships 
As illustrated in Figure 3.2, the Relationship object is a subclass of the Table 

object.  The Relationship object corresponds in functionality to the IFC 

IfcRelationship object [33].  The Relationship object explicitly associates 

one GenericComponent with one or more other GenericComponents and creates 

a specific way of viewing of the model alleviating the need for an analysis program to 

derive this information.   

Figure 3.8 illustrates the EXPRESS schema for the Relationship object.  Note that 

the Relationship object does not add any new attributes, but the keys are now 

restricted to GenericComponents and values are restricted to lists of 

GenericComponents.  Specifically, the Relationship object associates a specific 

GenericComponent (keys[i]) with a list (LIST [0:N]) of  N 

GenericComponents (values[i]). 

The IFC model specifies subclasses of the IfcRelationship object to refine a 

specific type of relationship.  For example, the IfcRelVoids object (a subclass of 

IfcRelationship) explicitly describes the relationship that an opening 

(IfcOpening) has with a solid object such as a wall (IfcWall).  Similarly, in this 

research, a Relationship object defines the relationship that one or more 
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#1 = RELATIONSHIP ('VOIDS', (#599), ((#614, #644)));
#599 = GENERICCOMPONENT ('WALL-1 , ...);
#614 = GENERICCOMPONENT ('OPENING-1', ...);
#644 = GENERICCOMPONENT ('OPENING-2', ...);  

Figure 3.9: A Relationship instance and the associated GenericComponents 
defining the VOIDS relationship. 

VOIDS

FILLSBuilding
Component(s)

Building
Component

Building
Component(s)

Building
Component

 

Figure 3.10: The VOIDS and FILLS relationships. 

GenericComponent objects have with another GenericComponent object—the 

name of the Relationship instance defines its functionality.  For example, the 

Relationship object named VOIDS corresponds to the IfcRelVoids object in the 

IFC model. A new type of relationship can easily be added to the product model.  

Conversely, since the IFC model explicitly reifies certain relationships and their 

attributes, an analysis program can be written to efficiently parse predetermined IFC 

relationships.  Figure 3.9 illustrates an instance of the VOIDS relationship.  Note that 

#599 corresponds to a wall, #614 corresponds to an opening, and #644 corresponds to 

the opening in Figure 3.6. 

First-order accessible route analysis takes advantage of the VOIDS/FILLS relationships 

shown in Figure 3.10 to differentiate between open spaces and spaces that constitute 

openings in walls and which building components fill the openings. The analysis 
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Figure 3.11: Relationship instances defining an architectural view of a facility. 

decomposes the accessible route treating open spaces and wall openings differently so 

explicitly reifying an opening and the relationship between an opening and a wall relieves 

the analysis from deriving openings in a facility.  The different treatments reflect the 

disabled access code’s definition of an accessible route: in an open space, the width of the 

route is 36 inches, and at an opening, a 32-inch width complies with the code [1]. 

The BUILDING, STORY, and SPACE container elements (GenericComponents 

which have the functions and behaviors labeled BUILDING, STORY, and SPACE) shown 

in Figure 3.11 correspond to the IfcBuilding, IfcStorey, and IfcSpace 

container elements respectively [33].  While first-order accessible route analysis does not 

need the relationship information shown in Figure 3.11 to construct the accessible routes 

to the building components, the analysis can take advantage of these relationships by 

connecting accessible route segments between various similar container objects (for 
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example, between SPACES).  However, second-order disabled access usability analysis 

is dependent on the architectural view or interpretation of a design that decomposes a 

facility into buildings, stories, and spaces.  An analysis program could derive this view 

information, but even for the manual accessibility analysis process, designers make the 

container relationships in Figure 3.11 explicit by communicating them in design 

documents.  For example, the manual analysis process utilized the explicit labeling of the 

architectural space functions. 

In utilizing the CONTAINS and BOUNDED BY relationships, this research makes the 

distinction between a container object and the architectural definition of the container 

object’s name.  For example, a BUILDING container object is BOUNDED BY walls or 

other building components (walls are not contained within the BUILDING container 

object).  In contrast, architecturally, a building is composed of the BUILDING container 

object and the building components that define the boundaries of the BUILDING 

container object.  A bounding building component can define the boundary of multiple 

container objects simultaneously.  For example, a common wall can define the boundary 

of two different SPACE containers.  This distinction allows the straightforward 

decomposition of a facility based on the architectural function since the common wall 

will exist in decomposed SPACE models. 

Finally, analogous to the GenericComponent object described in Section 3.2.1, 

analysis methods in the design-intent model module can instantiate new relationships 

relevant to the type of analysis.  For example, if an analysis method instantiates a 

maneuvering clearance object, it must create or modify an existing Relationship 

object that associates the clearance object with an opening element. 
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3.3 The Design-intent Model and Disabled Access 

The design-intent model presented in this research organizes the disabled access code’s 

intent to enable the automated disabled access analysis.  The model must be populated 

with the equivalent access to facilities sub-intent of the disabled access code to analyze 

the equivalent access of a facility design. An instance of an Intent object, the main 

data structure in the model, has methods and attributes (for example, sub-intent Intent 

instances) associated with it.  The hierarchical structure of the design-intent model allows 

an Intent object to be populated with sub-intents that represent the decomposition of 

the Intent object.   

Considering the decomposition and processing of these member Intent objects, the 

Analyze() method has four subroutines: 

1. The PreProcess() subroutine performs product model analysis that needs to be 

addressed before the decomposition of the examined Intent instance into the sub-

intents. 

2. The subIntentPreProcess()handles any pre-processing of the sub-intents. 

3. The subIntentPostProcess()handles any post-processing of the sub-intents. 

4. The PostProcess() subroutine gathers the analysis information from the 

decomposition of the sub-intents and processes the information. 

The analysis of a sub-intent is executed between the subIntentPreProcess() and 

the subIntentPostProcess().  If there is more than one sub-intent, the 

Analyze() routine executes a loop of the sub-intent subroutines. The sub-intents are 

processed recursively using their own Analyze() methods. 

Referring to the manual disabled access exercise discussed earlier in this chapter, the 

above subroutines can be mapped to the following actions: 
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• The PreProcess() subroutine maps to analyzing all the doors before 

decomposing the designed facility. 

• The decomposition of the facility (for example, decomposing a story of the facility 

into spaces) occurs in a subIntentPreProcess() subroutine. 

• The decomposed facility design analysis occurs in the subIntents.Analyze() 

subroutine. 

• The subIntentsPostProcess() subroutine recomposes the decomposed 

facility and the results from the subIntents.Analyze() subroutine. 

• The PostProcess() subroutine produces the final analysis of the facility. 

Finally, if the Intent object can be associated with one or more code provisions, the 

Intent object provides pointers to the appropriate provisions that reside in the 

document model.  Figure 3.12 shows the Intent object and its methods in Java-like 

syntax.  Using the Intent class structure shown in Figure 3.12, the methods associated 

with the Intent object operate on and modify a design of the facility or an instance of a 

ProductModel object.  Since the model of the facility is shared across all Intent 

object instances, the Intent object instances must be able to resolve disparate 

modifications on common components, especially when several of the analysis methods 

are run in parallel.  For the disabled access code, the decomposition of the facility model 

and the decomposition of the analysis analyze and modify separate portions of the model.  

For example, the analysis decomposes a building story into the defined spaces within the 

story, and the analysis of one space does not affect the analysis of another space. 

As illustrated in the disabled access manual checking process, a facility’s compliance 

with the equivalent access to facilities depends on two main levels of analysis: 

1. Is there an accessible route to the building components that is usable by disabled 

persons (accessible route generation/determination)? 
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class Intent 
{ 
 public  Analyze() { 
  this.PreProcess(); 
  for (int i=0; i < subIntents.length; i++) { 
   this.subIntentsPreProcess(i); 
   subIntents[i].Analyze(); 
   this.subIntentsPostProcess(i); 
  } 
  this.PostProcess(); 
 } 
 
 private PreProcess() { 
  ... 
 } 
 
 private PostProcess() { 
  ... 
 } 
 
 private subIntentsPreProcess(int i){ 
  ... 
 } 
 
 private subIntentsPostProcess(int i){ 
  ... 
 } 
 
 public  ProductModel model; 
 
 private ProductModel subModels[]; 
 private Intent   subIntents[]   
 private Provision  provisions[]; 
} 

Figure 3.12: The Intent object. 

2. Are the building elements or some fraction of the building components usable by 

disabled persons (system-wide usability analysis)? 

The two analyses are inter-dependent.  The accessible route to a building component can 

depend on the accessibility of the other building components in the facility, and the 

usability of a building component depends on the existence of an accessible route to the 

component.  This inter-dependency dictates that these sub-intents cannot be processed 

concurrently.  These two analyses populate the equivalent access to facilities Intent 
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Figure 3.13: The design-intent disabled access model for the bathroom facility. 

instance, and the accessible route analysis can be thought of as first-order analysis and 

the system-wide usability analysis can be thought of as second-order analysis in this 

process. 

The accessible route generation/determination intent and the system-wide usability 

analysis intent further decompose the bathroom facility by architectural function. Figure 

3.13 illustrates the hierarchical structure of the equivalent access to facilities 

decomposition for the bathroom facility.  It is worth noting here that the decomposition 

takes advantage of the product model container relationships shown in Figure 3.11. 

Figure 3.13 shows the basic decomposition of the intents as well as the sequence in which 

the intents are to be executed.   

The sequential ordering scheme addresses the higher-order logical structure inherent in 

the code.  In this example, second-order analysis is labeled with a “5,” and cannot be 

executed until all of the processes labeled “1” through “4” have been completed.  As 

shown in the figure, the Building Routes Intent instance in Figure 3.13 has only one 

sub-intent, the Story Routes Intent instance.  However, the Building Routes Intent 
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instance Analyze() method can spawn as many parallel Story Routes Intent 

instance Analyze() processes as necessary, and each of the process can be executed in 

parallel.  Figure 3.13 shows the decomposition of the facility with one story and the six 

spaces: the Men’s bathroom, the Women’s bathroom, and the four utility rooms. 

3.4 The Accessible Route Analysis Process 

3.4.1 Decomposition of the Accessible Route 
In the hierarchically-structured design-intent structure of the disabled access code model, 

a disabled accessible route is formulated as follows: 

Proposition 1 Let R represent an accessible route.  Then the route R is a composition of 

accessible components: 

R = Rinit + Σ Rsos + Rgoal (1) 

where: 

Rsos = Rseg <+ Ropen + Rseg>, 

Rinit = the initial point (the starting point of an accessible route), 

Rgoal = the goal point (the ending point of an accessible route), 

Rseg = a segment of the accessible route within a space, 

Ropen = the clearance area at an opening, and 

<> = optional arguments 

 

Rinit and Rgoal nodes may also be instances of Ropen nodes. 

The following are some examples of accessible routes using this notation: 

1. The expression 
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R = Rinit + Rseg + Rgoal (2) 

represents the shortest accessible route.  Note that Rseg can represent either a horizontal 

path or a vertical path as in the case of an elevator shaft.  

2. The expression 

R = Rinit + Rseg1 + Rseg2 + Rseg3 + Rgoal (3) 

can be used to describe a configuration in which a disabled access ramp (Rseg2) connects 

two segments in the accessible route.   

3. Finally, the expression 

R = Ropen + Rseg + Ropen (4) 

describes the required accessible route of a turning circle within a space (in some spaces, 

the disabled access code requires that a wheelchair must be able to get in and out of a 

space without having to back up). 

3.4.2 The Brute-force Approach 
This research develops a first-order brute-force approach to identify accessible routes 

composed of the accessible route components defined above.  Once the first-order 

analysis identifies the accessible routes in a facility design, the second-order usability 

analysis examines the routes.  This research uses the following accessible route 

determining procedure: 

1. Establish Rinit. 

2. Analyze all openings to look for potential Ropen accessible route components. 
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3. Analyze all other building components to look for potential Rgoal accessible route 

components. 

4. Construct all possible Rseg between pairs of accessible building components 

generated from steps 1 and 2. 

5. Construct all possible R from accessible route components generated in steps 1, 2, 3, 

and 4. 

Following the Analyze() features illustrated in Figure 3.12: 

• The PreProcess() subroutine performs the first two steps.  

• The child process Analyze() method  that decomposes the facility into its 

architectural spaces and performs the accessibility analysis of these spaces 

concurrently in separate sessions executes Steps 3 and 4. 

• Once all the child Analyze() sessions complete and return the Rgoal and Rseg 
analyses, the the PostProcess() subroutine performs Step 5 and composes the 

results. 

Figure 3.14 shows selected accessible routes for the Men’s bathroom in the bathroom 

facility generated by the analysis procedure. The nodes of the generated graph consist of 

potential Ropen, Rinit, and Rgoal accessible route components, and Rseg arcs connect 

these nodes.  An Rinit node (Door A) represents a “root” node since it is a starting point 

in the accessible route graph (note that Door A is also an Ropen node).  Rgoal nodes 
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Figure 3.14: Selected accessible routes in the Men’s bathroom. 

(Sink E and Toilet K) represent “leaf” nodes since they are ending points in the accessible 

route graph.  The generated graph is partially directed.  The Rseg arcs are one-way toward 

the Rgoal nodes and two-way when connecting two Ropen nodes (the arc between Door A 

and Door B).  

Table 3.1 summarizes the characteristics of this graph.  Once the analysis generates the 

graph, the procedure determines if the goal points are reachable, and the results are 

forwarded to the second-order usability analysis procedure. 

3.4.2.1 Establishing Rinit 
The accessible route analysis procedure establishes the starting point of the route Rinit 
(or multiple Rinit nodes).  The type of building component associated with Rinit 
depends on the level of analysis of the design.  In most cases, an opening in a building 

provides the connection between the exterior and the interior of the largest container 

being examined serves as the Rinit node.  If the largest container in the design is a SITE 
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Table 3.1: Characteristics of the accessible route graph. 

R  Component Graph Component Comments

Rseg arc uni- or bi-directional depending on connecting nodes
Ropen node
Rinit "root" node Rseg arcs directed away from the node
Rgoal "leaf" node Rseg arcs directed toward the node

 

Table 3.2: Rules for establishing the Rinit building component. 

Level of Design Type of Building Component for Initial Point

SPACE OPENING(S) on the boundary of a SPACE
STORY OPENING(S) on the boundary of a STORY
BUILDING OPENING(S) on the boundary of a BUILDING
SITE ENTRY(IES) on the boundary of a SITE

 

object, the ENTRY to this SITE that lies on the boundary of the SITE object serves as 

the Rinit node.  Table 3.2 summarizes the relationship between the developed product 

model container level and the building component associated with the Rinit node. 

This step in the accessible route analysis procedure establishes the potential Rinit 
accessible route components, but any number of potential Rinit components may be 

discarded in the subsequent steps of the accessible route analysis procedure.  If all 

potential Rinit components are discarded, then, by default, there is no accessible route 

for the given design. 
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3.4.2.2 Analyzing Potential Ropen Accessible Route Components 

After labeling the potential Rinit accessible route components, the accessible route 

analysis procedure examines all OPENING objects in the facility for potential Ropen 
accessible route components.  As already noted, this accessible route analysis does local 

usability analysis on the accessible route components, and the usability of the OPENING 

objects depends on the implemented usability analysis. 

In general, there may be several usability options for an OPENING object, and which 

options are applicable may not be determinable a priori.  For example, a user of the 

facility can approach an opening from several directions.  The accessible route analysis 

procedure determines which approaches are valid in the step that generates the Rseg route 

segments. 

3.4.2.3 Analyzing Potential Rgoal Accessible Route Components 

The accessible route analysis procedure determines which building components qualify 

as potential Rgoal accessible route components.  This step in the accessible route 

generating procedure exploits the architectural SPACE and its associated relationships 

illustrated in Figure 3.11 in the product model development in Section 3.2.2, the 

advantage being the possible concurrent execution of multiple space analyses.  As with 

the analysis of potential Ropen components, determining the usability of a building 

component depends on analysis implementation.  For example, in this research, the 

prescriptive-based analysis and the performance-based analysis can yield different results 

as code-compliance and usability are not necessarily the same.  There may be several 

context-dependent criteria that determine a component’s usability.  As with the Ropen 
analysis, some of the criteria may be resolved in this first-order accessible route analysis 

procedure.  For example, in the prescriptive-based analysis, if the potential Rgoal 
component has no maneuvering clearance, it no longer qualifies as a potential Rgoal 
component. 
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Some criteria may need to be resolved in the second-order usability analysis.  For 

example, if the usability of a water closet is determined following the maneuvering 

clearance rules of the ADAAG, the geometry of this clearance area depends on the 

disabled access usability of other water closets in the same bathroom space.  This 

example shows the advantage of using a product model that explicitly defines the SPACE 

object that represents the functionality of a bathroom space.  Otherwise, the analysis 

program would need to derive the bathroom function within a facility. 

3.4.2.4 Generating Rseg Route Segments 

The final step in the accessible route analysis procedure connects the Ropen and the Rgoal 
nodes with Rseg arcs as shown in Figure 3.14.  As with the Rgoal analysis, this step in the 

accessible route generating procedure utilizes the architectural space concept and its 

associated relationships in the product model.  Indeed, this final step in the procedure can 

generate the Rseg arcs without the decomposition of the facility design into SPACE object 

by searching for Rseg arcs from any Ropen to any Rgoal or any Ropen to any other Ropen.  
However, with the facility elements grouped by architectural SPACE objects, the Rseg arc 

generation step in the procedure can decompose the problem by examining each SPACE 

object.   This step generates the Rseg arcs from any Ropen to any Rgoal or any Ropen to 

any other Ropen associated with the space.  After examining all the SPACE objects, the 

procedure completes generating the accessible route graph since, by definition, an 

opening and the associated Ropen connects adjoining SPACE objects or one SPACE 

object with the area outside the facility design. 

Since a single building component may be associated with several R components 

(openings are associated with Ropen and possibly Rgoal nodes, and other building 

components are associated with Rgoal nodes), the procedure attempts to generate Rseg 
arcs between all these nodes within the SPACE object.  Some or all of the R components 

associated with a building component may be pruned since the Ropen and Rgoal nodes 
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establish local usability of the building component and the generation of the Rseg arc 

determines whether the building component is reachable and thus accessible. 

3.4.2.5 Traversing the Accessible Route Graph 
The Rseg arc generation procedure may produce several disconnected graphs instead of 

one continuous graph since the procedure starts the accessible route construction in each 

SPACE object.  Therefore, after the procedure generates all valid Rseg arcs, the procedure 

traverses the graph structure without allowing cycles (visiting a node more than once) 

starting at all Rinit nodes and attempting to reach all Rgoal nodes. 

Successfully reaching a desired building component does not guarantee the accessibility 

of the component, but any building component that is not reachable with this traversal is 

guaranteed to be inaccessible.  Using the generated graph structure and the traversal 

information, the second-order system-wide usability analysis then determines the 

accessibility of the facility. 

3.5 System-wide Usability Analysis 

The manual analysis process of the bathroom facility example does not address the 

decomposition of the facility into stories since it is a one-story building.  However, the 

analysis of a multistory building can be decomposed and is subject to the following 

ADAAG provisions: 

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall 
meet the following minimum requirements:…(5) One passenger elevator complying with 
4.10 shall serve each level, including mezzanines, in all multi-story buildings and 
facilities unless exempted below. If more than one elevator is provided, each full 
passenger elevator shall comply with 4.10.  
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EXCEPTION 1: Elevators are not required in facilities that are less than three stories or 
that have less than 3000 square feet per story unless the building is a shopping center, a 
shopping mall, or the professional office of a health care provider, or another type of 
facility as determined by the Attorney General. The elevator exemption set forth in this 
paragraph does not obviate or limit in any way the obligation to comply with the other 
accessibility requirements established in section 4.1.3. For example, floors above or 
below the accessible ground floor must meet the requirements of this section except for 
elevator service. If toilet or bathing facilities are provided on a level not served by an 
elevator, then toilet or bathing facilities must be provided on the accessible ground 
floor… 

The building-level analysis executes story-level sub-intent analysis for the stories in a 

building.  The story-level analysis returns its results to the building-level analysis that 

maps the rules from the above provisions.  For the example bathroom facility, since there 

is only one story, the above rules are not relevant. 

Continuing down the hierarchy of the system-wide usability analysis and as noted in the 

previous section, the analysis procedure examines each story of a building concurrently.  

The story-level sub-intent provides equal access to facilities for disabled persons on each 

story of both building components and spaces.  For example, the following provisions 

from [1] fulfill this story-level equivalent-access-to-facilities sub-intent for drinking 

fountains (building components) and for dressing rooms (spaces): 

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall 
meet the following minimum requirements:… 

(10) Drinking Fountains:…(b) Where more than one drinking fountain or water cooler is 
provided on a floor, 50% of those provided shall comply with 4.15 and shall be on an 
accessible route… 

(21) Where dressing and fitting rooms are provided for use by the general public, 
patients, customers or employees, 5 percent, but never less than one, of dressing rooms 
for each type of use in each cluster of dressing rooms shall be accessible and shall 
comply with 4.35…  

Analogous to the building-level decomposition, the story-level analysis executes space-

level sub-intent analysis for each space of the story in question concurrently utilizing the 

child Analyze() subroutine.  Once these subroutines return their analysis results, the 
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story-level analysis maps the rules such as the provisions shown above in the 

PostProcess() subroutine. 

The space-level analyses constitute the leaves at the lowest levels of the hierarchically 

structured system-wide usability sub-intent.  A story-level sub-intent invokes the space-

level sub-intents, and these space-level sub-intents can be processed concurrently.  A 

space-level sub-intent examines the building components contained by the space.  As in 

the manual analysis example, similar functioning building components are grouped 

together to determine the space’s accessibility.  For example, when determining the 

accessibility of the bathroom facility, a designer or inspector poses the question: What 

building components need to be accessible?  The automated space-level analysis 

references the same prescribed parameters in the building-component-level provisions.  

For example the provision for water closets from the ADAAG is given as follows: 

4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard 
toilet stall complying with 4.17…  

The previous accessible route analysis determined which water closets in the space have 

accessible routes.  From this information, the Analyze() method for the space-level 

sub-intent examines the water closets with accessible routes for other usability criteria (if 

there are any) and make the determination about the accessibility of the space based on 

the accessibility of the building components.  The system-wide usability analysis does 

not further decompose the space-level sub-intent and maps the relevant space-level 

provisions to rules to be executed in the PostProcess() subroutine in the space-level 

sub-intent. 
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3.6 Case Example 

3.6.1 First-order Accessible Route Analysis 
The following analysis refers to the Men’s bathroom space of the bathroom facility 

shown in Figure 3.15.  Doorway A maps to Rinit; Doorways B, C and D map to Ropen 
nodes; building components E through K map to Rgoal nodes; the connections between 

the nodes map to Rseg arcs.   

A wheelchair user can transfer from the chair to the toilet using two different methods: 

from the side of the toilet (side transfer) or approaching the toilet diagonally (diagonal 

transfer).  Thus, the accessible route analysis established two goal nodes for Water Closet 

K, K1 and K2.  The analysis eliminates Doorways C and D as potential Ropen components 

since they do not have the sufficient clearance requirements inside the toilet stalls. 

As shown by the highlighted accessible routes in Figure 3.16, the path from Doorway A 

to Water Closet K is represented by two accessible routes: 

R1 = A + Rseg1 + B + Rseg2 + K1 (5) 

R2 = A + Rseg1 + B + Rseg3 + K2 (6) 
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Figure 3.15: The labeled potential accessible route components in the bathroom facility. 
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Figure 3.16: The accessible route graph for the bathroom facility. 
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The requirement for a turning circle within a space can be represented as 

R = A + Rseg + A (7) 

Figure 3.16 shows all the accessible routes generated for the bathroom facility including 

the turning circle requirement (shown by the arrow from A back to A). 

3.6.2 Second-order System-wide Usability Analysis 
Once the first-order accessible route analysis has generated accessible route information, 

the second-order system-wide analysis can make the final determination of the bathroom 

facility’s accessibility.  Following the second-order analysis in the design-intent model 

shown in Figure 3.13, the analysis decomposes the bathroom facility into one story and 

the one story into five spaces (the Men’s bathroom, the Women’s bathroom, and the three 

utility rooms).  The analysis starts at the space-level sub-intent (in this exercise, the 

analysis only examines the Men’s bathroom) and progress back up the hierarchical 

structure to the story-level sub-intent and the building-level sub-intent. 

At the space-level sub-intent, the analysis checks the usability of the groups of building 

components (doorways, water closets, urinals, and lavatories).  For example, for the 

water closets, only Water Closet K has an accessible route, so the space-level sub-intent 

analysis checks other usability parameters for this water closet such as the existence of 

code-compliant grab bars.  As in the manual analysis case, the space-level analysis 

determines that the Men’s bathroom contains the sufficient number of required building 

components and determines that the bathroom space complies with disabled access 

requirements. 

The story-level sub-intent analysis determines that the story complies with the story-level 

disabled access requirements assuming the Women’s bathroom also complies (the utility 

rooms do not have to comply with disabled access requirements).  This analysis passes 

the results up the hierarchy to the building-level sub-intent analysis. 
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Finally, the building-level sub-intent analysis determines the bathroom facility complies 

with disabled access requirements since the story in the building complies with the 

requirements and, in this particular case, building contains only one story.  If the facility 

had contained more than one story then the building-level analysis would need to 

determine the accessibility of all the stories. 

3.7 Summary 

This chapter started by stepping through the manual process of disabled access analysis 

using a bathroom facility as the test case.  From this process, the chapter developed the 

necessary models, a product model and a design-intent code model, to support an 

automated disabled access process.  The design-intent code model for disabled access 

requires two main reasoning components: 

1. A determination and analysis of the accessible routes in a facility 

2. Using these accessible routes, a determination of the system-wide usability of the 

facility. 

The chapter describes and develops the methods to automate these two analyses. 

Finally, the chapter steps through the automated analysis process revisiting the bathroom 

example.  The manual and automated analyses are similar.  The automated analysis is a 

brute-force procedure sequentially processes the two main components described above.  

In contrast, in the manual procedure, the person performing the analysis can shift 

between the determination of accessible routes and the requirement of these routes in the 

context of the whole system of the facility.  

  

 

 



Chapter 4  

Accessible Route Analysis: A 
Prescriptive-based, a Performance-
based, and an Interactive Model 

The previous chapters have developed the design-aid framework for disabled access 

analysis and a decomposition of the accessible route that is dependent on the building 

components in a facility design.  This chapter describes the automated analysis 

implementation for the determination of the accessible route to enable the overall 

automated disabled usability analysis.  The chapter first develops methods for the 

ADAAG prescriptive-based accessible route analysis and then uses some of the 

prescriptive methods to develop the performance-based accessible route analysis 

methods.  The prescriptive methods are the basis for some of the performance-based 

usability parameters. 

In addition, the chapter describes wheelchair manipulation tools and visualization 

methods that provide the designer with an interactive environment in which the designer 

can manipulate a virtual wheelchair through the facility design.  The manipulation and 

visualization tools provide the designer further insight into the disabled access problem 

supplementing the developed prescriptive-based and performance-based methods. 

84 
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The chapter is organized as follows: 

• Section 4.1 describes the prescriptive-based analysis that captures the ADAAG 

accessible route provisions. 

• Section 4.2 describes the performance-based accessible route analysis.  Both the 

prescriptive-based and performance-based analyses use motion-planning techniques 

to generate the accessible routes, and the differences in the developed techniques is 

described in the respective sections. 

• Section 4.3 provides a comparison between the prescriptive-based and performance-

based analyses with several examples. A major goal of this thesis is to validate a 

performance-based analysis as a complementary component to the prescriptive-based 

code-compliance.  These examples demonstrate the deficiencies of the prescriptive-

based accessible route analysis and the power of the performance-based analysis. 

• Finally, Section 4.4 describes the various wheelchair manipulation and animation 

algorithms developed to support this research. 

4.1 Automated Prescriptive-Based Analysis: The 

Code-Compliant Accessible Route 

The implementation of the prescriptive-based accessible route analysis utilizes the 

parameters prescribed in the ADAAG as described in the manual analysis of the 

bathroom facility in the previous chapter.  The analysis uses motion-planning techniques 

to generate the code-compliant accessible routes within SPACE container objects (the 

GenericComponent object in the product model that describes a space) in a facility 

design.  The motion planner generates a path between an initial point and a goal point.  

Building components along the accessible route graph map to the required R nodes:  

Ropen nodes map to initial and goal points, Rinit nodes map to initial points, and Rgoal 
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nodes map to goal points.  The arcs of the graph (the Rseg components) map to the 

generated path between the R nodes. 

4.1.1 Motion Planning Basics 
In the basic motion-planning problem, a robot A moves through a Euclidean space W (the 

workspace) represented as RN where R is the set of real numbers, and N = 2 or 3.  This 

research assumes a two-dimensional space motion planner, and N = 2.  Obstacles 

represented as B1, B2…Bq, populate W, and the motion planner accurately knows the 

positions and geometric parameters (shape, position, and orientation) of A, the Bis, and W.  

The motion planner tries to generate a continuous path τ through the workspace W for the 

robot A avoiding the obstacles Bis given an initial position and orientation and a goal 

position and orientation.  If no path exists, the motion planner reports failure. 

The motion planner generates a configuration space C from the geometric properties of 

A, the Bis, and W and attempts to construct the path in this configuration space. In the new 

space C, the motion planner transforms robot A to a point object, and the motion-planning 

problem becomes one of generating the path τ in C.  If the dimension of W is 2 (W = RN = 

R2), then the dimension m of C is 3.  For example, a robot A restricted to move in the xy-

plane (W = R2) has three degrees of freedom: x, y, and the orientation θ.  Of course, if A is 

a disk or is not free to rotate, m = N (C = RN = R2).  Working in the configuration space C 

instead of the workspace W, the constraints become more explicit.  If the motion planner 

tries to develop the plan τ directly in the workspace W, it would 
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Figure 4.1: Mapping an obstacle to a C-obstacle. 

have to perform operations such as collision-checking at each proposed path position 

whereas in C, collision-checking has already been addressed for all possible robot 

positions. 

As A maps or “shrinks” to a point object, an obstacle Bi maps to the C-obstacle CBi by 

“growing” dependent on the geometric parameters of A and Bi.  The basic algorithm 

consists of establishing a reference point with respect to the robot A and tracing A around 

the obstacle Bi.  The path circumscribed by A describes the C-obstacle CBi.  If A can 

freely rotate, the shape of CBi depends on A’s orientation, so again, if W = R2, then C = 

R2+1 = R3.  Figure 4.1 illustrates the transformation of an obstacle to a C-obstacle. 

With the generation of the configuration space C, the motion planner has transformed the 

path-planning problem into a point robot moving within C.  Now, the motion planner 

must guide the robot from the initial point to the goal point through C.  Latombe notes 

that using some type of potential field is the most successful method for guiding the robot 

A [37].  The generated potential field guides A by forcing it down the gradient from the 

initial point to the goal point.  The motion planner discretizes C by throwing a grid over 

the space and generates the potential field values for each grid cell. 
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Since the motion planner knows the geometric parameters of A, the Bis, and W a priori, it 

can generate potential fields free of local minima.  The accessible route analysis in this 

thesis uses two potential-field-generating algorithms known as NF1 and NF2 that are free 

of local minima [37].  NF1 creates a potential field that guides the robot A from the initial 

point to the goal point on a path τ that grazes the C-obstacles.  NF2 guides A on a path τ 

that maximizes its distance from the C-obstacles.  See [37] for complete descriptions of 

the NF1 and NF2 algorithms. 

4.1.2 Determining the Ropen Components 

The Ropen node of an accessible route graph consists of three clearance components: the 

clearance of the opening and clearances on either side of the opening.  For the opening, 

the Ropen analysis applies a geometric test with the parameters of the required clearance 

box taken directly from the following provision of [1]: 

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm) 
with the door open 90 degrees, measured between the face of the door and the opposite 
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall 
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)).  

EXCEPTION: Doors not requiring full user passage, such as shallow closets, may have 
the clear opening reduced to 20 in (510 mm) minimum. 

If the opening passes the clearance box geometry interference test, the accessible route 

analysis continues with the Ropen analysis.  If the opening fails this test, the opening does 

not qualify as a potential Ropen component. 

The clearance box geometries on opposite sides of an opening depend on the 

characteristic of the door filling the opening. Figure 4.2 summarizes the dimensions of 

the approach clearance boxes.  For a single swinging door, the ADAAG defines the side 

from which the user pulls the door to open it as the pull side and the side from which the 

user pushes the door to open it as the push side.  From each side, the user can approach 

the opening from the front, hinge side, or latch side of the door: 
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• For the front pull side approach, the clearance box extends 60 inches from the wall 

that contains the opening and the door and covers the width of the opening plus 18 

inches on the latch side of the door (Figure 4.2 (a), left side). 

• For the front push side approach, the clearance box extends 48 inches from the wall 

and covers the width of the opening plus 12 inches on the latch side if the door has a 

closer and a latch (Figure 4.2 (a), right side). 

• For the hinge pull side approach, the clearance box extends 60 inches from the wall 

and covers the width of the opening plus 36 inches on the latch side.  Or the clearance 

box extends at least 54 inches from the wall and covers the width of the opening plus 

42 inches on the latch side (Figure 4.2 (b), left side). 

• For the hinge push side approach, the clearance box extends 42 inches from the wall 

(48 inches if the door has a latch and closer) and covers the width of 54 inches from 

the latch side extending toward the hinge side (Figure 4.2 (b), right side). 

• For the latch pull side approach, the clearance box extends 48 inches from the wall 

(54 inches if the door has a latch and closer) and covers the width of the opening plus 

24 inches on the latch side (Figure 4.2 (c), left side). 
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Figure 4.2: Door approaches and clearances, from the ADAAG [1]. 
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• For the latch push side approach, the clearance box extends 42 inches from the wall 

(48 inches if the door has a latch and closer) and covers the width of the opening plus 

24 inches on the latch side (Figure 4.2 (c), right side). 

The accessible route analysis examines all possible approaches by performing geometry 

interference tests on the associated clearance boxes.  Failure of all interference tests for 

either the pull or push side disqualifies the potential Ropen component.  Conversely, if at 

least one clearance box on either side passes the interference test, the potential Ropen 
component qualifies as a node in the accessible route graph. 

Finally, since the potential Ropen component participates in the accessible route graph as 

a node (both as an initial and goal point), the accessible route analysis establishes the 

initial/goal point for each valid approach clearance box associated with the potential 

Ropen component.  Each approach clearance box has an initial/goal line segment 

generalized from the basic motion-planning initial/goal point formulation.  The motion 

planner allows the wheelchair to start anywhere along the initial line.  Similarly, the 

motion planner has successfully found a path to an Ropen component if the robot can get 

to any position along the goal line segment: 

• For the front approach, the accessible route analysis defines the initial/goal line 

segment as the front edge of the clearance box. 

• For either side approach, the accessible route analysis defines the initial/goal line 

segment as the applicable side edge (the edge that is penetrated by the user during the 

approach) of the clearance box. 

Figure 4.3 illustrates the initial/goal line segments for the clearance boxes shown in 

Figure 4.2. 
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Figure 4.3: Initial/goal line segments (solid dark lines) for the door/opening approaches. 
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4.1.3 Determining the Rinit and Rgoal Components 

With the exception of site-level design analysis (as opposed to building-, story-, and 

space-level design analysis), the accessible route analysis assigns the Rinit node or nodes 

to a doorway or doorways in the facility design.  Since the accessible route analysis has 

already tested all openings when looking for potential Ropen components, the analysis is 

not required to perform the geometric interference tests again.  If none of the potential 

Ropen components are valid Rinit nodes, the facility design contains no accessible routes 

connecting the facility’s building components to the entry points of the facility. 

The accessible route analysis tests all other relevant building components for potential 

Rgoal components (recall that the first-order analysis uses a brute-force approach) since, 

initially, the analysis does not know which building components are relevant to the 

accessibility of the facility.  All building components have at least one associated 

clearance box, and the number of clearance boxes associated with a building component 

depends on the number of user approaches it has.  As with the Ropen testing, the analysis 

uses each clearance box (or boxes) in a geometric interference test.  For water closet 

approach, the clearance box parameters are prescribed by [1] as follows: 

Figure 28. For a front transfer to the water closet, the minimum clear floor space at the 
water closet is a minimum 48 inches (1220 mm) in width by a minimum of 66 inches 
(1675 mm) in length. For a diagonal transfer to the water closet, the minimum clear floor 
space is a minimum of 48 inches (1220 mm) in width by a minimum of 56 inches (1420 
mm) in length. For a side transfer to the water closet, the minimum clear floor space is a 
minimum of 60 inches (1525 mm) in width by a minimum of 56 inches (1420 mm) in 
length. (4.16.2, A4.22.3) 

 
Figure 4.4 illustrates the clearance box parameters for the three water closet transfer 

options. 
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Figure 4.4: Clear floor space for front transfer, diagonal transfer, and side transfer [1]. 

Finally, since the potential Rgoal component is an end node in the accessible route, the 

accessible route analysis establishes the goal point for each valid approach clearance box 

associated with the potential Rgoal component.  Similar to the Ropen component each 

approach clearance box has a goal line segment as opposed to a point.  For example, for 

water closets, the following approach definitions apply: 

• For the front approach, the accessible route analysis defines the goal line segment as 

the front edge of the clearance box. 

• For either side approach, the accessible route analysis defines the goal line segment as 

the applicable side edge (the edge that is penetrated by the user during the approach) 

of the clearance box. 

• For the diagonal approach, the accessible route analysis defines two goal line 

segments combining the front approach with the side approach formulation. 

Figure 4.5 illustrates the initial/goal line segments for the clearance boxes shown in 

Figure 4.4. 
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Figure 4.5: Goal line segments (solid dark lines) for the water closet approaches. 

4.1.4 Determining Rseg Accessible Route Components 

The accessible route analysis can now determine if an accessible path exists between all 

pairs of nodes within a SPACE container.  The following provision from the ADAAG  

describes the critical path-determining parameters:  

4.3.3 Width. The minimum clear width of an accessible route shall be 36 in (915 mm) 
except at doors (see 4.13.5 and 4.13.6). If a person in a wheelchair must make a turn 
around an obstruction, the minimum clear width of the accessible route shall be as shown 
in Fig. 7(a) and (b). 

Note that the second sentence in the provision represents two exceptions to the prescribed 

rule in the first sentence (Figure 4.6 illustrate Figure 7(a) and Figure 7(b) from [1]).  

Furthermore, the two exceptions only address two of possible turn-around-an-obstacle 

examples.  This limitation illustrates a deficiency in the prescriptive-based accessible 

route as there are many other turn-around-an-obstacle scenarios.  The diagrams in Figure 

4.6 illustrate only orthogonal paths, and there are non-orthogonal 36-inch wide paths that 
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Figure 4.6: Minimum accessible route turning clearances defined in the ADAAG [1]. 

need some minimum distance for the legs of the path.  For example, the ADAAG does 

not address a leg length requirement for a 95-degree turn. 

4.1.4.1 The 36-inch-wide Path 
From the first sentence of Provision 4.3.3 from the ADAAG, the motion planner uses a 

36-inch disc to describe the geometry of the robot A36 (the implementation uses a regular 

dodecagon to approximate the circle geometry).  The building component geometry 

determines the workspace W— the motion planner generates the configuration space C36 

given A36 and W using the algorithm described in Section 4.1.1.  Figure 4.7 illustrates 
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Figure 4.7: The 36-inch disc robot A36 configuration space C36. 

C36 for the Men’s Bathroom space in the bathroom facility example.  The white areas 

represent legal positions for centerpoint the A36 disc robot. 

Note that the motion planner treats a doorway with the door in the closed position, and, 

hence, in Figure 4.7, the configuration space between the entry door and the accessible 

toilet is discontinuous.  However, as shown in Figure 4.3, the wheelchair robot only 

needs to reach the goal line segment associated with the doorway and does not have to 

pass through the opening.  As long as the opening complies with ADAAG clearance 

requirements, the accessible route continues on the other side of the doorway at that 

opening’s complementary initial line segment.  Figure 4.8 illustrates possible accessible 

route sequences through a doorway with the dashed lines indicating the path of travel 
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Figure 4.8: The possible accessible route sequences through a doorway. 

from the goal line segment of an accessible route to the door to the initial line segment of 

an accessible route from the door. 

The motion planner uses the NF1 potential-field-generating algorithm between pairs of 

nodes [37].  This algorithm generates a potential map “wavefront” from the goal line 

segment(s) to the initial line segment(s).  The wavefront generation terminates either at 

some point on the initial segment(s) or when the motion planner has run out of 

configuration space to generate the wavefronts.  If the wavefront has not reached an 

initial line segment, then no path exists between the initial and goal nodes.  Conversely, if 

the wavefront has reached the initial point, then a 36-inch path exists between nodes. 

 



CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 99 

ENTRY DOOR
initial line segment

STALL DOOR
goal line segment

WATER
CLOSET
goal line
segments

STALL DOOR
initial line
segment

 

Figure 4.9: The initial and goal segments inserted into the C36 configuration space. 

Figure 4.9 illustrates an initial line segment for the ENTRY DOOR, the initial and goal 

line segments for the disabled access STALL DOOR, and the goal line segments 

associated with the disabled access WATER CLOSET.  The NF1 algorithm finds a path 

between the ENTRY DOOR initial line segment and the STALL DOOR goal line segment, 

but it fails to find a path between the ENTRY DOOR initial line segment and the WATER 

CLOSET goal line segments.   (Upon visual inspection, there is a continuous white area 

between legal positions on the two DOOR line segments, but the white area is 

discontinuous between legal positions of ENTRY DOOR line segment and the WATER 

CLOSET line segments).  However, the path between the ENTRY DOOR and disabled 

access WATER CLOSET actually consists of two path segments:  

1. The path between the ENTRY DOOR initial line segment and the STALL DOOR goal 

line segment. 
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2. The path between the STALL DOOR initial line segment and one of the WATER 

CLOSET goal line segments. 

The analysis connects these two paths using an accessible path sequence through a 

doorway similar to the one shown in Figure 4.8. 

4.1.4.2 The Turn-around-an-obstruction Exceptions 
This section describes a proposed method to handle the turn-around-an-obstruction 

exceptions that arise from the prescriptive-based accessible route in the ADAAG.  Note 

that the complicated nature of this exception handling proposal can be traced to the nature 

of these prescriptive exceptions.  The turn-around-an-obstruction exceptions are arbitrary 

configurations that the ADAAG addresses as being impassable using the general 36-inch 

wide path, and this section shows the difficulty in taking these arbitrary configurations 

into consideration.  While developing the exception analysis methods, the investigation 

of these exceptions in this section shows that the exceptions contradict each other. 

The analysis in Section 4.1.4.1 does not actually need to generate a path τ between pairs 

of nodes; it simply determines if a 36-inch path exists.  Now, however, the motion 

planner must examine the wheelchair path’s signature. The motion planner generates an 

NF2 potential map in the configuration space to generate a path τ that maximizes its 

distance from the obstacles [37]. Note that the proposed exception analyses indicate 

possible violations to the exceptions as opposed to making the actual determination that a 

configuration actually violates the exceptions. 

The motion planner also constructs two additional configuration spaces to analyze the 

facility design for the first turn-around-an-obstruction exception shown in Figure 4.6: 

• A configuration space C36+ε using the same workspace W but a (36+ε)-inch disc robot 

A36+ε to generate the C-obstacles in the configuration space. 
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Figure 4.10: A 36-inch corridor with the path and legal C36 and positions. 

• A configuration space C42+ε using the same workspace W but a (42+ε)-inch disc robot 

A42+ε to generate the C-obstacles in the configuration space. 

The first exception applies only to a path in two perpendicular 36-inch corridors, so the 

motion planner must be alerted when the A36 robot is following a path through such a 

corridor. To determine if the A36 robot is in such a corridor, the motion planner uses the 

C36+ε configuration space.  As the motion planner steps through the path τ, it also checks 

to see if the robot’s position is legal in C36+ε.  If it is not, then the robot must be in an area 

that is only 36 inches wide since the NF2-generated path τ stays as far from obstacles as 

possible. 

Once the motion planner has determined that the A36 robot is in a 36-inch-wide area, the 

motion planner needs to know if path τ resides in a perpendicular 36-inch corridor 

configuration.  Figure 4.10 illustrates a 36-inch corridor with the A36 robot path τ, legal 

positions in C36 (the robot can travel in the white space and along τ).  The largest legal 

area in the 36-inch perpendicular corridor configuration is a 42-inch wide disc as 
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illustrated by the dashed circle in Figure 4.10.  Therefore, if τ traverses a legal position in 

the C42+ε configuration space, the motion planner knows the A36 robot is not in a 

perpendicular 36-inch wide corridor configuration. 

When the robot enters a 36-inch wide area, the motion planner begins storing the path 

positions (including orientations) in a queue.  Since A36 is a disc and has no orientation, 

the motion planner approximates the current orientation θC at the current path position 

(x,y)C by calculating the angle formed between (x,y)C-1 and (x,y)C+1.  If at any point the 

path τ enters the C42+ε configuration space (implying that the A36 robot is not in the 

perpendicular 36-inch corridor configuration), the exception analysis terminates, and the 

motion planner starts the exception analysis again when τ encounters the next 36-inch 

wide area. 

The motion planner compares (x,y,θ)C, to each position (x,y,θ)i  already in the queue.  If 

θC equals some θi, the motion planner inserts (x,y,θ)C at the front of the queue and 

removes the (x,y,θ)i and all the positions before(x,y,θ)i in the queue. θC equaling some (θi, 

+ π/2) indicates that the A36 robot has made a right-angle turn.  At this point, the motion 

planner indicates a possible violation of the first exception and for the path segment 

between (x,y,θ)C, and (x,y,θ)i. 

The second exception addresses a U-turn around an obstacle shown in Figure 4.6.  From 

the beginning of the analysis of path τ, the motion planner inserts the positions of τ into a 

queue and compares the current position (x,y,θ)C, to each position (x,y,θ)i  already in the 

queue. θC equaling some (θi, + π) indicates that the A36 robot has made a U-turn, and the 

motion planner evaluates the perpendicular distance between (x,y,θ)C, and the (x,y,θ)i.  If 

the perpendicular distance is less than 84 inches (from the left diagram in Figure 4.6, the 
 

 



CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 103 

37” x = 46” 37”

48
”

36
”

 

Figure 4.11: A contradictory configuration to the Provision 4.3.3 exceptions from the 
ADAAG. 

second leg of the path, 48 inches, plus half the width of the first and third legs of the path, 

18 inches and 18 inches), then the motion planner indicates a possible violation for the 

second exception for the path segment between (x,y,θ)C, and (x,y,θ)i. 

Note that the above analysis does not exactly match the prescribed parameters of the 

second exception because there is a fundamental flaw between the relationship of the first 

exception and the second exception.  A graphical example illustrates this flaw: Figure 

4.11 illustrates a configuration that actually has more maneuvering space than a 

configuration that complies with the prescribed parameters of the first exception, yet this 

example configuration violates the prescribed parameters of the second exception.  In 

Figure 4.11, the obstruction width x is less than 48 inches (x = 46 inches) implying that 

the second exception applies.  However the first and third legs of the path are less than 42 

inches wide and the second leg is less than 48 inches wide.  Thus, the configuration 

violates the second exception.  This contradiction illustrates the conflicts that can arise 

with the prescribed parameters of a building code’s intent. 
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Figure 4.12: The prescribed turning circle and T-space from the ADAAG [1]. 

4.1.4.3 The Wheelchair Turning Circle 
The ADAAG requires a wheelchair turning circle or T-space in toilet rooms, bathrooms, 

bathing facilities, and shower rooms, dressing and fitting rooms:   

4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped 
space (see Fig. 3(b)).  

Figure 4.12 illustrates the turning circle and T-space from the ADAAG.   

The motion planner analyzes a relevant SPACE container for the wheelchair turning 

circle option by generating a configuration space C60 using a 60-inch disc robot A60 that 

represents the turning circle.  If the SPACE does not contain any legal positions for robot 

A60, no turning circle exists in the SPACE, and the facility does not comply with [1].  If 

legal positions exist, the analysis continues.  Figure 4.13 illustrates the C60 configuration 
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turning circle areas

 

Figure 4.13: The 60-inch disc robot A60 configuration space C60. 

space for the bathroom facility, and the white spaces indicate legal positions for the 60-

inch turning circle.   

Now, the motion planner tries to generate a path from the Ropen nodes that exist on the 

boundary of the given SPACE container (in this bathroom facility case, the ENTRY 

DOOR).  The motion planner evaluates each of these Ropen nodes separately.  Each Ropen 
node becomes the initial point (initial line segment), and the turning circle areas become 

the goal points (goal areas), and the motion planner generates the NF1 wavefront from 

the turning circle areas. Figure 4.14 illustrates the turning circle areas from C60 

configuration space that now become the goal points (goal areas) in the C36 configuration 

space, and the ENTRY DOOR line segment that becomes the initial point (initial line 

segment).  
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Figure 4.14: The entrance door initial/goal and the 36- and 60-inch configuration spaces. 

The motion planner now generates the NF1 wavefront from the turning circle areas, and 

if the wavefront terminates at the given Ropen node (the initial line segment), the motion 

planner has proven that an accessible wheelchair turning circle exists in the given SPACE 

container.  In the bathroom facility case, the motion planner successfully terminates the 

wavefront at a point on the ENTRY DOOR line segment.  (Upon visual inspection, a 

continuous white space exists between the ENTRY DOOR line segment and the turning 

circle area). 

4.1.5 Prescriptive-based Analysis Discussion 
The developed prescriptive-based motion-planning techniques described in this chapter 

verify the 36-inch width and turning circle requirements as prescribed by the ADAAG.  

However, using motion-planning techniques to test for the turn-around-an-obstruction 

 



CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 107 

exceptions is a more complicated process since these exceptions are abstractions that are 

static geometric tests as opposed to defining acceptable wheelchair motion. 

In addition, as has been shown, these abstractions which define the turn-around-an-

obstruction exceptions only address two of the possible problem configurations given the 

prescribed 36-inch width.  However, these two prescribed configurations contradict one 

another, and the contradiction adds to the complication of modeling the exceptions for 

automated analysis. 

The motion-planning techniques guarantee the discovery of a 36-inch accessible route if 

one exists provided that the motion planner generates configuration space grid 

discretization at least equal to the precision of the facility design measurements.  For 

example, if the facility is designed to the nearest inch, the grid discretization should be at 

least as fine as one inch. 

4.2 Automated Performance-based Analysis: The 

Usable Accessible Route 

The performance-based accessible route analysis presented in this section attempts to 

address the deficiencies of the prescribed accessible route parameters of the ADAAG. 

Difficulties in capturing intent of a standard and the behavior of the dependent 

components are major issues in developing performance-based methods.  This section 

demonstrates that determining the accessible route belongs to a family of problems that 

can be successfully modeled using performance-based methods. 

The performance-based accessible route analysis uses motion-planning simulation to 

generate the accessible route graph.  In addition to a variation of the motion planner 

developed for the prescriptive-based analysis that addresses the wheelchair user’s 

comfort level, the motion-planning parameters developed in this section directly capture 

wheelchair behavior (the motion planner developed for the prescriptive-based approach 
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captures the ADAAG’s prescribed parameters).  The interaction of the wheels of a car-

like robot such as a wheelchair and the ground surface constrains robot motion in a 

manner dependent on its instantaneous orientation.  This non-slipping or non-holonomic 

turning constraint restricts the motion of the robot in its attempt to reach the goal point.  

Dubins solved the shortest path in a plane for a robot-like car that cannot reverse and 

cusps are not allowed [10].  The wheelchair motion developed in this research is a 

variation on the car motion formulation, and next section describes the non-holonomic 

planner developed for wheelchair motion. 

4.2.1 Overview of Performance-based Motion Planning: 

Developing a Non-holonomic Planner 
The motion planner developed for the prescriptive-based analysis utilized various sizes of 

disc robots.  The performance-based analysis also uses the A36 robot to generate the C36 
configuration space and generates an NF2 potential field, and the motion planner uses 

this potential field as a guide to generate the path τ for the actual wheelchair robot Awc.  
Figure 4.15 shows the reference wheelchair dimensions from the ADAAG. 

Figure 4.16 illustrates the geometry of the Awc robot.  Note that the robot is less than 36 

inches wide, but the motion planner uses the C36 configuration space since this 36-inch 

width in the ADAAG represents a comfortable width for the wheelchair user to negotiate. 

Since the Awc is not a disc, the motion planner must keep track of the robot’s orientation 

while generating a path, and the motion planner must check each wheelchair position and 

orientation against the obstacles in the space.  Therefore, the motion planner discretizes 

the rotation space and creates configuration spaces Cwc0…Cwcn such that 2π/n equals the 
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Figure 4.15: ADDAG wheelchair dimensions. 
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Figure 4.16: Dimensions of the robot Awc. 

number of degrees between sequential orientations of Awc.  Now, the motion planner can 

check the wheelchair position and orientation (x,y,θ) against the appropriate Cwci 

configuration space.  Section 4.2.2 and Section 4.2.3 address the initial/goal point 

formulation and Section 4.2.4 addresses the non-holonomic path. 
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4.2.2 Determining the Ropen Components 

The performance-based approach that determines the Ropen components uses the same 

Ropen formulation for the prescriptive-based approach.  However, instead of specifying 

multiple clearance boxes and the associated initial and goal line segments, this Ropen 
determination uses one initial point and one goal point on the opening’s pullside and a 

combined initial/goal point on the opening’s pushside. While a clearance box is explicitly 

prescribed in the ADAAG to be tested as a static evaluation method, the performance-

based accessible route analysis models the actual wheelchair path directly, and the 

wheelchair must pass through some clearance area when starting from or getting to the 

initial or goal point. 

Figure 4.17 illustrates the positions of the initial and goal points associated with the 

opening.  Since the motion planner uses the initial and goal points to generate the NF2 

potential field in the C36 configuration space, the figure shows the A36 robot as well as 

the Awc robot.  The Awc robot shown in the figure has a fixed orientation associated with 

the initial points.  However, the motion planner accepts any orientation within a 90-

degree range for the orientation of the Awc robot at the goal position.  Note that when 

passing though a door opening, the wheelchair goes from the goal point of a path segment 

on one side of the door opening to the initial point of a path segment on the opposite side 

of the door opening.  The goal point-initial point sequence through a door opening is 

either (b)-(c) or (d)-(a) from the figures shown in Figure 4.17.  This research has 

developed the door opening goal point and initial point parameters guaranteeing that a 

path exists from the goal point-initial point pair. 
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Figure 4.17: Initial and goal points for the Ropen node. 

4.2.3 Determining the Rinit and Rgoal Components 

As with the Ropen component, the determination of Rinit and Rgoal utilizes the basic 

motion-planning initial and goal point as opposed to an initial and goal line segment 

associated with the relevant clearance box as prescribed by the ADAAG.  To reiterate the 

motivation, the ADAAG prescribes a clearance box as the only testable static method to 

ensure component usability, but a dynamic method should evaluate whether the 

preconditions and the goals can be directly satisfied. 
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Figure 4.18: ADAAG wheelchair transfer diagrams for water closets [1]. 

In general, an Rgoal node maps to one goal point.  However, in certain cases, the motion 

planner needs more than one goal point to decide a component’s accessibility.  Figure 

4.18 illustrates toilet usage by a wheelchair user, an action known as wheelchair transfer.  

As shown in the figure, the wheelchair user can transfer from the wheelchair to the toilet 

via two fundamentally different methods: diagonal transfer and side transfer.  Thus, the 

motion planner specifies two different goal points and orientations to reflect the different 

methods. 
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Figure 4.19: The goal points for water closet diagonal and side transfer respectively. 

Figure 4.19 illustrates the two goal points and orientations associated with the two 

transfer options.  The side transfer goal point and orientation of the Awc robot illustrated 

in Figure 4.19(b) does not directly correspond to the side transfer position illustrated in 

Figure 4.18(b) for the following reason.  The motion planner restricts the wheelchair to 

only forward motion, and the ADAAG assumes backing up to the final side transfer 

position.  Therefore, the motion planner positions the Awc robot in a position to make the 

backup move to the final side transfer position. 

4.2.4 Determining the Rseg Components 

The previous sections in this chapter established the C36 configuration space based on the 

A36 robot, the initial point, and the goal point for the motion planner to generate NF2 

potential field.  This section describes the formulation of the non-holonomic wheelchair 

path τ using this NF2 potential field in the C36 configuration space to guide the Awc robot 

and the Cwc0…Cwcn configuration spaces to perform the collision-checking. 
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Figure 4.20: The three options (left, right, and straight) for the Awc robot. 

The motion planner describes the non-holonomic path by restricting the Awc robot to three 

moves: a left turn, a right turn, and a straight-ahead move.  Figure 4.20 illustrates these 

three options.  The motion planner describes the vertex of the turning angle as the 

perpendicular length r from the centerpoint between the major wheelchair wheels.  The 

motion planner records the actual position of the Awc robot at the centerpoint of the half-

dodecagon at the front of the robot.  The displacement distance D from either turn (which 

is dependent on r) dictates the translation of the Awc robot for the straight-ahead option. 

The performance-based accessible route path planner restricts the value of r to two 

values, r1 and r2 using a two-step approach.  As the wheelchair user nears a goal, the user 

naturally slows down allowing finer maneuvering with a smaller turning radius.  The 

larger turning radius r1 (r1 equals 24 inches) is employed to move the Awc robot to the 

goal point.  When the wheelchair has moved within an 18-inch locus of the goal point, 

the motion planner switches to the smaller turning radius r2 (r2 equals 9 inches) to try to 

maneuver the Awc robot to the goal point with an acceptable orientation. 
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The pull side approach maneuvering clearance geometry parameters in Figure 4.2 

translate to the use of this two-step turning radius approach.  The wheelchair user can use 

the faster r1 turning radius when approaching the door, and the 60-inch depth of the 

maneuvering clearance implies the use of the slower, tighter turning radius r2 in the 

proximity of the door.   

The motion planner uses the NF2 potential field in the C36 configuration space to guide 

the Awc robot using the following algorithm.  Starting from the initial position and 

orientation qinit, the motion planner examines the three move options, left, right, and 

straight ahead (qleft, qright, and qstraight using r1 for the robot turning radius.  If qleft 
resides in the C36 and appropriate Cwci configuration spaces free space, the motion 

planner compares the (x,y) associated with qleft with the (x,y) associated with qgoal.  If 
the (x,y) values not equal, the motion planner looks up the potential field value Uleft, 
creates a node containing qleft and Uleft, and inserts the node into a priority queue 

which prioritizes nodes by their U-value (the lower the value, the higher the priority).  

Finally, the motion planner inserts a pointer to the previous position (in this case, qinit) 
in the node and marks qleft in the appropriate Cwci configuration space potential field as 

having been already visited.  The motion planner repeats this procedure for qright and 

qstraight. 

The motion planner continues this iterative process by removing the highest priority node 

(the node with the lowest potential value) from the priority queue and examining the 

three move options from the associated q.  Now, Cwci configuration spaces include the 

visited as well as the free space information, and the motion planner treats a visited qinit 
as an obstacle.  When q is within an 18-inch locus of qgoal, the planner starts generating 

new positions using the smaller turning radius r2.  The iterative process continues until 

either the motion planner empties the priority queue (indicating no path τ exists) or (x,y) 

associated with the current q matches the (x,y) associated with qgoal.  With a match, the 

motion planner examines the orientation θ associated with the current q against the θ 
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associated with qgoal.  If the current θ lies within the allowed range of θ goal, the motion 

planner records the path τ.  Otherwise, the motion planner continues the iterative process 

until the motion planner empties the priority queue (no path τ) or the current q matches 

with qgoal for both position and the acceptable orientation range. 

Finally, the performance-based analysis implements a one-step iterative process using 

only the r2 turning radius to test for the turning circle requirement in a space.  The Awc 
robot may not be able to achieve the goal point using the first step in the two-step 

process, so the motion-planner uses the tighter turning radius for this maneuvering 

requirement. 

In determining the value for the turning radius r1, a larger value represents a larger 

turning circle and a more comfortable path τ for the wheelchair user.  A trial-and-error 

method determines the largest possible value for r1.  The prescriptive-based accessible 

route development earlier in this chapter described the deficiencies of the prescribed 

accessible route parameters in the ADAAG.  However, since the prescribed accessible 

route parameters in the ADAAG are designed to define usability, this research uses the 

prescriptive parameters to determine the values for the r1 turning radius. 

The motion planner utilizes the prescribed 36-inch path width to construct the C36 
configuration space since a 36-inch width represents a comfortable width for the 

wheelchair user.  Now, the trial-and-error method uses the non-holonomic motion-

planning techniques described in the previous section on the two turning-around-an-

obstruction configurations from the ADAAG Provision 4.3.3 shown in Figure 4.6 to 

determine r1.  (Note that the motion-process described above describes a two-step 

process using two r-values, but here, the motion planner uses a one-step process using 

r1).  The trial-and-error method begins with a value for r larger than the final value for r1 

(the larger the turning radius, the more comfortable the wheelchair path decrements this r 
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Figure 4.21: Motion-planning results for the first ADAAG 4.3.3 exception, r1 = 24”. 

value to until it finds a legal path τ).  Figure 4.21 and Figure 4.22 illustrate the first legal 

paths with an r1-value that works for both turning-around-an-obstruction configurations 

produced by the trial-and-error method: r1 is equal to 24 inches. 

As with the determination of r1, a trial-and-error method uses a provision from the 

ADAAG to determine r2: 

4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped 
space (see Fig. 3(b)).  

The trial-and-error method does not use the motion planner to determine r2 since it only 

finds the maximum turning radius that can make the Awc robot perform the turning 
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Figure 4.22: Motion-planning results for the second ADAAG 4.3.3 exception, r1 = 24”. 

maneuver in a 60-inch space.  Figure 4.23 illustrates the turning maneuver that satisfies 

the 60-inch horizontal constraint using a turning radius r2 of 9 inches. 

Note that the y-dimension exceeds the 60-inch diameter clearance requirement. The 

ADAAG Appendix  notes that, in practice, the vertical dimension should actually exceed 

60-inches: 

A4.2.3 Wheelchair Turning Space. These guidelines specify a minimum space of 60 in 
(1525 mm) diameter or a 60 in by 60 in (1525 mm by 1525 mm) T-shaped space for a 
pivoting 180-degree turn of a wheelchair. This space is usually satisfactory for turning 
around, but many people will not be able to turn without repeated tries and bumping into 
surrounding objects. The space shown in Fig. A2 will allow most wheelchair users to 
complete U-turns without difficulty. 
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Figure 4.23: Motion-planning results for the turning radius, r2 = 9”. 

 

Figure 4.24: ADAAG Figure A2 illustrating the actual turning clearance geometry [1]. 

Figure 4.24 illustrates an acceptable clearance oval, and the turning formulation in Figure 

4.24 easily fits into the suggested oval geometry. 
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4.2.5 Performance-based Analysis Discussion 
The performance-based motion-planning techniques developed in this chapter directly 

capture motion and behavior given the wheelchair’s parameters as described in the 

ADAAG.  This direct analysis obviates the need for the complicated exception analysis 

associated with the prescriptive-based ADAAG accessible route parameters, an artifact 

that is a consequence of the ADAAG’s prescribed accessible route abstraction. 

Similar to the prescriptive-based motion-planning analysis developed in this chapter, the 

performance-based motion planner can guarantee the discovery of the 36-inch wide path 

provided that one exists.  However, it is possible that the non-holonomic planner 

developed for the actual wheelchair motion might not find a path even if one exists.  One 

reason concerns the discretization of the configuration space: 

As opposed to the solution described in Section 4.1.5 for the ADAAG-width-compliant 

motion planner, determining the necessary discretization granularity for the non-

holonomic configuration space is not straightforward since the location of the wheelchair 

robot’s next possible position (using trigonometric functions) may not correspond to the 

exact grid discretization.  A possible extension to this research involves developing 

techniques that guarantee the discovery of a path if one exists given the described 

performance-based non-holonomic motion-planning techniques.  Hsu et al. presents 

related work developing a randomized motion planner for robots under kinematic and 

dynamic constraints in which the probability that the planner fails to find a path when one 

exists converges toward zero [29].   The following describe some other possible 

extensions to the performance-based analysis. 

Figure 4.15 illustrates the prescribed ADAAG dimensions for a wheelchair, and the 

performance-based accessible route analysis uses the ADAAG wheelchair to develop the 

Awc robot parameters.  The prescriptive nature of the code creates an indirect relationship 

between provision parameters and the wheelchair dimensions and behavior.  No cause- 
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Table 4.1: Wheelchair parameters and influencing factors. 
Parameter Influencing Entity Constraints
A36 users, manufacturers user comfort level

wheelchair physical dimensions
Awc manufacturers wheelchair physical dimensions
r 1 and r 2 users, manufacturers user comfort level

wheelchair physical dimensions
wheelchair speed

r  centerpoint manufacturers wheel dimensions, placement, action  

and-effect relationship exists between the wheelchair constraints and the prescriptive 

route usability analysis. 

In contrast, a designer can vary the parameters developed in this chapter.  Varying 

specific parameters allows wheelchair manufacturers and users to test the behavior of a 

specific wheelchair model or assign personal preferences and simulate wheelchair 

movement in a specific design configuration.  Varying the A36 robot’s diameter (and 

influencing the C36 configuration space) allows the user to choose a preferred path width 

comfort level independent of the actual wheelchair parameters.  Of course, the diameter 

should exceed the wheelchair width.  Wheelchair manufacturers make wheelchairs with 

various physical dimensions, and the performance-based analysis can easily capture these 

dimensions to model the Awc robot.  In addition, the turning radius and centerpoint of the 

turn depends on the wheelchair’s mechanical constraints.  Finally, independent of these 

mechanical constraints, users have their own comfort level associated with the possible 

turning radii r1 and r2. Table 4.1 summarizes the variable parameters and the influencing 

factors. 

The non-holonomic path-planning analysis developed in this chapter limits the 

wheelchair motion to three options: left, right, and straight.  The motion planner imposes 
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Figure 4.25: Left-hand-turn options (forward, backward, r = 24”, 48”). 

this restriction in an attempt to capture the intent of the prescribed code and match the 

compliance results of the ADAAG accessible route provisions. 

The number of options of forward motion can be increased to 1+2f where 1 represents the 

straight-ahead move and f represents the number of same direction (left or right) forward 

turns.  As with the three-move formulation, the new positions q for all moves should be 

equidistant from the starting position.  In addition, the motion planner can support 

backward motion. Reeds and Shepp describe optimal paths for a car-like robot that is 

allowed to reverse its direction [55].  Indeed several ADDAG provisions assume 

backward motion. Now, the number of options of motion can be increased to 1+2f+2b 

where b represents the number of same direction (left or right) backward turns.  The 

motion planner would set a limit on the number of backups for a given path τ according 

to the building code’s or user’s specifications.  Figure 4.25 illustrates two left-hand 

turning radii supporting forward and backward motion (the same turning radii are used 

for both the forward and backward turns).  The dashed circle represents the equidistant 
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locus around the starting position of the Awc robot and note that the turning angles of all 

four moves have been set for the equidistant movement. 

4.3 A Comparison of Prescriptive- and 

Performance-Based Analysis Results 

This section demonstrates the deficiencies of the prescriptive-based accessible route 

formulation by analyzing design configurations against the prescriptive parameters from 

the ADAAG and comparing the results to the developed performance-based analysis.  

Table 4.2 delineates the possible combinations of the two analyses.  The performance-

based analysis uses specific provisions from the ADAAG to instantiate the turning radius 

parameters, and by default, the tested configurations were both code-compliant and 

usable (Table 4.2, Entry 1).  Providing examples that are both non-compliant and 

unusable (Table 4.2, Entry 2) can be trivially demonstrated with a less-than-36-inch-wide 

corridor.  The prescriptive-based analysis is by nature limited in its description of 

possible design configurations, and this section presents an example of a non-compliant 

route that a wheelchair user can actually negotiate (Table 4.2, Entry 3).  Similarly, the 

section presents an example of a code-compliant route that a wheelchair user cannot 

negotiate (Table 4.2, Entry 4). 

Wheelchair users can comfortably use an infinite number of design configurations that do 

not comply with the prescriptive accessible route provisions from the ADAAG.  Because 

of the prescriptive nature of the disabled access code, it cannot address all possible 

configurations; the code limits the special cases it addresses to the turn-around-an-

obstruction exceptions, and Section 4.1.4.2 has described a configuration that reveals a 

conflict in the ADAAG. 
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Table 4.2: The possible prescriptive/performance analysis combinations. 

Prescriptive-based Formulation Performance-based Formulation

1 Compliant Usable
2 Non-compliant Unusable
3 Non-compliant Usable
4 Compliant Unusable
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Figure 4.26: The non-compliant, usable example. 

Example 1 

This example presents a design configuration illustrated in Figure 4.26 that clearly falls 

under the U-turn-around-an-obstacle exception category: the width of the obstruction is 
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less than 48 inches, and the configuration cannot be transformed into the 90-degree-turn-

around-an-obstacle exception by making the obstruction wider than 48 inches.  Following 

the parameters of the ADAAG Provision 4.3.3, the configuration fails to comply with the 

exception that: 

• The widths of the first and third legs are less than 42 inches. 

• The width of the second leg is less than 48 inches. 

Using the performance-based parameters established in the performance-based analysis, 

the motion planning simulation returns a successful path τ around the obstruction for the 

non-compliant configuration as illustrated in the figure.  Thus, the configuration is usable 

by a wheelchair user. 

Example 2 

Wheelchair users cannot comfortably negotiate an infinite number of design 

configurations that comply with the prescriptive accessible route provisions from the 

ADAAG.  This example demonstrates an example illustrated in Figure 4.27.  Following 

the parameters from the ADAAG Provision 4.3.3, the design complies with the code in 

that: 

• The accessible route is equal to or greater than 36 inches wide. 

• Neither turn-around-an-obstruction exception applies. 

Note that if the angle between the second and third leg equals 90 degrees instead of 

exceeding 90 degrees, the first turn-around-an-obstruction exception from Provision 4.3.3 

would apply.  The building official may contend that the exception applies with a small ε, 

but as ε grows, the configuration does not qualify for the exception. The ambiguity of at 

what point the prescribed configuration applies illustrates another deficiency of a 

prescriptive-based approach. 

 



CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 126 

36” 12”

90° + ε

 

Figure 4.27: The code-compliant, unusable example. 

Using the performance-based parameters, the motion planning simulation fails to return a 

path τ around the obstruction for the code-compliant configuration.  For this example, a 

modified motion planner keeps track of the lowest potential-value node visited, and in the 

event of failure, as illustrated in Figure 4.27, the motion planner returns a path that gets 

the wheelchair as close to the goal point as possible.  A trial-and-error method of 

iteratively extending the length of design-configuration’s second leg in increments of one 

inch and running the motion planner yields the usable design configuration shown in 

Figure 4.28.  Alternatively, an iterative trial-and-error method could have been used to 

establish the second leg’s minimum width that ensures usability. 

Finally, by changing the angle between the second and third legs of the route from 90°+ε 

to 90° or 90°-ε, the motion planner can be used to demonstrate the overly-restrictive 
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Figure 4.28: Modifying the middle leg of the route makes the configuration usable. 

nature of the 90-degree-turn-around-an-obstruction exception from Provision 4.3.3.  

(While not explicitly stated, the exception should apply to angles less than 90 degrees 

since this configuration would constitute a more difficult accessible route).  As illustrated 

in Figure 4.28, the second and third leg dimensions provide a viable path τ around the 

obstruction, and these lengths are clearly less than the required 48-inch/48-inch exception 

requirement. 

4.4 Wheelchair Manipulation and Animation 

So far, this research has argued that if the behavior is quantifiable, performance-based 

analysis methods are superior to analogous prescriptive-based methods.  While this 

research has successfully quantified critical accessible route-related behavior, this 
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research develops an additional tool placing the designer in a virtual wheelchair that can 

be navigated through the facility design environment.  Though the prescriptive- and 

performance-based methods provide information regarding the code-compliance and 

usability of a facility, visual presentation of this information can provide further insight 

into each type of analysis. 

This research develops several algorithms associated with the manipulation and 

animation of the virtual wheelchair.  The manipulation algorithms translate the joystick 

device output parameters to move the virtual wheelchair.  The animation algorithms 

translate the generated accessible route to the various wheelchair movements associated 

with wheelchair motion. 

4.4.1 Joystick Manipulation of the Wheelchair 
This section maps the corresponding joystick positions to the wheelchair movement.  The 

section will refer to Figure 4.29 to describe the relationship between the joystick position 

and the generated wheelchair motion. 

Any (x,y) value with x = 0 constitutes straight motion with y > 0 corresponding to 

forward motion and y < 0 corresponding to backward motion with the major wheels 

moving with the same angular velocity ω in the same direction.  The pairs (0, ymax) and 

(0, ymin) (A and E in Figure 4.29) correspond to the maximum forward and backward 

velocities vmax and –vmax, and any velocity v corresponding to a joystick position on y-

axis can be defined by the equation: 

v = vmax * (y / ymax) 

For “right turn” wheelchair navigation, the designer moves the joystick within the two 

right quadrants of Figure 4.29.  Intuitively, as the joystick position moves from A to B, 

the wheelchair begins to turn to the right.  To achieve this behavior, the right wheel’s 
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Figure 4.29: The joystick coordinate system. 

angular velocity ωr decreases.  At point B, ωr equals 0, and the wheelchair rotates around 

the right wheel’s point-of-contact with the ground.  As the joystick position moves from 

B to C, ωr decreases from 0 (in the opposite direction of the left wheel’s angular velocity 

ωl).  At point C, ωr equals -ωl and the wheelchair rotates at the midpoint between the 

two wheel’s point-of-contact with the ground.  Similarly, from C to D, ωr decreases.  At 

point D, ωr equals 0, and from D to E, ωr decreases from 0 until at point D, ωr equals ωl, 

and the wheelchair moves straight backward.  The opposite “left turn” behavior occurs 

when the joystick position moves from A to E in the counterclockwise direction. 

The x:y ratio determines the turning radius centerpoint and the magnitude of the xy vector 

determines the wheelchair velocity, at A, the turning radius r is infinite. At B, r is equal to 

half the distance between the two wheels, and at C, the turning radius r is 0. 

Determining the turning radius r formally, if y > 0 (forward movement), set the sector 

that the left wheel travels through sl equal to 1.  The sector that the right wheel travels 

through is defined as: 

sr = cos(2 * atan( |y / x| )) 
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If y < 0 (backward movement), set sr equal to 1.  The sector that the left wheel travels 

through is defined as: 

sl = –cos(2 * atan( |y / x| )) 

Now, the angle that the wheelchair sweeps through is defined as: 

θ = (sl - sr) / d 

where d equals the distance between the wheels.  Finally, the turning radius is defined as: 

r = (sl / θ) – (d / 2) 

4.4.2 Wheelchair Animation Techniques 
The design-aid framework allows the designer to qualitatively analyze an accessible route 

through the facility design by allowing the designer to experience the path from two 

points of view.  In addition to allowing the designer to observe the wheelchair, the 

design-aid frameowork provides a “wheelthrough” view analogous to a “walkthrough” 

that is provided by many visualization packages.  This section describes the animation 

techniques used to generate and coordinate wheelchair and the wheelchair user. 

Figure 4.30 illustrates the geometric (rotational) relationship hierarchy of the wheelchair 

and the wheelchair user.  The animation algorithm uses this hierarchy to generate 

appropriate behaviors of the moving parts of the wheelchair as well as the human 

locomotion from a two-dimensional path.  Using these hierarchical relationships, given a 

polygonal path, the behavior of the wheels, both the major wheels and the casters, can be 

accurately modeled providing realistic animation of the wheelchair motion.  The 

animation algorithm assumes manual locomotion, and the rotation of the back wheel 

depends on the wheelchair user’s hand and arm movement.  The animation algorithm 

simplifies the anthropomorphic constraints using inverse kinematics to determine the 

forearm and upper arm in relationship to the hand. 
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Figure 4.30: Wheelchair and wheelchair user geometry hierarchy. 
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Figure 4.31: The smoothing of the polygonal path of the wheelchair. 

Figure 4.31 illustrates the smoothing algorithm.  The path-smoothing algorithm uses as 

input a polygonal path of equal-length segments. The smoothing algorithm examines a 

sequence of two segments and calculates an arc that sweeps from the midpoint of each 

segment and is tangential to each segment. 
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Figure 4.32: The paths of the major wheels for the given path of the wheelchair. 

There are two exceptions to this computation: 

1. When the segments are co-linear and pointing in the same direction. 

2. When the segments are co-linear and pointing in opposite directions. 

In the first case, the algorithm records the translation information holding the angles of 

rotation (θ1 and θ2) constant. In the second case, the algothim sets the point of rotation at 

the midpoint of the two segments (the same point) and θ2 is set to θ1+π.  At this point, a 

node in the data structure contains the centerpoint information, the angle sweep 

information, and the translation information of a single arc. 

Figure 4.32 illustrates the path of the major wheels of the wheelchair.  The rotation of the 

left and right major wheels is calculated as follows. Here, the algorithm calculates the 

length of the arc that is swept by each wheel dependent on the calculated path of the 

center of the wheelchair. Now, the algorithm calculates the sweep of each wheel 

dependent on the wheel's radius. 
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Figure 4.33: The coordination of the swiveling casters. 

It is interesting to note that if the radius of arc of the calculated path of the center of the 

wheelchair is smaller than the distance of a wheel from the centerpoint, then the wheel's 

turning motion goes in the opposite direction.  When a wheelchair is spinning on its axis, 

the wheels are rotating in completely opposite directions. 

Next, the algorithm calculates the swivel of each caster as illustrated in Figure 4.33. The 

caster tries to position itself perpendicular to the vector from the centerpoint of the 

rotation of the wheelchair to the point of swivel. The previous position of the caster is the 

starting point, and the caster will then tend towards the desired next position. 

The caster may not achieve the final desired position. The algorithm allocates 1/18 π per 

timestep using a the timestep of 1/10th of a second.  If the caster cannot reach the desired 

goal angle before the end of the calculated arc, it tries to achieve to the next position 

based on the rotation of the wheelchair at the next arc.  It is also interesting to note that 
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Figure 4.34: Arm position range-of-motion. 

each caster's desired angular position is different (except when the wheelchair is only 

moving forward and not rotating). 

Finally, the algorithm coordinates each arm motion is coordinated with the corresponding 

major wheel. Here, the positions of the arm have been pre-calculated for six positions 

ranging from 5/18 π to 10/18 π as shown in Figure 4.34. The range corresponds to the 

range that the model of the figure can reach the wheel. 

At each keyframe, the animation environment interpolates the arm position between the 

six pre-calculated positions. When the arm position goes beyond the range, the arm is 

placed at the opposite position to start pushing (or pulling) the wheel again. 

4.5 Summary 

This chapter first presented an automated analysis of the accessible route R components 

given the ADAAG prescribed parameters.  This chapter showed that the prescriptive 

formulation has the following deficiencies: 
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• In the case of the maneuvering clearances associated with several building 

components, the clearance geometries (that are used to determine the usability of 

these components) depend on the accessible route approach to the components.  Thus 

the ADAAG must prescribe multiple clearance geometries if there are multiple 

approaches, and the developed analysis methods must test for the existence of all the 

possible clearance geometries. 

• The prescribed path width does not sufficiently provide usability in all configurations.  

For this reason, the ADAAG adds special cases (exceptions in the form of additional 

prescribed geometries) to address this deficiency, and the developed analysis method 

must test for the general case (the general prescribed path width) as well as the 

exceptions. 

• Most importantly, the mapping from the accessible route design intent to prescribed 

parameters can lead to limited, incorrect, or conflicting formulations.  As noted in this 

chapter, the exceptions to the prescribed general path width only address two special 

configurations whereas many more exist and are not addressed by the prescriptive-

based code.  In addition, this chapter has described a configuration in which the 

prescribed geometries of the path width exceptions lead to conflicting and incorrect 

analysis. 

Next, this chapter described a motion-planner developed to capture wheelchair motion as 

the wheelchair user moves along an accessible route.  The chapter discussed several 

advantages that the performance-based approach has over the prescriptive-based 

approach.  Specifically, the motion-planning simulation alleviates the need for multiple 

clearance geometries associated with different approaches to a building component and 

the need for prescribed exception configurations to the basic prescribed accessible route 

width requirement. 

While the prescriptive-based approach cannot address all possible configurations and thus 

is limited in describing the usability of a facility, the performance-based formulation does 
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not suffer from this limitation.  The performance-based formulation provides a more 

accurate analysis of facility usability since it directly models the wheelchair behavior. 

The chapter also described variations to the non-holonomic path formulation extending 

from the code-compliant parameters. The flexibility of the performance-based approach 

allows varying the parameters to directly affect changes to the wheelchair motion 

behavior. 

The chapter then presented examples comparing the prescriptive-based code-compliant 

accessible route analysis with the performance-based usable accessible route analysis.  

The first example demonstrated a non-compliant but usable design configuration.  The 

second example demonstrated a code-compliant but unusable design configuration and a 

modification to the original configuration to make it usable. The direct comparison of the 

two analysis methods and the ability to vary the wheelchair parameters (and thus the 

behavior of the path-planner to accommodate specific users and wheelchairs) show the 

advantages of the performance-based accessible route analysis over the prescriptive-

based analysis. 

Finally, the chapter described the wheelchair manipulation and animation algorithms 

used to realize the interaction and visualization of the virtual wheelchair.  These 

interaction and visualization tools provide the designer with qualitative insight into the 

disabled access problem. From the wheelchair user’s viewpoint, the designer can observe 

what the wheelchair user observes, and the tool can influence critical design issues such 

as window and signage placement, issues that are beyond the scope of the prescriptive- 

and performance-based analyses.  The joystick interaction provides the designer with a 

virtual environment that most closely resembles the interaction with the actual facility by 

accurately mapping joystick manipulation to wheelchair motion.  Similar to the flexibility 

of the performance-based analysis, manufacturers can customize this mapping to the 

particular constraints of individual wheelchair models. 

 

 



 

Chapter 5  

The Design-aid Framework as a 
Distributed Object Service 
Environment 

This research develops and implements the design-aid framework giving the designer 

access to the analysis tools developed in the previous chapters.  These tools include: 

• The prescriptive-based and performance-based disabled access analysis of a facility 

design. 

• The ability to manipulate a virtual wheelchair through the facility design. 

• The ability to transfer the facility design data from a commercial CAD package to the 

design-aid framework giving the designer access to the analysis tools. 

Three questions motivated the implementation development: 

1. How can the research provide the developed analysis tools in a modular fashion that 

can be generalized for the integration of other services and tools into the design-aid 

framework? 

137 
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2. How can the research leverage this modular approach to take advantage of disparate 

and distributed computing platforms? 

3. Does the current offering of computer development tools and environments enable or 

hinder the development of the design-aid framework? 

To answer these questions, this chapter describes the concepts used to realize the design-

aid framework as an Internet-based Distributed Object Service Environment (DOSE) and 

the use of DOSE to develop the disabled access design-aid framework.  This research 

uses the concepts developed in [25] and reifies notion of a service.  To fully-leverage the 

power of the Internet, engineering and design services should be able to interact in a 

formal yet flexible manner.  Services should be able to combine with existing services to 

provide added functionalities.  The distributed object environment provides object 

transparency—an application accesses a Service object using the same protocol 

regardless of the object’s location, either local or remote, and independent of the 

computer system platform assuming the platform supports the Service object interface. 

The chapter is organized as follows: 

• Section 5.1 describes the three-tiered Service object architecture. 

• Section 5.2 describes the Visual Interactive Environment Workbench (VIEW) and its 

interaction with the various accessible route design aids that are implemented as 

aggregations of Service objects. 

• Section 5.3 describes the implementation and related issues of the design-aid 

framework. 
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Figure 5.1: The conceptual diagram of a Distributed Object Service Environment (DOSE) 
instance. 

5.1 The Three-Tiered Architecture 

Figure 5.1 shows the conceptual network-enabled DOSE with four Service objects.  In 

this environment, each individual service adheres to a three-tiered architecture.  The first 

tier, a communication protocol or interface, gives the application services a common 

means to send and receive design data over the Internet.  The middle tier, the optional 

common product model interface, is a standard protocol that describes the design data (in 

Figure 5.1, the top Service object has no product model indicated by the different 

color of the product model interface layer from the other Service objects).  The third 

tier is the core of the design service—the design service extracts the appropriate 

information such as the building design through the common product model interface and 
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then either modifies the design data or generates a report based on the analysis of the 

data. 

One service can register with another service in the infrastructure. The registration and 

query of a Service object is based on a predetermined constraint language.  When the 

core of a parent design service executes its analysis, it may send parts of the analysis to 

the child services that have registered with the parent service. 

The communication protocol makes certain methods of the Service object public as 

shown in Figure 5.2.  Following the object-oriented paradigm, the “exposed” methods are 

the points of entry into a service, but the actual implementation of these methods is 

dependent on the service.  The Service object consists of two registration methods, 

registerService() and registerDecompositionService(), that allow a 

service to register with another service.  A service registers using the 

registerService()method with a broker that will advertise the service.  Any child 

service called by the parent service must register with the parent service using the 

registerDecompositionService()method.  The structure of the analyze() 

method in Figure 5.2 is similar to the Analyze() method of the Intent object 

described in Chapter 3.  The pseudo-code and subroutines of the analyze() method 

are shown as a suggested design guide in the figure but are not implemented in the 

interface since these methods do not need to be “exposed.” The Service object 

provides methods to send and receive data, puts() and gets(), in the form of string 

arrays. The Service object also provides both polling and callback mechanisms 

(getStatus() and notification()) to communicate with child services.  Hence, 

the Intent object can be implemented as a Service object—with the registration and 

analysis methods (along with the suggested analyze() subroutines), the Service 

object supports the type of problem decomposition described in Chapter 3. 
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module DOSE 
{ 
 interface Service; 
 typedef sequence<string> StringArray; 
 
 interface Service 
 { 
  void   registerService(in Service service); 
  void   registerDecompositionService(in Service service); 
  Service   getRegisteredService(in string id, in string type); 
  Service   getRegisteredDecompositionService(in string id, in string type); 
 
  string   getServiceId(); 
  string   getServiceType(); 
  void   putServiceId(in string id); 
  void   putServiceType(in string type); 
 
  void   analyze(in Service service, in string session, in string command); 
 
/* 
 * this loop shows the internal implementation of the analyze() method in pseudocode 
 *      { 
 *       preProcess(); 
 *       for (int i=0; i < number of decomposition services; i++) { 
 *        pre-process the decomposition service (i); 
 *        execute the Analyze() method of decomposition service (i); 
 *        post-process the decomposition service (i); 
 *       } 
 *       postProcess(); 
 *      } 
 */ 
 
  boolean   getStatus(in string session, in string command); 
  void   notification(in Service service, in string session, in string command); 
 
  StringArray  gets(in string session); 
  void   puts(in string session, in StringArray strings); 
 }; 
}; 

 

Figure 5.2: The DOSE communications protocol. 

Some services may not need the product model layer.  For example, a brokering service 

that simply registers and advertises services does not need to process any design data.  

All design-related services, however, will use the product model layer.  The DOSE 

implemented in this research assumes a common product model across all services using 

the product model described in Chapter 3.  However, since the communications layer is 

decoupled from any product model semantics, the environment itself does not constrain 
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the design data semantics, and services that utilize disparate product models must first 

use an intermediate translation service to transform the facility data into a usable format. 

The product model interface receives the product model data from the communication 

layer as an array of strings via the puts() and gets() methods and stores the design 

data according to the individual service’s needs.  While not required, making the product 

model and the storage scheme consistent across the infrastructure makes it easier to reuse 

methods to extract the critical data from the product model and send this data to the core 

of the design service. 

The Service object core layer executes the service’s analysis using the analyze() 

method.  The product model layer stores the design data, and the service core layer either 

uses this data directly or transforms the design data from the product model to a view or a 

diagram which is unique to the application.  For the two decomposition subroutines 

associated with the analyze() method, the Service object must extract the relevant 

data, send it to the predetermined child services (via the puts() method), and instruct 

the child service to execute its analyze() method. 

If the process that has initiated the analyze() method is not a Service object, the 

executing Service object does not have a mechanism to inform the initiating process 

upon completion of the task.  Rather, the Service object simply waits to be polled (via 

the getStatus() method) by the initiating process.  If the initiating process is a parent 

Service object, then the executing Service object (the child Service object) 

notifies the parent Service object (via the notification() method) upon 

completion of the task.  If the initiating process expects to receive data from the child 

Service object, it executes the gets() command to retrieve the data. 
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Figure 5.3: The DOSE diagram of the design-aid framework. 

5.2 A Visual Interactive Environment/Workbench 

(VIEW) for Accessible Route Analysis 

Figure 5.3 illustrates the design-aid framework from the point-of-view of the Service 

object infrastructure.  The solid white boxes represent instances of Service objects, the 

gray boxes represent non-Service object applications, processes, or devices, and the 

dashed boxes aggregate Service and non-Service objects to form composite 
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services.  Connecting arrows indicate registration of a child Service object with its 

parent Service object. 

Consistent with the design-aid framework described in Chapter 2 (illustrated in Figure 

2.1 and Figure 2.6), the Visual Interactive Environment/Workbench (VIEW) constitutes 

the hub of the design-aid framework. Since the VIEW is not a Service object, it must 

poll each of the four composite services via the getStatus() method of the Server 

Service objects to attain the state of each composite service.  These Server Service 

objects reside on the same computer system as the VIEW, but the other components of 

the composite services can exist anywhere and on disparate systems on the network thus 

exploiting the distributed object transparency paradigm.   

The VIEW consists of a graphical user interface (GUI) controlled by the user via the 

keyboard, a mouse, and a joystick.  Figure 5.4 illustrates the VIEW GUI with the 

bathroom facility design.  Using the mouse, the designer can orient and navigate through 

the facility, pick and manipulate specific building components, and invoke the analysis 

services.  The joystick provides the designer with a mechanism to manually move a 

wheelchair through the facility. 

The following sub-sections describe the VIEW and the composite services in Figure 5.3 

that communicate with the VIEW: 

• Section 5.2.1 describes the VIEW module that provides the designer interaction 

between a commercial CAD package and the VIEW. 

• Section 5.2.2 describes the integration of the prescriptive-based and performance-

based analyses into the design-aid framework. 

• Section 5.2.3 describes the module that allows the designer to move the wheelchair 

through the facility using a joystick analogous to the control device used with a 

motorized wheelchair. 
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Figure 5.4: The Visual Interactive Environment/Workbench (VIEW). 

5.2.1 The VIEW CAD Service 
The CAD Service enables a designer using a CAD package to download a facility design 

to the design-aid framework.  The CAD Client Service Object registers with the CAD 

Server Service Object, and the CAD package uploads the design data to the VIEW 

using this client service as the intermediary between the CAD package computer system 

and the VIEW system.  The CAD Client Service resides on the same system as the CAD 

package.  Leveraging the distributed object paradigm, the CAD package usually resides 

on a different system than the VIEW (the designer can and probably does interact with 
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Figure 5.5: The CAD-to-VIEW interaction. 

the VIEW through the web-browsing environment on the same computer system that the 

designer is running the CAD package).  Figure 5.5 illustrates the described CAD-to-

VIEW interaction. 

The designer develops the facility design using AutoCAD with AutoCAD “blocks” that 

describe the building components adhering to the product model specifications developed 

in this research.  To upload the facility design to the VIEW, the designer issues a 

command associated with an AutoLisp function that generates the developed product 

model EXPRESS file of the design, and the AutoLisp function executes the CAD Client.  

The CAD Client reads the EXPRESS file, transforms the design data to the CAD Client’s 

internal product model, and notifies the CAD Server that the design data is ready for 

uploading.  The VIEW can then initiate the sequence of gets() commands that uploads 

the design data from the CAD Client to the VIEW via the CAD Server. 

5.2.2 The VIEW Analysis Services 
The Code-checking Service and the Usability-checking Service can be discussed together 

since the architecture of these composite services are similar even though the internal 

analysis mechanisms of the individual Service objects vary.  The similarity confirms 

that the same design-intent model can be used for both the prescriptive-based code-

checking formulation and the performance-based usability formulation. 
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Each composite service is used for a complete facility analysis or an individual route 

analysis.  Each composite service adheres to the recursive analysis decomposition 

developed in Chapter 3: 

• The Building-level Service object registers with the front-end Analysis Server 

Service object. 

• The Story-level Service object registers with the Building-level Service object. 

• The Space-level Service object registers with the Story-level Service object. 

• Finally, the Motion-planning Service object registers with the Space-level 

Service object. 

The Usability Analysis Service provides one additional service.  The Animation 

Service object registers with the top-level Usability Analysis Server Service object 

and is executed to animate a particular route.  Each of the Service objects can reside 

on any computer system.  Ideally, the VIEW (and appropriate the Server Service 

object) would reside on a separate system than the other Service objects, and the 

motion-planner would reside on a machine that can handle the computationally intensive 

algorithms. Figure 5.6 illustrates the VIEW-to-Analysis Service interaction and the 

hierarchy of services.   

The designer initiates the analysis from the VIEW, and the VIEW starts an analysis 

session.  The VIEW downloads the facility design data to the Analysis Server Service 

object, and the Analysis Server Service object in turn download the facility design data 

to the Building-level Client Service object.  Starting at the building-level, the analysis 

begins the decomposition process according to the architectural view of the facility.  The 

Building-level Client Service object decomposes the facility into stories, and 

downloads the story-level information to the Story-level Client Service object as 

separate sessions. 
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Figure 5.6: The VIEW-to-Analysis Service interaction. 

The facility decomposition continues down the hierarchy of registered services.  When a 

client service receives notification via the notification() method from a child 

service that a session has completed, it uploads the new and updated facility data from 

that session using the gets() method.  When all the sessions have reported back to the 

parent service, the parent service resolves the new and updated facility data and sends the 

facility data to the next registered child service in the sequence.  If there are no other 

registered child services, the session will notify its own parent service, and that parent 

service will upload the revised facility design data. 

The prescriptive-based analysis developed in Chapter 4 provides information about all 

the accessible-route-related building components in the given facility design in the form 

of a report.  In addition, the VIEW allows the designer to interactively pick the building 
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components that indicate the end points of an individual path within the accessible route 

graph and provides the visualization of this path.  This visualization is especially 

instructive for examining possible violations to the turn-around-an-obstruction exceptions 

in ADAAG Provision 4.3.3. 

The VIEW allows the designer to pick the initial and goal points in the facility design.  

The initial and goal points are constrained to the accessible route formulation developed 

in Chapter 3.  If the user picks a building component that does not constitute an Rinit 
node, the VIEW simply informs the designer to pick another building component.  

Similarly, the VIEW restricts the designer’s Rgoal choice.  For example, the designer 

cannot choose a wall building component as the goal of the accessible route. 

Once the designer has established the initial/goal pair, the VIEW sends the critical 

information to the prescriptive-based analysis module.  The prescriptive-based analysis 

calculates the path and displays as much of the path as possible showing all relevant 

maneuvering clearance boxes and delineating the points that compose the Rseg portions 

of the path with 36-inch spheres. 

The performance-based module that interacts with the VIEW uses the same interactive 

procedure used by the prescriptive-based module.  The designer interactively chooses the 

initial and goal building components, and the VIEW imposes the same restrictions on 

these choices.  The VIEW sends the relevant information to the performance-based 

analysis module, and the analysis returns the path information. 

In contrast to the static prescriptive-based accessible route visualization, the 

performance-based module generates a path animation using a wheelchair avatar.  The 

animation GUI provides the designer with two viewpoint options of the wheelchair 

traversing the accessible route: an observer’s and a wheelchair user’s point-of-view.  The 

designer can switch between these views to gain visual insight into the characteristics of 

the generated route. 
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When all child services have reported back up the hierarchy to the Usability Analysis 

Server Service object, the Server object downloads the relevant facility design data to 

the Animation Client Service object, and the Animation Client generates the accessible 

route animation. 

5.2.3 The VIEW Joystick Service 
This research includes the Joystick Service as there was no standard joystick interface to 

the web-browser environment.  Incorporation of the Joystick Service in the design-aid 

framework illustrates the generality of the DOSE.  The Joystick Service does not use the 

optional product model layer of the three-tiered architecture in the same manner as the 

aforementioned composite services.  It simply sends a stream of joystick data to the 

VIEW.  The Joystick Service architecture is similar to the CAD Service architecture with 

a single Client Service object registering with the Server Service object.  The 

VIEW then uses the joystick data to manipulate the wheelchair in the facility. 

The Joystick Client Service object resides on the same machine as the joystick device.  

Again, following the distributed object paradigm, the joystick can manipulate the 

wheelchair in the VIEW from any system on the network but, in this case, would 

probably be most useful residing on the system that is browsing the VIEW. 

The VIEW joystick module allows the designer to interactively maneuver the wheelchair 

through the facility design as a wheelchair user would manipulate a motorized 

wheelchair.  As with the VIEW performance-based module, the joystick module allows 

the designer to choose between an observer’s and a wheelchair user’s viewpoint.  This 

module assumes independent forward and backward control of the wheelchair’s major 

wheels.  Figure 5.7 illustrates the described joystick-to-VIEW interaction. 
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Figure 5.7: The Joystick-to-VIEW interaction. 

5.3 The Design-aid Framework Implementation 

This section discusses the design-aid framework application package and its 

implementation.  Figure 5.8 illustrates the overview diagram of the design-aid framework 

implementation from a Service object point-of-view.  In Figure 5.8, the Intent and 

product models are implied in the VIEW and the code-checking and usability-check 

services. 

As shown in the figure, the VIEW and the Server Service objects reside on the same 

system, in this case, a Sun Ultra 1 workstation running Solaris 2.6.  The 

Client/Application portion of the CAD Service and the Client/Device portion of the 

Joystick Service reside on Intel Pentium-based PC systems running Microsoft Windows 

NT Workstation 4.0.  The computationally-intensive motion-planning and animation-

generating Service objects reside on a Sun Ultra 10 Solaris 2.6 workstation.  The 

prototype uses Sun’s JavaIDL CORBA implementation for the DOSE thus limiting the 

platform choices to the Solaris operating environment and Microsoft Windows (Intel 

platform).  Finally, the VIEW Java-VRML-CORBA interaction limits the web-browser to 

the Microsoft Windows Intel platform (either Microsoft Internet Explorer or the 

Microsoft Windows version of Netscape Communicator can display the VIEW web 

page). 
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Figure 5.8: The DOSE diagram of the design-aid framework implementation. 

As shown in Figure 5.8, all connections between the implemented components utilize a 

CORBA protocol.  The DOSE communication interface shown in Figure 5.2 is in fact the 

Interface Definition Language (IDL) schema used to generate the DOSE computer-

language-specific interfaces.  This research chose the Java programming language for the 

following reasons: 

• Java is a platform independent object-oriented programming language. 
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Figure 5.9: The VIEW VRML-Java-CORBA implementation. 

• Java supplies straightforward interfaces to C++ libraries that the research developed 

for the computationally-intensive algorithms. 

• The research implemented the VIEW in a web-browsing environment, and the 

predominant browsers provide a Java applet interface. 
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Similar to Java, CORBA provides a platform-independent object-oriented 

implementation of the distributed object environment. Sun Microsystems provides the 

tools to develop Java-CORBA applications as part of its Java 2 distribution.  

As previously noted in this chapter, the VIEW is not a Service object or a composite 

service.  Rather, two services, the CAD Service and the Joystick Service provide data to 

the VIEW, and the two analysis services receive data and are executed by the VIEW.  

Users access the VIEW via the World Wide Web, and the VIEW web page contains a 

VRML window, the graphics GUI, and a Java applet, the text GUI.  Figure 5.9 illustrates 

the relationship among the different modules of the Java applet as well as the VRML 

window.  The following sub-sections describe the Java applet modules. 

5.3.1 The VRML External Authoring Interface (EAI) 
The VRML External Authoring Interface (EAI) provides a message-passing mechanism 

between the VRML window and a Java applet.  For a detailed description of the EAI, see 

[45].  A VRML scene consists of nodes such as shapes and attributes of shapes.  These 

nodes populate a hierarchical structure that makes up the scene graph.  The EAI allows a 

Java applet to access these nodes in two ways utilizing the VRML event model [46].  An 

EventOut notifies the applet of a modification of a node known as an event (such as a 

change in position of a shape) via the Java callback mechanism, and the applet can 

modify a node using an EventIn.  In other words, an EventOut passes a message from the 

VRML scene graph to the applet, and an EventIn passes a message from the applet to the 

VRML scene graph. 

The VIEW applet implements the “touchTime” EventOut message to inform the applet 

when a user clicks on a graphical object in the VRML window.  The “addChildren” and 

“removeChildren” EventIn send messages to the VRML window to add and remove 

graphical objects from the VRML scene graph.  In addition, the VIEW applet implements 
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the “translation,” “center,” and “rotation” messages to manipulate the wheelchair through 

the facility design. 

5.3.2 The Applet Graphical User Interface 
The applet graphical user interface (GUI) allows the user to issue commands and 

provides feedback to the VRML window during certain command sequences from the 

joystick device.  The VIEW command set is very limited and has been constructed to 

demonstrate the functionality of the design-aid framework.  Commands include opening a 

facility design from a static file, moving and deleting building components, and executing 

the analysis programs. 

During certain command sequences, the applet reports the information back from the 

VRML window.  For example, when the user wants to see a specific usable wheelchair 

route, the applet GUI prompts the user for the initial point (a building component).  The 

user can pick a building component, and the applet receives the “touchTime” EventOut 

message informing which shape the user picked, and the applet reports the corresponding 

building component.  Similarly, the applet reports the building component that the user 

picks for the goal point and executes the route-generating analysis. 

Finally, a browser contains a status line at the bottom of the browser frame.  The applet 

can print text data on this status line, and the VIEW applet uses this mechanism to report 

the joystick device coordinates to the user. 

5.3.3 The Product Model 
The applet stores the product model that describes the facility design.  The applet 

populates the product model either via the applet GUI when the user picks a static facility 

design file or when it receives the facility design information from the CAD package. 
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Once the applet populates the product model, the applet generates the VRML scene graph 

via the EAI using the relevant EventIn and EventOut message-passing mechanisms.  In 

addition, when the user picks a building component in the VRML window, the product 

model module ascertains which building component maps to the shape that has been 

picked and reports the finding to the applet GUI. 

Finally, when the user modifies the facility design, the applet modifies the product model 

as illustrated by the following example.  If the user wants to delete a building component, 

the user picks the graphical shape corresponding to the building component in the VRML 

window.  The EAI sends the “touchTime” EventOut message from the VRML window to 

the product model module, the product model resolves the building component, and the 

product model reports to the applet GUI.  If the user confirms the deletion, the product 

model is modified, and the product model module sends the “removeChildren” EventIn 

message from the applet to the VRML window to delete the pertinent graphical shapes. 

5.3.4 The CORBA Interface 
The applet communicates with the services as illustrated in Figure 5.8 via the applet 

CORBA interface.  The VIEW communicates with each composite Server Service 

object, and applet tailors its communication call for each composite service.  The VIEW 

locates the Server Service objects using the CORBA Naming Service and can then 

communicate with the composite services using the methods published in the DOSE IDL 

file.  The Java 2 platform provides a CORBA Naming Service [59], tnameserv, and an 

idltojava utility to generate the Java source code supporting interfaces and classes from 

the IDL file.  

Figure 5.10 illustrates the typical CORBA implementation showing the relationship 

among the Joystick Client Service and the supporting and generated interfaces and 

classes.  The gray boxes illustrate the interface and class that the idltojava utility 

generates from the DOSE IDL file.  The Service interface in the IDL file directly maps 
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Figure 5.10: The Joystick Client Service implementation hierarchy. 

to the generated Java Service interface, and the generated _ServiceImplBase 

class implements this Service interface.  The actual Service object, the 

JoystickClientServantImpl class is a grandchild class of the 

_ServiceImplBase class (the JoystickClientServantImpl parent class, 

ServiceServantImpl, includes methods and attributes common to all DOSE 

services).  The executable class, JoystickClient, instantiates the 

JoystickClientServantImpl class and, among other tasks, registers it with the 

Joystick Server Service. The research develops and implements the other service 

components in a similar manner. 

The following paragraphs examine CAD Service, the Analysis Services, and the Joystick 

Service: 
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The CAD Service CORBA Implementation 

The VIEW does not execute analysis related to the CAD Service.  Rather, it simply 

receives facility design data. The CAD Server executable (CADServer) instantiates the 

CAD Server Service object (CADServerServantImpl) and registers this Service 

object with the CORBA Naming Service.  The VIEW applet, in turn, can locate the CAD 

Server Service object via the CORBA Naming Service.  The VIEW simply polls the 

CAD Server Service object using the getStatus() method.  When this method 

returns TRUE, the VIEW uses the gets() method of the CAD Server Service object 

to retrieve the facility design data.   

Once the applet receives the facility design data, the applet populates the product model 

and the VRML scene graph.  If the applet already contains a facility design and the 

VRML window already has the corresponding scene graph, the applet first deletes the 

current model and VRML scene graph. 

The Analysis Services CORBA Implementation 

The research uses the same interface for both analysis services. The analysis Server 

executable instantiates the analysis Server Service object and registers this Service 

object with the CORBA Naming Service.  The VIEW applet, in turn, can locate the 

Server Service object via the CORBA Naming Service. 

The applet executes the analysis Server Service object’s the getStatus() method 

to ascertain if the analysis service is busy.  If the service is busy, the user can still request 

the analysis to be run.  If the user wishes to run the analysis, the applet executes the 

analysis Server Service object’s puts() method to upload the facility design data 

and then issues the analyze() command to the analysis Server Service object. 

The Joystick Service CORBA Implementation 

The VIEW does not execute any analysis related to the Joystick Service.  Rather, it 

simply receives the joystick coordinate data.  Note that although the Joystick Client is 

written in Java, it loads platform-specific joystick-related dynamic link libraries that use 
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the Application Programming Interface (API) for a Microsoft Windows device.7  Thus, 

while the VIEW and the Joystick Server can run on any platform that has a CORBA and 

Java Virtual Machine implementation, the Joystick Client can currently only run on an 

Intel-based Microsoft Windows computer system. 

The joystick device sends a continuous stream of data.  Thus, the VIEW does not use the 

getStatus() method and simply uses the gets() method to retrieve the coordinate 

data from the Joystick Server Service object.  The Joystick Server executable 

JoystickServer instantiates the Joystick Server Service object, 

JoystickServerServantImpl and registers this Service object with the CORBA Naming 

Service.  The VIEW applet, in turn, can locate the Joystick Server Service object via 

the CORBA Naming Service. 

Once the applet receives the joystick device coordinate data, it calculates the movement 

of the wheelchair.  The applet then sends the appropriate messages to the VRML window 

via the EventIn mechanism to move the wheelchair. 

5.4 Summary 

This chapter described a distributed computational environment that supports the 

interaction of the design-aid framework concepts and leverages the computational power 

realized by using the distributed object paradigm.  This research has optimized the DOSE 

for the manipulation of design data and the decomposition of this data into analysis-

specific views.  However, as illustrated by the joystick device-driver implementation, the 

research has kept the environment general enough to support a wide range of services. 

                                                 
7 I would like to thank Taisuke Fukuno, whom I have never met, but whose joystick device driver source 

code I obtained from the World Wide Web and adapted for the Joystick Client Service developed in this 
thesis.  He has made the source code at http://sariel.miyako.co.jp/~uni/mmpackage.html. 
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The DOSE framework is used to realize the Visual Interactive Environment/Workbench 

(VIEW) that provides the designer with three types of visual tools.  The VIEW provides a 

means to visualize the output of the accessible route analysis methods described in 

Chapter 4.  With the prescriptive-based analysis, the VIEW allows the user to examine a 

user-chosen static code-compliant accessible route.  The VIEW performance-based 

module animates a user-chosen wheelchair path and allows the user to examine this path 

from either an observer’s or a wheelchair user’s viewpoint. 

This chapter described the implementation of the design-aid framework.  The framework 

utilizes a complementary distributed object environment and object-oriented 

programming language, CORBA and Java, and both the product model for the facility 

design and the analysis model utilize object-oriented paradigms.  In addition, the user 

interface, the VIEW, uses the ubiquitous web-browsing environment as well as a widely 

accepted complementary graphics environment, VRML. 

CORBA and Java provide a platform-independent environment, a desirable characteristic 

for the distribution of processes across heterogeneous systems on a network.  The Java 

programming language also provides interfaces to other programming language libraries 

such as C++ that was used to develop the computationally-intensive algorithms.  Java’s 

thread mechanism allows the framework to take advantage of multiprocessing systems 

without changing the code to accommodate the hardware platform, and Service 

objects can take advantage of the thread feature to execute concurrent sessions. 

 

 

 

 

 



Chapter 6  

Test Case Example 

This chapter presents a case study of a Stanford University building to test the disabled 

access design-aid framework and the performance-based methods developed in this 

research.  Recall that the performance-based approach is able to determine the usability 

of a facility, and usability does not necessarily equate to code-compliance.  The 

automated analysis of the building, the Career Development Center (CDC), shows 

several inaccessible areas.  These results were compared to the actual usability of the 

facility with the help of a cooperating wheelchair user, Joe Cavanaugh, a Stanford 

University student.  In certain situations, the wheelchair user validated the initial 

generated analysis.  In two situations, however, the performance-based formulation was 

altered to match the actual accessibility of certain facilities. 

The chapter is organized in the following manner: 

• Section 6.1 provides a description of the CDC. 

• Section 6.2 describes the generated analysis and the modifications made to the facility 

design and the performance-based methods. 

• Section 6.3 summarizes the results of the analysis of the modified facility design. 
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• Section 6.4 summarizes the chapter including the recommended changes and 

suggestions for the current and future CDC buildings. 

6.1 The Career Development Center 

The Career Development Center (CDC) is centrally located on the Stanford University 

campus on White Memorial Plaza between the Stanford Bookstore and the Clock Tower.  

Figure 6.1 shows the entrance side of the building, and Figure 6.2 shows a close-up of the 

entrance.  The CDC offers career-related guidance and resources to Stanford University 

students and alumni.  These services include written research material, computers, the 

availability of guidance counselors, and potential-employer/student interviews. 

The plan in Figure 6.3 shows the current usage of the building.  The entrance leads users 

directly to the library/research area, and there are offices to the left and to the right of the 

space.  The bathrooms and the interview rooms are in what is now the central core of the 

building.   The University has slated the current CDC building for demolition in the next 

couple of years.  The CDC will be relocated to a new building (yet to be constructed) in 

another part of the campus. 

The CDC was built in the late 1930s and at the time of the 1967 construction documents, 

the facility was known as the Old Bookstore and was to be converted into a placement 

service center.  Renovation of the building included the addition of the still-existing 

eleven interview rooms.  The 1985 as-built construction documents delineate the 

expansion plans of the facility as it is in its current state.  These documents indicate that 

the building was already being used as the Career Planning and Placement Center 

(CPPC), the former name of the CDC.  As shown in the Existing Conditions and 

Demolition Plan Figure 6.4, plans included the renovation of the existing Men’s and 

Women’s bathroom and, as shown in the New Construction Plan in Figure 6.5, the 

renovation addressed accessibility issues for the bathrooms. 
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Figure 6.1: The Stanford University Career Development Center (CDC). 

 

Figure 6.2: CDC entrance close-up. 
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Figure 6.3: CDC plan view. 

As shown in Figure 6.4 and Figure 6.5, the Men’s bathroom renovation called for: 

• removal of the stall partitions 

• addition of grab bars around the existing toilet 

• replacement of the other existing fixtures with accessible fixtures 
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Figure 6.4: CDC 1985 as-builts, existing conditions and demolition plan. 
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Figure 6.5: CDC 1985 as-builts, new construction plan. 
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The Women’s bathroom renovation called for: 

• removal of the middle toilet 

• addition of grab bars around the existing toilet designated for accessible use 

In addition, as shown in the New Construction Plan in Figure 6.5, the architects designed 

the other new facilities (the guidance counselor offices and the library and research area) 

to be accessible providing: 

• adequate clearances to open doors 

• adequate maneuvering clearances in the corridors 

• addition of new stall partitions provide wheelchair use to the designated toilet 

• replacement of the other existing fixtures with accessible fixtures 

6.2 The Analysis 

This section presents the automated analysis of the CDC.  Note that even though the 

analysis uses the developed performance-based methods, the comments associated with 

inaccessible building components have links to the prescriptive provisions of the 

ADAAG document as an informative guideline.  The ADAAG addresses new 

construction, modification to existing structures, and historical buildings under the 1990 

Americans with Disabilities Act.  The last major modifications to the CDC were carried 

out before 1990 so, technically, the CDC does not fall under any of these three categories.  

Still, it is useful to analyze the CDC against the ADAAG document, and the comparision 

examines the CDC as a newly constructed facility. 

Figure 6.6 shows the generated analysis report with a view of the modeled CDC.  The 

darker color (red in the generated VRML frame) in relation to the wall color (white in the 
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Figure 6.6: The initial CDC disabled access analysis report: the facility is inaccessible. 

generated VRML frame) indicates an inaccessible component.  Specifically, the building 

components that are inaccessible are red, and the floor of the entire facility has also been 

set to red indicating the whole facility indicating that critical components of the facility 

are inaccessible.  The user can click on the inaccessible building component, and the 

associated comment appears in the bottom frame.  These comments have links to 

ADAAG provisions that appear in the right frame. 

Comparing the analysis results with an individual wheelchair user’s ability to use the 

facility represents strictly a qualitative test as there are many different levels of disability, 

but such a comparison still provides insight into the analysis.  Joe Cavanaugh, a 

wheelchair user, compared his ability to negotiate the facility with the analysis results.  

 



CHAPTER 6. TEST CASE EXAMPLE 169 

Mr. Cavanaugh considers himself to have better-than-average mobility for a wheelchair 

user.  Indeed, he is able to comfortably negotiate spaces that are far more restrictive than 

the ADAAG permits.  His better-than-average mobility is due to his physical arm 

strength which allows him to use a smaller, more efficient wheelchair as well as to his 

ability to quickly move backwards and forwards several times, a sequence of motions that 

violates the ADAAG accessible route parameters. 

The discrepancy between Mr. Cavanaugh’s mobility and the usage parameters set forth 

by the ADAAG illustrates the difficulty in providing a performance-based access code 

that encompasses all wheelchair users and provides guidelines for usage and comfort.  

However, adjustments to the performance-based analysis tailored to a group of similar 

users might provide better insight to the actual accessibility of a facility for these users 

than a prescriptive-based analysis. 

The following discusses the results of four facilities, namely a set of bookshelves, the 

Women’s Bathroom, the Men’s Bathroom, and the Interview Rooms. 

Bookshelves 

The analysis reports that there is no accessible route to the bookshelf in the 

library/research area as illustrated in Figure 6.7.  The viewpoint shows the back of the 

bookshelf, and, according to the analysis, the desk in front of the bookshelf blocks access 

to this building component. 

The analysis assumes a front approach to the bookshelf.  However, as shown in Figure 

6.8, the wheelchair user has comfortable access to a bookshelf using a side approach.  

Indeed, the ADAAG makes provisions for both front and side approach to storage 

facilities including bookshelves, and the original exclusion of this approach was an 

oversight in the developed motion-planning goal point description for this building 

component.  From the ADAAG: 
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Figure 6.7: The disabled access analysis report: the bookshelf is inaccessible. 

 

Figure 6.8: Wheelchair user access to bookshelf (desk size and position unmodified). 
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Figure 6.9: The ADAAG graphic illustrating side approach reach parameters. 
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Figure 6.10: Wheelchair route to bookshelf enabling the side-approach method. 
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4.25 Storage.  

4.25.1 General. Fixed storage facilities such as cabinets, shelves, closets, and drawers 
required to be accessible by 4.1 shall comply with 4.25. 

4.25.2 Clear Floor Space. A clear floor space at least 30 in by 48 in (760 mm by 1220 
mm) complying with 4.2.4 that allows either a forward or parallel approach by a person 
using a wheelchair shall be provided at accessible storage facilities.  

In addition, as indicated by the wheelchair user’s extended arm in Figure 6.8, 

bookshelves should be restricted by reach parameters as suggested by the ADAAG 

graphic shown in Figure 6.9. 

Figure 6.10 shows the motion-plan generated accessible route to the bookshelf enabling 

the side-approach goal for storage-related building components.  

Women’s Bathroom 

The analysis reports that there is no accessible route to the accessible toilet in the 

Women’s Bathroom as illustrated in Figure 6.11.  The performance-based parameters 

used the ADAAG toilet stall clearance areas as a guideline for the motion-planning goal 

parameters for toilets, and the accessible stall violates these guidelines.  Since there are 

no accessible toilets, the bathroom is not considered to be accessible, and in turn, the 

whole facility is deemed inaccessible. 

However, as shown in Figure 6.12, the wheelchair user has comfortable access to this 

toilet.  The user in fact has easily positioned himself for side transfer, a position that is 

more difficult to achieve than a diagonal transfer for this given stall.  

By slightly adjusting the toilet goal parameters, the analysis now shows that the toilet is 

accessible.  The modified goal position and orientation of the wheelchair for diagonal 

transfer is shown in Figure 6.13. 

The generated path from the bathroom entrance to the toilet with the modified goal 

parameters is shown in Figure 6.14.  Note that the path is not continuous between 

adjacent spaces (the bathroom entry area and the stall), since the motion planner 
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Figure 6.11: The disabled access analysis report: the women’s toilet is inaccessible. 

 

 

Figure 6.12: Wheelchair user access to the women’s toilet. 
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Figure 6.13: Modified goal parameters for women’s toilet. 

 

Figure 6.14: Wheelchair path to the women’s toilet using the modified goal parameters. 
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generates a path from the initial point of one door opening to goal point of another door 

opening. As stated in 4.2.2 research has developed the goal point/initial point pair of an 

opening such that a usable wheelchair path exists for the wheelchair user to move from 

the goal point to the initial point of an opening. 

The goal parameters of the toilet had been prescribed in accordance to an ADAAG 

approach parameter.  This example illustrates that even this parameter is too restrictive, 

and that the performance-based method should be more flexible by describing a range of 

possible goal areas and orientations. 

Men’s Bathroom 

The analysis reports that there is no accessible route to the accessible toilet in the Men’s 

Bathroom as illustrated in Figure 6.15.  As with the analysis of the Women’s bathroom, 

since there are no accessible toilets, the bathroom is not considered to be accessible, and 

in turn, the whole facility is deemed inaccessible. 

Figure 6.16 confirms the inaccessibility of the toilet.  Here, the wheelchair user is not 

able to pass through the stall doorway.  The original plans for this toilet did not include 

the partition walls as shown in Figure 6.5.  These walls must have been added to ensure 

privacy for the toilet user.  Ironically, the addition of these walls has made the toilet 

inaccessible. 

Without the partition walls, the motion planner can generate an accessible route to the 

stall.  Figure 6.17 shows the path from the entrance to the accessible toilet with these 

partition walls removed.  Again, the path is discontinuous between adjacent spaces. 
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Figure 6.15: The disabled access analysis report: men’s toilet is inaccessible. 

 

Figure 6.16: Wheelchair user unable to pass through men’s toilet stall door. 
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Figure 6.17: Wheelchair route to men’s toilet (stall partitions removed). 

Interview Rooms 

The automated analysis reports that there are no accessible routes to any of the Interview 

Room desks.  Figure 6.18 highlights one of the desks.  The motion planner does not even 

evaluate the existence of an accessible route from an Interview Room door to a desk 

because the doorway widths do not comply with the ADAAG.  Recall that this comfort 

level determination has been taken directly from the ADAAG in the construction of 

accessible routes. 

Figure 6.19 confirms the narrowness of the doorway.  Even with his wheelchair (the chair 

is smaller than the chair used in the ADAAG provisions), the wheelchair user has 

difficulty negotiating the doorway.  Once through the doorway, as shown in Figure 6.20, 

the closeness of the interview desk to the door makes it difficult but not impossible to 

position the wheelchair at the interview desk provided that an interview chair is not 

obstructing the path. 
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Figure 6.18: The disabled access analysis report: interview room desks are inaccessible. 

 

 

Figure 6.19: Wheelchair user in an interview room doorway. 
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Figure 6.20: Wheelchair user at an interview desk (after numerous backups). 

 

Figure 6.21: Wheelchair route to an interview desk (doorway width and desk position 
modified). 

After modifying an Interview Room in the facility by widening the doorway and placing 

the interview desk further from the door, the motion planner can generate an accessible 

route to the interview desk.  The generated path is shown in Figure 6.21.   

 



CHAPTER 6. TEST CASE EXAMPLE 180 

In general, having some fraction of a set of identically functioning spaces be accessible is 

acceptable under the equivalent access to facilities intent.  In this case, upon initial 

inspection, providing one accessible Interview Room satisfies this intent. However, as 

noted by CDC staff member Betsy Cuisinot, it is difficult to match disabled interviewees 

with interviewers in an accessible room beforehand, and it is unfair and at times 

impossible to have these already nervous candidates wait for an accessible room to be 

made available.  Thus, following the intent of the code, the interview process is a special 

case in which to truly satisfy accessibility, all interview rooms should be made usable for 

wheelchair users. 

6.3 The Analysis of the Modified Design 

Figure 6.22 shows the report generated for the analysis of the modified design.  The floor 

of the facility is no longer red (a dark color) indicating that the performance-based 

analysis of the CDC (with the modifications discussed in the previous section) finds that 

the facility is now accessible: 

• The motion-planning parameters have been adjusted to reflect the usability of the 

bookshelf and the women’s bathroom. 

• The stall partitions in the men’s bathroom have been removed. 

• One interview room has been modified (the door opening has been widened and the 

interview desk has been moved). 

This particular analysis assumes that one accessible Interview Room is sufficient, and 

there is only one accessible Interview Room in the design since only one of the Interview 

Room doorways was widened in this modified design.  The figure shows the comments 

associated with a doorway that was not widened, and thus the associated interview desk 

does not have an accessible route. 
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Figure 6.22: The disabled access analysis report for the modified design. 

The analysis has two errors.  The analysis reports that two of the four computer desks in 

the library/research area do not have accessible routes. Figure 6.23 shows the analysis of 

one of these desks.  Visual inspection indicates that these desks do lie on an accessible 

route, and Figure 6.24 shows the generated path to an adjacent desk.  The error can be 

traced to the structure of the facility model.  The analysis program has the limitation 

allowing only rectangular spaces that are separated by walls and openings.  The offending 

computer desk does not lie completely in a corridor space as shown in Figure 6.25 and is 

therefore not considered in the analysis of the space.  To circumvent this problem, the 

analysis must allow a space to be constructed using a collection of different shapes. 
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Figure 6.23: The disabled access analysis report: computer desk is inaccessible. 
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Figure 6.24: Wheelchair route to adjacent computer desk. 
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Figure 6.25: Upper computer desk is not fully contained by the corridor space. 

6.4 Summary and Discussion 

This chapter presented the automated performance-based analysis of a facility at Stanford 

University Campus.  The results and a comparison with an actual wheelchair user’s 

interaction with the facility influenced several modifications to the performance-based 

methods.  In addition, the analysis revealed some of the shortcomings of using the 

prescriptive-based parameters to develop the performance-based parameters.  

Specifically, setting the goal point based on the ADAAG-prescribed clearance of a 

building component is overly restrictive. 

As shown in the Interview Room example, the equivalent access to facilities intent 

depends on a clear understanding of the functionality of a set of spaces.  While basing 

usability on intent instead of a set of prescribed provisions provides the most flexibility, 

the execution of this intent must cover all situations or at provide the facility to cover 

future provisions. 
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Upon completion of the analysis of the CDC, the findings and a set of recommendations 

were presented to the University’s ADA/Section 5048 Compliance Officer, Rosa 

Gonzalez.  One recommendation affects the current CDC building and makes suggestions 

on the future design of the future CDC building.  Ms. Gonzalez agreed with these 

recommendations and will have them implemented. 

As noted by the analysis and as confirmed by the onsite investigation, the addition of the 

stall partitions in the Men’s bathroom not only inhibits comfortable usage of the toilet 

facility, it completely inhibits the use of the toilet for the wheelchair user as shown in 

Figure 6.16.  The analysis also showed that the removal of these stall partitions would 

restore the accessibility of the facility. 

With the removal of the partitions, the Men’s bathroom would revert back to a single-

occupancy from a multiple-occupancy toilet.  However, ensuring usability of the facility 

for wheelchair users should be the main priority.  Therefore, the recommendation to 

remove these partitions was made to Ms. Gonzales.  Though the current CDC is slated for 

impending demolition, Ms. Gonzales stated that she would recommend the removal of 

the partitions since the facility may be operational for several more years. 

The future CDC will also have interview facilities, and while the ADAAG does not 

specifically address the accessibility of Interview Rooms, only some fraction of the 

rooms will probably be required to be accessible since, by definition, the rooms serve the 

same functionality.  However, as noted in the analysis of the CDC Interview Rooms, the 

unique interview environment makes it necessary for all Interview Rooms to be usable by 

persons with disabilities. 

From the experience of analyzing the current CDC, the recommendation was made to 

Ms. Gonzalez that in the event that all the Interview Rooms are not ADAAG code-

                                                 
8 The United States Department of Education Office of Civil Rights Section 504 of the Rehabilitation Act 

of 1973 requires that no qualified handicapped person shall, on the basis of handicap, be excluded from 
participation in, be denied the benefits of, or be subjected to discrimination under any program or activity 
which receives or benefits from Federal financial assistance. 
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compliant, they should at least be made usable.  The performance-based motion-planning 

accessible route methods developed in this thesis could be a viable tool to determine the 

usability of these new rooms.  As the intent of the ADAAG is to give equivalent access to 

facilities, whether or not these facilities actually meet some set of prescribed 

measurements should be secondary to providing actual usability.  Ms. Gonzalez 

concurred and said that an effort would be made to make sure that all the rooms were, if 

not code-compliant, at least made usable as measured by some alternative metrics. 

 



 

Chapter 7  

Discussion and Summary  

This research has developed a framework to aid the designer with the understanding of 

disabled access issues in the design of a facility, specifically the wheelchair access to a 

facility’s building components. Two goals motivated the development of the disabled 

access design-aid framework: 

• Providing the designer with a set of disabled access analysis tools that complement 

the prescriptive-based code-checking analysis process. 

• Providing designers with an integrated computer environment in which they can 

access these tools. 

These two goals have generated the following research objectives: 

• Development of a conceptual model (the design-intent model) that extracts the intent 

of the disabled access code to provide a computational environment that supports 

automated analysis. 

186 
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• Development of performance-based methods that capture wheelchair movement and 

behavior and show with examples the superiority of these methods to the prescriptive-

based building code methods 

• Development of a flexible computer environment that allows the seamless integration 

of the conceptual model, the performance-based methods, and other complementary 

analysis mechanisms. 

This chapter discusses the research findings and examines possible future extensions to 

the work.  Through the investigation of the ADAAG, the development of the wheelchair 

motion-planning methods, and the analysis of a University facility using the developed 

framework and methods, this research found inconsistencies and contradictions in the 

ADAAG.  As a result, this chapter presents a set of suggested alternative provisions to 

the ADAAG.  In addition, this chapter examines the developed research both in the 

context of future extensions and limitations of the disabled access work and the issues 

involved with applying the developed framework and methods to other forms of design-

related analyses. 

The chapter is organized as follows: 

• Section 7.1 describes example alternative ADAAG provisions. 

• Section 7.2 describes future directions and limitations of the presented research. 

• Section 7.3 provides the final discussion of the developed research. 

• Finally, Section 7.4 summarizes the research presented in this thesis. 

7.1 Proposed Alternative ADAAG Provisions 

This research has developed an automated analysis of facility designs against the intent of 

the ADAAG.  Accessibility analysis methods have been developed in contrast to the 
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static prescribed ADAAG provisions.  As a result, this section presents example 

provision recommendations that provide the designer with alternative and more accurate 

methods to demonstrate wheelchair accessibility as well as to support the automated 

disabled access analysis process.  The last alternative provision presented in this section 

evolved as a result of the test case analysis of the Career Development Center (CDC) and 

discussions with the employees of the CDC as well as with Rosa Gonzales, the 

University’s ADA/Section 504 Compliance Officer. 

An Alternative, Computable Definition of the Accessible Route: 

The ADAAG defines an accessible route as follows [1]: 

3.5 Definitions.  

Accessible Route.  A continuous unobstructed path connecting all accessible elements 
and spaces of a building or facility. Interior accessible routes may include corridors, 
floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior accessible routes 
may include parking access aisles, curb ramps, crosswalks at vehicular ways, walks, 
ramps, and lifts.  

This research developed and demonstrated a computable form of the accessible route as 

described in Chapters 3 and 4.  The recommendation is to incorporate into the ADAAG 

an alternative definition that would accept a computable accessible route.  This 

alternative definition defines the elements and the sequence of elements that compose any 

accessible route through a facility.  As with the ADAAG accessible route definition, 

alternative accessible route definition does not define the accessibility of the individual 

components; these definitions are presented subsequently in other proposed provisions.  

The proposed alternate definition is given as follows: 
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An accessible route R is defined as a composition of accessible components: 

R = Rinit + Σ Rsos + Rgoal 

where: 

Rsos = Rseg <+ Ropen + Rseg>, 

Rinit = the initial point (the starting point of an accessible route), 

Rgoal = the goal point (the ending point of an accessible route), 

Rseg = a segment of the accessible route within a space, 

Ropen = the clearance area at an opening, and 

<> = optional arguments 

 

Rinit and Rgoal nodes may also be instances of Ropen nodes. 

 

An Alternative Definition for Maneuvering Clearance: 

The ADAAG defines multiple maneuvering clearances at building components to address 

the different approaches to these components.  As noted in Chapter 4, the static nature of 

the accessible route test methods dictates the need for multiple clearance boxes.  In 

addition, accessibility of doors can be demonstrated even if the maneuvering clearances 

are violated.  If the ADAAG allowed dynamic accessible route test methods, a simpler, 

more accurate “approach” definition could be used as an alternative to the maneuvering 

clearance definition. 

The following is the ADAAG maneuvering clearance definitions at doors [1]: 

 

Maneuvering Clearances at Doors. Minimum maneuvering clearances at doors that are 
not automatic or power-assisted shall be as shown in Fig. 25 (shown below). The floor or 
ground area within the required clearances shall be level and clear. 
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The following proposed alternate definition reduces the number of geometries that must 

be tested by directly modeling the door approach: 

 

 

Approach to Doors may be alternatively defined as shown in the below figure as long as 
an accessible path to the approach point is also defined. The floor or ground area within 
the required clearances shall be level and clear. 
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A Definition for Accessible Route Width: 

As demonstrated in Chapter 4, the ADAAG prescribed accessible route width does not 

accurately address all possible facility configurations.  The chapter illustrated a non-

compliant usable example and a possibly-compliant unusable example.  To address the 

shortcomings in the accessible route width definition, the following is a proposed 

alternative definition: 

Variances will be allowed for accessible route widths and configurations that adhere to 
the ergonomic and anthropometric parameters set forth in this document  (the ADAAG) 
that can be demonstrated visually, either manually or computationally. 

An example of a visual demonstration would be the path generated by the motion-

planning techniques developed in this research. 
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An Alternative Definition for Equivalent Access to Facilities: 

Finally, this research recommends a more general definition for equivalent access to 

facilities than currently exists in the ADAAG since all possible facility functions and 

their accessibility equivalents cannot possibly be defined in the ADAAG a priori: 

Equivalent access to facilities or facility components that is not explicitly defined in this 
document (the ADAAG) shall be defined on a case-by-case basis by the relevant 
Department of Justice enforcing body. 

7.2 Future Directions and Limitations 

7.2.1 Extending the Disabled Access Analysis Research 
Section 4.2.5 discussed several of the limitations of the performance-based motion-

planning techniques developed to address wheelchair accessibility analysis.  This section 

examines some of the other limitations and proposals to address these limitations.  In 

addition, this section examines other aspects of the disabled access code that must be 

addressed to provide full disabled access usability analysis.  Finally, this section outlines 

a proposal to gather information about the interaction of “digital actors” to examine the 

usability of a facility over an established time frame. 

This research has attempted to develop motion-planning techniques to directly model 

wheelchair motion and behavior, but even within this performance-based approach, the 

research has prescribed goal point parameters assuming usability of a particular building 

component once the motion planner has directed the wheelchair robot to the goal point.  

A logical extension to this assumption is the direct modeling of the wheelchair user 

interacting with the building component.  The technique would involve combining the 

wheelchair robot planner developed in this research with path-planning algorithms to 

automatically generate sequences for human figures as described by Koga et al. [40].  
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Modeling the wheelchair user’s actions provides a more complete analysis of the user’s 

interaction with a particular building component. 

This research has not addressed other disabled access issues such as sight and hearing 

impairment.  Specifically addressing sight disabilities, motion-planning techniques can be 

applied to model the motion and behavior of blind persons through a facility.  For this 

particular problem, however, the configuration of the facility should not be pre-calculated 

as the individual must “discover” the path as he or she moves toward the goal.  Kuffner 

and Latombe have developed techniques that allow the digital actor to discover the 

surrounding area through visual perception, and these techniques could be adjusted to 

allow the digital actor to discover the configuration by modeling cane interaction with the 

facility [42]. 

Finally, an even more dynamic approach than the wheelchair analysis developed in this 

research involves developing a time-elapsed simulation using multiple digital actors 

assigned typical tasks and collecting statistics on the actions and reactions of the actors.  

The collection of actions, such as the number of required backups and the average time 

needed to execute a particular task, would provide insight into the usability of a facility 

by directly modeling the “quality of life” of the individual or set of individuals in the 

facility. 

7.2.2 Applying Motion Planning to other Design-related 

Processes 
While this research has applied motion-planning techniques to wheelchair behavior, more 

generally, motion-planning techniques can be applied to design and construction analyses 

that involve movement of particles, people, and equipment or the coordination of a 

combination of these elements.  Specifically, these techniques can directly capture the 

motion and behavior of the elements in question.  The techniques that will be developed 

will be domain-specific, and accurate modeling of the particular behavior is not a trivial 
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issue.  Thus the development of domain-specific performance-based analyses depends on 

the researcher’s ability to accurately model the relevant behavior. 

Motion-planning techniques naturally lend themselves to the egress problem as the main 

issue concerns the movement of people through a space (and through the facility) along 

an exit path or route.  As with the wheelchair accessible route problem, motion planning 

can be used to directly model person movement, and the egress motion planning extends 

the basic motion-planning problem.  As with the sight impaired example presented in the 

previous section, techniques involving discovering the configuration space apply to this 

problem since the individuals may not know the layout of the facility a priori [42]. 

Egress motion planning would also need to take into consideration the coordination of 

multiple moving objects [37].  The multiple moving objects motion-planning problem 

extends the notion of the configuration space to a configuration-time space, and the time 

dimension is different from the other dimensions in that it is not reversible.  For the 

egress problem, this difference reflects the actual situation: the amount of time needed to 

exit a space based on the exiting arrangement is a critical parameter in determining the 

safety of the space.  Multiple robots dramatically increase the problem’s dimension.  

High-dimensional configuration spaces necessitate the introduction of techniques such as 

randomized path planning to reduce the computation time [37]. 

Finally, motion-planning techniques could be applied to provide 

Architecture/Engineering/Construction (AEC) professionals with insight into 

construction and assembly sequences.  Geem et al. develop mobility analysis for 

feasibility studies in industrial environments as part of the Motion for Logisistics 

(MOLOG) effort, a group dedicated to the development of “motion design technology in 

the framework of the logistics engineering of industrial installations” [19].9 

                                                 
9 See http://www.laas.fr/molog/. 
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7.2.3 Extending the Design-aid Framework to Modeling 

Other Building Codes 
This research has demonstrated the power of the design-aid framework and its interacting 

components (the design-intent model, the product model, and the document model), but 

has not addressed the generality of the framework. This section outlines the incorporation 

of egress analysis into the framework developed in this research.  The process for 

developing the egress analysis model is identical to the disabled access modeling process: 

1. Develop a design-intent model of egress analysis by extracting the intent hierarchy 

from an egress building code. 

2. Develop the motion-planning performance-based methods that capture the behavior 

of persons exiting a facility and populate the design-intent model with these methods. 

The motion-planning performance-based egress methods have been discussed in the 

previous section.  Figure 7.1 shows a possible egress design-intent hierarchy.  The intent 

of the Uniform Building Code (UBC) egress code can be refined to providing a safe 

exiting system, and an exiting system terminates to a public way or equivalent [26].  As 

shown in Figure 7.1 with the OR arc between the connections emanating from the safe 

exiting system intent, UBC alternatively allows an exiting system to terminate to an area 

of refuge for persons with disabilities. 

As with the disabled access problem, the egress problem decomposes the analysis of a 

facility by architectural functionality (buildings, stories, and spaces), and the egress 

design-intent model shown in Figure 7.1 reflects this decomposition for both the public 

way intent and area of refuge intent. 

In modeling other analyses such as fire and egress that are dependent on the architectural 

functionality decomposition or view of a facility (buildings, stories, and spaces), some 

portion of the design-intent model’s hierarchy will incorporate the same intent 
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Figure 7.1: An egress design-intent model hierarchy. 

decomposition developed for the disabled access problem.  However, capturing all 

aspects of a code’s intent is not always straightforward.  The evolution of a certain 

prescribed provision may obscure the design intent of the provision. For example, the 

UBC specifies that exit doors must swing in the direction of egress if the serviced area 

has an occupant load of fifty or more [58].  The origin or intent behind this prescribed 

occupant load is not directly evident, but an occupant load of fifty or more classifies a 

space as an assembly area [58], and the exit door swing direction is related to the 

assembly area occupancy load criteria.10 

7.3 Discussion 

The research presented in this thesis consists of a collection of models and methods that, 

when combined, produce a powerful framework that enables the automated analysis of a 

                                                 
10 Andrew Aldeman, former chief building official of the City of San Jose, pointed out this connection in a 

December 4, 1996 International Conference of Building Officials (ICBO) Peninsula Chapter meeting. 
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facility for disabled access usability.  This section reviews the developed models, 

methods, and environments examining the developed research from a more general 

perspective. 

7.3.1 The Design-aid Framework 
The design-intent module of the design-aid framework provides a flexible approach to 

organize the intent of a design standard.  Using this approach, this research has been able 

to develop methods associated with the generated intent of the disabled access code that 

analyze a facility’s wheelchair usability.  Casting the ADAAG as a hierarchical design-

intent structure provides more flexibility than the prescriptive-based provisions that 

constitute the disabled access code. 

The intent of equivalent access to facilities is an extremely powerful concept since if the 

code is organized around this concept as opposed to require the designer to adhere to a set 

of prescriptive provisions, the code could be more flexible and be tailored to 

accommodate non-standard situations.  Requirements could be adjusted according to the 

parameters of the situation.  For example, the ADAAG specifically prescribes parking 

parameters for a general and a limited number of special situations such as outpatient 

facilities and facilities that cater to the mobility impaired.  Using the design-intent model 

with another flexible approach such as Garcia’s Active Design Documents (ADD) model, 

one can imagine tailoring the parking requirements based on a dynamic set of 

requirements while still adhering to the concept of equivalent access [17]. 

This research developed the product model using the form-function-behavior (FFB) 

approach to provide the maximum flexibility in defining the parameters of both the 

facility description and the analysis results.  The research quickly realized the power of 

this approach through the ease of incorporating new combined form, function, or 

behavior concepts to the analysis.  For example, the research easily incorporated the 

concept of the accessible route in the model using the description (the form) of a polyline 
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to describe the route and associating this geometric description with the accessibility 

concept (the function) of a system of building components. 

This research has demonstrated the power of the design-aid framework for the disabled 

access problem and makes the argument that the interaction of the three developed 

models (the symbolic product model, the design-intent model, and the document model) 

that constitute the design-aid framework can be applied to other code-related analyses.  

The research has also indirectly validated Yabuki’s Hyper-Object-Logic model since the 

system architecture of the design-aid framework was strongly influenced by Yabuki’s 

design [60].  Based on the success of the design-aid framework for the disabled access 

problem, this research submits that the structure of the design-aid framework should be 

used to design other usability and code-related automated analyses applications.  The 

design-intent model is a powerful tool for organizing the often ambiguous, contradictory, 

and insufficient abstractions of prescribed provisions that constitute a design standard.  In 

addition the flexibility and interaction of the developed product model with the design-

aid framework allows for the description of the functionality of building components or 

systems of building components as well as the analysis results. 

This research has developed the design-aid framework and the motion-planning 

techniques to model wheelchair movement separately and has presented other design and 

construction-related analyses that would be suitable to motion-planning techniques in this 

chapter.  However, the application of the motion-planning methods to the design-intent 

methods used to test the intent of the disabled access code underlines the strong 

connection between these techniques for the disabled access problem.  More generally, 

this connection is applicable when the intent of a code or process can be demonstrated 

with the direct modeling of moving elements, either persons, particles, or building 

components. 
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Figure 7.2: Adding egress analysis to the distributed object service environment (DOSE). 

7.3.2 The Distributed Object Service Environment 
Finally, the distributed object service environment (DOSE) represents a general 

component-based approach to aggregating engineering analysis systems.  This research 

demonstrated the power and generality of the Service object three-tiered architecture 

by implementing the various accessibility tools of design-aid framework with this system 

architecture.  Indeed, the proposed egress framework outlined earlier in this chapter could 

be incorporated in the developed system architecture as easily as the incorporation of 

each of the disabled access design tools. Figure 7.2 shows the incorporation of the egress 

design-aid framework into the distributed object service environment (DOSE). 
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The egress intents would map to instances of Intent objects, and these objects are 

implemented as Service objects in the DOSE.  The DOSE would view the egress 

Intent objects as a composite service (an aggregation of Service objects).  The 

Visual Interactive Environment/Workbench (VIEW) would send the facility design to 

this composite service through the Egress Server, a Service object that is analogous to 

the Analysis Servers developed for the disabled access analysis.  The VIEW would have 

to be modified to be aware of the existence of the added Egress Server.  Given the 

models and methods developed in this research, developing an egress analysis model and 

incorporating this model into the DOSE are straightforward steps. 

To be even more general, the DOSE must be modified to accommodate a variety of 

analyses in the following manner.  The communication protocol developed in this 

research can still be utilized for a variety of analyses, but a Service object will need to 

accommodate different product models, and some service components will simply be 

mapping services between disparate product models.  Finally, while the DOSE 

communication protocol acts as a common interface to aggregate disparate analyses, the 

overhead associated with the distributed object environment makes it impractical as a 

protocol for high-bandwidth, interprocess communication among many nodes.  In this 

case, an interprocess-specific direct communication protocol would be more appropriate, 

and the DOSE should consist of some hybrid of the standard distributed object 

communication protocol and interprocess-specific direct communication protocol. 

7.4 Summary 

This research provided a computer environment that aids the designer with disabled 

access design.  Toward this goal, the research developed a disabled access design-aid 

framework consisting of the interaction among three models: 

• The description of the facility (the developed symbolic product model) 
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• The intent of the Americans with Disabilities Act Accessibility Guidelines (ADAAG) 

(the disabled access design-intent model) 

• A document model 

The disabled access design-intent model extracts the facility design from an instance of 

the product model, the design-intent model analyzes the facility, and the design-aid 

framework adds the analysis results to the product model’s building components.  The 

disabled access design-aid framework then provides the designer with text and graphical 

analysis results of the facility utilizing the document model.  As shown in the generated 

analysis of the test case, this research has designed of the components of the disabled 

access design-aid framework with the flexibility to analyze the facility using the 

performance-based methods while displaying the ADAAG provisions that motivated the 

specific analysis.  

In summary, this research has focused on providing the designer with a computer 

environment with access to a variety of disabled access analysis tools.  Toward this goal, 

the research has: 

• Abstracted the design intent of the ADAAG to form a hierarchical model that enables 

the automated disabled access analysis of a facility design. 

• Developed a computable form of the accessible route, the most critical concept 

related to access of a facility. 

• Demonstrated a performance-based approach using motion-planning techniques to 

model the wheelchair accessibility analysis methods associated with design-intent 

model. 

• Demonstrated the flexibility of the developed product model that incorporates both 

the facility design description and analysis results. 
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• Demonstrated the power of the design-aid framework in analyzing a facility for 

wheelchair accessibility by providing the interaction among the developed product 

model, the design-intent model, and a document model to generate the analysis 

results. 

• Implemented the framework in a distributed object service environment representing 

a flexible component-based approach to aggregating engineering analysis systems. 

Finally, from the results of the Career Development Center analysis, the research 

presented a set of recommendations to the University to increase the usability of the 

current and future CDC.  The United States Department of Justice enforces the 

prescriptive-based ADAAG, and this research does not seek to replace the ADAAG with 

the developed framework and the performance-based analysis methods.  However, in 

developing and testing the performance-based methods, this research has pointed out 

some of the inadequacies and contradictions of the prescriptive-based ADAAG.  In 

addition, the research proposed a set of alternative provisions based on the performance-

based work that will hopefully be deemed acceptable by the regulatory governing body, 

United States Access Board, the developer and maintainer of the ADAAG. 
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