

COMPUTER MODELS AND METHODS FOR A DISABLED
ACCESS ANALYSIS DESIGN ENVIRONMENT

A DISSERTATION SUBMITTED TO

THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND

THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

Charles S. Han

May, 2000

 Copyright by Charles S. Han 2000

All Rights Reserved

 ii

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.

Kincho H. Law

(Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.

John C. Kunz
(Co-advisor)

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.

Jean-Claude Latombe

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as a dissertation for the degree of Doctor of
Philosophy.

Martin A. Fischer

Approved for the University Committee on Graduate Studies:

 iii

Abstract

Designing a facility entails generating a configuration that satisfies a set of usability

constraints. This research develops computer models and methods providing designers

with disabled access analysis tools to test the usability of a facility. Among the usability

constraints, building code regulations are considered the most critical. The design intent

of building codes include the provision of minimum standards to safeguard life or limb,

health, property and public welfare. The statements or provisions in building codes often

contain “prescriptive” specifications of these objectives. However, prescriptive-based

codes can be ambiguous, contradictory, complex, and unduly restrictive. In this research,

performance-based methods are developed to provide designers with analysis

complementary to the prescriptive-based disabled access code, the Americans with

Disabilities Act Accessibility Guidelines (ADAAG).

The research develops a design-aid framework to support the disabled access analysis

utilizing three models:

• A design-intent model that organizes computer methods to analyze a facility design.

• A product model that describes the facility design.

• A document model tightly integrated with the intent model that extracts the relevant

provisions to inform the designer of code violations of a facility design.

 iv

The design-intent or objective-based approach used by the design-aid framework depends

on the clear intent or objectives of the code or standard and the ability to decompose the

intent and objectives into testable code-compliant or usability methods.

In addition, as part of the performance-based approach, this research also utilizes motion-

planning techniques to test the wheelchair usability of a facility. This new framework

also provides an Internet-based design environment for users or designers to interact

virtually with the design of a facility. An additional component of the framework, an

interactive environment, also addresses the deficiencies of the performance-based

approach related to the difficulties in accurately modeling all the relevant behaviors.

 v

Acknowledgments

Except for my thesis advisors, I list my acknowledgements in the general order that I

either met or encountered the person or entity:

My parents, my wife, my children, and my friends, for supporting me through what I

consider a wholly selfish act, an individual’s quest for self-improvement that cannot be

achieved alone.

CIFE and all the people associated with CIFE including Leyla, Teddy, Prof. Paul

Teicholz, Dr. Renate Fruchter, and Prof. Hans Bjornnson, for teaching me various skills

that I will use throughout my life. My colleagues Alex, Andrew, Burcu, Ed, John H.,

John T., Kathleen, Martin, Raghip, and Sheryl, for their scholarly and personal

interaction. To my group members David, Eduardo, Gorie, Hoon, Jerry, Jie, Jun, and

Shawn, for helping me with various aspects of my thesis and my life including paying for

numerous lunches.

Bob Kraiss (Director of Corporate Facilities and Real Estate at Adaptec, Inc. and Co-

chair of Smart Permit Steering Committee for Joint Venture Silicon Valley), Hamid

Pouya (Director of Building and Neighborhood Services, City Executive Staff, City of

Concord, formerly Chief Building Official of the City of Sunnyvale), and Andrew

Aldeman (General Manager of the City of Los Angeles Department of Building and

 vi

Safety, formerly chief building official of the City of San Jose), for their professional

advice concerning building code issues.

Joe Cavanaugh, a Stanford undergraduate student, for his first-hand knowledge, insights,

and experience with using a wheelchair. Teri A. Adams (Assistant Director and Program

Coordinator, Disability Resource Center), Michael A. Fox (Special Projects Manager,

Facilities Operations), and Rosa E. Gonzalez (ADA and Disability Access, Multicultural

Development Office), for providing their Stanford University expertise and resources.

Prof. Hector Garcia-Molina, for chairing my thesis defense on such short notice.

Prof. Martin Fischer, for providing me with insight into my specific problem and

problem-solving in general, and for asking questions that forced me to think about the

structure of my findings and my arguments.

Prof. Jean-Claude Latombe, for helping me to think through the motion-planning aspects

of my thesis. I am honored to have been able to interact with a visionary, an opportunity

that comes only several times in one’s lifetime.

Dr. John C. Kunz, who has helped me keep my feet on the ground, cut to the chase, and

get to the other side. John has taught me to appreciate the various scholarly aspects of

writing a thesis, and he has helped me attain various skills that I had not expected to use

and need in this academic endeavor and beyond.

Finally, Prof. Kincho H. Law, whose input and dedication to my work went far beyond

what I could have imagined. Prof. Law has taught me to keep my mind open when

encountering a challenge and has shown me how to find the tools to overcome the

challenge if I do not already possess them. In a phrase, he has given me sight.

This research has been partially funded by the Center for Integrated Facilities

Engineering at Stanford University and the Intel Corporation.

 vii

Dedication

To my wife, Susan Mariko Kobayashi.

 viii

Table of Contents

Abstract iv

Acknowledgments vi

Dedication viii

List of Tables xiv

List of Figures xv

1 Introduction 1

1.1 Problem Statement ..1

1.2 Related Research...5

1.2.1 Building Standards Research...6

1.2.1.1 Decision Tables and Standards Analysis, Synthesis and

Evaluation..6

1.2.1.2 An Object-Oriented Approach ..8

1.2.1.3 The Hyper-Object-Logic Model..9

1.2.1.4 Performance- and Objective-based Codes11

1.2.2 Product and Process Model Research..15

1.2.2.1 Standard Exchange of Product Model Data (STEP) and

Related Efforts...16

1.2.2.2 Industry Foundation Classes ...17

1.2.2.3 The Primitive-composite Approach ..19

1.2.2.4 A Design Rationale Model to Capture the Design Process.....20

 ix

1.3 The Design-intent Model for Disabled Access ...20

1.4 Organization of the Thesis ..24

2 The Design-aid Framework 27

2.1 The Product Model..29

2.2 The Design-intent Model ..30

2.2.1 Accessible Route Analysis ..32

2.2.1.1 Analyzing an Accessible Route for Prescriptive-based

Code-Compliance..33

2.2.1.2 Analyzing an Accessible Route for Performance-based

Usability ..34

2.2.2 System-wide Usability Analysis..35

2.3 The Document Model ...36

2.3.1 The Standard or Code Document ..38

2.3.2 The Report ...39

2.4 The Prototype..40

2.5 Summary ...43

3 A Disabled Access Analysis Design-aid Framework 47

3.1 The Manual Disabled Access Analysis Process ...48

3.1.1 Manual Analysis of the Bathroom Facility ...48

3.1.2 Discussion..55

3.2 A Product Model to Support Disabled Access Analysis56

3.2.1 Reification of Components..59

3.2.2 Reification of Component Relationships...62

3.3 The Design-intent Model and Disabled Access..66

3.4 The Accessible Route Analysis Process ...70

3.4.1 Decomposition of the Accessible Route..70

3.4.2 The Brute-force Approach...71

3.4.2.1 Establishing Rinit ...73

3.4.2.2 Analyzing Potential Ropen Accessible Route Components75

 x

3.4.2.3 Analyzing Potential Rgoal Accessible Route Components75

3.4.2.4 Generating Rseg Route Segments..76

3.4.2.5 Traversing the Accessible Route Graph..................................77

3.5 System-wide Usability Analysis ...77

3.6 Case Example..80

3.6.1 First-order Accessible Route Analysis ..80

3.6.2 Second-order System-wide Usability Analysis82

3.7 Summary ...83

4 Accessible Route Analysis: A Prescriptive-based, a Performance-based,

and an Interactive Model 84

4.1 Automated Prescriptive-Based Analysis: The Code-Compliant Accessible

Route ...85

4.1.1 Motion Planning Basics...86

4.1.2 Determining the Ropen Components ..88

4.1.3 Determining the Rinit and Rgoal Components93

4.1.4 Determining Rseg Accessible Route Components.................................95

4.1.4.1 The 36-inch-wide Path ..96

4.1.4.2 The Turn-around-an-obstruction Exceptions100

4.1.4.3 The Wheelchair Turning Circle...104

4.1.5 Prescriptive-based Analysis Discussion ..106

4.2 Automated Performance-based Analysis: The Usable Accessible Route.....107

4.2.1 Overview of Performance-based Motion Planning: Developing a

Non-holonomic Planner...108

4.2.2 Determining the Ropen Components ..110

4.2.3 Determining the Rinit and Rgoal Components111

4.2.4 Determining the Rseg Components..113

4.2.5 Performance-based Analysis Discussion...120

4.3 A Comparison of Prescriptive- and Performance-Based Analysis Results ..123

4.4 Wheelchair Manipulation and Animation...127

 xi

4.4.1 Joystick Manipulation of the Wheelchair..128

4.4.2 Wheelchair Animation Techniques ...130

4.5 Summary ...134

5 The Design-aid Framework as a Distributed Object Service Environment 137

5.1 The Three-Tiered Architecture ...139

5.2 A Visual Interactive Environment/Workbench (VIEW) for Accessible

Route Analysis ..143

5.2.1 The VIEW CAD Service ...145

5.2.2 The VIEW Analysis Services ..146

5.2.3 The VIEW Joystick Service ..150

5.3 The Design-aid Framework Implementation ..151

5.3.1 The VRML External Authoring Interface (EAI).................................154

5.3.2 The Applet Graphical User Interface...155

5.3.3 The Product Model ..155

5.3.4 The CORBA Interface...156

5.4 Summary ...159

6 Test Case Example 161

6.1 The Career Development Center...162

6.2 The Analysis ...167

6.3 The Analysis of the Modified Design...180

6.4 Summary and Discussion..183

7 Discussion and Summary 186

7.1 Proposed Alternative ADAAG Provisions ...187

7.2 Future Directions and Limitations ..192

7.2.1 Extending the Disabled Access Analysis Research.............................192

7.2.2 Applying Motion Planning to other Design-related Processes............193

7.2.3 Extending the Design-aid Framework to Modeling Other Building

Codes ...195

7.3 Discussion ...196

 xii

7.3.1 The Design-aid Framework...197

7.3.2 The Distributed Object Service Environment199

7.4 Summary ...200

Bibliography 203

 xiii

List of Tables

Number Page

Table 1.1: Prescription versus Performance of a Design Code (modified from [23]).3

Table 1.2: Regions of a decision table (from [15]). ...7

Table 1.3: Checking the maximum height (from [15])..7

Table 1.4: A stair requirements decision table (variation of table from [15]).7

Table 2.1: Accessible route analysis models and methods. ...33

Table 3.1: Characteristics of the accessible route graph..74

Table 3.2: Rules for establishing the Rinit building component.74

Table 4.1: Wheelchair parameters and influencing factors. ..121

Table 4.2: The possible prescriptive/performance analysis combinations.124

 xiv

List of Figures

Number Page

Figure 1.1: The relationship among the three design solution spaces.4

Figure 1.2: Overview of Yabuki’s Hyper-Object-Logic model...10

Figure 1.3: A proposal for the CCBFC objective-based disabled access code, Part A.13

Figure 1.4: Portions of the CCBFC disabled-access code, Part B.14

Figure 1.5: IFC Release 1.5 model architecture (from [32]). ..18

Figure 1.6: The design-intent disabled access code model used in this research.21

Figure 1.7: An example of an accessible route. ...22

Figure 1.8: The design-intent disabled access code analysis process.23

Figure 2.1: The design-aid framework...28

Figure 2.2: The design-intent disabled access code model..30

Figure 2.3: The bathroom facility example with one accessible water closet.36

Figure 2.4: The report generated from the document model (from [24]).37

Figure 2.5: An example provision in HTML format. ..39

Figure 2.6: The prototype implementation. ...42

Figure 2.7: The Visual Interactive Environment/Workbench (VIEW).43

Figure 3.1: The example bathroom facility..49

Figure 3.2: The product model hierarchy of objects..57

Figure 3.3: EXPRESS schema for the ExpressEntity and Table objects.58

Figure 3.4: An example Table instance. ...58

 xv

Figure 3.5: EXPRESS schema for the GenericComponent object.59

Figure 3.6: A GenericComponent and supporting Table instances for an

opening...60

Figure 3.7: The modified GenericComponent and Table instances.61

Figure 3.8: EXPRESS schema for the Relationship object.......................................62

Figure 3.9: A Relationship instance and the associated GenericComponents

defining the VOIDS relationship. ..63

Figure 3.10: The VOIDS and FILLS relationships...63

Figure 3.11: Relationship instances defining an architectural view of a facility...............64

Figure 3.12: The Intent object...68

Figure 3.13: The design-intent disabled access model for the bathroom facility.69

Figure 3.14: Selected accessible routes in the Men’s bathroom..73

Figure 3.15: The labeled potential accessible route components in the bathroom

facility. ...81

Figure 3.16: The accessible route graph for the bathroom facility.81

Figure 4.1: Mapping an obstacle to a C-obstacle...87

Figure 4.2: Door approaches and clearances, from the ADAAG [1].................................90

Figure 4.3: Initial/goal line segments (solid dark lines) for the door/opening

approaches..92

Figure 4.4: Clear floor space for front transfer, diagonal transfer, and side transfer [1]. ..94

Figure 4.5: Goal line segments (solid dark lines) for the water closet approaches.95

Figure 4.6: Minimum accessible route turning clearances defined in the ADAAG [1]. ...96

Figure 4.7: The 36-inch disc robot A36 configuration space C36.97

Figure 4.8: The possible accessible route sequences through a doorway..........................98

Figure 4.9: The initial and goal segments inserted into the C36 configuration space.........99

Figure 4.10: A 36-inch corridor with the path and legal C36 and positions.101

Figure 4.11: A contradictory configuration to the Provision 4.3.3 exceptions from the

ADAAG. ..103

Figure 4.12: The prescribed turning circle and T-space from the ADAAG [1].104

 xvi

Figure 4.13: The 60-inch disc robot A60 configuration space C60.105

Figure 4.14: The entrance door initial/goal and the 36- and 60-inch configuration

spaces. ..106

Figure 4.15: ADDAG wheelchair dimensions...109

Figure 4.16: Dimensions of the robot Awc..109

Figure 4.17: Initial and goal points for the Ropen node..111

Figure 4.18: ADAAG wheelchair transfer diagrams for water closets [1].112

Figure 4.19: The goal points for water closet diagonal and side transfer respectively....113

Figure 4.20: The three options (left, right, and straight) for the Awc robot.114

Figure 4.21: Motion-planning results for the first ADAAG 4.3.3 exception, r1 = 24”. ..117

Figure 4.22: Motion-planning results for the second ADAAG 4.3.3 exception, r1 =

24”..118

Figure 4.23: Motion-planning results for the turning radius, r2 = 9”.119

Figure 4.24: ADAAG Figure A2 illustrating the actual turning clearance geometry

[1]. ..119

Figure 4.25: Left-hand-turn options (forward, backward, r = 24”, 48”).122

Figure 4.26: The non-compliant, usable example..124

Figure 4.27: The code-compliant, unusable example. ...126

Figure 4.28: Modifying the middle leg of the route makes the configuration usable......127

Figure 4.29: The joystick coordinate system. ..129

Figure 4.30: Wheelchair and wheelchair user geometry hierarchy.131

Figure 4.31: The smoothing of the polygonal path of the wheelchair.131

Figure 4.32: The paths of the major wheels for the given path of the wheelchair...........132

Figure 4.33: The coordination of the swiveling casters...133

Figure 4.34: Arm position range-of-motion...134

Figure 5.1: The conceptual diagram of a Distributed Object Service Environment

(DOSE) instance. ...139

Figure 5.2: The DOSE communications protocol..141

Figure 5.3: The DOSE diagram of the design-aid framework...143

 xvii

Figure 5.4: The Visual Interactive Environment/Workbench (VIEW).145

Figure 5.5: The CAD-to-VIEW interaction. ..146

Figure 5.6: The VIEW-to-Analysis Service interaction. ..148

Figure 5.7: The Joystick-to-VIEW interaction. ...151

Figure 5.8: The DOSE diagram of the design-aid framework implementation...............152

Figure 5.9: The VIEW VRML-Java-CORBA implementation.153

Figure 5.10: The Joystick Client Service implementation hierarchy.157

Figure 6.1: The Stanford University Career Development Center (CDC).163

Figure 6.2: CDC entrance close-up..163

Figure 6.3: CDC plan view. ...164

Figure 6.4: CDC 1985 as-builts, existing conditions and demolition plan......................165

Figure 6.5: CDC 1985 as-builts, new construction plan..166

Figure 6.6: The initial CDC disabled access analysis report: the facility is

inaccessible. ...168

Figure 6.7: The disabled access analysis report: the bookshelf is inaccessible.170

Figure 6.8: Wheelchair user access to bookshelf (desk size and position unmodified). .170

Figure 6.9: The ADAAG graphic illustrating side approach reach parameters...............171

Figure 6.10: Wheelchair route to bookshelf enabling the side-approach method.171

Figure 6.11: The disabled access analysis report: the women’s toilet is inaccessible.....173

Figure 6.12: Wheelchair user access to the women’s toilet...173

Figure 6.13: Modified goal parameters for women’s toilet. ..174

Figure 6.14: Wheelchair path to the women’s toilet using the modified goal

parameters. ...174

Figure 6.15: The disabled access analysis report: men’s toilet is inaccessible................176

Figure 6.16: Wheelchair user unable to pass through men’s toilet stall door..................176

Figure 6.17: Wheelchair route to men’s toilet (stall partitions removed)........................177

Figure 6.18: The disabled access analysis report: interview room desks are

inaccessible. ...178

Figure 6.19: Wheelchair user in an interview room doorway. ..178

 xviii

Figure 6.20: Wheelchair user at an interview desk (after numerous backups).179

Figure 6.21: Wheelchair route to an interview desk (doorway width and desk position

modified)..179

Figure 6.22: The disabled access analysis report for the modified design.181

Figure 6.23: The disabled access analysis report: computer desk is inaccessible.182

Figure 6.24: Wheelchair route to adjacent computer desk. ...182

Figure 6.25: Upper computer desk is not fully contained by the corridor space.183

Figure 7.1: An egress design-intent model hierarchy. ...196

Figure 7.2: Adding egress analysis to the distributed object service environment

(DOSE). ...199

 xix

Chapter 1

Introduction

1.1 Problem Statement

Designing a facility entails generating a configuration that satisfies a set of usability

constraints. Among these usability constraints, building code regulations are considered

the most critical. The design intent or objective of building codes includes the provision

of minimum standards to safeguard life or limb, health, property and public welfare [58].

Many of the provisions in building codes such as the Uniform Building Code (UBC) [58]

and the Americans with Disabilities Act Accessibility Guidelines (ADAAG) [1] contain

“prescriptive” specifications of these objectives. For example, the following ADAAG

provision prescribes the acceptable width of a doorway for a wheelchair user:

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm)
with the door open 90 degrees, measured between the face of the door and the opposite
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)).

Advantages of using prescriptive provisions include straightforward evaluation of a

design using the prescribed parameters and having the ability to make this evaluation

1

CHAPTER 1. INTRODUCTION 2

without needing high-level engineering knowledge about the specific analysis. However,

prescriptive-based codes can be ambiguous, contradictory, complex, and unduly

restrictive [20,23,39]. Solutions constrained by prescriptive-based codes address only a

fraction of the possible solutions that meet the design intent or objectives of these codes.

Furthermore, instances exist where adhering to these prescriptive provisions produces a

design that may not satisfy usability.

As a partial solution to the problems that exist in prescriptive-based building codes, many

jurisdictions have adopted or are moving toward the adoption of “performance-based”

codes [23,57]. As opposed to prescriptive-based codes that provide solutions abstracted

from the design intent or objective of a building code, performance-based codes attempt

to directly capture the behaviors that conform to the intent of the design codes or

regulations. This direct performance-based approach accepts design solutions that satisfy

the usability constraints, including those solutions that do not comply with the

prescriptive-based constraints specified by a design code. On the other hand, when a

performance-based approach accurately models usability, this approach will identify and

reject design solutions that are not usable—as noted earlier, some unusable designs may

be accepted by an analysis utilizing the prescriptive-based constraints specified by a

design code.

Limitations of the performance-based approach include the difficulty in defining all the

quantitative levels or modeling all the relevant behaviors of performance:

• If a particular behavior is inadequately modeled, the performance-based analysis may

reject a design solution that satisfies the design intent or objectives of the code.

• If a particular behavior is incorrectly modeled, the performance-based analysis may

accept a solution that does not satisfy the intent of the code or reject a solution that

does satisfy the intent of the code.

CHAPTER 1. INTRODUCTION 3

Table 1.1: Prescription versus Performance of a Design Code (modified from [23]).
Code Type Advantages Disadvantages

Prescriptive Codes Straightforward evaluation of compliance with Requirements specified without statement
established requirements of objectives

No requirements of high level engineering Complexity of and conflicts within the
expertise structure of existing codes

Overly restrictive

Sometimes compliance does not insure
meeting of code intent

Performance Codes Establishment of clear goals Difficult to define quantitative levels of
performance

Facilitating use of new knowledge when available
Difficult to capture relevant behavior

Non-complex documents
Difficult to evaluate compliance with

Permitting prompt introduction of new established requirements
technologies to the market place

Need for validation of the tools used for
quantification

Table 1.1 summarizes the advantages and disadvantages of prescriptive- and

performance-based building codes, and Figure 1.1 depicts the relationship among the

design solution space given a set of usability constraints and the solution spaces based on

the prescriptive-based and performance-based formulations of these usability constraints.

Designs that are in compliance with prescriptive-based codes may represent a small

number of all possible designs, and not all of them necessarily meet design objectives.

Designs based on performance-based codes, ideally, include a larger portion of desirable

designs since they directly fulfill the design objectives and requirements.

This research develops computer models and methods providing designers with disabled

access analysis tools to test the usability of a facility. Specifically, the developed

computer environment allows designers to input the design of a facility and test the

CHAPTER 1. INTRODUCTION 4

Design Solution Space
Prescriptive-Based Solution Space
Performance-Based Solution Space

Figure 1.1: The relationship among the three design solution spaces.

wheelchair usability of the design. The developed performance-based methods provide

designers with analysis complementary to the prescriptive-based ADAAG. The research

utilizes the performance-based approach to develop the usability analysis while

minimizing the deficiencies associated with this approach and develops a design-aid

framework that utilizes three models:

• A design-intent model that organizes computer methods to analyze a facility design.

• A product model that describes the facility design.

• A document model of the building code tightly integrated with the intent model that

extracts the relevant provisions to inform the designer of code violations of a facility

design.

The design-intent or objective-based approach used by the design-aid framework depends

on the clear intent or objectives of the code or standard and the ability to decompose the

intent and objectives into testable code-compliant or usability methods. The hierarchical

structure of intents and the decomposition of these intents into sub-intents consist of

CHAPTER 1. INTRODUCTION 5

analysis methods associated with prescriptive provisions, but the hierarchical

organization of the intent or objectives of the code allows these prescriptive analysis

methods to be substituted with performance-based methods. Furthermore, while several

prescriptive provisions may be needed to describe a sub-intent of the code (often

increasing the complexity and creating contractions among provisions of the code), as

this research demonstrates, a single performance-based method can replace a set of

prescriptive provisions thus alleviating possible complexity and contradiction. This new

framework also provides an environment for users or designers to interact virtually with

the design of a facility. An additional component of the framework, an interactive

environment, also addresses the deficiencies of the performance-based approach related

to the difficulties in accurately modeling all the relevant behaviors.

Working within this framework, this research develops performance-based methods to

demonstrate wheelchair usability in a facility. Specifically, the research leverages

motion-planning techniques in an attempt to directly capture wheelchair motion and

behavior. The performance-based methods and the design-aid framework are

demonstrated using a simple test case as well as with an analysis of a university facility.

1.2 Related Research

Design standards and product and process modeling have been active research areas for

several decades. To review all relevant works is beyond the scope of this thesis. For a

United States perspective, see [14]. This section presents both an overview and compares

and contrasts the related research with this research effort. Section 1.2.1 presents an

overview of building standards research. Section 1.2.2 presents the relevant product and

process model research since the ability to automate the analysis of a designed facility is

dependent on the description of the facility.

CHAPTER 1. INTRODUCTION 6

1.2.1 Building Standards Research

1.2.1.1 Decision Tables and Standards Analysis, Synthesis and Evaluation
Fenves demonstrated the use of decision tables to represent design standards provisions

[13]. The structure of decision tables naturally lends itself to the organization of a set of

conditions on data items that make up a provision. As shown in Table 1.2, a decision

table is divided into four quadrants with each quadrant separated with a double line. The

upper left quadrant contains the conditional stubs or the list of logical variables of the

provision. The upper right quadrant contains the conditional entries of these variables.

The lower left quadrant contains the action stubs, and the lower right quadrant contains

the action entries.

Conditional entries use the following nomenclature [15]: “T” or “Y” means the condition

must be true, and “F” or “N” means the condition must be false for the rule to apply. “I”

or “.” means the condition is immaterial. “-” or “+” indicate that the condition is

respectively implicitly false or true. An “X” in the action entry indicates the action to be

taken for the given rule. Table 1.3 shows the use of the decision table nomenclature for a

table concerning the maximum height of a building.

Table 1.4 illustrates a requirement for stair dimensions. For this table, if a stair does not

satisfy all three conditions of stair width, riser height, and tread width (in this case, the

conditions need to be false), the stair violates the requirement. Note that this table

contains an “E” rule column representing the else rule (similarly, columns 5 through 10

in Table 1.3 can be replaced with an else rule column).

While decision tables can concisely represent provision requirements, an individual

decision table alone does not provide a means to address the overall organization

(including relationships among provisions) of a design standard. Fenves et al. addressed

this deficiency with the development of the Standards Analysis, Synthesis and Evaluation

(SASE) methodology [15]. SASE provided a formal methodology to represent individual

provisions (with data items and decision tables), relationships among provisions (the

CHAPTER 1. INTRODUCTION 7

Table 1.2: Regions of a decision table (from [15]).

CONDITION STUB CONDITION ENTRY

ACTION STUB ACTION ENTRY

Table 1.3: Checking the maximum height (from [15]).

1 2 3 4 5 6 7 8 9 10

1 Clearance < 6' T T T T T T T T T F

2 Sign Const. = closed T T F F T T F F I I

3 Bldg. Type = 1 or 2 T - T - T - T - F I

4 Bldg. Type = 3 - T - T - T - T F I

5 Height > 35' I F I I - T + + I I

6 Height > 50' F - I I T I + + I I

7 Height > 60' - - I F I I + T I I
8 Height > 100' - - F - I I T I I I

1 Height acceptable X X X X

2 Height not acceptable X X X X X X

Table 1.4: A stair requirements decision table (variation of table from [15]).

1 E

1 Stair width < 22 inches F

2 Riser height > 8 inches F
3 Tread width < 8 inches F

1 Requirement - satisfied X

2 Requirement - violated X

CHAPTER 1. INTRODUCTION 8

information network), and the organization of the standard. Finally, SASE’s information

network structure connects data items in a standard through precedence relationships.

1.2.1.2 An Object-Oriented Approach
Garrett and Hakim point out two deficiencies in the SASE approach to modeling design

standards which uses decision tables composed of data items as the primary means of

logic representation [18]. First, with no formal model of the design objects, a standard

becomes a “large, unwieldy” set of decision tables. Second, lack of evaluation methods

other than decision tables leads to inefficiencies such as forcing conditional decision-

making upon unconditional items such as design functions.

To address these issues, Garrett and Hakim developed an object-oriented approach

organizing a design standard around design objects pertinent to the design standard. This

object-oriented approach uses the following main groups of objects:

• A group of several hierarchies of objects merged together which defines design-

specific attributes and hierarchies as well as attributes such as shape, function, and

material that may not be influenced by the design standard in question.

• A performance-limitation hierarchy that defines the performance or behavioral

constraints on the design objects.

• A data-item hierarchy that provides a structure for classifying and describing a piece

of information (for example, a basic data item, a rule, or a function), and a data-item-

instance network that expresses the relationships among data items.

Garrett and Hakim’s incorporation of design objects within the analysis process provides

a logical extension to the SASE methodology.

De Ward offers a slightly different object-oriented approach to design standard

processing [9]. Garrett and Hakim tightly couple the design object structure to the

particular design standard. De Waard first develops the product model (a description of

CHAPTER 1. INTRODUCTION 9

design objects or building components and their relationships among one another) for

residential buildings. Using the developed residential product model, de Waard contends

that modeling design standards must consider the building model implicit in the

regulations. To illustrate this point, de Waard models several provisions (referred to as

Building Decrees) extending and adjusting the relationships developed in the residential

product model.

1.2.1.3 The Hyper-Object-Logic Model
Yabuki uses an object-logic model to represent design standards for design application

and standards analysis combined with a hypertext document model structure that can

store relevant design standard provisions and related information [60]. Figure 1.2 shows

the object-logic framework. The object-logic system consists of two sets of object-

oriented hierarchies (the standards base that consists of a “member class” and a “method

object” hierarchy and CAD object database that consists of an “object model” and “data

objects” hierarchy). Yabuki’s research focused on the American Institute of Steel

Construction (AISC) Load and Resistance Factor Design (LRFD) specification for steel

construction [44]. In Yabuki’s implementation, a (steel) “member” is a subclass of a

generic object. In addition, the object-logic model contains two design applications (a

conformance-checking module and a component-design module), and a standards-

analysis module.

The standards base includes method objects written in object-logic sentences that are

associated with a class in a “member” class hierarchy (method objects represent the

provisions of the design standard). The method object hierarchy has a “method” root

object with a “requirements,” a “determinants,” and a “classifications” subclass, and

Yabuki made the observation that a “requirements” method object class can only be

associated with a leaf node in the member class hierarchy. The CAD object database

uses object-logic sentences to express external constraints to a design member object.

CHAPTER 1. INTRODUCTION 10

User

User Interface

Conformance
Checking
Module

Component
Design
Module

Standards
Analysis
Module

Navigational
System

Standards Base

Background Base

Document Base

External Programs

Method
Objects

CAD Object Data Base

Engineering
Databases

DB Interface

Object Model

Provision Document
Base

HYPERDOCUMENT MODEL

OBJECT-LOGIC MODEL

Design
Member
Object

Member Class
Hierarchy

Figure 1.2: Overview of Yabuki’s Hyper-Object-Logic model.

Yabuki implements two design applications and a standards-analysis module to validate

the developed object-logic framework. The two design applications take a user-defined

design object (a steel member) from the CAD object database and check the design for

conformance in the standards base by traversing the member class hierarchy and using

logic resolution and message passing among the method objects associated with each

traversed class. Before checking for conformance, the component-design module

CHAPTER 1. INTRODUCTION 11

generates a component based on heuristics derived from the requirement of the user’s

preliminary choice of a possible member, again utilizing the CAD object database for the

member generation. The standards-analysis module does not depend on the CAD object

database to check the completeness, uniqueness and correctness of the standard at both

the provision level and the organization level—the module traverses the member class

hierarchy examining the method objects associated with the traversed classes.

Finally Yabuki connects the object-logic model with a hyperlink-based document system

he calls the “HyperDocument” system implemented using HyperCard on a Macintosh

computer. The ubiquity of the World Wide Web has made hyperlink-based documents

and the associated navigation model commonplace. However, Yabuki imposes a formal

system of linking the method objects from the object-logic model to the relevant

provisions in the document base. Thus, the standards base in the object-logic model

associates the methods of instantiated method objects with classes in the standards base

member class hierarchy, and, simultaneously, the HyperDocument system links these

method object instantiations with provisions in the HyperDocument provisions document

base. In addition, the provisions document base has links to a background base module

and an extended program module that are both components of the HyperDocument

system.

1.2.1.4 Performance- and Objective-based Codes
In 1972, the International Union of Testing and Research Laboratories for Materials and

Structures (RILEM), the American Society for Testing and Materials (ASTM), and the

International Council for Building Research Studies and Documentation (CIB) jointly

sponsored a symposium entitled “Performance Concept in Buildings” [49]. Proceedings

from this symposium represent the organization of the research around the time of the

symposium to formalize the performance concept.

Code-related proceedings from this symposium include discussions on structural analysis

[61], energy use [43], and fire-resistance [56]. Interestingly, many of the performance-

CHAPTER 1. INTRODUCTION 12

based criteria seem prescriptive in nature. For example, Yokel prescribes criteria for load

capacity using sums of factored loads [61], and Seigel proposes prescribing temperature

limits for building materials [56]. Finally, Eberhard discusses computer-based code

systems using the performance concept including proposals for simulation-based analysis

[12].

More recently, there have been several research efforts related to performance-based

analysis of buildings in the areas of structural, energy, and fire analysis. Krawinkler

discusses the rationale and challenges to performance-based earthquake engineering

(PBEE) [41]. Krawinkler holds the prescriptive codes accountable for stifling innovation

because new concepts are difficult to fit into the rigid prescribed framework, and cites the

example of the slow acceptance of base isolation.

Efforts in performance-based energy analysis include the Design Tools Project (DTP) at

Pacific Northwest National Laboratory (PNNL). Currently, PNNL provides an energy

analysis package that works within the AutoCAD environment, and the lab intends to

incorporate the Industry Foundation Class product model into subsequent versions of the

analysis package.1 As noted earlier in this chapter, some jurisdictions have adopted or

are moving toward the adoption of performance-based codes including California with

respect to the Title 24 Energy Efficiency Standards [57]. With Title 24, users have the

option of using either the well-established prescriptive-based calculation methods or a

performance-based analysis method. Other research efforts include a web-based

client/server energy calculation program [16].

Performance- and simulation-based analysis of fire is a widely researched area.

Hadjisophocleous discusses building-code-related fire safety criteria based on

deterministic and probabalistic approaches [23]. Recent simulation research includes fire

and smoke simulation [7,47]. In addition, the Building and Fire Research Laboratory

(BRFL) of the National Institute of Standards and Technology (NIST) is developing an

1 See online documentation at http://www.energytech.pnl.gov:2080/dtp/dtp.html for a detailed description

of PNNL’s Design Tools Project.

CHAPTER 1. INTRODUCTION 13

Figure 1.3: A proposal for the CCBFC objective-based disabled access code, Part A.

Industrial Fire Simulation System (IFSS) that models fire and fuel-burning and

suppression characteristics and develops a data-exchange semantics.2

Several countries have begun to develop performance-based building codes. As the

realization of a 1995 Strategic Plan, the Canadian Commission on Building and Fire

Codes (CCBFC) called for the migration of its prescriptive-based building codes to an

objective-based format, and toward this goal, the CCBFC formed the Task Group on

Planning For Objective-Based Codes.3 The Task Group’s current vision of object-based

codes includes a two-part document:

• Part A (shown in Figure 1.3) will describe the objectives that the code addresses and

the qualitative functional requirements for solutions.

2 See online documentation at http://www.bfrl.nist.gov/860/ps98/ifss.htm for a detailed description of IFSS.
3 The Task Group on Planning For Objective-Based Codes publishes its documents online at

http://www.nrc.ca/ccbfc/tgs/obc/index_E.shtml, and these online documents have contributed to the
discussion on the CCBFC objective-based code development.

CHAPTER 1. INTRODUCTION 14

Figure 1.4: Portions of the CCBFC disabled-access code, Part B.

• Part B (shown in Figure 1.4) will describe the quantitative performance criteria with

which solutions must comply.

Note, however, that in Part B, the quantitative performance criteria seem to be more

prescriptive in nature as these quantities are taken from the current version of the code.

CHAPTER 1. INTRODUCTION 15

1.2.2 Product and Process Model Research
There have been several research efforts to develop object-oriented CAD systems and

object-oriented building models that contain the necessary geometric, functional, and

behavioral relationships of building components [9,28,36]. Eastman provides a

comprehensive look at the context, history, and current efforts in product model research

as it relates to building design and construction [11]. Eastman writes that the purpose and

challenge of developing product models is:

To develop an electronic representation of a building, in a form capable of
supporting all major activities throughout the building lifecycle.

The goal of constructing product models is to exchange building information, and

Eastman appropriately describes the emergence of several CAD systems along with early

data exchange standards. Specifically, he describes DXF, the exchange of Autodesk’s

AutoCAD DWG file information, Autodesk’s proprietary CAD file format [4], and IGES,

a CAD/CAM data exchange effort initiated by Robert Fulton, General Electric, and

Boeing, and transferred to the National Institute for Standards and Technology (NIST)

[30].

Eastman reviews both past and current product modeling efforts [11]. He enumerates

many early efforts and describes three object-based (a building as a set of related

components) systems in detail:

• A system developed by SSHA focusing on housing unit design and housing estate site

planning [5].

• OXSYS CAD, a system to support hospital design using the Oxford Method for a

post-and-beam and slab system [27].

• GLIDE-II, a portable engineering database language and successor to GLIDE

(Graphical Language for Interactive Design), an interpretive language and permanent

CHAPTER 1. INTRODUCTION 16

storage system that allowed defining and storing building schemas with complex

geometry [11].

1.2.2.1 Standard Exchange of Product Model Data (STEP) and Related

Efforts
Many of the current product modeling projects use the concepts from the International

Standards Organization (ISO) Standard for the Exchange of Product Model Data (STEP)

effort [50]. Eastman dedicates several chapters to STEP and related technologies [11].

The objectives of STEP included the incorporation of object-oriented programming

concepts and formal specifications of the defined structures, separation of the data model

and the physical file format, supporting subsets of the total model, and the sharing of

reference models among these subsets.

The STEP Committee defines the Application Protocols (APs) (the subsets) first, and the

APs are later incorporated into the total model. An AP has two parts:

• The Application Reference Model (ARM) that represents the requirements of an

application using the IDEF1X [35], NIAM (Nijssen’s Information Analysis Method)

[48], and EXPRESS-G models [54]

• The Application Interpreted Model (AIM) that uses EXPRESS [52] to specify the

structure of the ARM data (the STEP Committee specifically commissioned the

development of EXPRESS for this purpose)

Building-industry related APs include Part 225 (building elements), Part 228 (HVAC),

and Part 230 (steelwork). Interpreted (shared) Resources include Part 41, the application

context, and Part 42, geometric representation.

Eastman divides current building product modeling efforts into two categories [11]:

aspect models that address a specific domain in the building industry, and framework

CHAPTER 1. INTRODUCTION 17

models that address the whole structure of a building. He describes in detail three

building aspect models that make use of several STEP technologies:

• The European CIMsteel effort for structural steel [8]

• COMBINE (Computer Models for the Building Industry in Europe), the European

Union (EU) energy modeling effort [2,3]

• Part 225, the STEP AP that describes the building elements using explicit shape

representation [53]

Eastman also describes the following building framework models:

• The Finish RATAS national building model project [6]

• Part 106, the STEP Building Core Construction Model (BCCM) [51].

BCCM utilizes the General Architecture, Engineering, and Construction (AEC)

Reference Model (GARM) [21]. The GARM methodology views the product model as

functional units associated with a functional requirement, and a matching set of one or

more technical solutions. Furthermore, a technical solution can be decomposed into a set

of lower order functional units, and the decomposition can be repeated for a technical

solution associated with a functional unit as necessary. DeWard also uses the GARM in

his residential building code-checking research [9].

1.2.2.2 Industry Foundation Classes
Currently, there is an effort by the International Alliance of Interoperability (IAI), a

consortium of CAD vendors and other Architecture-Engineering-Construction/Facilities

Management (AEC/FM) industry partners, to develop standards for a three-dimensional

project model that enables interoperability between applications by different software

vendors. The IAI’s effort includes defining a set of objects called Industry Foundation

Classes (IFC) that conform to current object-oriented philosophy [31][32][33].

CHAPTER 1. INTRODUCTION 18

Figure 1.5: IFC Release 1.5 model architecture (from [32]).

The IFC model adopts terminology from the British Standard Institute (BSI) [22] and

external sources from STEP. Figure 1.5 illustrates the decomposition of the IFC model

architecture. The IFC model decomposes into four layers or modules. The lowest layer,

the Resource Layer, defines resources such as units of measure, geometric representation,

and other fundamental types. The next layer, the Core Layer, defines the Kernel and

Core Extensions. The Kernel contains objects that are not AEC/FM-specific such as the

IfcProduct, IfcProcess, IfcModelingAid, and IfcDocument objects. The

CHAPTER 1. INTRODUCTION 19

Core Extensions include AEC/FM-specific extensions to the Kernel objects. The

Interoperability Layer contains Shared Building Elements and Shared Building Service

Elements, and the final layer or module provides further detail in specific domains such

as Architecture and Facilities Management.

Currently, the IFC model is expressed in the EXPRESS language format [54]. Efforts

have been initiated to establish the IFC model in terms of aecXML, the Extensible

Markup Language (XML) “schema for project and business-to-business communication

for architecture, engineering, construction, and facility management (AEC+FM)

transactions.”4

This research develops a product model using the concepts and semantics of the IFC

model. However, the product model utilizes a much simpler object hierarchy than the

IFC hierarchy.

1.2.2.3 The Primitive-composite Approach
Howard et al. develop a primitive-composite (P-C) approach to address some of the

object-oriented data modeling problems such as overuse of aggregation hierarchies and

non-homogeneous characterization hierarchies (referring to the complex single-

inheritance subclassing deficiencies) [28]. The P-C approach attempts to address these

problems by developing rules to restrict the creation of complex objects. Rules include

how to create primitive classes with strict subclassing restrictions, the preference for the

reification of relationships over subclassing, and not allowing new attributes in the

construction of composite classes from primitive classes. Primitive classes depend on

descriptions of form (the description of an object’s physical characteristics), function (the

role or purpose of the object), and behavior (the way the object responds to

environmental stimuli) which has also been proposed by Luth to organize engineering

knowledge and concepts in structural design [38].

4 See online documentation at http://www.aecxml.org/iaiadopt.htm for the aecxml.org press release.

CHAPTER 1. INTRODUCTION 20

This research uses an object similar in concept to the primitive object (the

GenericComponent) as the main component in the product model and makes use of

relationships to define views of GenericComponent instances. FORM, FUNCTION,

and BEHAVIOR are attributes of the GenericComponent object as opposed to being

primitive constructs.

1.2.2.4 A Design Rationale Model to Capture the Design Process
Garcia explored a design rationale model that is similar in philosophy to the design intent

model developed in this research [17]. Her work investigated the use of “Active Design

Documents” (ADD) to assist in the documentation of Heating, Ventilation, and Air

Conditioning Systems (HVAC) preliminary design. The ADD assists both the designer

and the design document user by focusing on design rationale. As opposed to static

design documents, the ADD shows the designer or user the design rationale factors

considered in arriving at a design decision. The model also allows the designer to either

modify existing or add new parameters that affect the design decision-making process.

Garcia used field studies to establish the baseline HVAC design rationale parameters and

dependencies. She notes that typical HVAC design is comprised of about 150

interdependent parameters. The ADD is a frame-based knowledge-engineering

application in which the nodes (decision, alternatives, evaluation, criteria, constraints,

topics, fixes, impacts previous cases, goal, design context, and design agents) are

represented as frames and the relationships (generates, constrains, evaluates, selects) are

represented as procedures.

1.3 The Design-intent Model for Disabled Access

As noted earlier, performance-based design code is emerging as an alternative to the

traditional prescriptive-based codes. To properly define and measure the performance,

the “intent” of the design code should be explicitly modeled.

CHAPTER 1. INTRODUCTION 21

2nd Order Analysis
System-wide

Usability

Disabled Access
Building Code

Equivalent
Access to Facilities

1st Order Analysis
Accessible

Route

 Equivalent
Safety

Figure 1.6: The design-intent disabled access code model used in this research.

One of the key objectives of this research is to develop a design-intent code model for

disabled access using the Americans with Disabilities Act Accessibility Guidelines

(ADAAG) [1]. The following statement from this document states the main purpose of

the ADAAG:

1. PURPOSE. This document sets guidelines for accessibility to places of public
accommodation and commercial facilities by individuals with disabilities…

The intent of this document can be decomposed into two sub-intents: equivalent safety

and equivalent access to facilities for disabled persons. This research focuses on the

issues related to equivalent access to facilities. The equivalent access to facilities can be

further decomposed into two parts: the existence of an accessible route to the building

components within the facility and the usability of these building components by disabled

persons.

Figure 1.6 depicts a high-level view of the design-intent approach modeling the disabled

access code. The accessible route analysis represents a “first-order” analysis of the

disabled access code’s equivalent access to facilities. Figure 1.7 illustrates an example of

an accessible route in a bathroom facility between the entrance and a water closet. To

determine if the whole system of a design is usable, the whole system of accessible routes

CHAPTER 1. INTRODUCTION 22

Figure 1.7: An example of an accessible route.

must be examined. An individual route or lack of an accessible route to an individual

building component must be considered in the complete context of the designed facility.

For example, in the bathroom facility shown in Figure 1.7, the ADAAG accepts the lack

of accessible routes to the toilets in the smaller stalls as long as there is one toilet with an

accessible route. This system-wide analysis represents a “second-order” analysis of

usability.

This research develops two control models (the design-intent model of a disabled access

building code and the product model) for the analysis of the equivalent access to

facilities. The accessible route analysis module uses a combination of motion-planning

CHAPTER 1. INTRODUCTION 23

2nd Order Analysis
System-wide

Usability

 1st Order Analysis
Accessible

Route
Facility Design

Accessible-
Route-Related

Provisions

Accessible Route
Model

System-Wide
Usability Model

Product
Model

Motion Planning Simulation;
Rule-Based Approach

Rule-based Approach

Usability-
Related

Provisions

Compliance Status;
Comments/Explanation

In

Constraints

Methods

Out

Legend

Figure 1.8: The design-intent disabled access code analysis process.

simulations and “rules” to determine the existence of an accessible route in the facility.

The system-wide usability analysis also uses rules operating on the information garnered

from the accessible route analysis module.

Both the accessible route analysis and the system-wide usability analysis modules must

understand the semantics or the description of the facility design in question, and the

developed product model defines this description. From an architectural point of view,

the functions of a facility can be decomposed hierarchically into buildings, stories, and

spaces, and the product model captures this architectural decomposition. Both modules

include the facility design (an instance of the product model) and the disabled access

code as input, and both modules use the product model to store the analyses results.

Figure 1.8 illustrates the interaction of the two analysis modules and the process for the

disabled access code analysis.

Using motion-planning techniques, this research develops two accessible route models:

the prescriptive-based model based on the ADAAG accessible route provisions and the

CHAPTER 1. INTRODUCTION 24

performance-based model that attempts to directly capture wheelchair motion behavior.

The research provides specific examples illustrating the deficiencies in the prescriptive-

based formulation of the wheelchair usability constraints. Examples include designs that

are code-compliant but not usable and designs that are non-compliant but usable.

1.4 Organization of the Thesis

The objective of this research is to develop a computational framework for the design-

intent approach of ADAAG compliance checking utilizing both performance- and

prescriptive-based approaches. This thesis first develops the design-aid framework for

disabled access design assistance. Next, the thesis describes the implementation of

prescriptive- and performance-based approaches of accessible route analysis, how these

analyses are incorporated into the design-aid framework, and provides a contrast between

the two approaches. The thesis completes the design-aid framework by describing the

user-interactive environment.

This thesis is organized as follows:

• Chapter 2 presents an overview of the design-aid framework developed in this thesis.

The overview describes the design-intent model, the product model, and the

document model and introduces the disabled access analysis elements that will be

incorporated into the framework.

• Chapter 3 first steps through the manual disabled access of a bathroom facility.

Detailed examination of the manual process provides insight into the disabled access

code intent, the prescriptive-based disabled access checking process, and the

development of the automated analysis methods. The chapter then develops the

product model and formalizes the hierarchical structure of the design-intent model

utilized by the automated disabled access analysis.

CHAPTER 1. INTRODUCTION 25

• A major goal of this thesis is to validate a performance-based analysis as a

complementary component to the prescriptive-based code-compliance. Toward this

goal, Chapter 4 first develops a prescriptive-based accessible route analysis using

motion-planning techniques. These analysis methods test for a code-compliant

accessible route within a facility. Next, the chapter develops a performance-based

accessible route analysis. The motion-planning simulations developed for the

performance-based approach directly model wheelchair behavior. The chapter

compares the results of the prescriptive-based and performance-based computer

analysis methods to illustrate the advantages of the performance-based approach. In

addition, the chapter discusses the power and the flexibility of the performance-based

computer methods and how they can be applied to situations above and beyond the

wheelchair behavior assumed by the code. Finally, the chapter describes the

developed interactive and visualization techniques that give the designer additional

disabled access analysis design tools and provide more qualitative information than

the performance-based methods.

• While the main goal of this thesis is to develop the methods and framework for

disabled access usability analysis, the thesis also investigates the actual delivery of

the framework and analysis to the designer. Chapter 5 describes a modular integrated

Internet-based design-aid framework. The chapter develops and describes the

implementation of the interactive environment that allows a designer to transfer the

design data from a commercial CAD package, run and visualize the analyses, and

manipulate a wheelchair through the facility design.

• Chapter 6 describes the performance-based analysis of a facility on the Stanford

University campus to validate the developed framework and methods. The facility

violates the usability tests, and is subsequently modified to pass the performance-

based analysis. The test case represents a retrospective study and, in addition, since

recommendations to the University emerged from this study that will be taken into

consideration, the test case also represents an intervention study.

CHAPTER 1. INTRODUCTION 26

• Chapter 7, the final chapter, contains a summary and discussion of the material

presented in this thesis. The chapter summarizes the research contributions and

includes specific provision recommendations to the ADAAG. In addition, the chapter

discusses possible future extensions as well as some of the limitations of the

presented research.

Chapter 2

The Design-aid Framework

One of the research goals is to provide the designer with a set of disabled access analysis

tools to test the usability of a designed facility. Toward this goal, the research develops a

modular framework that provides the interface between the designer and three interacting

components that provide the analysis: the description of the designed facility, the

organization of the analysis tools, and the generated analysis report.

This chapter develops a design-aid framework to provide the designer with a flexible

array of design tools including code-checking and usability analysis. In this chapter, a

brief overview of the design-aid framework is provided. In addition, the chapter

introduces the applications that provide the interface between the user and the

framework. The design-aid framework consists of three main component models: a

product model, a design-intent model, and a document model. Figure 2.1 depicts the

overall design-aid framework and the three components.

The objective of this chapter is to provide an overview of the framework, its component

modules, and their interactions. Details of each component module are described in

subsequent chapters. The three components form the foundation to develop the different

types of design-aid analysis, and the chapter describes these components as follows:

27

CHAPTER 2. THE DESIGN-AID FRAMEWORK 28

Instantiated Product Model

PRODUCT MODEL

Product Model

Instantiated Intent Model

INTENT MODEL

Intent Object

Intent
Analysis

Provision Ptr

DOCUMENT MODEL

Standard

Report

User

CAD

Interface

Analysis
Module

Analysis
Module

Visual
Interactive

Environment/
Workbench (VIEW)

Generic
Product Model

IFC Geometry
Model

Figure 2.1: The design-aid framework.

• Section 2.1 introduces the product model. The product model describes the facility

design, and the design-intent model analysis methods extract, modify, and insert

information into the product model.

• Section 2.2 introduces the design-intent model, an object-oriented model that captures

the intent of a building code that organizes the analysis structure used to execute the

prescriptive- and performance-based analyses approaches described later in the thesis.

A more detailed description of the design-intent model will be presented in Chapter 3.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 29

• Section 2.3 describes the document model that contains the standard or code

document relevant to the target analysis of the instantiated design-intent model. The

document model generates the analysis report.

• Section 2.4 gives an overview of the prototype implementation. The description of

the prototype gives the reader an understanding of the actual implementation and

delivery of the analysis to the designer using current technology. Detailed

implementation of the system is given in Chapter 5.

2.1 The Product Model

This research develops a product model that is flexible enough to describe the design of a

facility and that also acts as a repository for the data derived from the analysis methods of

the design-intent model. Toward this goal, the product model reifies three main objects:

• A Table object that associates a “key” object (such as a string) in a table with a

“value” object in the same table.

• A GenericComponent object, a subclass of the Table object.

• A Relationship object, also a subclass of the Table object.

The Table object is a subclass of a root object, ExpressEntity, and Figure 2.1

shows this developed product model hierarchy in the “Product Model Hierarchy” box

(the developed product model hierarchy references the generic IFC geometry hierarchy

shown in this box to describe the form of a building component). The

GenericComponent object is flexible enough to describe either a building component

or an analysis concept. A doorway is an example of a building component, and

“maneuvering clearance” is an example of an analysis concept (a wheelchair user

maneuvers through this clearance to gain access to a building component). The

Relationship object explicitly creates views or relationships among

CHAPTER 2. THE DESIGN-AID FRAMEWORK 30

2nd Order Analysis
System-wide

Usability

Disabled Access
Building Code

Equivalent
Access to Facilities

 1st Order Analysis
Accessible

Route

 Equivalent
Safety

(beyond the scope of the thesis)

Figure 2.2: The design-intent disabled access code model.

GenericComponent instances of both the building components of the facility and the

concepts generated by the analysis methods.

This research develops the GenericComponent and the Relationship object

extending the capabilities of the IfcBuildingElement object and the

IfcRelationship object in the IFC product model. These main objects along with

a set of supporting objects (for example, the descriptions of geometry taken from the IFC

model) sufficiently describe both the design of the facility and the analysis information.

While the product model follows the object-oriented paradigm, objects in the product

model do not have associated methods. All methods are exclusively associated with the

design-intent model.

2.2 The Design-intent Model

The design-intent model organizes the intent of a standard or code to enable automated

usability or code-compliance analysis of a facility. The intent of a standard or code can

be refined and decomposed into sub-intents, and the design-intent model uses this

hierarchical structure with Intent objects, the reification of the intent, in this structure.

Figure 2.2 illustrates the hierarchical structure of the disabled access code organized with

CHAPTER 2. THE DESIGN-AID FRAMEWORK 31

the design-intent model. The intent of the disabled access code decomposes into the

intents of equivalent safety and equivalent access to facilities. The equivalent access to

facilities sub-intent further decomposes into the intents of providing accessible routes and

system-wide usability throughout the facility. This research focuses on the intent of the

disabled access code regarding equivalent access to facilities.

The key object of the implementation of the design-intent model is the Intent object.

The attributes in the Intent object include:

• A state variable (state) that keeps the state of the Intent instance. The possible

values are FULFILLED, UNFULFILLED, and UNKNOWN.

• A set of child sub-intents to the Intent instance that represents a hierarchical

design-intent structure.

• A set of pointers to relevant provisions in the implemented standard or code

document.

The Intent instance determines its state by running the Analyze() method associated

with the instance. This method examines the facility design described by the product

model, and, if necessary, inserts analysis-related information into the product model that

may be critical for its own, a parent’s, or a sibling’s Intent instance Analyze() process.

In addition, the Analyze() method traverses a hierarchical structure by recursively

executing the Analyze() methods of the child sub-intents. After traversing the child

sub-intents, the child-intents’ Analyze() methods may have inserted necessary

analysis information for the parent Analyze() to process the parent Intent instance.

Even after recursively traversing the child sub-intents, the Analyze() method may not

have sufficient information stored in the product model to make either the FULFILLED

or UNFULFILLED determination of the Intent instance’s state, and the Intent

instance remains in the UNKNOWN state. Lack of information occurs when the analysis of

CHAPTER 2. THE DESIGN-AID FRAMEWORK 32

a specific building component needs to be made in the broader context of the facility

system. For instance, the state of this particular Intent instance will be determined

higher up in the hierarchical Intent structure. The results (FULLFILLED,

UNFULFILLED, or UNKNOWN) are directly stored in the product model.

2.2.1 Accessible Route Analysis
Figure 2.2 shows two sub-intents of the equivalent access to facilities intent. This section

introduces the first sub-intent, the accessible route. In developing the proposed design-

aid framework, this research formalizes the first-order analysis required for equivalent

access to facilities analysis, the accessible route. The ADAAG defines the accessible

route as:

3.5 Definitions. Accessible Route. A continuous unobstructed path connecting all
accessible elements and spaces of a building or facility. Interior accessible routes may
include corridors, floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior
accessible routes may include parking access aisles, curb ramps, crosswalks at vehicular
ways, walks, ramps, and lifts.

The existence of an accessible route ensures the usability of a facility for wheelchair-

bound users, and in most cases, the wheelchair user should be able to negotiate the

accessible route using only forward motion.

Determining the existence of accessible routes in a facility design requires the design-

intent code model to further decompose the accessible route analysis. The components

generated from this decomposition are mapped to the prescribed provisions that the

accessible route analysis module uses to analyze the design. The accessible route

analysis uses geometric interference rules to determine the accessibility of some of the

accessible route components and motion-planning simulations to generate code-

compliant paths.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 33

Table 2.1: Accessible route analysis models and methods.
Approach Models Methods

Prescriptive-based Code-compliant Accessible Route Model Code-compliant Motion Planning Simulations
Supporting Product Model Code-compliant Rule-based Approach

Performance-based Usable Accessible Route Model Usability Motion Planning Simulations
Supporting Product Model Usability Rule-based Approach

For the performance-based approach, this research utilizes the same accessible route

model (and the supporting product model). However, as opposed to using motion-

planning techniques to show compliance with the prescribed provisions, the performance-

based motion-planning techniques directly model wheelchair behavior to generate the

paths.

Table 2.1 summarizes the models and methods for the development of the design-aid

framework using the prescriptive-based or performance-based formulation of the

usability constraints along with the interactive environment.

2.2.1.1 Analyzing an Accessible Route for Prescriptive-based Code-

Compliance
One advantage of prescriptive-based codes is the straightforward evaluation of

compliance with established requirements explicitly stated in the code provisions.

Indeed, automated evaluation of accessible routes is straightforward if the designer is

required to indicate the routes through a facility. If the designer explicitly provides the

accessible routes to the automated analysis, the routes could be evaluated by a computer

application with a set of geometric interference tests. However, analysis based on a

manually-defined accessible route has two deficiencies:

CHAPTER 2. THE DESIGN-AID FRAMEWORK 34

1. In practice, designers are not required to delineate the accessible routes in a facility

since delineating the connections of all accessible building components to accessible

routes is not practical. Rather, a building official will typically inspect a plan and

determine the existence of accessible routes to all the accessible building components.

2. A design with mislabeled or missing accessible routes does not necessarily imply

there is no accessible route since the designer may have failed to label or recognize a

code-compliant or usable route.

Computer-based motion-planning techniques naturally translate to searching for an

accessible path between building components representing the initial and goal points and

the obstacles in the space. The geometric requirements listed in the prescriptive

provisions map to the robot’s geometric and motion parameters. Since the geometric

requirements prescribed in the provisions are abstractions of the design intent of the

accessible route, the robot captures these abstract behaviors as opposed to directly

capturing wheelchair geometric and motion behavior.

2.2.1.2 Analyzing an Accessible Route for Performance-based Usability
As noted, the design-intent modeling approach allows the substitution of prescriptive

methods with performance-based methods. This research determines the accessible route

using a performance-based method. To analyze a facility for the existence of the required

accessible routes, the research directly models wheelchair behavior using motion-

planning techniques. As opposed to the prescriptive-based analysis in which the

prescribed geometric requirements are modeled, the performance-based analysis models

the actual wheelchair geometry and wheelchair movement parameters.

The performance-based motion planning simulation uses the wheelchair geometry

prescribed by the disabled access code and restricts the motion parameters of the

wheelchair to reflect the compliance/non-compliance threshold for configurations

prescribed by the disabled access code. This simulation reveals both the deficiency in a

CHAPTER 2. THE DESIGN-AID FRAMEWORK 35

prescriptive-based approach and the advantage of a performance-based approach of

wheelchair use:

• A prescriptive-based approach represents an approximation and summary of behavior

for a model wheelchair.

• The performance-based approach can vary the wheelchair parameters to analyze the

performance of specific wheelchair models.

2.2.2 System-wide Usability Analysis
The accessible route analysis passes the generated route information to the system-wide

usability analysis, the second sub-intent of the equivalent access to facilities intent shown

in Figure 2.2. This module determines the overall accessibility for a collection of

building components based on the accessible route information.

Note that not all of the building components within the collection need to have accessible

routes in order for the collection to be accessible. For example, for the bathroom facility

illustrated in Figure 2.3, only one of the water closets has a valid accessible route (as

shown by the dashed line), but the bathroom still complies with disabled access

requirements. From the ADAAG:

4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard
toilet stall complying with 4.17…

The system-wide usability analysis module must examine components in the entire

system to determine whether the system is usable even if one or more of the individual

components within the system are not usable. In this example, two of the water closets

do not have valid accessible routes (there are also non-accessible-route-related issues that

make these water closets unusable for disabled persons), yet in compliance with the intent

of the code, a disabled person can still effectively use the facility. Thus, the system-wide

CHAPTER 2. THE DESIGN-AID FRAMEWORK 36

Figure 2.3: The bathroom facility example with one accessible water closet.

usability module is an integral part of the design-intent formulation of the disabled access

code.

2.3 The Document Model

Figure 2.4 shows the user interface generated from the document model. The document

model consists of two components:

• The standard or code document stored in HTML format.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 37

Figure 2.4: The report generated from the document model (from [24]).

• A report stored in HTML format generated by the design-intent model analysis that

contains analysis comments and hypertext links to the standard or code document.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 38

As illustrated in Figure 2.1, the Analyze() associated with the “Analysis” methods of

individual Intent objects within the instantiated design-intent model contain pointers

to the relevant provisions in the standard or code document. In addition to generating the

report, the Analyze() methods populate the product model with links to the report, and

the user activates these links through the graphical interface.

Han et al. first describe this document model in [24]. As shown in Figure 2.4, the left

frame in the browser window contains the graphical model of the facility design. In this

example, the dark transparent box (circled) represents a clearance violation, and it

contains a hyperlink to one of the generated report that appears in the bottom frame in the

browser window. The report, in turn, contains a hyperlink to the referenced provision

from the standard that is displayed in the right frame in the browser window. In the

figure, the user has clicked on a referenced provision in the comment window, and the

relevant provision appears in the standard document window.

2.3.1 The Standard or Code Document
Currently, the World Wide Web uses HTML as the standard for publishing text-based

information. Users view HTML documents using an HTML-compliant web browser (the

browser window’s right frame in Figure 2.4 shows the ADAAG). Among its features,

HTML provides an anchor feature that allows the navigation to a specific position in a

document. Figure 2.5 illustrates an ADAAG provision in HTML format, and the line in

bold text illustrates the anchor syntax.

The anchor feature along with the ubiquity of web browsers and HTML-based documents

makes web-based delivery the logical choice for the standard or code document. The

online version of the ADAAG is published using the HTML standard.5

5 See http://www.access-board.gov/bfdg/adaag.htm.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 39

<dt>
4.13.6
Maneuvering Clearances at Doors.
Minimum maneuvering clearances at doors that are not
automatic or power-assisted shall be as shown in Fig. 25. The floor or ground
area within the required clearances shall be level and
clear.

</dt>
<dd>

EXCEPTION: Entry doors to acute care hospital bedrooms
for in-patients shall be exempted from the requirement
for space at the latch side of the door (see dimension "x" in Fig.
25) if the door is at least 44 in (1120 mm) wide.

</dd>

Figure 2.5: An example provision in HTML format.

2.3.2 The Report
The design-intent model generates the report component of the document model shown in

the browser window’s bottom frame in Figure 2.4. If an Intent instance cannot be

fulfilled, the analysis method associated with the Intent instance generates a comment

in the report that references the required provisions that have not been fulfilled.

Otherwise, if the Intent instance can be fulfilled, the analysis method associated with

the Intent instance generates a comment that references the provision that has been

fulfilled.

As noted in Section 2.2, the Intent instance has a set of pointers to the relevant

provisions. Since the document model uses HTML as its document format, these

pointers take the form of HTML-compliant references to anchors within the standard or

code document. Part of the comment generated for the report will contain these hypertext

references so that the user can click on a reference as illustrated in Figure 2.4 and see the

associated provision that has been violated.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 40

The comment lines, in turn, contain HTTP-compliant anchors so the user can see the

associated comment when clicking the relevant feature in the graphical interface. In

addition to generating the report, the design-intent model analysis methods insert this

hyperlink information into the product model, and the graphical interface makes use of

this hyperlink information as illustrated in Figure 2.4.

2.4 The Prototype

This section gives a brief overview of the prototype implementation. Chapter 5 describes

the implementation in detail. The choice of platform and programming languages for the

prototype system reflects the following considerations, all of which are inter-related:

• The prototype takes advantage of the ubiquity of the World Wide Web.

• The prototype utilizes object-oriented programming languages in developing the

various hierarchical model structures.

• The prototype uses a state-of-the-art distributed object platform that can be integrated

with the World Wide Web environment as well as the choice of programming

languages.

Toward the first goal, the prototype adopts the web browser as the user interface and uses

Java applet technology allowing the user to interact with the design information and the

analysis programs. In addition, the Visual Interactive Environment/Workbench (VIEW)

uses the Virtual Reality Modeling Language (VRML) [34] to provide the graphical

interface to the facility model, and a Java-VRML interface, the External Authoring

Interface (EAI) allows for the flexible user interaction with the graphical model [45].

This research implements the prototype using the Java and C++ programming languages.

The web-based interactive environment between the analysis programs and the graphical

user interface is implemented in Java. The prototype also utilizes Java to implement the

CHAPTER 2. THE DESIGN-AID FRAMEWORK 41

product model and the design-intent model, both for modeling the objects and for

implementing the analysis methods associated with the Intent instances.

Computationally intensive algorithms such as the motion planning simulations are

implemented in C++, and the appropriate Java interfaces provide the link between Java

and C++.

Use of the World Wide Web and several design processes naturally lend themselves to

leveraging the power of distributed object environments [25]. Furthermore, the

hierarchical analysis structure further suggests the use of distributed objects. The

prototype uses the Common Object Request Broker Architecture (CORBA) to connect

the analysis modules and the instantiated design-intent model’s hierarchical structure as

well as the analysis of the Intent instances within an instantiated design intent

structure. In addition CORBA provides interfaces to the Java-developed models [59].

Finally, the document model components conform to HTML format and can be viewed

using the web-browser environment. Figure 2.6 illustrates the implemented interfaces,

programming languages, and environments used by the prototype.

Figure 2.7 illustrates the VIEW. It acts as the user interface between the designer and the

design-aid framework. The VIEW provides the designer with a graphical view of the

facility as described by the productmodel. A designer can generate the design using an

external CAD package and upload the design to the product model module of the design-

aid framework or upload a design from a model repository directly to the product model

module.

From the VIEW, the designer can modify the design, interact with the design, or execute

an analysis program associated with an instantiated design-intent model. The execution

of an analysis program generates the links between the graphical model of the design

(viewed in the VIEW) and the generated analysis report and the standard document in the

document model.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 42

Instantiated Product Model

PRODUCT MODEL

Product Model

INTENT MODEL

Intent Object

DOCUMENT MODEL

Standard

Report

User

Instantiated Intent Model

LEGEND

Java

Java/CORBA

Java/C++

HTML/Java/VRML

HTML

DIRECT LINK CORBA

CAD

Interface

Analysis
Module

Analysis
Module

Visual
Interactive

Environment/
Workbench (VIEW)

Intent
Analysis

Provision Ptr

GENERATES

H
TTP LIN

K
S

Figure 2.6: The prototype implementation.

Disabled access codes provide guidelines for the equivalent access to facilities for

disabled persons, and the accessible route is a main component of this concept [1].

However, the concept of equivalent access cannot be completely mapped to either the

prescriptive- or performance-based approach. Thus, the research also provides an

interactive environment in which the designer can manipulate a virtual wheelchair

through a facility design. The manipulation techniques that utilize the behavior captured

by performance-based methods can help the designer further determine the equivalent

facilitation of a particular design or configuration. The interactive environment provides

the insight that is difficult to quantify such as maneuvering along the accessible route

from the wheelchair user’s point of view or relaxing the forward-motion constraint by

allowing multiple wheelchair backups.

CHAPTER 2. THE DESIGN-AID FRAMEWORK 43

Figure 2.7: The Visual Interactive Environment/Workbench (VIEW).

2.5 Summary

The design-aid framework presented in this chapter consists of three components: a

product model, a design-intent model, and a document model. This research uses this

design-aid framework to automate disabled access analysis and to provide an interactive

wheelchair-manipulation environment.

This chapter introduced the disabled access design-intent model that supports the

automated disabled access process. The automated disabled access analysis decomposes

into two components: accessible route analysis and system-wide analysis of the facility

CHAPTER 2. THE DESIGN-AID FRAMEWORK 44

design. The chapter introduced the two approaches to accessible route analysis. The

prescriptive-based approach attempts to capture the prescriptive-based provisions of the

ADAAG, and the performance-based approach attempts to directly model wheelchair

behavior.

The Visual Interactive Environment/Workbench (VIEW) displays the facility design that

it extracts from the product model. From the VIEW, a designer can manipulate the

facility design or interact with the design with a simulated wheelchair user. In addition,

the designer can send the facility design to the design-intent model to analyze the facility

design. The design-intent model extracts the facility design information from the product

model, and the design-intent model processes this information in the automated analysis

process. The design-intent model then reports the results of the analysis using the

document model.

The design-aid framework is strongly influenced by the Hyper-Object-Logic model [60].

In the Hyper-Object-Logic model, the object-logic model aggregates the standards base

and the CAD object database. The design-aid framework conceptually separates the

design-intent model (that is analogous to the standards base) and the product model (that

is analogous to the CAD object database). In addition, an implementation of the Hyper-

Object-Logic model explicitly creates subclasses of the standards base member hierarchy

and the CAD object database object model. In contrast, the design-aid framework in this

work does not create subclasses of the main components of the design-intent model (the

Intent object) and the product model (a generic component, GenericComponent).

Instead, populating the various attributes of each respective object differentiates them

from one another. This approach provides a more global template to the approach of

creating subclasses of the main components.

While the Hyper-Object-Logic model uses object-logic sentences to define methods

associated with the standards base method objects, no such restriction exists for the

analysis methods associated with the Intent object instances. Removing this

restriction allows integrating more powerful and flexible methods such as the motion-

CHAPTER 2. THE DESIGN-AID FRAMEWORK 45

planning simulations directly into the design-intent model. These analysis methods

contribute to the determination of an Intent instance’s final state (fulfilled, unfulfilled,

or unknown), and the results of these analyses are stored directly in the product model.

The design-aid framework uses a much simpler document model than Yabuki’s Hyper-

Object-Logic HyperDocument model. The design-intent model structure consisting of

Intent object instances contain pointers to the relevant standard document. The

standard document that is fully-contained by the document model adheres to the

hypertext markup language (HTTP) standard, the document standard for perusing

documents using the hypertext transfer protocol over the World Wide Web.

The design-intent model developed in this research is similar to Garcia’s Active Design

Documents Model (ADD) [17]. Garcia acquires HVAC design rationale to drive the

HVAC design decision-making process, and this research extracts intent from the

disabled access building code to produce a hierarchical structure that enables automated

analysis of a facility design. Garcia used the ADD to dynamically acquire and organize

the design rationale and the associated decisions, and the design-intent model organizes

an immutable hierarchy of the design-intent of a specific standards or code document.

To use the ADD, the designer explicitly declares the critical design parameters (for

example, the number of stories in the building, the duct ceiling space provided), and the

ADD analyzes these parameters using the ADD design rationale network. In contrast, the

design-aid framework uses analysis methods that populate the design intent model to

analyze an instance of a symbolic product model that represents a facility design.

Finally, a case-specific ADD represents an evolving ad hoc network of inter-dependent

design rationales whereas the design-intent model attempts to organize the intent of a

standards document in a structure that can be traversed in a sequential manner. The ad

hoc nature of the design rational structure allows the designer to modify existing or insert

new parameters based on personal experience or case-specific information. In contrast,

the hierarchical structure of the design intent model is immutable, but as will be shown in

CHAPTER 2. THE DESIGN-AID FRAMEWORK 46

Chapter 4, the methods that test the intents can be interchanged. The research uses this

flexibility to populate the same design-intent model with either the prescriptive-based and

performance-based analysis methods.

Chapter 3

A Disabled Access Analysis Design-
aid Framework

This chapter examines the manual disabled access analysis of a bathroom facility, and,

from this analysis, develops an automated analysis process. Detailed examination of the

manual process provides insight into the disabled access code intent and the prescriptive-

based disabled access checking process. Examining the manual checking process

provides the understanding and the decomposition of the accessible route and helps

develop the automated accessible route analysis. As a result, the accessible route analysis

can be cast into the context of the system wide facility analysis.

This chapter is organized as follows:

• Section 3.1 describes a typical manual process that is commonly employed in

analyzing a facility. The bathroom facility example will be employed to illustrate the

process.

• Section 3.2 develops the product model used to describe the facility and store the

analysis information.

47

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 48

• Section 3.3 develops a design-intent code model using the concepts taken from the

manual analysis.

• Section 3.4 decomposes the accessible route analysis according to the intent for

equivalent access to facilities. The accessible route analysis tries to generate an

accessible route to all building components. The accessible route analysis represents a

first-pass for the disabled access analysis problem and is hereby called first-order

analysis.

• The accessible route analysis generates the routes, and these routes must then be

examined by the usability analysis. Section 3.5 describes the system-wide usability

analysis incorporating the design-intent code model. The system-wide analysis of

accessibility and usability is hereby called second-order analysis.

• Finally, Section 3.6 illustrates the automated analysis process for a bathroom facility.

3.1 The Manual Disabled Access Analysis Process

This section describes a typical manual compliance checking for disabled access using

the bathroom facility illustrated in Figure 3.1. A building official or designer examines

the building components labeled A through K to determine disabled access code-

compliance by asking questions about the facility design in a roughly hierarchical

manner. Provisions from the ADAAG illustrate specific arguments supporting the

analysis with the pertinent points from these provisions italicized.

3.1.1 Manual Analysis of the Bathroom Facility
A. Top Level:

Question: Is this facility subject to the ADAAG disabled access code?

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 49

A

B

HG

JI

FE K

C D

UTILITY UTILITY UTILITY

WOMEN’S
BATHROOM

MEN’S
BATHROOM

UTILITY

Figure 3.1: The example bathroom facility.

Analysis: The facility is a newly-constructed bathroom building of a middle

school.

Relevant ADAAG provisions:

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 50

1. PURPOSE. This document sets guidelines for accessibility to places of public
accommodation and commercial facilities by individuals with disabilities.

4.1.1 Application. (1) General. All areas of newly designed or newly constructed
buildings and facilities required to be accessible by 4.1.2 and 4.1.3 and altered portions of
existing buildings and facilities required to be accessible by 4.1.6 shall comply with these
guidelines, 4.1 through 4.35, unless otherwise provided in this section or as modified in a
special application section.

Answer: Yes.

A.1 Building/Story Level (there is only one story):

Question: What spaces in this building must be accessible?

Analysis: Bathrooms need to be accessible. Utility spaces do not.

Relevant ADAAG provisions:

4.1.1 Application. (1) General. All areas of newly designed or newly constructed
buildings and facilities required to be accessible by 4.1.2 and 4.1.3…

4.1.2 Accessible Sites and Exterior Facilities: New Construction. An accessible site
shall meet the following minimum requirements:…(6) If toilet facilities are provided on a
site, then each such public or common use toilet facility shall comply with 4.22. If
bathing facilities are provided on a site, then each such public or common use bathing
facility shall comply with 4.23…

4.23.1 Minimum Number. Bathrooms, bathing facilities, or shower rooms required to be
accessible by 4.1 shall comply with 4.23 and shall be on an accessible route.

4.1.1 Application. (5) General Exceptions. (b) Accessibility is not required…(ii) in
non-occupiable spaces…frequented only by service personnel for repair purposes…

Answer: Men’s Bathroom, Women’s Bathroom.

A.1.1 Space Level: Men’s Bathroom (only the Men’s Bathroom is analyzed here):

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 51

Question: Does the bathroom comply with clear floor space requirements?

Analysis: A 60-inch turning circle fits into the space.

Relevant ADAAG provisions:

4.23.3 Clear Floor Space. … An unobstructed turning space complying with 4.2.3 shall
be provided within an accessible bathroom…

4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped
space (see Fig. 3(b)).

Answer: Yes.

Question: What building components need to be accessible?

Analysis: See cited provisions below.

Relevant ADAAG provisions:

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall
meet the following minimum requirements:…(7) Doors:…(b) Within a building or
facility, at least one door at each accessible space shall comply with 4.13.

4.23.2 Doors. Doors to accessible bathrooms shall comply with 4.13. Doors shall not
swing into the floor space required for any fixture.

4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard
toilet stall complying with 4.17…

4.23.5 Urinals. If urinals are provided, then at least one shall comply with 4.18.

4.23.6 Lavatories and Mirrors. If lavatories and mirrors are provided, then at least one
of each shall comply with 4.19.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 52

Answer: Doors (including the entry door), at least one water closet, at least

one urinal, and at least one lavatory.

A.1.1.1 Building Component Level: Door A

Question: Is Door A accessible (if this door is not accessible, the bathroom is

not accessible)?

Analysis: It has sufficient clear width, any approach maneuvering clearance

outside the bathroom, and side-approach maneuvering clearance

inside the bathroom.

Relevant ADAAG provisions:

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm)
with the door open 90 degrees, measured between the face of the door and the opposite
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)).

4.13.6 Maneuvering Clearances at Doors. Minimum maneuvering clearances at doors
that are not automatic or power-assisted shall be as shown in Fig. 25. The floor or ground
area within the required clearances shall be level and clear.

Answer: Yes.

A.1.1.2 Building Component Level: water closets.

Question: Is there at least one accessible water closet?

Analysis: Grab Bars: All water closets are in stalls, and Water Closets G and H

do not have grab bars, so they are not accessible. Water Closet K has

grab bars that comply with requirements.

Relevant ADAAG provision:

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 53

4.17.6 Grab Bars. Grab bars complying with the length and positioning shown in Fig.
30(a), (b), (c), and (d) shall be provided. Grab bars may be mounted with any desired
method as long as they have a gripping surface at the locations shown and do not obstruct
the required clear floor area. Grab bars shall comply with 4.26.

Analysis: Clear Floor Space: Water Closet K has sufficient diagonal approach

clearance.

Relevant ADAAG provision:

4.16.2 Clear Floor Space. Clear floor space for water closets not in stalls shall comply
with Fig. 28. Clear floor space may be arranged to allow either a left-handed or right-
handed approach.

Analysis: Accessible Route: There is an accessible route between Door A and

Water Closet K through Door B (see A.1.1.3).

Relevant ADAAG provisions:

3.5 Definitions. Accessible Route. A continuous unobstructed path connecting all
accessible elements and spaces of a building or facility. Interior accessible routes may
include corridors, floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior
accessible routes may include parking access aisles, curb ramps, crosswalks at vehicular
ways, walks, ramps, and lifts.

4.3.2 Location. (3) At least one accessible route shall connect accessible building or
facility entrances with all accessible spaces and elements and with all accessible dwelling
units within the building or facility.

4.3.3 Width. The minimum clear width of an accessible route shall be 36 in (915 mm)
except at doors (see 4.13.5 and 4.13.6). If a person in a wheelchair must make a turn
around an obstruction, the minimum clear width of the accessible route shall be as shown
in Fig. 7(a) and (b).

Answer: Yes, Water Closet K is accessible.

A.1.1.3 Building Component Level: Door B

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 54

Question: Is Door B accessible?

Analysis: It has sufficient clear width, front approach maneuvering clearance

outside the toilet stall, and side-approach maneuvering clearance

inside the toilet stall.

Answer: Yes.

A.1.1.4 Building Component Level: urinals.

Question: Is there at least one accessible urinal?

Analysis: Clear Space: Both urinals have sufficient clear space.

Relevant ADAAG provision:

4.18.3 Clear Floor Space. A clear floor space 30 in by 48 in (760 mm by 1220 mm)
shall be provided in front of urinals to allow forward approach. This clear space shall
adjoin or overlap an accessible route and shall comply with 4.2.4…

Analysis: Accessible Route: There is an accessible route between Door A and

both urinals.

Answer: Yes, both are accessible.

A.1.1.5 Building Component Level: lavatories.

Question: Is there at least one accessible lavatory?

Analysis: Clear Space: Both lavatories have sufficient clear space.

Relevant ADAAG provision:

4.19.3 Clear Floor Space. A clear floor space 30 in by 48 in (760 mm by 1220 mm)
complying with 4.2.4 shall be provided in front of a lavatory to allow forward approach.
Such clear floor space shall adjoin or overlap an accessible route and shall extend a
maximum of 19 in (485 mm) underneath the lavatory (see Fig. 32).

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 55

Analysis: Accessible Route: There is an accessible route between Door A and

both lavatories.

Answer: Yes, both are accessible.

A.1.1.6 Building Component Level: Door C and Door D

Analysis: These doors do not have sufficient clear space in the toilet stalls.

However, since Water Closets G and H do not have to be accessible

(see A.1.1.2), these doors do not have to be accessible.

3.1.2 Discussion
The above design analysis follows roughly a hierarchical procedure. The strict

hierarchical structure breaks down when certain decisions that had to be deferred until the

analysis of other components needed to be completed. For example, the accessibility of

Water Closet K depends on an accessible route, but the accessible route to K cannot be

determined until the designer or building official determines the accessibility of Door B.

A designer or building official could follow the strict hierarchical decomposition by first

examining all components that possibly participate in the accessible routes, in this case,

examining all the doors first. Indeed, the automated analysis approach taken in this

chapter follows this brute-force procedure of examining all of the building components.

The disadvantage of this procedure manifests itself in the unnecessary analysis of certain

building components such as Doors C and D.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 56

3.2 A Product Model to Support Disabled Access

Analysis

In order to support disabled access analysis, a product model needs to be flexible enough

to describe the design of a facility as well as serve as a repository for the data derived

from the analysis methods of the design-intent model module. Product modeling

requirements depend on the type of analysis. This research adopts the definitions of

form, function, and behavior as described by Howard et al. [28].

The geometric description or the form of the building components is a critical attribute

for accessible route and usability determination since the generation of an accessible

route depends on geometric constraints. Equally important is the description of the

function and behavior of a building component or a set of building components. Though

some functions can be easily derived from the form of an element (for example, an

element’s form determines its function as an obstacle), making an element’s function

explicit alleviates the need for the analysis program to derive more complicated

functions. For example, it is simpler to declare an object as a water closet as opposed to

deriving this function from an element or group of elements. Attaching function to an

element has liabilities, such as incorrectly labeling the functionality. Given a declaration

of an element’s function, an analysis program should first verify that an element

functions correctly. For example, a program should verify that a grab bar is attached to a

wall and is not floating in space. Finally, explicitly labeling the architectural space

functions (Men’s Bathroom, Women’s Bathroom, and Utility Rooms) is necessary for

this accessibility analysis.

Relationships among building components also define the functionality and behavior of

the components. Reifying these relationships simplifies the manipulation of features of a

building. For example, if the concept of an opening is reified, and a relationship between

the opening and the wall is established, the size or placement of the opening in the wall

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 57

ExpressEntity Table
GenericComponent

Relationship

IfcGeometricRepresentation
IfcDirection

IfcPlacement

IfcBoundingBox

IfcPoint IfcCartesianPoint

IfcAxis2Placement2D

IfcAxis2Placement3D

Figure 3.2: The product model hierarchy of objects.

can easily be modified to change the functionality or behavior of the wall. Similarly,

reification of certain relationships simplifies the analysis of elements in a design.

This research uses the conceptual structure of the IFC product model described in [33].

Figure 3.2 illustrates the product model hierarchy used that supports the disabled access

analysis as well as the geometrical representation hierarchy taken from the IFC geometry.

The root object in the hierarchy, ExpressEntity, contains an index field taken

directly from the EXPRESS methodology of relating EXPRESS schema objects to one

another in a generated static file [52]. In addition, there are additional flags that relate to

revision information. The Table subclass is a table structure that holds a table of keys

and their associated values. Figure 3.3 illustrates the EXPRESS schema for these two

objects, and Figure 3.4 shows an example of an instantiated Table object, a table that

represents the form of an OPENING object.

The id of the Table instance shown in Figure 3.4 is FORM/OPENE-N02, keys are

SOLID, LOCALPLACEMENT, and PRODUCTSHAPE, and the associated values are

FALSE, #640, and #635 (the numbers #640 and #635 refer to other instantiated

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 58

ENTITY ExpressEntity
ABSTRACT SUPERTYPE OF (Table);

index : INTEGER;
insert : BOOLEAN;
delete : BOOLEAN;
replace : BOOLEAN;
proxy : BOOLEAN;

END_ENTITY;

ENTITY Table
SUPERTYPE OF (ONEOF (

GenericComponent,
Relationship

))
SUBTYPE OF (ExpressEntity);

id : STRING;
keys : LIST [0:N] OF ANY
values : LIST [0:M] OF ANY

WHERE
WR1: N=M;

END_ENTITY;

Figure 3.3: EXPRESS schema for the ExpressEntity and Table objects.

#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));

Figure 3.4: An example Table instance.

objects). LOCALPLACEMENT and PRODUCTSHAPE refer to IFC geometry objects. The

next two subsections describe the concepts and the extensions to the IFC product model

employed in this research.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 59

ENTITY GenericComponent
SUBTYPE OF (Table);
WHERE

WR1: keys[0] = "FORM",
keys[1] = "FUNCTION",
keys[2] = "BEHAVIOR";

END_ENTITY;

Figure 3.5: EXPRESS schema for the GenericComponent object.

3.2.1 Reification of Components
The product model has a generalized object structure as illustrated in the top figure of

Figure 3.2. A building element is an instantiation of the object GenericComponent, a

subclass of the Table object, which restricts the keys of the table to FORM (a

GenericComponent uses the IFC geometric representation objects to capture the

form), FUNCTION, and BEHAVIOR. Figure 3.5 illustrates the EXPRESS schema for the

GenericComponent object.

The IFC model explicitly reifies certain objects. For example, an opening in the IFC

model is represented by an IfcOpeningElement. As opposed to explicitly defining

certain building component objects, a GenericComponent instance represents a

specific building component as a key/value associated with the FUNCTION and

BEHAVIOR keys. For example, a GenericComponent that represents an opening has

an OPENING key/value in Table instances associated with the component’s

FUNCTION and BEHAVIOR keys. By using this model, any IFC building element and

any new building components such as ramps (which are not explicitly reified in the IFC

Release 1.5 model6) can easily be added to the product model. Conversely, since the IFC

model explicitly reifies certain objects and their attributes, an analysis program can be

6 A ramp object (IfcRamp) is reified in the IFC Release 2.0 model, but the issue of adding reified objects

versus providing an object structure to easily incorporate new objects is still valid.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 60

#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));
#642 = TABLE ('FUNCTION/OPENE-N02', (OPENING), (OPENING));
#643 = TABLE ('BEHAVIOR/OPENE-N02', (OPENING), (OPENING));
#644 = GENERICCOMPONENT ('OPENE-N02', #641, #642, #643);

Figure 3.6: A GenericComponent and supporting Table instances for an opening.

written to efficiently parse IFC building elements a priori by making the function and

behavior implicit in the code.

In this research, all the subclasses of the IFC Release 1.5 IfcBuildingElement

object are represented by equivalent GenericComponent objects [33]. For

accessibility analysis, the product model needs to support the description of building

components such as openings, doors, water closets, lavatories, and urinals. For example,

Figure 3.6 describes an instance of an opening object along with the associated Table

instances. The string OPENE-N02 denotes the component’s id, and the three numbers

indicate pointers to Table objects representing the FORM, FUNCTION, and BEHAVIOR

of the component (note that #641 is the Table object described in Figure 3.4).

An analysis method extracts the information from a GenericComponent and the

supporting Table instances. For example, when an analysis method examines the

GenericComponent shown in Figure 3.6, the method discovers that the

GenericComponent is an opening from the supporting FUNCTION and BEHAVIOR

Table instances. In this example, the supporting FUNCTION and BEHAVIOR Table

instances contain the information that this building component functions and behaves like

an opening.

Container objects describe specific GenericComponent objects that group sets of

GenericComponent instances. The development of these container objects in the

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 61

#641 = TABLE ('FORM/OPENE-N02', ('SOLID', 'LOCALPLACEMENT'
'PRODUCTSHAPE'), (.F., #640, #635));
#642 = TABLE ('FUNCTION/OPENE-N02', (OPENING), (OPENING));
#643 = TABLE ('BEHAVIOR/OPENE-N02', (OPENING,
ACCESSIBILITY), (OPENING, #10000));
#644 = GENERICCOMPONENT ('OPENE-N02', #641, #642, #643);
#10000 = TABLE ('ACCESSIBILITY/BEHAVIOR/OPENE-N02',
(ACCESSIBLE), (NULL));

Figure 3.7: The modified GenericComponent and Table instances.

context of the Relationship object is discussed in the next section. Container objects

support the functional view assumed by different architectural design analyses such as

disabled access. As noted in the manual analysis of the bathroom facility in Chapter 3,

the disabled access code assumes the description of buildings, stories, and spaces (for

example, the Men’s Bathroom) in the facility documentation.

Finally, the product model has been designed to be flexible enough for the analysis

methods of the design-intent model module to deposit analysis information into the

product model by dynamically adding additional keys and associated Table instances to

an existing Table instance. For example, an analysis method can modify the behavior

of the relevant opening component by creating an “accessibility” Table instance that

becomes part of the opening’s behavior. Initially, the values for the “accessibility”

Table cannot be determined, and hence, these fields are undefined. Figure 3.7

illustrates the same opening component shown in Figure 3.6 incorporating a simplified

“accessibility” Table instance, #10000. When a subsequent analysis method examines

this modified GenericComponent, this building component contains the additional

accessibility analysis information.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 62

ENTITY Relationship
SUBTYPE OF (Table);
WHERE

WR1: keys[i] : GenericComponent,
values[i] : LIST [0:N] OF

GenericComponent;
END_ENTITY;

Figure 3.8: EXPRESS schema for the Relationship object.

3.2.2 Reification of Component Relationships
As illustrated in Figure 3.2, the Relationship object is a subclass of the Table

object. The Relationship object corresponds in functionality to the IFC

IfcRelationship object [33]. The Relationship object explicitly associates

one GenericComponent with one or more other GenericComponents and creates

a specific way of viewing of the model alleviating the need for an analysis program to

derive this information.

Figure 3.8 illustrates the EXPRESS schema for the Relationship object. Note that

the Relationship object does not add any new attributes, but the keys are now

restricted to GenericComponents and values are restricted to lists of

GenericComponents. Specifically, the Relationship object associates a specific

GenericComponent (keys[i]) with a list (LIST [0:N]) of N

GenericComponents (values[i]).

The IFC model specifies subclasses of the IfcRelationship object to refine a

specific type of relationship. For example, the IfcRelVoids object (a subclass of

IfcRelationship) explicitly describes the relationship that an opening

(IfcOpening) has with a solid object such as a wall (IfcWall). Similarly, in this

research, a Relationship object defines the relationship that one or more

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 63

#1 = RELATIONSHIP ('VOIDS', (#599), ((#614, #644)));
#599 = GENERICCOMPONENT ('WALL-1 , ...);
#614 = GENERICCOMPONENT ('OPENING-1', ...);
#644 = GENERICCOMPONENT ('OPENING-2', ...);

Figure 3.9: A Relationship instance and the associated GenericComponents
defining the VOIDS relationship.

VOIDS

FILLSBuilding
Component(s)

Building
Component

Building
Component(s)

Building
Component

Figure 3.10: The VOIDS and FILLS relationships.

GenericComponent objects have with another GenericComponent object—the

name of the Relationship instance defines its functionality. For example, the

Relationship object named VOIDS corresponds to the IfcRelVoids object in the

IFC model. A new type of relationship can easily be added to the product model.

Conversely, since the IFC model explicitly reifies certain relationships and their

attributes, an analysis program can be written to efficiently parse predetermined IFC

relationships. Figure 3.9 illustrates an instance of the VOIDS relationship. Note that

#599 corresponds to a wall, #614 corresponds to an opening, and #644 corresponds to

the opening in Figure 3.6.

First-order accessible route analysis takes advantage of the VOIDS/FILLS relationships

shown in Figure 3.10 to differentiate between open spaces and spaces that constitute

openings in walls and which building components fill the openings. The analysis

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 64

BOUNDED
BY

CONTAINS

CONTAINS

CONTAINS

BOUNDED
BY

BOUNDED
BY

Building
Component

Building
Component

Building
Component

Building
Component

SPACE

STORY

BUILDING

Figure 3.11: Relationship instances defining an architectural view of a facility.

decomposes the accessible route treating open spaces and wall openings differently so

explicitly reifying an opening and the relationship between an opening and a wall relieves

the analysis from deriving openings in a facility. The different treatments reflect the

disabled access code’s definition of an accessible route: in an open space, the width of the

route is 36 inches, and at an opening, a 32-inch width complies with the code [1].

The BUILDING, STORY, and SPACE container elements (GenericComponents

which have the functions and behaviors labeled BUILDING, STORY, and SPACE) shown

in Figure 3.11 correspond to the IfcBuilding, IfcStorey, and IfcSpace

container elements respectively [33]. While first-order accessible route analysis does not

need the relationship information shown in Figure 3.11 to construct the accessible routes

to the building components, the analysis can take advantage of these relationships by

connecting accessible route segments between various similar container objects (for

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 65

example, between SPACES). However, second-order disabled access usability analysis

is dependent on the architectural view or interpretation of a design that decomposes a

facility into buildings, stories, and spaces. An analysis program could derive this view

information, but even for the manual accessibility analysis process, designers make the

container relationships in Figure 3.11 explicit by communicating them in design

documents. For example, the manual analysis process utilized the explicit labeling of the

architectural space functions.

In utilizing the CONTAINS and BOUNDED BY relationships, this research makes the

distinction between a container object and the architectural definition of the container

object’s name. For example, a BUILDING container object is BOUNDED BY walls or

other building components (walls are not contained within the BUILDING container

object). In contrast, architecturally, a building is composed of the BUILDING container

object and the building components that define the boundaries of the BUILDING

container object. A bounding building component can define the boundary of multiple

container objects simultaneously. For example, a common wall can define the boundary

of two different SPACE containers. This distinction allows the straightforward

decomposition of a facility based on the architectural function since the common wall

will exist in decomposed SPACE models.

Finally, analogous to the GenericComponent object described in Section 3.2.1,

analysis methods in the design-intent model module can instantiate new relationships

relevant to the type of analysis. For example, if an analysis method instantiates a

maneuvering clearance object, it must create or modify an existing Relationship

object that associates the clearance object with an opening element.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 66

3.3 The Design-intent Model and Disabled Access

The design-intent model presented in this research organizes the disabled access code’s

intent to enable the automated disabled access analysis. The model must be populated

with the equivalent access to facilities sub-intent of the disabled access code to analyze

the equivalent access of a facility design. An instance of an Intent object, the main

data structure in the model, has methods and attributes (for example, sub-intent Intent

instances) associated with it. The hierarchical structure of the design-intent model allows

an Intent object to be populated with sub-intents that represent the decomposition of

the Intent object.

Considering the decomposition and processing of these member Intent objects, the

Analyze() method has four subroutines:

1. The PreProcess() subroutine performs product model analysis that needs to be

addressed before the decomposition of the examined Intent instance into the sub-

intents.

2. The subIntentPreProcess()handles any pre-processing of the sub-intents.

3. The subIntentPostProcess()handles any post-processing of the sub-intents.

4. The PostProcess() subroutine gathers the analysis information from the

decomposition of the sub-intents and processes the information.

The analysis of a sub-intent is executed between the subIntentPreProcess() and

the subIntentPostProcess(). If there is more than one sub-intent, the

Analyze() routine executes a loop of the sub-intent subroutines. The sub-intents are

processed recursively using their own Analyze() methods.

Referring to the manual disabled access exercise discussed earlier in this chapter, the

above subroutines can be mapped to the following actions:

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 67

• The PreProcess() subroutine maps to analyzing all the doors before

decomposing the designed facility.

• The decomposition of the facility (for example, decomposing a story of the facility

into spaces) occurs in a subIntentPreProcess() subroutine.

• The decomposed facility design analysis occurs in the subIntents.Analyze()

subroutine.

• The subIntentsPostProcess() subroutine recomposes the decomposed

facility and the results from the subIntents.Analyze() subroutine.

• The PostProcess() subroutine produces the final analysis of the facility.

Finally, if the Intent object can be associated with one or more code provisions, the

Intent object provides pointers to the appropriate provisions that reside in the

document model. Figure 3.12 shows the Intent object and its methods in Java-like

syntax. Using the Intent class structure shown in Figure 3.12, the methods associated

with the Intent object operate on and modify a design of the facility or an instance of a

ProductModel object. Since the model of the facility is shared across all Intent

object instances, the Intent object instances must be able to resolve disparate

modifications on common components, especially when several of the analysis methods

are run in parallel. For the disabled access code, the decomposition of the facility model

and the decomposition of the analysis analyze and modify separate portions of the model.

For example, the analysis decomposes a building story into the defined spaces within the

story, and the analysis of one space does not affect the analysis of another space.

As illustrated in the disabled access manual checking process, a facility’s compliance

with the equivalent access to facilities depends on two main levels of analysis:

1. Is there an accessible route to the building components that is usable by disabled

persons (accessible route generation/determination)?

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 68

class Intent
{
 public Analyze() {
 this.PreProcess();
 for (int i=0; i < subIntents.length; i++) {
 this.subIntentsPreProcess(i);
 subIntents[i].Analyze();
 this.subIntentsPostProcess(i);
 }
 this.PostProcess();
 }

 private PreProcess() {
 ...
 }

 private PostProcess() {
 ...
 }

 private subIntentsPreProcess(int i){
 ...
 }

 private subIntentsPostProcess(int i){
 ...
 }

 public ProductModel model;

 private ProductModel subModels[];
 private Intent subIntents[]
 private Provision provisions[];
}

Figure 3.12: The Intent object.

2. Are the building elements or some fraction of the building components usable by

disabled persons (system-wide usability analysis)?

The two analyses are inter-dependent. The accessible route to a building component can

depend on the accessibility of the other building components in the facility, and the

usability of a building component depends on the existence of an accessible route to the

component. This inter-dependency dictates that these sub-intents cannot be processed

concurrently. These two analyses populate the equivalent access to facilities Intent

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 69

2nd Order Analysis
System-wide

Usability

Equivalent
Access to Facilities

1st Order Analysis
Accessible

Route

Bathroom Facility
Usability

Ground Floor
Usability

Utility
Usability

Utility
Usability

Utility
Usability

Women’s
Usability

Utility
Usability

Utility
Routes

Utility
Routes

Women’s
Routes

Utility
Routes

Men’s
Routes

1

4 4444

5

6

7

8 8 8 8 8

0

 Bathroom Facility
Routes

2

Ground Floor
Routes

3

Utility
Routes

4 Men’s
Usability

8

Figure 3.13: The design-intent disabled access model for the bathroom facility.

instance, and the accessible route analysis can be thought of as first-order analysis and

the system-wide usability analysis can be thought of as second-order analysis in this

process.

The accessible route generation/determination intent and the system-wide usability

analysis intent further decompose the bathroom facility by architectural function. Figure

3.13 illustrates the hierarchical structure of the equivalent access to facilities

decomposition for the bathroom facility. It is worth noting here that the decomposition

takes advantage of the product model container relationships shown in Figure 3.11.

Figure 3.13 shows the basic decomposition of the intents as well as the sequence in which

the intents are to be executed.

The sequential ordering scheme addresses the higher-order logical structure inherent in

the code. In this example, second-order analysis is labeled with a “5,” and cannot be

executed until all of the processes labeled “1” through “4” have been completed. As

shown in the figure, the Building Routes Intent instance in Figure 3.13 has only one

sub-intent, the Story Routes Intent instance. However, the Building Routes Intent

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 70

instance Analyze() method can spawn as many parallel Story Routes Intent

instance Analyze() processes as necessary, and each of the process can be executed in

parallel. Figure 3.13 shows the decomposition of the facility with one story and the six

spaces: the Men’s bathroom, the Women’s bathroom, and the four utility rooms.

3.4 The Accessible Route Analysis Process

3.4.1 Decomposition of the Accessible Route
In the hierarchically-structured design-intent structure of the disabled access code model,

a disabled accessible route is formulated as follows:

Proposition 1 Let R represent an accessible route. Then the route R is a composition of

accessible components:

R = Rinit + Σ Rsos + Rgoal (1)

where:

Rsos = Rseg <+ Ropen + Rseg>,

Rinit = the initial point (the starting point of an accessible route),

Rgoal = the goal point (the ending point of an accessible route),

Rseg = a segment of the accessible route within a space,

Ropen = the clearance area at an opening, and

<> = optional arguments

Rinit and Rgoal nodes may also be instances of Ropen nodes.

The following are some examples of accessible routes using this notation:

1. The expression

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 71

R = Rinit + Rseg + Rgoal (2)

represents the shortest accessible route. Note that Rseg can represent either a horizontal

path or a vertical path as in the case of an elevator shaft.

2. The expression

R = Rinit + Rseg1 + Rseg2 + Rseg3 + Rgoal (3)

can be used to describe a configuration in which a disabled access ramp (Rseg2) connects

two segments in the accessible route.

3. Finally, the expression

R = Ropen + Rseg + Ropen (4)

describes the required accessible route of a turning circle within a space (in some spaces,

the disabled access code requires that a wheelchair must be able to get in and out of a

space without having to back up).

3.4.2 The Brute-force Approach
This research develops a first-order brute-force approach to identify accessible routes

composed of the accessible route components defined above. Once the first-order

analysis identifies the accessible routes in a facility design, the second-order usability

analysis examines the routes. This research uses the following accessible route

determining procedure:

1. Establish Rinit.

2. Analyze all openings to look for potential Ropen accessible route components.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 72

3. Analyze all other building components to look for potential Rgoal accessible route

components.

4. Construct all possible Rseg between pairs of accessible building components

generated from steps 1 and 2.

5. Construct all possible R from accessible route components generated in steps 1, 2, 3,

and 4.

Following the Analyze() features illustrated in Figure 3.12:

• The PreProcess() subroutine performs the first two steps.

• The child process Analyze() method that decomposes the facility into its

architectural spaces and performs the accessibility analysis of these spaces

concurrently in separate sessions executes Steps 3 and 4.

• Once all the child Analyze() sessions complete and return the Rgoal and Rseg
analyses, the the PostProcess() subroutine performs Step 5 and composes the

results.

Figure 3.14 shows selected accessible routes for the Men’s bathroom in the bathroom

facility generated by the analysis procedure. The nodes of the generated graph consist of

potential Ropen, Rinit, and Rgoal accessible route components, and Rseg arcs connect

these nodes. An Rinit node (Door A) represents a “root” node since it is a starting point

in the accessible route graph (note that Door A is also an Ropen node). Rgoal nodes

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 73

A

B

E K

Figure 3.14: Selected accessible routes in the Men’s bathroom.

(Sink E and Toilet K) represent “leaf” nodes since they are ending points in the accessible

route graph. The generated graph is partially directed. The Rseg arcs are one-way toward

the Rgoal nodes and two-way when connecting two Ropen nodes (the arc between Door A

and Door B).

Table 3.1 summarizes the characteristics of this graph. Once the analysis generates the

graph, the procedure determines if the goal points are reachable, and the results are

forwarded to the second-order usability analysis procedure.

3.4.2.1 Establishing Rinit
The accessible route analysis procedure establishes the starting point of the route Rinit
(or multiple Rinit nodes). The type of building component associated with Rinit
depends on the level of analysis of the design. In most cases, an opening in a building

provides the connection between the exterior and the interior of the largest container

being examined serves as the Rinit node. If the largest container in the design is a SITE

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 74

Table 3.1: Characteristics of the accessible route graph.

R Component Graph Component Comments

Rseg arc uni- or bi-directional depending on connecting nodes
Ropen node
Rinit "root" node Rseg arcs directed away from the node
Rgoal "leaf" node Rseg arcs directed toward the node

Table 3.2: Rules for establishing the Rinit building component.

Level of Design Type of Building Component for Initial Point

SPACE OPENING(S) on the boundary of a SPACE
STORY OPENING(S) on the boundary of a STORY
BUILDING OPENING(S) on the boundary of a BUILDING
SITE ENTRY(IES) on the boundary of a SITE

object, the ENTRY to this SITE that lies on the boundary of the SITE object serves as

the Rinit node. Table 3.2 summarizes the relationship between the developed product

model container level and the building component associated with the Rinit node.

This step in the accessible route analysis procedure establishes the potential Rinit
accessible route components, but any number of potential Rinit components may be

discarded in the subsequent steps of the accessible route analysis procedure. If all

potential Rinit components are discarded, then, by default, there is no accessible route

for the given design.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 75

3.4.2.2 Analyzing Potential Ropen Accessible Route Components

After labeling the potential Rinit accessible route components, the accessible route

analysis procedure examines all OPENING objects in the facility for potential Ropen
accessible route components. As already noted, this accessible route analysis does local

usability analysis on the accessible route components, and the usability of the OPENING

objects depends on the implemented usability analysis.

In general, there may be several usability options for an OPENING object, and which

options are applicable may not be determinable a priori. For example, a user of the

facility can approach an opening from several directions. The accessible route analysis

procedure determines which approaches are valid in the step that generates the Rseg route

segments.

3.4.2.3 Analyzing Potential Rgoal Accessible Route Components

The accessible route analysis procedure determines which building components qualify

as potential Rgoal accessible route components. This step in the accessible route

generating procedure exploits the architectural SPACE and its associated relationships

illustrated in Figure 3.11 in the product model development in Section 3.2.2, the

advantage being the possible concurrent execution of multiple space analyses. As with

the analysis of potential Ropen components, determining the usability of a building

component depends on analysis implementation. For example, in this research, the

prescriptive-based analysis and the performance-based analysis can yield different results

as code-compliance and usability are not necessarily the same. There may be several

context-dependent criteria that determine a component’s usability. As with the Ropen
analysis, some of the criteria may be resolved in this first-order accessible route analysis

procedure. For example, in the prescriptive-based analysis, if the potential Rgoal
component has no maneuvering clearance, it no longer qualifies as a potential Rgoal
component.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 76

Some criteria may need to be resolved in the second-order usability analysis. For

example, if the usability of a water closet is determined following the maneuvering

clearance rules of the ADAAG, the geometry of this clearance area depends on the

disabled access usability of other water closets in the same bathroom space. This

example shows the advantage of using a product model that explicitly defines the SPACE

object that represents the functionality of a bathroom space. Otherwise, the analysis

program would need to derive the bathroom function within a facility.

3.4.2.4 Generating Rseg Route Segments

The final step in the accessible route analysis procedure connects the Ropen and the Rgoal
nodes with Rseg arcs as shown in Figure 3.14. As with the Rgoal analysis, this step in the

accessible route generating procedure utilizes the architectural space concept and its

associated relationships in the product model. Indeed, this final step in the procedure can

generate the Rseg arcs without the decomposition of the facility design into SPACE object

by searching for Rseg arcs from any Ropen to any Rgoal or any Ropen to any other Ropen.
However, with the facility elements grouped by architectural SPACE objects, the Rseg arc

generation step in the procedure can decompose the problem by examining each SPACE

object. This step generates the Rseg arcs from any Ropen to any Rgoal or any Ropen to

any other Ropen associated with the space. After examining all the SPACE objects, the

procedure completes generating the accessible route graph since, by definition, an

opening and the associated Ropen connects adjoining SPACE objects or one SPACE

object with the area outside the facility design.

Since a single building component may be associated with several R components

(openings are associated with Ropen and possibly Rgoal nodes, and other building

components are associated with Rgoal nodes), the procedure attempts to generate Rseg
arcs between all these nodes within the SPACE object. Some or all of the R components

associated with a building component may be pruned since the Ropen and Rgoal nodes

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 77

establish local usability of the building component and the generation of the Rseg arc

determines whether the building component is reachable and thus accessible.

3.4.2.5 Traversing the Accessible Route Graph
The Rseg arc generation procedure may produce several disconnected graphs instead of

one continuous graph since the procedure starts the accessible route construction in each

SPACE object. Therefore, after the procedure generates all valid Rseg arcs, the procedure

traverses the graph structure without allowing cycles (visiting a node more than once)

starting at all Rinit nodes and attempting to reach all Rgoal nodes.

Successfully reaching a desired building component does not guarantee the accessibility

of the component, but any building component that is not reachable with this traversal is

guaranteed to be inaccessible. Using the generated graph structure and the traversal

information, the second-order system-wide usability analysis then determines the

accessibility of the facility.

3.5 System-wide Usability Analysis

The manual analysis process of the bathroom facility example does not address the

decomposition of the facility into stories since it is a one-story building. However, the

analysis of a multistory building can be decomposed and is subject to the following

ADAAG provisions:

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall
meet the following minimum requirements:…(5) One passenger elevator complying with
4.10 shall serve each level, including mezzanines, in all multi-story buildings and
facilities unless exempted below. If more than one elevator is provided, each full
passenger elevator shall comply with 4.10.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 78

EXCEPTION 1: Elevators are not required in facilities that are less than three stories or
that have less than 3000 square feet per story unless the building is a shopping center, a
shopping mall, or the professional office of a health care provider, or another type of
facility as determined by the Attorney General. The elevator exemption set forth in this
paragraph does not obviate or limit in any way the obligation to comply with the other
accessibility requirements established in section 4.1.3. For example, floors above or
below the accessible ground floor must meet the requirements of this section except for
elevator service. If toilet or bathing facilities are provided on a level not served by an
elevator, then toilet or bathing facilities must be provided on the accessible ground
floor…

The building-level analysis executes story-level sub-intent analysis for the stories in a

building. The story-level analysis returns its results to the building-level analysis that

maps the rules from the above provisions. For the example bathroom facility, since there

is only one story, the above rules are not relevant.

Continuing down the hierarchy of the system-wide usability analysis and as noted in the

previous section, the analysis procedure examines each story of a building concurrently.

The story-level sub-intent provides equal access to facilities for disabled persons on each

story of both building components and spaces. For example, the following provisions

from [1] fulfill this story-level equivalent-access-to-facilities sub-intent for drinking

fountains (building components) and for dressing rooms (spaces):

4.1.3 Accessible Buildings: New Construction. Accessible buildings and facilities shall
meet the following minimum requirements:…

(10) Drinking Fountains:…(b) Where more than one drinking fountain or water cooler is
provided on a floor, 50% of those provided shall comply with 4.15 and shall be on an
accessible route…

(21) Where dressing and fitting rooms are provided for use by the general public,
patients, customers or employees, 5 percent, but never less than one, of dressing rooms
for each type of use in each cluster of dressing rooms shall be accessible and shall
comply with 4.35…

Analogous to the building-level decomposition, the story-level analysis executes space-

level sub-intent analysis for each space of the story in question concurrently utilizing the

child Analyze() subroutine. Once these subroutines return their analysis results, the

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 79

story-level analysis maps the rules such as the provisions shown above in the

PostProcess() subroutine.

The space-level analyses constitute the leaves at the lowest levels of the hierarchically

structured system-wide usability sub-intent. A story-level sub-intent invokes the space-

level sub-intents, and these space-level sub-intents can be processed concurrently. A

space-level sub-intent examines the building components contained by the space. As in

the manual analysis example, similar functioning building components are grouped

together to determine the space’s accessibility. For example, when determining the

accessibility of the bathroom facility, a designer or inspector poses the question: What

building components need to be accessible? The automated space-level analysis

references the same prescribed parameters in the building-component-level provisions.

For example the provision for water closets from the ADAAG is given as follows:

4.23.4 Water Closets. If toilet stalls are provided, then at least one shall be a standard
toilet stall complying with 4.17…

The previous accessible route analysis determined which water closets in the space have

accessible routes. From this information, the Analyze() method for the space-level

sub-intent examines the water closets with accessible routes for other usability criteria (if

there are any) and make the determination about the accessibility of the space based on

the accessibility of the building components. The system-wide usability analysis does

not further decompose the space-level sub-intent and maps the relevant space-level

provisions to rules to be executed in the PostProcess() subroutine in the space-level

sub-intent.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 80

3.6 Case Example

3.6.1 First-order Accessible Route Analysis
The following analysis refers to the Men’s bathroom space of the bathroom facility

shown in Figure 3.15. Doorway A maps to Rinit; Doorways B, C and D map to Ropen
nodes; building components E through K map to Rgoal nodes; the connections between

the nodes map to Rseg arcs.

A wheelchair user can transfer from the chair to the toilet using two different methods:

from the side of the toilet (side transfer) or approaching the toilet diagonally (diagonal

transfer). Thus, the accessible route analysis established two goal nodes for Water Closet

K, K1 and K2. The analysis eliminates Doorways C and D as potential Ropen components

since they do not have the sufficient clearance requirements inside the toilet stalls.

As shown by the highlighted accessible routes in Figure 3.16, the path from Doorway A

to Water Closet K is represented by two accessible routes:

R1 = A + Rseg1 + B + Rseg2 + K1 (5)

R2 = A + Rseg1 + B + Rseg3 + K2 (6)

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 81

A

B

HG

JI

FE K

C D

Figure 3.15: The labeled potential accessible route components in the bathroom facility.

HGFE

C D

JI

A

B

K1 K2

R seg1

R
s
e
g
2

R se
g3

Figure 3.16: The accessible route graph for the bathroom facility.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 82

The requirement for a turning circle within a space can be represented as

R = A + Rseg + A (7)

Figure 3.16 shows all the accessible routes generated for the bathroom facility including

the turning circle requirement (shown by the arrow from A back to A).

3.6.2 Second-order System-wide Usability Analysis
Once the first-order accessible route analysis has generated accessible route information,

the second-order system-wide analysis can make the final determination of the bathroom

facility’s accessibility. Following the second-order analysis in the design-intent model

shown in Figure 3.13, the analysis decomposes the bathroom facility into one story and

the one story into five spaces (the Men’s bathroom, the Women’s bathroom, and the three

utility rooms). The analysis starts at the space-level sub-intent (in this exercise, the

analysis only examines the Men’s bathroom) and progress back up the hierarchical

structure to the story-level sub-intent and the building-level sub-intent.

At the space-level sub-intent, the analysis checks the usability of the groups of building

components (doorways, water closets, urinals, and lavatories). For example, for the

water closets, only Water Closet K has an accessible route, so the space-level sub-intent

analysis checks other usability parameters for this water closet such as the existence of

code-compliant grab bars. As in the manual analysis case, the space-level analysis

determines that the Men’s bathroom contains the sufficient number of required building

components and determines that the bathroom space complies with disabled access

requirements.

The story-level sub-intent analysis determines that the story complies with the story-level

disabled access requirements assuming the Women’s bathroom also complies (the utility

rooms do not have to comply with disabled access requirements). This analysis passes

the results up the hierarchy to the building-level sub-intent analysis.

CHAPTER 3. A DISABLED ACCESS ANALYSIS DESIGN-AID FRAMEWORK 83

Finally, the building-level sub-intent analysis determines the bathroom facility complies

with disabled access requirements since the story in the building complies with the

requirements and, in this particular case, building contains only one story. If the facility

had contained more than one story then the building-level analysis would need to

determine the accessibility of all the stories.

3.7 Summary

This chapter started by stepping through the manual process of disabled access analysis

using a bathroom facility as the test case. From this process, the chapter developed the

necessary models, a product model and a design-intent code model, to support an

automated disabled access process. The design-intent code model for disabled access

requires two main reasoning components:

1. A determination and analysis of the accessible routes in a facility

2. Using these accessible routes, a determination of the system-wide usability of the

facility.

The chapter describes and develops the methods to automate these two analyses.

Finally, the chapter steps through the automated analysis process revisiting the bathroom

example. The manual and automated analyses are similar. The automated analysis is a

brute-force procedure sequentially processes the two main components described above.

In contrast, in the manual procedure, the person performing the analysis can shift

between the determination of accessible routes and the requirement of these routes in the

context of the whole system of the facility.

Chapter 4

Accessible Route Analysis: A
Prescriptive-based, a Performance-
based, and an Interactive Model

The previous chapters have developed the design-aid framework for disabled access

analysis and a decomposition of the accessible route that is dependent on the building

components in a facility design. This chapter describes the automated analysis

implementation for the determination of the accessible route to enable the overall

automated disabled usability analysis. The chapter first develops methods for the

ADAAG prescriptive-based accessible route analysis and then uses some of the

prescriptive methods to develop the performance-based accessible route analysis

methods. The prescriptive methods are the basis for some of the performance-based

usability parameters.

In addition, the chapter describes wheelchair manipulation tools and visualization

methods that provide the designer with an interactive environment in which the designer

can manipulate a virtual wheelchair through the facility design. The manipulation and

visualization tools provide the designer further insight into the disabled access problem

supplementing the developed prescriptive-based and performance-based methods.

84

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 85

The chapter is organized as follows:

• Section 4.1 describes the prescriptive-based analysis that captures the ADAAG

accessible route provisions.

• Section 4.2 describes the performance-based accessible route analysis. Both the

prescriptive-based and performance-based analyses use motion-planning techniques

to generate the accessible routes, and the differences in the developed techniques is

described in the respective sections.

• Section 4.3 provides a comparison between the prescriptive-based and performance-

based analyses with several examples. A major goal of this thesis is to validate a

performance-based analysis as a complementary component to the prescriptive-based

code-compliance. These examples demonstrate the deficiencies of the prescriptive-

based accessible route analysis and the power of the performance-based analysis.

• Finally, Section 4.4 describes the various wheelchair manipulation and animation

algorithms developed to support this research.

4.1 Automated Prescriptive-Based Analysis: The

Code-Compliant Accessible Route

The implementation of the prescriptive-based accessible route analysis utilizes the

parameters prescribed in the ADAAG as described in the manual analysis of the

bathroom facility in the previous chapter. The analysis uses motion-planning techniques

to generate the code-compliant accessible routes within SPACE container objects (the

GenericComponent object in the product model that describes a space) in a facility

design. The motion planner generates a path between an initial point and a goal point.

Building components along the accessible route graph map to the required R nodes:

Ropen nodes map to initial and goal points, Rinit nodes map to initial points, and Rgoal

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 86

nodes map to goal points. The arcs of the graph (the Rseg components) map to the

generated path between the R nodes.

4.1.1 Motion Planning Basics
In the basic motion-planning problem, a robot A moves through a Euclidean space W (the

workspace) represented as RN where R is the set of real numbers, and N = 2 or 3. This

research assumes a two-dimensional space motion planner, and N = 2. Obstacles

represented as B1, B2…Bq, populate W, and the motion planner accurately knows the

positions and geometric parameters (shape, position, and orientation) of A, the Bis, and W.

The motion planner tries to generate a continuous path τ through the workspace W for the

robot A avoiding the obstacles Bis given an initial position and orientation and a goal

position and orientation. If no path exists, the motion planner reports failure.

The motion planner generates a configuration space C from the geometric properties of

A, the Bis, and W and attempts to construct the path in this configuration space. In the new

space C, the motion planner transforms robot A to a point object, and the motion-planning

problem becomes one of generating the path τ in C. If the dimension of W is 2 (W = RN =

R2), then the dimension m of C is 3. For example, a robot A restricted to move in the xy-

plane (W = R2) has three degrees of freedom: x, y, and the orientation θ. Of course, if A is

a disk or is not free to rotate, m = N (C = RN = R2). Working in the configuration space C

instead of the workspace W, the constraints become more explicit. If the motion planner

tries to develop the plan τ directly in the workspace W, it would

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 87

A
Obstacle B C-obstacle CB

A’s circumscribed
path around B

Reference
Point

Figure 4.1: Mapping an obstacle to a C-obstacle.

have to perform operations such as collision-checking at each proposed path position

whereas in C, collision-checking has already been addressed for all possible robot

positions.

As A maps or “shrinks” to a point object, an obstacle Bi maps to the C-obstacle CBi by

“growing” dependent on the geometric parameters of A and Bi. The basic algorithm

consists of establishing a reference point with respect to the robot A and tracing A around

the obstacle Bi. The path circumscribed by A describes the C-obstacle CBi. If A can

freely rotate, the shape of CBi depends on A’s orientation, so again, if W = R2, then C =

R2+1 = R3. Figure 4.1 illustrates the transformation of an obstacle to a C-obstacle.

With the generation of the configuration space C, the motion planner has transformed the

path-planning problem into a point robot moving within C. Now, the motion planner

must guide the robot from the initial point to the goal point through C. Latombe notes

that using some type of potential field is the most successful method for guiding the robot

A [37]. The generated potential field guides A by forcing it down the gradient from the

initial point to the goal point. The motion planner discretizes C by throwing a grid over

the space and generates the potential field values for each grid cell.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 88

Since the motion planner knows the geometric parameters of A, the Bis, and W a priori, it

can generate potential fields free of local minima. The accessible route analysis in this

thesis uses two potential-field-generating algorithms known as NF1 and NF2 that are free

of local minima [37]. NF1 creates a potential field that guides the robot A from the initial

point to the goal point on a path τ that grazes the C-obstacles. NF2 guides A on a path τ

that maximizes its distance from the C-obstacles. See [37] for complete descriptions of

the NF1 and NF2 algorithms.

4.1.2 Determining the Ropen Components

The Ropen node of an accessible route graph consists of three clearance components: the

clearance of the opening and clearances on either side of the opening. For the opening,

the Ropen analysis applies a geometric test with the parameters of the required clearance

box taken directly from the following provision of [1]:

4.13.5 Clear Width. Doorways shall have a minimum clear opening of 32 in (815 mm)
with the door open 90 degrees, measured between the face of the door and the opposite
stop (see Fig. 24(a), (b), (c), and (d)). Openings more than 24 in (610 mm) in depth shall
comply with 4.2.1 and 4.3.3 (see Fig. 24(e)).

EXCEPTION: Doors not requiring full user passage, such as shallow closets, may have
the clear opening reduced to 20 in (510 mm) minimum.

If the opening passes the clearance box geometry interference test, the accessible route

analysis continues with the Ropen analysis. If the opening fails this test, the opening does

not qualify as a potential Ropen component.

The clearance box geometries on opposite sides of an opening depend on the

characteristic of the door filling the opening. Figure 4.2 summarizes the dimensions of

the approach clearance boxes. For a single swinging door, the ADAAG defines the side

from which the user pulls the door to open it as the pull side and the side from which the

user pushes the door to open it as the push side. From each side, the user can approach

the opening from the front, hinge side, or latch side of the door:

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 89

• For the front pull side approach, the clearance box extends 60 inches from the wall

that contains the opening and the door and covers the width of the opening plus 18

inches on the latch side of the door (Figure 4.2 (a), left side).

• For the front push side approach, the clearance box extends 48 inches from the wall

and covers the width of the opening plus 12 inches on the latch side if the door has a

closer and a latch (Figure 4.2 (a), right side).

• For the hinge pull side approach, the clearance box extends 60 inches from the wall

and covers the width of the opening plus 36 inches on the latch side. Or the clearance

box extends at least 54 inches from the wall and covers the width of the opening plus

42 inches on the latch side (Figure 4.2 (b), left side).

• For the hinge push side approach, the clearance box extends 42 inches from the wall

(48 inches if the door has a latch and closer) and covers the width of 54 inches from

the latch side extending toward the hinge side (Figure 4.2 (b), right side).

• For the latch pull side approach, the clearance box extends 48 inches from the wall

(54 inches if the door has a latch and closer) and covers the width of the opening plus

24 inches on the latch side (Figure 4.2 (c), left side).

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 90

Figure 4.2: Door approaches and clearances, from the ADAAG [1].

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 91

• For the latch push side approach, the clearance box extends 42 inches from the wall

(48 inches if the door has a latch and closer) and covers the width of the opening plus

24 inches on the latch side (Figure 4.2 (c), right side).

The accessible route analysis examines all possible approaches by performing geometry

interference tests on the associated clearance boxes. Failure of all interference tests for

either the pull or push side disqualifies the potential Ropen component. Conversely, if at

least one clearance box on either side passes the interference test, the potential Ropen
component qualifies as a node in the accessible route graph.

Finally, since the potential Ropen component participates in the accessible route graph as

a node (both as an initial and goal point), the accessible route analysis establishes the

initial/goal point for each valid approach clearance box associated with the potential

Ropen component. Each approach clearance box has an initial/goal line segment

generalized from the basic motion-planning initial/goal point formulation. The motion

planner allows the wheelchair to start anywhere along the initial line. Similarly, the

motion planner has successfully found a path to an Ropen component if the robot can get

to any position along the goal line segment:

• For the front approach, the accessible route analysis defines the initial/goal line

segment as the front edge of the clearance box.

• For either side approach, the accessible route analysis defines the initial/goal line

segment as the applicable side edge (the edge that is penetrated by the user during the

approach) of the clearance box.

Figure 4.3 illustrates the initial/goal line segments for the clearance boxes shown in

Figure 4.2.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 92

Figure 4.3: Initial/goal line segments (solid dark lines) for the door/opening approaches.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 93

4.1.3 Determining the Rinit and Rgoal Components

With the exception of site-level design analysis (as opposed to building-, story-, and

space-level design analysis), the accessible route analysis assigns the Rinit node or nodes

to a doorway or doorways in the facility design. Since the accessible route analysis has

already tested all openings when looking for potential Ropen components, the analysis is

not required to perform the geometric interference tests again. If none of the potential

Ropen components are valid Rinit nodes, the facility design contains no accessible routes

connecting the facility’s building components to the entry points of the facility.

The accessible route analysis tests all other relevant building components for potential

Rgoal components (recall that the first-order analysis uses a brute-force approach) since,

initially, the analysis does not know which building components are relevant to the

accessibility of the facility. All building components have at least one associated

clearance box, and the number of clearance boxes associated with a building component

depends on the number of user approaches it has. As with the Ropen testing, the analysis

uses each clearance box (or boxes) in a geometric interference test. For water closet

approach, the clearance box parameters are prescribed by [1] as follows:

Figure 28. For a front transfer to the water closet, the minimum clear floor space at the
water closet is a minimum 48 inches (1220 mm) in width by a minimum of 66 inches
(1675 mm) in length. For a diagonal transfer to the water closet, the minimum clear floor
space is a minimum of 48 inches (1220 mm) in width by a minimum of 56 inches (1420
mm) in length. For a side transfer to the water closet, the minimum clear floor space is a
minimum of 60 inches (1525 mm) in width by a minimum of 56 inches (1420 mm) in
length. (4.16.2, A4.22.3)

Figure 4.4 illustrates the clearance box parameters for the three water closet transfer

options.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 94

Figure 4.4: Clear floor space for front transfer, diagonal transfer, and side transfer [1].

Finally, since the potential Rgoal component is an end node in the accessible route, the

accessible route analysis establishes the goal point for each valid approach clearance box

associated with the potential Rgoal component. Similar to the Ropen component each

approach clearance box has a goal line segment as opposed to a point. For example, for

water closets, the following approach definitions apply:

• For the front approach, the accessible route analysis defines the goal line segment as

the front edge of the clearance box.

• For either side approach, the accessible route analysis defines the goal line segment as

the applicable side edge (the edge that is penetrated by the user during the approach)

of the clearance box.

• For the diagonal approach, the accessible route analysis defines two goal line

segments combining the front approach with the side approach formulation.

Figure 4.5 illustrates the initial/goal line segments for the clearance boxes shown in

Figure 4.4.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 95

Figure 4.5: Goal line segments (solid dark lines) for the water closet approaches.

4.1.4 Determining Rseg Accessible Route Components

The accessible route analysis can now determine if an accessible path exists between all

pairs of nodes within a SPACE container. The following provision from the ADAAG

describes the critical path-determining parameters:

4.3.3 Width. The minimum clear width of an accessible route shall be 36 in (915 mm)
except at doors (see 4.13.5 and 4.13.6). If a person in a wheelchair must make a turn
around an obstruction, the minimum clear width of the accessible route shall be as shown
in Fig. 7(a) and (b).

Note that the second sentence in the provision represents two exceptions to the prescribed

rule in the first sentence (Figure 4.6 illustrate Figure 7(a) and Figure 7(b) from [1]).

Furthermore, the two exceptions only address two of possible turn-around-an-obstacle

examples. This limitation illustrates a deficiency in the prescriptive-based accessible

route as there are many other turn-around-an-obstacle scenarios. The diagrams in Figure

4.6 illustrate only orthogonal paths, and there are non-orthogonal 36-inch wide paths that

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 96

Figure 4.6: Minimum accessible route turning clearances defined in the ADAAG [1].

need some minimum distance for the legs of the path. For example, the ADAAG does

not address a leg length requirement for a 95-degree turn.

4.1.4.1 The 36-inch-wide Path
From the first sentence of Provision 4.3.3 from the ADAAG, the motion planner uses a

36-inch disc to describe the geometry of the robot A36 (the implementation uses a regular

dodecagon to approximate the circle geometry). The building component geometry

determines the workspace W— the motion planner generates the configuration space C36

given A36 and W using the algorithm described in Section 4.1.1. Figure 4.7 illustrates

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 97

Figure 4.7: The 36-inch disc robot A36 configuration space C36.

C36 for the Men’s Bathroom space in the bathroom facility example. The white areas

represent legal positions for centerpoint the A36 disc robot.

Note that the motion planner treats a doorway with the door in the closed position, and,

hence, in Figure 4.7, the configuration space between the entry door and the accessible

toilet is discontinuous. However, as shown in Figure 4.3, the wheelchair robot only

needs to reach the goal line segment associated with the doorway and does not have to

pass through the opening. As long as the opening complies with ADAAG clearance

requirements, the accessible route continues on the other side of the doorway at that

opening’s complementary initial line segment. Figure 4.8 illustrates possible accessible

route sequences through a doorway with the dashed lines indicating the path of travel

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 98

Front Pull Side
Goal Line Segment

Push Side
Initial Line Segment

Hinge Pull Side
Goal Line Segment

Push Side
Initial Line Segment

Latch Pull Side
Goal Line Segment

Push Side
Initial Line Segment

Pull Side
Initial Line Segment

Pull Side
Initial Line Segment

Pull Side
Initial Line Segment

Front Push Side
Goal Line Segment

Hinge Push Side
Goal Line Segment

Latch Push Side
Goal Line Segment

Figure 4.8: The possible accessible route sequences through a doorway.

from the goal line segment of an accessible route to the door to the initial line segment of

an accessible route from the door.

The motion planner uses the NF1 potential-field-generating algorithm between pairs of

nodes [37]. This algorithm generates a potential map “wavefront” from the goal line

segment(s) to the initial line segment(s). The wavefront generation terminates either at

some point on the initial segment(s) or when the motion planner has run out of

configuration space to generate the wavefronts. If the wavefront has not reached an

initial line segment, then no path exists between the initial and goal nodes. Conversely, if

the wavefront has reached the initial point, then a 36-inch path exists between nodes.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 99

ENTRY DOOR
initial line segment

STALL DOOR
goal line segment

WATER
CLOSET
goal line
segments

STALL DOOR
initial line
segment

Figure 4.9: The initial and goal segments inserted into the C36 configuration space.

Figure 4.9 illustrates an initial line segment for the ENTRY DOOR, the initial and goal

line segments for the disabled access STALL DOOR, and the goal line segments

associated with the disabled access WATER CLOSET. The NF1 algorithm finds a path

between the ENTRY DOOR initial line segment and the STALL DOOR goal line segment,

but it fails to find a path between the ENTRY DOOR initial line segment and the WATER

CLOSET goal line segments. (Upon visual inspection, there is a continuous white area

between legal positions on the two DOOR line segments, but the white area is

discontinuous between legal positions of ENTRY DOOR line segment and the WATER

CLOSET line segments). However, the path between the ENTRY DOOR and disabled

access WATER CLOSET actually consists of two path segments:

1. The path between the ENTRY DOOR initial line segment and the STALL DOOR goal

line segment.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 100

2. The path between the STALL DOOR initial line segment and one of the WATER

CLOSET goal line segments.

The analysis connects these two paths using an accessible path sequence through a

doorway similar to the one shown in Figure 4.8.

4.1.4.2 The Turn-around-an-obstruction Exceptions
This section describes a proposed method to handle the turn-around-an-obstruction

exceptions that arise from the prescriptive-based accessible route in the ADAAG. Note

that the complicated nature of this exception handling proposal can be traced to the nature

of these prescriptive exceptions. The turn-around-an-obstruction exceptions are arbitrary

configurations that the ADAAG addresses as being impassable using the general 36-inch

wide path, and this section shows the difficulty in taking these arbitrary configurations

into consideration. While developing the exception analysis methods, the investigation

of these exceptions in this section shows that the exceptions contradict each other.

The analysis in Section 4.1.4.1 does not actually need to generate a path τ between pairs

of nodes; it simply determines if a 36-inch path exists. Now, however, the motion

planner must examine the wheelchair path’s signature. The motion planner generates an

NF2 potential map in the configuration space to generate a path τ that maximizes its

distance from the obstacles [37]. Note that the proposed exception analyses indicate

possible violations to the exceptions as opposed to making the actual determination that a

configuration actually violates the exceptions.

The motion planner also constructs two additional configuration spaces to analyze the

facility design for the first turn-around-an-obstruction exception shown in Figure 4.6:

• A configuration space C36+ε using the same workspace W but a (36+ε)-inch disc robot

A36+ε to generate the C-obstacles in the configuration space.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 101

A36 robot path

C36 configuration space

42-inch disc

Figure 4.10: A 36-inch corridor with the path and legal C36 and positions.

• A configuration space C42+ε using the same workspace W but a (42+ε)-inch disc robot

A42+ε to generate the C-obstacles in the configuration space.

The first exception applies only to a path in two perpendicular 36-inch corridors, so the

motion planner must be alerted when the A36 robot is following a path through such a

corridor. To determine if the A36 robot is in such a corridor, the motion planner uses the

C36+ε configuration space. As the motion planner steps through the path τ, it also checks

to see if the robot’s position is legal in C36+ε. If it is not, then the robot must be in an area

that is only 36 inches wide since the NF2-generated path τ stays as far from obstacles as

possible.

Once the motion planner has determined that the A36 robot is in a 36-inch-wide area, the

motion planner needs to know if path τ resides in a perpendicular 36-inch corridor

configuration. Figure 4.10 illustrates a 36-inch corridor with the A36 robot path τ, legal

positions in C36 (the robot can travel in the white space and along τ). The largest legal

area in the 36-inch perpendicular corridor configuration is a 42-inch wide disc as

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 102

illustrated by the dashed circle in Figure 4.10. Therefore, if τ traverses a legal position in

the C42+ε configuration space, the motion planner knows the A36 robot is not in a

perpendicular 36-inch wide corridor configuration.

When the robot enters a 36-inch wide area, the motion planner begins storing the path

positions (including orientations) in a queue. Since A36 is a disc and has no orientation,

the motion planner approximates the current orientation θC at the current path position

(x,y)C by calculating the angle formed between (x,y)C-1 and (x,y)C+1. If at any point the

path τ enters the C42+ε configuration space (implying that the A36 robot is not in the

perpendicular 36-inch corridor configuration), the exception analysis terminates, and the

motion planner starts the exception analysis again when τ encounters the next 36-inch

wide area.

The motion planner compares (x,y,θ)C, to each position (x,y,θ)i already in the queue. If

θC equals some θi, the motion planner inserts (x,y,θ)C at the front of the queue and

removes the (x,y,θ)i and all the positions before(x,y,θ)i in the queue. θC equaling some (θi,

+ π/2) indicates that the A36 robot has made a right-angle turn. At this point, the motion

planner indicates a possible violation of the first exception and for the path segment

between (x,y,θ)C, and (x,y,θ)i.

The second exception addresses a U-turn around an obstacle shown in Figure 4.6. From

the beginning of the analysis of path τ, the motion planner inserts the positions of τ into a

queue and compares the current position (x,y,θ)C, to each position (x,y,θ)i already in the

queue. θC equaling some (θi, + π) indicates that the A36 robot has made a U-turn, and the

motion planner evaluates the perpendicular distance between (x,y,θ)C, and the (x,y,θ)i. If

the perpendicular distance is less than 84 inches (from the left diagram in Figure 4.6, the

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 103

37” x = 46” 37”

48
”

36
”

Figure 4.11: A contradictory configuration to the Provision 4.3.3 exceptions from the
ADAAG.

second leg of the path, 48 inches, plus half the width of the first and third legs of the path,

18 inches and 18 inches), then the motion planner indicates a possible violation for the

second exception for the path segment between (x,y,θ)C, and (x,y,θ)i.

Note that the above analysis does not exactly match the prescribed parameters of the

second exception because there is a fundamental flaw between the relationship of the first

exception and the second exception. A graphical example illustrates this flaw: Figure

4.11 illustrates a configuration that actually has more maneuvering space than a

configuration that complies with the prescribed parameters of the first exception, yet this

example configuration violates the prescribed parameters of the second exception. In

Figure 4.11, the obstruction width x is less than 48 inches (x = 46 inches) implying that

the second exception applies. However the first and third legs of the path are less than 42

inches wide and the second leg is less than 48 inches wide. Thus, the configuration

violates the second exception. This contradiction illustrates the conflicts that can arise

with the prescribed parameters of a building code’s intent.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 104

Figure 4.12: The prescribed turning circle and T-space from the ADAAG [1].

4.1.4.3 The Wheelchair Turning Circle
The ADAAG requires a wheelchair turning circle or T-space in toilet rooms, bathrooms,

bathing facilities, and shower rooms, dressing and fitting rooms:

4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped
space (see Fig. 3(b)).

Figure 4.12 illustrates the turning circle and T-space from the ADAAG.

The motion planner analyzes a relevant SPACE container for the wheelchair turning

circle option by generating a configuration space C60 using a 60-inch disc robot A60 that

represents the turning circle. If the SPACE does not contain any legal positions for robot

A60, no turning circle exists in the SPACE, and the facility does not comply with [1]. If

legal positions exist, the analysis continues. Figure 4.13 illustrates the C60 configuration

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 105

turning circle areas

Figure 4.13: The 60-inch disc robot A60 configuration space C60.

space for the bathroom facility, and the white spaces indicate legal positions for the 60-

inch turning circle.

Now, the motion planner tries to generate a path from the Ropen nodes that exist on the

boundary of the given SPACE container (in this bathroom facility case, the ENTRY

DOOR). The motion planner evaluates each of these Ropen nodes separately. Each Ropen
node becomes the initial point (initial line segment), and the turning circle areas become

the goal points (goal areas), and the motion planner generates the NF1 wavefront from

the turning circle areas. Figure 4.14 illustrates the turning circle areas from C60

configuration space that now become the goal points (goal areas) in the C36 configuration

space, and the ENTRY DOOR line segment that becomes the initial point (initial line

segment).

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 106

DOOR
initial/goal
line segment

turning circle
goal area

Figure 4.14: The entrance door initial/goal and the 36- and 60-inch configuration spaces.

The motion planner now generates the NF1 wavefront from the turning circle areas, and

if the wavefront terminates at the given Ropen node (the initial line segment), the motion

planner has proven that an accessible wheelchair turning circle exists in the given SPACE

container. In the bathroom facility case, the motion planner successfully terminates the

wavefront at a point on the ENTRY DOOR line segment. (Upon visual inspection, a

continuous white space exists between the ENTRY DOOR line segment and the turning

circle area).

4.1.5 Prescriptive-based Analysis Discussion
The developed prescriptive-based motion-planning techniques described in this chapter

verify the 36-inch width and turning circle requirements as prescribed by the ADAAG.

However, using motion-planning techniques to test for the turn-around-an-obstruction

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 107

exceptions is a more complicated process since these exceptions are abstractions that are

static geometric tests as opposed to defining acceptable wheelchair motion.

In addition, as has been shown, these abstractions which define the turn-around-an-

obstruction exceptions only address two of the possible problem configurations given the

prescribed 36-inch width. However, these two prescribed configurations contradict one

another, and the contradiction adds to the complication of modeling the exceptions for

automated analysis.

The motion-planning techniques guarantee the discovery of a 36-inch accessible route if

one exists provided that the motion planner generates configuration space grid

discretization at least equal to the precision of the facility design measurements. For

example, if the facility is designed to the nearest inch, the grid discretization should be at

least as fine as one inch.

4.2 Automated Performance-based Analysis: The

Usable Accessible Route

The performance-based accessible route analysis presented in this section attempts to

address the deficiencies of the prescribed accessible route parameters of the ADAAG.

Difficulties in capturing intent of a standard and the behavior of the dependent

components are major issues in developing performance-based methods. This section

demonstrates that determining the accessible route belongs to a family of problems that

can be successfully modeled using performance-based methods.

The performance-based accessible route analysis uses motion-planning simulation to

generate the accessible route graph. In addition to a variation of the motion planner

developed for the prescriptive-based analysis that addresses the wheelchair user’s

comfort level, the motion-planning parameters developed in this section directly capture

wheelchair behavior (the motion planner developed for the prescriptive-based approach

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 108

captures the ADAAG’s prescribed parameters). The interaction of the wheels of a car-

like robot such as a wheelchair and the ground surface constrains robot motion in a

manner dependent on its instantaneous orientation. This non-slipping or non-holonomic

turning constraint restricts the motion of the robot in its attempt to reach the goal point.

Dubins solved the shortest path in a plane for a robot-like car that cannot reverse and

cusps are not allowed [10]. The wheelchair motion developed in this research is a

variation on the car motion formulation, and next section describes the non-holonomic

planner developed for wheelchair motion.

4.2.1 Overview of Performance-based Motion Planning:

Developing a Non-holonomic Planner
The motion planner developed for the prescriptive-based analysis utilized various sizes of

disc robots. The performance-based analysis also uses the A36 robot to generate the C36
configuration space and generates an NF2 potential field, and the motion planner uses

this potential field as a guide to generate the path τ for the actual wheelchair robot Awc.
Figure 4.15 shows the reference wheelchair dimensions from the ADAAG.

Figure 4.16 illustrates the geometry of the Awc robot. Note that the robot is less than 36

inches wide, but the motion planner uses the C36 configuration space since this 36-inch

width in the ADAAG represents a comfortable width for the wheelchair user to negotiate.

Since the Awc is not a disc, the motion planner must keep track of the robot’s orientation

while generating a path, and the motion planner must check each wheelchair position and

orientation against the obstacles in the space. Therefore, the motion planner discretizes

the rotation space and creates configuration spaces Cwc0…Cwcn such that 2π/n equals the

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 109

Figure 4.15: ADDAG wheelchair dimensions.

26”

33
”

13
”

46
”

Figure 4.16: Dimensions of the robot Awc.

number of degrees between sequential orientations of Awc. Now, the motion planner can

check the wheelchair position and orientation (x,y,θ) against the appropriate Cwci

configuration space. Section 4.2.2 and Section 4.2.3 address the initial/goal point

formulation and Section 4.2.4 addresses the non-holonomic path.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 110

4.2.2 Determining the Ropen Components

The performance-based approach that determines the Ropen components uses the same

Ropen formulation for the prescriptive-based approach. However, instead of specifying

multiple clearance boxes and the associated initial and goal line segments, this Ropen
determination uses one initial point and one goal point on the opening’s pullside and a

combined initial/goal point on the opening’s pushside. While a clearance box is explicitly

prescribed in the ADAAG to be tested as a static evaluation method, the performance-

based accessible route analysis models the actual wheelchair path directly, and the

wheelchair must pass through some clearance area when starting from or getting to the

initial or goal point.

Figure 4.17 illustrates the positions of the initial and goal points associated with the

opening. Since the motion planner uses the initial and goal points to generate the NF2

potential field in the C36 configuration space, the figure shows the A36 robot as well as

the Awc robot. The Awc robot shown in the figure has a fixed orientation associated with

the initial points. However, the motion planner accepts any orientation within a 90-

degree range for the orientation of the Awc robot at the goal position. Note that when

passing though a door opening, the wheelchair goes from the goal point of a path segment

on one side of the door opening to the initial point of a path segment on the opposite side

of the door opening. The goal point-initial point sequence through a door opening is

either (b)-(c) or (d)-(a) from the figures shown in Figure 4.17. This research has

developed the door opening goal point and initial point parameters guaranteeing that a

path exists from the goal point-initial point pair.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 111

equal
18

”
18

”

18
”

18
”

(c) Pushside Initial Point (d) Pushside Goal Point

(a) Pullside Initial Point (b) Pullside Goal Point

equal

equal equal equal equal

Figure 4.17: Initial and goal points for the Ropen node.

4.2.3 Determining the Rinit and Rgoal Components

As with the Ropen component, the determination of Rinit and Rgoal utilizes the basic

motion-planning initial and goal point as opposed to an initial and goal line segment

associated with the relevant clearance box as prescribed by the ADAAG. To reiterate the

motivation, the ADAAG prescribes a clearance box as the only testable static method to

ensure component usability, but a dynamic method should evaluate whether the

preconditions and the goals can be directly satisfied.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 112

Figure 4.18: ADAAG wheelchair transfer diagrams for water closets [1].

In general, an Rgoal node maps to one goal point. However, in certain cases, the motion

planner needs more than one goal point to decide a component’s accessibility. Figure

4.18 illustrates toilet usage by a wheelchair user, an action known as wheelchair transfer.

As shown in the figure, the wheelchair user can transfer from the wheelchair to the toilet

via two fundamentally different methods: diagonal transfer and side transfer. Thus, the

motion planner specifies two different goal points and orientations to reflect the different

methods.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 113

38
”

42”

(a) Diagonal Transfer Goal Point (b) Side Transfer Goal Point

48
”

30”

Figure 4.19: The goal points for water closet diagonal and side transfer respectively.

Figure 4.19 illustrates the two goal points and orientations associated with the two

transfer options. The side transfer goal point and orientation of the Awc robot illustrated

in Figure 4.19(b) does not directly correspond to the side transfer position illustrated in

Figure 4.18(b) for the following reason. The motion planner restricts the wheelchair to

only forward motion, and the ADAAG assumes backing up to the final side transfer

position. Therefore, the motion planner positions the Awc robot in a position to make the

backup move to the final side transfer position.

4.2.4 Determining the Rseg Components

The previous sections in this chapter established the C36 configuration space based on the

A36 robot, the initial point, and the goal point for the motion planner to generate NF2

potential field. This section describes the formulation of the non-holonomic wheelchair

path τ using this NF2 potential field in the C36 configuration space to guide the Awc robot

and the Cwc0…Cwcn configuration spaces to perform the collision-checking.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 114

distance D distance D

di
st

an
ce

 D

turning radius rturning radius r wheel axle line

Figure 4.20: The three options (left, right, and straight) for the Awc robot.

The motion planner describes the non-holonomic path by restricting the Awc robot to three

moves: a left turn, a right turn, and a straight-ahead move. Figure 4.20 illustrates these

three options. The motion planner describes the vertex of the turning angle as the

perpendicular length r from the centerpoint between the major wheelchair wheels. The

motion planner records the actual position of the Awc robot at the centerpoint of the half-

dodecagon at the front of the robot. The displacement distance D from either turn (which

is dependent on r) dictates the translation of the Awc robot for the straight-ahead option.

The performance-based accessible route path planner restricts the value of r to two

values, r1 and r2 using a two-step approach. As the wheelchair user nears a goal, the user

naturally slows down allowing finer maneuvering with a smaller turning radius. The

larger turning radius r1 (r1 equals 24 inches) is employed to move the Awc robot to the

goal point. When the wheelchair has moved within an 18-inch locus of the goal point,

the motion planner switches to the smaller turning radius r2 (r2 equals 9 inches) to try to

maneuver the Awc robot to the goal point with an acceptable orientation.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 115

The pull side approach maneuvering clearance geometry parameters in Figure 4.2

translate to the use of this two-step turning radius approach. The wheelchair user can use

the faster r1 turning radius when approaching the door, and the 60-inch depth of the

maneuvering clearance implies the use of the slower, tighter turning radius r2 in the

proximity of the door.

The motion planner uses the NF2 potential field in the C36 configuration space to guide

the Awc robot using the following algorithm. Starting from the initial position and

orientation qinit, the motion planner examines the three move options, left, right, and

straight ahead (qleft, qright, and qstraight using r1 for the robot turning radius. If qleft
resides in the C36 and appropriate Cwci configuration spaces free space, the motion

planner compares the (x,y) associated with qleft with the (x,y) associated with qgoal. If
the (x,y) values not equal, the motion planner looks up the potential field value Uleft,
creates a node containing qleft and Uleft, and inserts the node into a priority queue

which prioritizes nodes by their U-value (the lower the value, the higher the priority).

Finally, the motion planner inserts a pointer to the previous position (in this case, qinit)
in the node and marks qleft in the appropriate Cwci configuration space potential field as

having been already visited. The motion planner repeats this procedure for qright and

qstraight.

The motion planner continues this iterative process by removing the highest priority node

(the node with the lowest potential value) from the priority queue and examining the

three move options from the associated q. Now, Cwci configuration spaces include the

visited as well as the free space information, and the motion planner treats a visited qinit
as an obstacle. When q is within an 18-inch locus of qgoal, the planner starts generating

new positions using the smaller turning radius r2. The iterative process continues until

either the motion planner empties the priority queue (indicating no path τ exists) or (x,y)

associated with the current q matches the (x,y) associated with qgoal. With a match, the

motion planner examines the orientation θ associated with the current q against the θ

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 116

associated with qgoal. If the current θ lies within the allowed range of θ goal, the motion

planner records the path τ. Otherwise, the motion planner continues the iterative process

until the motion planner empties the priority queue (no path τ) or the current q matches

with qgoal for both position and the acceptable orientation range.

Finally, the performance-based analysis implements a one-step iterative process using

only the r2 turning radius to test for the turning circle requirement in a space. The Awc
robot may not be able to achieve the goal point using the first step in the two-step

process, so the motion-planner uses the tighter turning radius for this maneuvering

requirement.

In determining the value for the turning radius r1, a larger value represents a larger

turning circle and a more comfortable path τ for the wheelchair user. A trial-and-error

method determines the largest possible value for r1. The prescriptive-based accessible

route development earlier in this chapter described the deficiencies of the prescribed

accessible route parameters in the ADAAG. However, since the prescribed accessible

route parameters in the ADAAG are designed to define usability, this research uses the

prescriptive parameters to determine the values for the r1 turning radius.

The motion planner utilizes the prescribed 36-inch path width to construct the C36
configuration space since a 36-inch width represents a comfortable width for the

wheelchair user. Now, the trial-and-error method uses the non-holonomic motion-

planning techniques described in the previous section on the two turning-around-an-

obstruction configurations from the ADAAG Provision 4.3.3 shown in Figure 4.6 to

determine r1. (Note that the motion-process described above describes a two-step

process using two r-values, but here, the motion planner uses a one-step process using

r1). The trial-and-error method begins with a value for r larger than the final value for r1

(the larger the turning radius, the more comfortable the wheelchair path decrements this r

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 117

36
”

36”36” 48”

Figure 4.21: Motion-planning results for the first ADAAG 4.3.3 exception, r1 = 24”.

value to until it finds a legal path τ). Figure 4.21 and Figure 4.22 illustrate the first legal

paths with an r1-value that works for both turning-around-an-obstruction configurations

produced by the trial-and-error method: r1 is equal to 24 inches.

As with the determination of r1, a trial-and-error method uses a provision from the

ADAAG to determine r2:

4.2.3 Wheelchair Turning Space. The space required for a wheelchair to make a 180-
degree turn is a clear space of 60 in (1525 mm) diameter (see Fig. 3(a)) or a T-shaped
space (see Fig. 3(b)).

The trial-and-error method does not use the motion planner to determine r2 since it only

finds the maximum turning radius that can make the Awc robot perform the turning

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 118

48
”

42” 42”

Figure 4.22: Motion-planning results for the second ADAAG 4.3.3 exception, r1 = 24”.

maneuver in a 60-inch space. Figure 4.23 illustrates the turning maneuver that satisfies

the 60-inch horizontal constraint using a turning radius r2 of 9 inches.

Note that the y-dimension exceeds the 60-inch diameter clearance requirement. The

ADAAG Appendix notes that, in practice, the vertical dimension should actually exceed

60-inches:

A4.2.3 Wheelchair Turning Space. These guidelines specify a minimum space of 60 in
(1525 mm) diameter or a 60 in by 60 in (1525 mm by 1525 mm) T-shaped space for a
pivoting 180-degree turn of a wheelchair. This space is usually satisfactory for turning
around, but many people will not be able to turn without repeated tries and bumping into
surrounding objects. The space shown in Fig. A2 will allow most wheelchair users to
complete U-turns without difficulty.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 119

60”

Figure 4.23: Motion-planning results for the turning radius, r2 = 9”.

Figure 4.24: ADAAG Figure A2 illustrating the actual turning clearance geometry [1].

Figure 4.24 illustrates an acceptable clearance oval, and the turning formulation in Figure

4.24 easily fits into the suggested oval geometry.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 120

4.2.5 Performance-based Analysis Discussion
The performance-based motion-planning techniques developed in this chapter directly

capture motion and behavior given the wheelchair’s parameters as described in the

ADAAG. This direct analysis obviates the need for the complicated exception analysis

associated with the prescriptive-based ADAAG accessible route parameters, an artifact

that is a consequence of the ADAAG’s prescribed accessible route abstraction.

Similar to the prescriptive-based motion-planning analysis developed in this chapter, the

performance-based motion planner can guarantee the discovery of the 36-inch wide path

provided that one exists. However, it is possible that the non-holonomic planner

developed for the actual wheelchair motion might not find a path even if one exists. One

reason concerns the discretization of the configuration space:

As opposed to the solution described in Section 4.1.5 for the ADAAG-width-compliant

motion planner, determining the necessary discretization granularity for the non-

holonomic configuration space is not straightforward since the location of the wheelchair

robot’s next possible position (using trigonometric functions) may not correspond to the

exact grid discretization. A possible extension to this research involves developing

techniques that guarantee the discovery of a path if one exists given the described

performance-based non-holonomic motion-planning techniques. Hsu et al. presents

related work developing a randomized motion planner for robots under kinematic and

dynamic constraints in which the probability that the planner fails to find a path when one

exists converges toward zero [29]. The following describe some other possible

extensions to the performance-based analysis.

Figure 4.15 illustrates the prescribed ADAAG dimensions for a wheelchair, and the

performance-based accessible route analysis uses the ADAAG wheelchair to develop the

Awc robot parameters. The prescriptive nature of the code creates an indirect relationship

between provision parameters and the wheelchair dimensions and behavior. No cause-

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 121

Table 4.1: Wheelchair parameters and influencing factors.
Parameter Influencing Entity Constraints
A36 users, manufacturers user comfort level

wheelchair physical dimensions
Awc manufacturers wheelchair physical dimensions
r 1 and r 2 users, manufacturers user comfort level

wheelchair physical dimensions
wheelchair speed

r centerpoint manufacturers wheel dimensions, placement, action

and-effect relationship exists between the wheelchair constraints and the prescriptive

route usability analysis.

In contrast, a designer can vary the parameters developed in this chapter. Varying

specific parameters allows wheelchair manufacturers and users to test the behavior of a

specific wheelchair model or assign personal preferences and simulate wheelchair

movement in a specific design configuration. Varying the A36 robot’s diameter (and

influencing the C36 configuration space) allows the user to choose a preferred path width

comfort level independent of the actual wheelchair parameters. Of course, the diameter

should exceed the wheelchair width. Wheelchair manufacturers make wheelchairs with

various physical dimensions, and the performance-based analysis can easily capture these

dimensions to model the Awc robot. In addition, the turning radius and centerpoint of the

turn depends on the wheelchair’s mechanical constraints. Finally, independent of these

mechanical constraints, users have their own comfort level associated with the possible

turning radii r1 and r2. Table 4.1 summarizes the variable parameters and the influencing

factors.

The non-holonomic path-planning analysis developed in this chapter limits the

wheelchair motion to three options: left, right, and straight. The motion planner imposes

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 122

24”

48”

forward turn

backward turn

Figure 4.25: Left-hand-turn options (forward, backward, r = 24”, 48”).

this restriction in an attempt to capture the intent of the prescribed code and match the

compliance results of the ADAAG accessible route provisions.

The number of options of forward motion can be increased to 1+2f where 1 represents the

straight-ahead move and f represents the number of same direction (left or right) forward

turns. As with the three-move formulation, the new positions q for all moves should be

equidistant from the starting position. In addition, the motion planner can support

backward motion. Reeds and Shepp describe optimal paths for a car-like robot that is

allowed to reverse its direction [55]. Indeed several ADDAG provisions assume

backward motion. Now, the number of options of motion can be increased to 1+2f+2b

where b represents the number of same direction (left or right) backward turns. The

motion planner would set a limit on the number of backups for a given path τ according

to the building code’s or user’s specifications. Figure 4.25 illustrates two left-hand

turning radii supporting forward and backward motion (the same turning radii are used

for both the forward and backward turns). The dashed circle represents the equidistant

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 123

locus around the starting position of the Awc robot and note that the turning angles of all

four moves have been set for the equidistant movement.

4.3 A Comparison of Prescriptive- and

Performance-Based Analysis Results

This section demonstrates the deficiencies of the prescriptive-based accessible route

formulation by analyzing design configurations against the prescriptive parameters from

the ADAAG and comparing the results to the developed performance-based analysis.

Table 4.2 delineates the possible combinations of the two analyses. The performance-

based analysis uses specific provisions from the ADAAG to instantiate the turning radius

parameters, and by default, the tested configurations were both code-compliant and

usable (Table 4.2, Entry 1). Providing examples that are both non-compliant and

unusable (Table 4.2, Entry 2) can be trivially demonstrated with a less-than-36-inch-wide

corridor. The prescriptive-based analysis is by nature limited in its description of

possible design configurations, and this section presents an example of a non-compliant

route that a wheelchair user can actually negotiate (Table 4.2, Entry 3). Similarly, the

section presents an example of a code-compliant route that a wheelchair user cannot

negotiate (Table 4.2, Entry 4).

Wheelchair users can comfortably use an infinite number of design configurations that do

not comply with the prescriptive accessible route provisions from the ADAAG. Because

of the prescriptive nature of the disabled access code, it cannot address all possible

configurations; the code limits the special cases it addresses to the turn-around-an-

obstruction exceptions, and Section 4.1.4.2 has described a configuration that reveals a

conflict in the ADAAG.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 124

Table 4.2: The possible prescriptive/performance analysis combinations.

Prescriptive-based Formulation Performance-based Formulation

1 Compliant Usable
2 Non-compliant Unusable
3 Non-compliant Usable
4 Compliant Unusable

42
”

36” 36”36”

Figure 4.26: The non-compliant, usable example.

Example 1

This example presents a design configuration illustrated in Figure 4.26 that clearly falls

under the U-turn-around-an-obstacle exception category: the width of the obstruction is

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 125

less than 48 inches, and the configuration cannot be transformed into the 90-degree-turn-

around-an-obstacle exception by making the obstruction wider than 48 inches. Following

the parameters of the ADAAG Provision 4.3.3, the configuration fails to comply with the

exception that:

• The widths of the first and third legs are less than 42 inches.

• The width of the second leg is less than 48 inches.

Using the performance-based parameters established in the performance-based analysis,

the motion planning simulation returns a successful path τ around the obstruction for the

non-compliant configuration as illustrated in the figure. Thus, the configuration is usable

by a wheelchair user.

Example 2

Wheelchair users cannot comfortably negotiate an infinite number of design

configurations that comply with the prescriptive accessible route provisions from the

ADAAG. This example demonstrates an example illustrated in Figure 4.27. Following

the parameters from the ADAAG Provision 4.3.3, the design complies with the code in

that:

• The accessible route is equal to or greater than 36 inches wide.

• Neither turn-around-an-obstruction exception applies.

Note that if the angle between the second and third leg equals 90 degrees instead of

exceeding 90 degrees, the first turn-around-an-obstruction exception from Provision 4.3.3

would apply. The building official may contend that the exception applies with a small ε,

but as ε grows, the configuration does not qualify for the exception. The ambiguity of at

what point the prescribed configuration applies illustrates another deficiency of a

prescriptive-based approach.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 126

36” 12”

90° + ε

Figure 4.27: The code-compliant, unusable example.

Using the performance-based parameters, the motion planning simulation fails to return a

path τ around the obstruction for the code-compliant configuration. For this example, a

modified motion planner keeps track of the lowest potential-value node visited, and in the

event of failure, as illustrated in Figure 4.27, the motion planner returns a path that gets

the wheelchair as close to the goal point as possible. A trial-and-error method of

iteratively extending the length of design-configuration’s second leg in increments of one

inch and running the motion planner yields the usable design configuration shown in

Figure 4.28. Alternatively, an iterative trial-and-error method could have been used to

establish the second leg’s minimum width that ensures usability.

Finally, by changing the angle between the second and third legs of the route from 90°+ε

to 90° or 90°-ε, the motion planner can be used to demonstrate the overly-restrictive

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 127

36” 30”

Figure 4.28: Modifying the middle leg of the route makes the configuration usable.

nature of the 90-degree-turn-around-an-obstruction exception from Provision 4.3.3.

(While not explicitly stated, the exception should apply to angles less than 90 degrees

since this configuration would constitute a more difficult accessible route). As illustrated

in Figure 4.28, the second and third leg dimensions provide a viable path τ around the

obstruction, and these lengths are clearly less than the required 48-inch/48-inch exception

requirement.

4.4 Wheelchair Manipulation and Animation

So far, this research has argued that if the behavior is quantifiable, performance-based

analysis methods are superior to analogous prescriptive-based methods. While this

research has successfully quantified critical accessible route-related behavior, this

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 128

research develops an additional tool placing the designer in a virtual wheelchair that can

be navigated through the facility design environment. Though the prescriptive- and

performance-based methods provide information regarding the code-compliance and

usability of a facility, visual presentation of this information can provide further insight

into each type of analysis.

This research develops several algorithms associated with the manipulation and

animation of the virtual wheelchair. The manipulation algorithms translate the joystick

device output parameters to move the virtual wheelchair. The animation algorithms

translate the generated accessible route to the various wheelchair movements associated

with wheelchair motion.

4.4.1 Joystick Manipulation of the Wheelchair
This section maps the corresponding joystick positions to the wheelchair movement. The

section will refer to Figure 4.29 to describe the relationship between the joystick position

and the generated wheelchair motion.

Any (x,y) value with x = 0 constitutes straight motion with y > 0 corresponding to

forward motion and y < 0 corresponding to backward motion with the major wheels

moving with the same angular velocity ω in the same direction. The pairs (0, ymax) and

(0, ymin) (A and E in Figure 4.29) correspond to the maximum forward and backward

velocities vmax and –vmax, and any velocity v corresponding to a joystick position on y-

axis can be defined by the equation:

v = vmax * (y / ymax)

For “right turn” wheelchair navigation, the designer moves the joystick within the two

right quadrants of Figure 4.29. Intuitively, as the joystick position moves from A to B,

the wheelchair begins to turn to the right. To achieve this behavior, the right wheel’s

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 129

x

y

A B

C

DE

Figure 4.29: The joystick coordinate system.

angular velocity ωr decreases. At point B, ωr equals 0, and the wheelchair rotates around

the right wheel’s point-of-contact with the ground. As the joystick position moves from

B to C, ωr decreases from 0 (in the opposite direction of the left wheel’s angular velocity

ωl). At point C, ωr equals -ωl and the wheelchair rotates at the midpoint between the

two wheel’s point-of-contact with the ground. Similarly, from C to D, ωr decreases. At

point D, ωr equals 0, and from D to E, ωr decreases from 0 until at point D, ωr equals ωl,

and the wheelchair moves straight backward. The opposite “left turn” behavior occurs

when the joystick position moves from A to E in the counterclockwise direction.

The x:y ratio determines the turning radius centerpoint and the magnitude of the xy vector

determines the wheelchair velocity, at A, the turning radius r is infinite. At B, r is equal to

half the distance between the two wheels, and at C, the turning radius r is 0.

Determining the turning radius r formally, if y > 0 (forward movement), set the sector

that the left wheel travels through sl equal to 1. The sector that the right wheel travels

through is defined as:

sr = cos(2 * atan(|y / x|))

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 130

If y < 0 (backward movement), set sr equal to 1. The sector that the left wheel travels

through is defined as:

sl = –cos(2 * atan(|y / x|))

Now, the angle that the wheelchair sweeps through is defined as:

θ = (sl - sr) / d

where d equals the distance between the wheels. Finally, the turning radius is defined as:

r = (sl / θ) – (d / 2)

4.4.2 Wheelchair Animation Techniques
The design-aid framework allows the designer to qualitatively analyze an accessible route

through the facility design by allowing the designer to experience the path from two

points of view. In addition to allowing the designer to observe the wheelchair, the

design-aid frameowork provides a “wheelthrough” view analogous to a “walkthrough”

that is provided by many visualization packages. This section describes the animation

techniques used to generate and coordinate wheelchair and the wheelchair user.

Figure 4.30 illustrates the geometric (rotational) relationship hierarchy of the wheelchair

and the wheelchair user. The animation algorithm uses this hierarchy to generate

appropriate behaviors of the moving parts of the wheelchair as well as the human

locomotion from a two-dimensional path. Using these hierarchical relationships, given a

polygonal path, the behavior of the wheels, both the major wheels and the casters, can be

accurately modeled providing realistic animation of the wheelchair motion. The

animation algorithm assumes manual locomotion, and the rotation of the back wheel

depends on the wheelchair user’s hand and arm movement. The animation algorithm

simplifies the anthropomorphic constraints using inverse kinematics to determine the

forearm and upper arm in relationship to the hand.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 131

Wheelchair

Back Wheel Swivel

Front Wheel

Torso

Upper Arm

Forearm

Hand

Figure 4.30: Wheelchair and wheelchair user geometry hierarchy.

polygonal path
calculated path
centerpoint of rotation

θ2

θ1

Figure 4.31: The smoothing of the polygonal path of the wheelchair.

Figure 4.31 illustrates the smoothing algorithm. The path-smoothing algorithm uses as

input a polygonal path of equal-length segments. The smoothing algorithm examines a

sequence of two segments and calculates an arc that sweeps from the midpoint of each

segment and is tangential to each segment.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 132

calculated path
path of left wheel

path of right wheel

Figure 4.32: The paths of the major wheels for the given path of the wheelchair.

There are two exceptions to this computation:

1. When the segments are co-linear and pointing in the same direction.

2. When the segments are co-linear and pointing in opposite directions.

In the first case, the algorithm records the translation information holding the angles of

rotation (θ1 and θ2) constant. In the second case, the algothim sets the point of rotation at

the midpoint of the two segments (the same point) and θ2 is set to θ1+π. At this point, a

node in the data structure contains the centerpoint information, the angle sweep

information, and the translation information of a single arc.

Figure 4.32 illustrates the path of the major wheels of the wheelchair. The rotation of the

left and right major wheels is calculated as follows. Here, the algorithm calculates the

length of the arc that is swept by each wheel dependent on the calculated path of the

center of the wheelchair. Now, the algorithm calculates the sweep of each wheel

dependent on the wheel's radius.

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 133

calculated path

θ of left caster

centerpoint of rotation

θ of right caster

Figure 4.33: The coordination of the swiveling casters.

It is interesting to note that if the radius of arc of the calculated path of the center of the

wheelchair is smaller than the distance of a wheel from the centerpoint, then the wheel's

turning motion goes in the opposite direction. When a wheelchair is spinning on its axis,

the wheels are rotating in completely opposite directions.

Next, the algorithm calculates the swivel of each caster as illustrated in Figure 4.33. The

caster tries to position itself perpendicular to the vector from the centerpoint of the

rotation of the wheelchair to the point of swivel. The previous position of the caster is the

starting point, and the caster will then tend towards the desired next position.

The caster may not achieve the final desired position. The algorithm allocates 1/18 π per

timestep using a the timestep of 1/10th of a second. If the caster cannot reach the desired

goal angle before the end of the calculated arc, it tries to achieve to the next position

based on the rotation of the wheelchair at the next arc. It is also interesting to note that

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 134

10/18 π

wheel radius
5/18 π

Figure 4.34: Arm position range-of-motion.

each caster's desired angular position is different (except when the wheelchair is only

moving forward and not rotating).

Finally, the algorithm coordinates each arm motion is coordinated with the corresponding

major wheel. Here, the positions of the arm have been pre-calculated for six positions

ranging from 5/18 π to 10/18 π as shown in Figure 4.34. The range corresponds to the

range that the model of the figure can reach the wheel.

At each keyframe, the animation environment interpolates the arm position between the

six pre-calculated positions. When the arm position goes beyond the range, the arm is

placed at the opposite position to start pushing (or pulling) the wheel again.

4.5 Summary

This chapter first presented an automated analysis of the accessible route R components

given the ADAAG prescribed parameters. This chapter showed that the prescriptive

formulation has the following deficiencies:

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 135

• In the case of the maneuvering clearances associated with several building

components, the clearance geometries (that are used to determine the usability of

these components) depend on the accessible route approach to the components. Thus

the ADAAG must prescribe multiple clearance geometries if there are multiple

approaches, and the developed analysis methods must test for the existence of all the

possible clearance geometries.

• The prescribed path width does not sufficiently provide usability in all configurations.

For this reason, the ADAAG adds special cases (exceptions in the form of additional

prescribed geometries) to address this deficiency, and the developed analysis method

must test for the general case (the general prescribed path width) as well as the

exceptions.

• Most importantly, the mapping from the accessible route design intent to prescribed

parameters can lead to limited, incorrect, or conflicting formulations. As noted in this

chapter, the exceptions to the prescribed general path width only address two special

configurations whereas many more exist and are not addressed by the prescriptive-

based code. In addition, this chapter has described a configuration in which the

prescribed geometries of the path width exceptions lead to conflicting and incorrect

analysis.

Next, this chapter described a motion-planner developed to capture wheelchair motion as

the wheelchair user moves along an accessible route. The chapter discussed several

advantages that the performance-based approach has over the prescriptive-based

approach. Specifically, the motion-planning simulation alleviates the need for multiple

clearance geometries associated with different approaches to a building component and

the need for prescribed exception configurations to the basic prescribed accessible route

width requirement.

While the prescriptive-based approach cannot address all possible configurations and thus

is limited in describing the usability of a facility, the performance-based formulation does

CHAPTER 4. ACCESSIBLE ROUTE ANALYSIS 136

not suffer from this limitation. The performance-based formulation provides a more

accurate analysis of facility usability since it directly models the wheelchair behavior.

The chapter also described variations to the non-holonomic path formulation extending

from the code-compliant parameters. The flexibility of the performance-based approach

allows varying the parameters to directly affect changes to the wheelchair motion

behavior.

The chapter then presented examples comparing the prescriptive-based code-compliant

accessible route analysis with the performance-based usable accessible route analysis.

The first example demonstrated a non-compliant but usable design configuration. The

second example demonstrated a code-compliant but unusable design configuration and a

modification to the original configuration to make it usable. The direct comparison of the

two analysis methods and the ability to vary the wheelchair parameters (and thus the

behavior of the path-planner to accommodate specific users and wheelchairs) show the

advantages of the performance-based accessible route analysis over the prescriptive-

based analysis.

Finally, the chapter described the wheelchair manipulation and animation algorithms

used to realize the interaction and visualization of the virtual wheelchair. These

interaction and visualization tools provide the designer with qualitative insight into the

disabled access problem. From the wheelchair user’s viewpoint, the designer can observe

what the wheelchair user observes, and the tool can influence critical design issues such

as window and signage placement, issues that are beyond the scope of the prescriptive-

and performance-based analyses. The joystick interaction provides the designer with a

virtual environment that most closely resembles the interaction with the actual facility by

accurately mapping joystick manipulation to wheelchair motion. Similar to the flexibility

of the performance-based analysis, manufacturers can customize this mapping to the

particular constraints of individual wheelchair models.

Chapter 5

The Design-aid Framework as a
Distributed Object Service
Environment

This research develops and implements the design-aid framework giving the designer

access to the analysis tools developed in the previous chapters. These tools include:

• The prescriptive-based and performance-based disabled access analysis of a facility

design.

• The ability to manipulate a virtual wheelchair through the facility design.

• The ability to transfer the facility design data from a commercial CAD package to the

design-aid framework giving the designer access to the analysis tools.

Three questions motivated the implementation development:

1. How can the research provide the developed analysis tools in a modular fashion that

can be generalized for the integration of other services and tools into the design-aid

framework?

137

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 138

2. How can the research leverage this modular approach to take advantage of disparate

and distributed computing platforms?

3. Does the current offering of computer development tools and environments enable or

hinder the development of the design-aid framework?

To answer these questions, this chapter describes the concepts used to realize the design-

aid framework as an Internet-based Distributed Object Service Environment (DOSE) and

the use of DOSE to develop the disabled access design-aid framework. This research

uses the concepts developed in [25] and reifies notion of a service. To fully-leverage the

power of the Internet, engineering and design services should be able to interact in a

formal yet flexible manner. Services should be able to combine with existing services to

provide added functionalities. The distributed object environment provides object

transparency—an application accesses a Service object using the same protocol

regardless of the object’s location, either local or remote, and independent of the

computer system platform assuming the platform supports the Service object interface.

The chapter is organized as follows:

• Section 5.1 describes the three-tiered Service object architecture.

• Section 5.2 describes the Visual Interactive Environment Workbench (VIEW) and its

interaction with the various accessible route design aids that are implemented as

aggregations of Service objects.

• Section 5.3 describes the implementation and related issues of the design-aid

framework.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 139

Service Core

Communication
Interface

Product Model
Interface

Internet

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface

Service Core

Communication
Interface

Product Model
Interface Service Object

Figure 5.1: The conceptual diagram of a Distributed Object Service Environment (DOSE)
instance.

5.1 The Three-Tiered Architecture

Figure 5.1 shows the conceptual network-enabled DOSE with four Service objects. In

this environment, each individual service adheres to a three-tiered architecture. The first

tier, a communication protocol or interface, gives the application services a common

means to send and receive design data over the Internet. The middle tier, the optional

common product model interface, is a standard protocol that describes the design data (in

Figure 5.1, the top Service object has no product model indicated by the different

color of the product model interface layer from the other Service objects). The third

tier is the core of the design service—the design service extracts the appropriate

information such as the building design through the common product model interface and

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 140

then either modifies the design data or generates a report based on the analysis of the

data.

One service can register with another service in the infrastructure. The registration and

query of a Service object is based on a predetermined constraint language. When the

core of a parent design service executes its analysis, it may send parts of the analysis to

the child services that have registered with the parent service.

The communication protocol makes certain methods of the Service object public as

shown in Figure 5.2. Following the object-oriented paradigm, the “exposed” methods are

the points of entry into a service, but the actual implementation of these methods is

dependent on the service. The Service object consists of two registration methods,

registerService() and registerDecompositionService(), that allow a

service to register with another service. A service registers using the

registerService()method with a broker that will advertise the service. Any child

service called by the parent service must register with the parent service using the

registerDecompositionService()method. The structure of the analyze()

method in Figure 5.2 is similar to the Analyze() method of the Intent object

described in Chapter 3. The pseudo-code and subroutines of the analyze() method

are shown as a suggested design guide in the figure but are not implemented in the

interface since these methods do not need to be “exposed.” The Service object

provides methods to send and receive data, puts() and gets(), in the form of string

arrays. The Service object also provides both polling and callback mechanisms

(getStatus() and notification()) to communicate with child services. Hence,

the Intent object can be implemented as a Service object—with the registration and

analysis methods (along with the suggested analyze() subroutines), the Service

object supports the type of problem decomposition described in Chapter 3.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 141

module DOSE
{
 interface Service;
 typedef sequence<string> StringArray;

 interface Service
 {
 void registerService(in Service service);
 void registerDecompositionService(in Service service);
 Service getRegisteredService(in string id, in string type);
 Service getRegisteredDecompositionService(in string id, in string type);

 string getServiceId();
 string getServiceType();
 void putServiceId(in string id);
 void putServiceType(in string type);

 void analyze(in Service service, in string session, in string command);

/*
 * this loop shows the internal implementation of the analyze() method in pseudocode
 * {
 * preProcess();
 * for (int i=0; i < number of decomposition services; i++) {
 * pre-process the decomposition service (i);
 * execute the Analyze() method of decomposition service (i);
 * post-process the decomposition service (i);
 * }
 * postProcess();
 * }
 */

 boolean getStatus(in string session, in string command);
 void notification(in Service service, in string session, in string command);

 StringArray gets(in string session);
 void puts(in string session, in StringArray strings);
 };
};

Figure 5.2: The DOSE communications protocol.

Some services may not need the product model layer. For example, a brokering service

that simply registers and advertises services does not need to process any design data.

All design-related services, however, will use the product model layer. The DOSE

implemented in this research assumes a common product model across all services using

the product model described in Chapter 3. However, since the communications layer is

decoupled from any product model semantics, the environment itself does not constrain

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 142

the design data semantics, and services that utilize disparate product models must first

use an intermediate translation service to transform the facility data into a usable format.

The product model interface receives the product model data from the communication

layer as an array of strings via the puts() and gets() methods and stores the design

data according to the individual service’s needs. While not required, making the product

model and the storage scheme consistent across the infrastructure makes it easier to reuse

methods to extract the critical data from the product model and send this data to the core

of the design service.

The Service object core layer executes the service’s analysis using the analyze()

method. The product model layer stores the design data, and the service core layer either

uses this data directly or transforms the design data from the product model to a view or a

diagram which is unique to the application. For the two decomposition subroutines

associated with the analyze() method, the Service object must extract the relevant

data, send it to the predetermined child services (via the puts() method), and instruct

the child service to execute its analyze() method.

If the process that has initiated the analyze() method is not a Service object, the

executing Service object does not have a mechanism to inform the initiating process

upon completion of the task. Rather, the Service object simply waits to be polled (via

the getStatus() method) by the initiating process. If the initiating process is a parent

Service object, then the executing Service object (the child Service object)

notifies the parent Service object (via the notification() method) upon

completion of the task. If the initiating process expects to receive data from the child

Service object, it executes the gets() command to retrieve the data.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 143

Code-Check
Server

Building-Level
Client

Story-Level
Client

Space-Level
Client

Motion Planning
Client

Code-Check
Service

Joystick
Server

Joystick
Client

Joystick

Joystick
Service

CAD
Client

CAD
Server

CAD
package

CAD
Service

Usability
Server

Animation
Client

Building-Level
Client

Story-Level
Client

Space-Level
Client

Motion Planning
Client

Usability-Check
Service

Animation
Service

VIEW

Visual Interactive
Environment/Workbench Server

Figure 5.3: The DOSE diagram of the design-aid framework.

5.2 A Visual Interactive Environment/Workbench

(VIEW) for Accessible Route Analysis

Figure 5.3 illustrates the design-aid framework from the point-of-view of the Service

object infrastructure. The solid white boxes represent instances of Service objects, the

gray boxes represent non-Service object applications, processes, or devices, and the

dashed boxes aggregate Service and non-Service objects to form composite

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 144

services. Connecting arrows indicate registration of a child Service object with its

parent Service object.

Consistent with the design-aid framework described in Chapter 2 (illustrated in Figure

2.1 and Figure 2.6), the Visual Interactive Environment/Workbench (VIEW) constitutes

the hub of the design-aid framework. Since the VIEW is not a Service object, it must

poll each of the four composite services via the getStatus() method of the Server

Service objects to attain the state of each composite service. These Server Service

objects reside on the same computer system as the VIEW, but the other components of

the composite services can exist anywhere and on disparate systems on the network thus

exploiting the distributed object transparency paradigm.

The VIEW consists of a graphical user interface (GUI) controlled by the user via the

keyboard, a mouse, and a joystick. Figure 5.4 illustrates the VIEW GUI with the

bathroom facility design. Using the mouse, the designer can orient and navigate through

the facility, pick and manipulate specific building components, and invoke the analysis

services. The joystick provides the designer with a mechanism to manually move a

wheelchair through the facility.

The following sub-sections describe the VIEW and the composite services in Figure 5.3

that communicate with the VIEW:

• Section 5.2.1 describes the VIEW module that provides the designer interaction

between a commercial CAD package and the VIEW.

• Section 5.2.2 describes the integration of the prescriptive-based and performance-

based analyses into the design-aid framework.

• Section 5.2.3 describes the module that allows the designer to move the wheelchair

through the facility using a joystick analogous to the control device used with a

motorized wheelchair.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 145

Figure 5.4: The Visual Interactive Environment/Workbench (VIEW).

5.2.1 The VIEW CAD Service
The CAD Service enables a designer using a CAD package to download a facility design

to the design-aid framework. The CAD Client Service Object registers with the CAD

Server Service Object, and the CAD package uploads the design data to the VIEW

using this client service as the intermediary between the CAD package computer system

and the VIEW system. The CAD Client Service resides on the same system as the CAD

package. Leveraging the distributed object paradigm, the CAD package usually resides

on a different system than the VIEW (the designer can and probably does interact with

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 146

CAD
Server

CAD
Client

EXPRESS
file

generates

executes

reads

registers with

uploads data

polls

uploads data

Figure 5.5: The CAD-to-VIEW interaction.

the VIEW through the web-browsing environment on the same computer system that the

designer is running the CAD package). Figure 5.5 illustrates the described CAD-to-

VIEW interaction.

The designer develops the facility design using AutoCAD with AutoCAD “blocks” that

describe the building components adhering to the product model specifications developed

in this research. To upload the facility design to the VIEW, the designer issues a

command associated with an AutoLisp function that generates the developed product

model EXPRESS file of the design, and the AutoLisp function executes the CAD Client.

The CAD Client reads the EXPRESS file, transforms the design data to the CAD Client’s

internal product model, and notifies the CAD Server that the design data is ready for

uploading. The VIEW can then initiate the sequence of gets() commands that uploads

the design data from the CAD Client to the VIEW via the CAD Server.

5.2.2 The VIEW Analysis Services
The Code-checking Service and the Usability-checking Service can be discussed together

since the architecture of these composite services are similar even though the internal

analysis mechanisms of the individual Service objects vary. The similarity confirms

that the same design-intent model can be used for both the prescriptive-based code-

checking formulation and the performance-based usability formulation.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 147

Each composite service is used for a complete facility analysis or an individual route

analysis. Each composite service adheres to the recursive analysis decomposition

developed in Chapter 3:

• The Building-level Service object registers with the front-end Analysis Server

Service object.

• The Story-level Service object registers with the Building-level Service object.

• The Space-level Service object registers with the Story-level Service object.

• Finally, the Motion-planning Service object registers with the Space-level

Service object.

The Usability Analysis Service provides one additional service. The Animation

Service object registers with the top-level Usability Analysis Server Service object

and is executed to animate a particular route. Each of the Service objects can reside

on any computer system. Ideally, the VIEW (and appropriate the Server Service

object) would reside on a separate system than the other Service objects, and the

motion-planner would reside on a machine that can handle the computationally intensive

algorithms. Figure 5.6 illustrates the VIEW-to-Analysis Service interaction and the

hierarchy of services.

The designer initiates the analysis from the VIEW, and the VIEW starts an analysis

session. The VIEW downloads the facility design data to the Analysis Server Service

object, and the Analysis Server Service object in turn download the facility design data

to the Building-level Client Service object. Starting at the building-level, the analysis

begins the decomposition process according to the architectural view of the facility. The

Building-level Client Service object decomposes the facility into stories, and

downloads the story-level information to the Story-level Client Service object as

separate sessions.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 148

downloads data Analysis
Server

Animation
Client

Building-Level
Client

Story-Level
Client

Space-Level
Client

Motion Planning
Client

downloads/
uploads

data

downloads/
uploads

data

downloads/
uploads

data

downloads/
uploads

data

downloads data

Figure 5.6: The VIEW-to-Analysis Service interaction.

The facility decomposition continues down the hierarchy of registered services. When a

client service receives notification via the notification() method from a child

service that a session has completed, it uploads the new and updated facility data from

that session using the gets() method. When all the sessions have reported back to the

parent service, the parent service resolves the new and updated facility data and sends the

facility data to the next registered child service in the sequence. If there are no other

registered child services, the session will notify its own parent service, and that parent

service will upload the revised facility design data.

The prescriptive-based analysis developed in Chapter 4 provides information about all

the accessible-route-related building components in the given facility design in the form

of a report. In addition, the VIEW allows the designer to interactively pick the building

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 149

components that indicate the end points of an individual path within the accessible route

graph and provides the visualization of this path. This visualization is especially

instructive for examining possible violations to the turn-around-an-obstruction exceptions

in ADAAG Provision 4.3.3.

The VIEW allows the designer to pick the initial and goal points in the facility design.

The initial and goal points are constrained to the accessible route formulation developed

in Chapter 3. If the user picks a building component that does not constitute an Rinit
node, the VIEW simply informs the designer to pick another building component.

Similarly, the VIEW restricts the designer’s Rgoal choice. For example, the designer

cannot choose a wall building component as the goal of the accessible route.

Once the designer has established the initial/goal pair, the VIEW sends the critical

information to the prescriptive-based analysis module. The prescriptive-based analysis

calculates the path and displays as much of the path as possible showing all relevant

maneuvering clearance boxes and delineating the points that compose the Rseg portions

of the path with 36-inch spheres.

The performance-based module that interacts with the VIEW uses the same interactive

procedure used by the prescriptive-based module. The designer interactively chooses the

initial and goal building components, and the VIEW imposes the same restrictions on

these choices. The VIEW sends the relevant information to the performance-based

analysis module, and the analysis returns the path information.

In contrast to the static prescriptive-based accessible route visualization, the

performance-based module generates a path animation using a wheelchair avatar. The

animation GUI provides the designer with two viewpoint options of the wheelchair

traversing the accessible route: an observer’s and a wheelchair user’s point-of-view. The

designer can switch between these views to gain visual insight into the characteristics of

the generated route.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 150

When all child services have reported back up the hierarchy to the Usability Analysis

Server Service object, the Server object downloads the relevant facility design data to

the Animation Client Service object, and the Animation Client generates the accessible

route animation.

5.2.3 The VIEW Joystick Service
This research includes the Joystick Service as there was no standard joystick interface to

the web-browser environment. Incorporation of the Joystick Service in the design-aid

framework illustrates the generality of the DOSE. The Joystick Service does not use the

optional product model layer of the three-tiered architecture in the same manner as the

aforementioned composite services. It simply sends a stream of joystick data to the

VIEW. The Joystick Service architecture is similar to the CAD Service architecture with

a single Client Service object registering with the Server Service object. The

VIEW then uses the joystick data to manipulate the wheelchair in the facility.

The Joystick Client Service object resides on the same machine as the joystick device.

Again, following the distributed object paradigm, the joystick can manipulate the

wheelchair in the VIEW from any system on the network but, in this case, would

probably be most useful residing on the system that is browsing the VIEW.

The VIEW joystick module allows the designer to interactively maneuver the wheelchair

through the facility design as a wheelchair user would manipulate a motorized

wheelchair. As with the VIEW performance-based module, the joystick module allows

the designer to choose between an observer’s and a wheelchair user’s viewpoint. This

module assumes independent forward and backward control of the wheelchair’s major

wheels. Figure 5.7 illustrates the described joystick-to-VIEW interaction.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 151

 gets data gets data gets data Joystick
Server

Joystick
Client

 registers

Figure 5.7: The Joystick-to-VIEW interaction.

5.3 The Design-aid Framework Implementation

This section discusses the design-aid framework application package and its

implementation. Figure 5.8 illustrates the overview diagram of the design-aid framework

implementation from a Service object point-of-view. In Figure 5.8, the Intent and

product models are implied in the VIEW and the code-checking and usability-check

services.

As shown in the figure, the VIEW and the Server Service objects reside on the same

system, in this case, a Sun Ultra 1 workstation running Solaris 2.6. The

Client/Application portion of the CAD Service and the Client/Device portion of the

Joystick Service reside on Intel Pentium-based PC systems running Microsoft Windows

NT Workstation 4.0. The computationally-intensive motion-planning and animation-

generating Service objects reside on a Sun Ultra 10 Solaris 2.6 workstation. The

prototype uses Sun’s JavaIDL CORBA implementation for the DOSE thus limiting the

platform choices to the Solaris operating environment and Microsoft Windows (Intel

platform). Finally, the VIEW Java-VRML-CORBA interaction limits the web-browser to

the Microsoft Windows Intel platform (either Microsoft Internet Explorer or the

Microsoft Windows version of Netscape Communicator can display the VIEW web

page).

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 152

Sun Workstation
(Solaris)

Sun Workstation
(Solaris)

Sun Workstation
(Solaris)

Sun Workstation
(Solaris)

PC
(WinNT)

Code-Check
Server

Building-Level
Client

Story-Level
Client

Space-Level
Client

Motion Planning
Client

Code-Check
Service

Joystick
Server

Joystick
Client

Joystick

Joystick
Service

CAD
Client

CAD
Server

AutoCAD

CAD
Service

Usability
Server

Animation
Client

Building-Level
Client

Story-Level
Client

Space-Level
Client

Motion Planning
Client

Usability-Check
Service

Animation
Service

VIEW

Sun Workstation
(Solaris)

LEGEND

Java

C++ w/ Java wrapper

HTML/Java/VRML

CORBA

PC
(WinNT)

Figure 5.8: The DOSE diagram of the design-aid framework implementation.

As shown in Figure 5.8, all connections between the implemented components utilize a

CORBA protocol. The DOSE communication interface shown in Figure 5.2 is in fact the

Interface Definition Language (IDL) schema used to generate the DOSE computer-

language-specific interfaces. This research chose the Java programming language for the

following reasons:

• Java is a platform independent object-oriented programming language.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 153

VRML WINDOW

JAVA APPLET WINDOW

Java Applet GUI Java Product Model

Java VRML External Authoring Interface (EAI)

Java CORBA Interface

Server Service Objects

Figure 5.9: The VIEW VRML-Java-CORBA implementation.

• Java supplies straightforward interfaces to C++ libraries that the research developed

for the computationally-intensive algorithms.

• The research implemented the VIEW in a web-browsing environment, and the

predominant browsers provide a Java applet interface.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 154

Similar to Java, CORBA provides a platform-independent object-oriented

implementation of the distributed object environment. Sun Microsystems provides the

tools to develop Java-CORBA applications as part of its Java 2 distribution.

As previously noted in this chapter, the VIEW is not a Service object or a composite

service. Rather, two services, the CAD Service and the Joystick Service provide data to

the VIEW, and the two analysis services receive data and are executed by the VIEW.

Users access the VIEW via the World Wide Web, and the VIEW web page contains a

VRML window, the graphics GUI, and a Java applet, the text GUI. Figure 5.9 illustrates

the relationship among the different modules of the Java applet as well as the VRML

window. The following sub-sections describe the Java applet modules.

5.3.1 The VRML External Authoring Interface (EAI)
The VRML External Authoring Interface (EAI) provides a message-passing mechanism

between the VRML window and a Java applet. For a detailed description of the EAI, see

[45]. A VRML scene consists of nodes such as shapes and attributes of shapes. These

nodes populate a hierarchical structure that makes up the scene graph. The EAI allows a

Java applet to access these nodes in two ways utilizing the VRML event model [46]. An

EventOut notifies the applet of a modification of a node known as an event (such as a

change in position of a shape) via the Java callback mechanism, and the applet can

modify a node using an EventIn. In other words, an EventOut passes a message from the

VRML scene graph to the applet, and an EventIn passes a message from the applet to the

VRML scene graph.

The VIEW applet implements the “touchTime” EventOut message to inform the applet

when a user clicks on a graphical object in the VRML window. The “addChildren” and

“removeChildren” EventIn send messages to the VRML window to add and remove

graphical objects from the VRML scene graph. In addition, the VIEW applet implements

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 155

the “translation,” “center,” and “rotation” messages to manipulate the wheelchair through

the facility design.

5.3.2 The Applet Graphical User Interface
The applet graphical user interface (GUI) allows the user to issue commands and

provides feedback to the VRML window during certain command sequences from the

joystick device. The VIEW command set is very limited and has been constructed to

demonstrate the functionality of the design-aid framework. Commands include opening a

facility design from a static file, moving and deleting building components, and executing

the analysis programs.

During certain command sequences, the applet reports the information back from the

VRML window. For example, when the user wants to see a specific usable wheelchair

route, the applet GUI prompts the user for the initial point (a building component). The

user can pick a building component, and the applet receives the “touchTime” EventOut

message informing which shape the user picked, and the applet reports the corresponding

building component. Similarly, the applet reports the building component that the user

picks for the goal point and executes the route-generating analysis.

Finally, a browser contains a status line at the bottom of the browser frame. The applet

can print text data on this status line, and the VIEW applet uses this mechanism to report

the joystick device coordinates to the user.

5.3.3 The Product Model
The applet stores the product model that describes the facility design. The applet

populates the product model either via the applet GUI when the user picks a static facility

design file or when it receives the facility design information from the CAD package.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 156

Once the applet populates the product model, the applet generates the VRML scene graph

via the EAI using the relevant EventIn and EventOut message-passing mechanisms. In

addition, when the user picks a building component in the VRML window, the product

model module ascertains which building component maps to the shape that has been

picked and reports the finding to the applet GUI.

Finally, when the user modifies the facility design, the applet modifies the product model

as illustrated by the following example. If the user wants to delete a building component,

the user picks the graphical shape corresponding to the building component in the VRML

window. The EAI sends the “touchTime” EventOut message from the VRML window to

the product model module, the product model resolves the building component, and the

product model reports to the applet GUI. If the user confirms the deletion, the product

model is modified, and the product model module sends the “removeChildren” EventIn

message from the applet to the VRML window to delete the pertinent graphical shapes.

5.3.4 The CORBA Interface
The applet communicates with the services as illustrated in Figure 5.8 via the applet

CORBA interface. The VIEW communicates with each composite Server Service

object, and applet tailors its communication call for each composite service. The VIEW

locates the Server Service objects using the CORBA Naming Service and can then

communicate with the composite services using the methods published in the DOSE IDL

file. The Java 2 platform provides a CORBA Naming Service [59], tnameserv, and an

idltojava utility to generate the Java source code supporting interfaces and classes from

the IDL file.

Figure 5.10 illustrates the typical CORBA implementation showing the relationship

among the Joystick Client Service and the supporting and generated interfaces and

classes. The gray boxes illustrate the interface and class that the idltojava utility

generates from the DOSE IDL file. The Service interface in the IDL file directly maps

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 157

instantiatesclass
JoystickClient

(executable)

extends

class
JoystickClientServantImpl

class
ServiceServantImpl

class
_ServiceImplBase

extends

interface
Service

implements

file
DOSE.idl

generates

Figure 5.10: The Joystick Client Service implementation hierarchy.

to the generated Java Service interface, and the generated _ServiceImplBase

class implements this Service interface. The actual Service object, the

JoystickClientServantImpl class is a grandchild class of the

_ServiceImplBase class (the JoystickClientServantImpl parent class,

ServiceServantImpl, includes methods and attributes common to all DOSE

services). The executable class, JoystickClient, instantiates the

JoystickClientServantImpl class and, among other tasks, registers it with the

Joystick Server Service. The research develops and implements the other service

components in a similar manner.

The following paragraphs examine CAD Service, the Analysis Services, and the Joystick

Service:

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 158

The CAD Service CORBA Implementation

The VIEW does not execute analysis related to the CAD Service. Rather, it simply

receives facility design data. The CAD Server executable (CADServer) instantiates the

CAD Server Service object (CADServerServantImpl) and registers this Service

object with the CORBA Naming Service. The VIEW applet, in turn, can locate the CAD

Server Service object via the CORBA Naming Service. The VIEW simply polls the

CAD Server Service object using the getStatus() method. When this method

returns TRUE, the VIEW uses the gets() method of the CAD Server Service object

to retrieve the facility design data.

Once the applet receives the facility design data, the applet populates the product model

and the VRML scene graph. If the applet already contains a facility design and the

VRML window already has the corresponding scene graph, the applet first deletes the

current model and VRML scene graph.

The Analysis Services CORBA Implementation

The research uses the same interface for both analysis services. The analysis Server

executable instantiates the analysis Server Service object and registers this Service

object with the CORBA Naming Service. The VIEW applet, in turn, can locate the

Server Service object via the CORBA Naming Service.

The applet executes the analysis Server Service object’s the getStatus() method

to ascertain if the analysis service is busy. If the service is busy, the user can still request

the analysis to be run. If the user wishes to run the analysis, the applet executes the

analysis Server Service object’s puts() method to upload the facility design data

and then issues the analyze() command to the analysis Server Service object.

The Joystick Service CORBA Implementation

The VIEW does not execute any analysis related to the Joystick Service. Rather, it

simply receives the joystick coordinate data. Note that although the Joystick Client is

written in Java, it loads platform-specific joystick-related dynamic link libraries that use

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 159

the Application Programming Interface (API) for a Microsoft Windows device.7 Thus,

while the VIEW and the Joystick Server can run on any platform that has a CORBA and

Java Virtual Machine implementation, the Joystick Client can currently only run on an

Intel-based Microsoft Windows computer system.

The joystick device sends a continuous stream of data. Thus, the VIEW does not use the

getStatus() method and simply uses the gets() method to retrieve the coordinate

data from the Joystick Server Service object. The Joystick Server executable

JoystickServer instantiates the Joystick Server Service object,

JoystickServerServantImpl and registers this Service object with the CORBA Naming

Service. The VIEW applet, in turn, can locate the Joystick Server Service object via

the CORBA Naming Service.

Once the applet receives the joystick device coordinate data, it calculates the movement

of the wheelchair. The applet then sends the appropriate messages to the VRML window

via the EventIn mechanism to move the wheelchair.

5.4 Summary

This chapter described a distributed computational environment that supports the

interaction of the design-aid framework concepts and leverages the computational power

realized by using the distributed object paradigm. This research has optimized the DOSE

for the manipulation of design data and the decomposition of this data into analysis-

specific views. However, as illustrated by the joystick device-driver implementation, the

research has kept the environment general enough to support a wide range of services.

7 I would like to thank Taisuke Fukuno, whom I have never met, but whose joystick device driver source

code I obtained from the World Wide Web and adapted for the Joystick Client Service developed in this
thesis. He has made the source code at http://sariel.miyako.co.jp/~uni/mmpackage.html.

CHAPTER 5. THE DISTRIBUTED SERVICE OBJECT ENVIRONMENT 160

The DOSE framework is used to realize the Visual Interactive Environment/Workbench

(VIEW) that provides the designer with three types of visual tools. The VIEW provides a

means to visualize the output of the accessible route analysis methods described in

Chapter 4. With the prescriptive-based analysis, the VIEW allows the user to examine a

user-chosen static code-compliant accessible route. The VIEW performance-based

module animates a user-chosen wheelchair path and allows the user to examine this path

from either an observer’s or a wheelchair user’s viewpoint.

This chapter described the implementation of the design-aid framework. The framework

utilizes a complementary distributed object environment and object-oriented

programming language, CORBA and Java, and both the product model for the facility

design and the analysis model utilize object-oriented paradigms. In addition, the user

interface, the VIEW, uses the ubiquitous web-browsing environment as well as a widely

accepted complementary graphics environment, VRML.

CORBA and Java provide a platform-independent environment, a desirable characteristic

for the distribution of processes across heterogeneous systems on a network. The Java

programming language also provides interfaces to other programming language libraries

such as C++ that was used to develop the computationally-intensive algorithms. Java’s

thread mechanism allows the framework to take advantage of multiprocessing systems

without changing the code to accommodate the hardware platform, and Service

objects can take advantage of the thread feature to execute concurrent sessions.

Chapter 6

Test Case Example

This chapter presents a case study of a Stanford University building to test the disabled

access design-aid framework and the performance-based methods developed in this

research. Recall that the performance-based approach is able to determine the usability

of a facility, and usability does not necessarily equate to code-compliance. The

automated analysis of the building, the Career Development Center (CDC), shows

several inaccessible areas. These results were compared to the actual usability of the

facility with the help of a cooperating wheelchair user, Joe Cavanaugh, a Stanford

University student. In certain situations, the wheelchair user validated the initial

generated analysis. In two situations, however, the performance-based formulation was

altered to match the actual accessibility of certain facilities.

The chapter is organized in the following manner:

• Section 6.1 provides a description of the CDC.

• Section 6.2 describes the generated analysis and the modifications made to the facility

design and the performance-based methods.

• Section 6.3 summarizes the results of the analysis of the modified facility design.

161

CHAPTER 6. TEST CASE EXAMPLE 162

• Section 6.4 summarizes the chapter including the recommended changes and

suggestions for the current and future CDC buildings.

6.1 The Career Development Center

The Career Development Center (CDC) is centrally located on the Stanford University

campus on White Memorial Plaza between the Stanford Bookstore and the Clock Tower.

Figure 6.1 shows the entrance side of the building, and Figure 6.2 shows a close-up of the

entrance. The CDC offers career-related guidance and resources to Stanford University

students and alumni. These services include written research material, computers, the

availability of guidance counselors, and potential-employer/student interviews.

The plan in Figure 6.3 shows the current usage of the building. The entrance leads users

directly to the library/research area, and there are offices to the left and to the right of the

space. The bathrooms and the interview rooms are in what is now the central core of the

building. The University has slated the current CDC building for demolition in the next

couple of years. The CDC will be relocated to a new building (yet to be constructed) in

another part of the campus.

The CDC was built in the late 1930s and at the time of the 1967 construction documents,

the facility was known as the Old Bookstore and was to be converted into a placement

service center. Renovation of the building included the addition of the still-existing

eleven interview rooms. The 1985 as-built construction documents delineate the

expansion plans of the facility as it is in its current state. These documents indicate that

the building was already being used as the Career Planning and Placement Center

(CPPC), the former name of the CDC. As shown in the Existing Conditions and

Demolition Plan Figure 6.4, plans included the renovation of the existing Men’s and

Women’s bathroom and, as shown in the New Construction Plan in Figure 6.5, the

renovation addressed accessibility issues for the bathrooms.

CHAPTER 6. TEST CASE EXAMPLE 163

Figure 6.1: The Stanford University Career Development Center (CDC).

Figure 6.2: CDC entrance close-up.

CHAPTER 6. TEST CASE EXAMPLE 164

ENTRANCE RECEPTION
DESK

WOMEN

MEN

OFFICE
C01

OFFICE
C03

OFFICE
C02

OFFICE
C04

OFFICE
C07

OFFICE
C09

OFFICE
C08

OFFICE
C10

OFFICE
A02

OFFICE
A03

OFFICE
A04

OFFICE
A05ADMINISTRATION

ADMINISTRATION

INT RM
R06

C
O

M
PU

TER

C
O

M
PU

TE
R

D
ES

K
S

RESEARCH
DESK

RESEARCH
DESK RECEPTION

DESK

INT RM
R07

INT RM
R08

INT RM
R09

INT RM
R10

INT RM
R11

INT RM
R16

INT RM
R12

INT RM
R13

INT RM
R14

INT RM
R15

DESK

BOOKSHELF

Figure 6.3: CDC plan view.

As shown in Figure 6.4 and Figure 6.5, the Men’s bathroom renovation called for:

• removal of the stall partitions

• addition of grab bars around the existing toilet

• replacement of the other existing fixtures with accessible fixtures

CHAPTER 6. TEST CASE EXAMPLE 165

Figure 6.4: CDC 1985 as-builts, existing conditions and demolition plan.

CHAPTER 6. TEST CASE EXAMPLE 166

Figure 6.5: CDC 1985 as-builts, new construction plan.

CHAPTER 6. TEST CASE EXAMPLE 167

The Women’s bathroom renovation called for:

• removal of the middle toilet

• addition of grab bars around the existing toilet designated for accessible use

In addition, as shown in the New Construction Plan in Figure 6.5, the architects designed

the other new facilities (the guidance counselor offices and the library and research area)

to be accessible providing:

• adequate clearances to open doors

• adequate maneuvering clearances in the corridors

• addition of new stall partitions provide wheelchair use to the designated toilet

• replacement of the other existing fixtures with accessible fixtures

6.2 The Analysis

This section presents the automated analysis of the CDC. Note that even though the

analysis uses the developed performance-based methods, the comments associated with

inaccessible building components have links to the prescriptive provisions of the

ADAAG document as an informative guideline. The ADAAG addresses new

construction, modification to existing structures, and historical buildings under the 1990

Americans with Disabilities Act. The last major modifications to the CDC were carried

out before 1990 so, technically, the CDC does not fall under any of these three categories.

Still, it is useful to analyze the CDC against the ADAAG document, and the comparision

examines the CDC as a newly constructed facility.

Figure 6.6 shows the generated analysis report with a view of the modeled CDC. The

darker color (red in the generated VRML frame) in relation to the wall color (white in the

CHAPTER 6. TEST CASE EXAMPLE 168

Figure 6.6: The initial CDC disabled access analysis report: the facility is inaccessible.

generated VRML frame) indicates an inaccessible component. Specifically, the building

components that are inaccessible are red, and the floor of the entire facility has also been

set to red indicating the whole facility indicating that critical components of the facility

are inaccessible. The user can click on the inaccessible building component, and the

associated comment appears in the bottom frame. These comments have links to

ADAAG provisions that appear in the right frame.

Comparing the analysis results with an individual wheelchair user’s ability to use the

facility represents strictly a qualitative test as there are many different levels of disability,

but such a comparison still provides insight into the analysis. Joe Cavanaugh, a

wheelchair user, compared his ability to negotiate the facility with the analysis results.

CHAPTER 6. TEST CASE EXAMPLE 169

Mr. Cavanaugh considers himself to have better-than-average mobility for a wheelchair

user. Indeed, he is able to comfortably negotiate spaces that are far more restrictive than

the ADAAG permits. His better-than-average mobility is due to his physical arm

strength which allows him to use a smaller, more efficient wheelchair as well as to his

ability to quickly move backwards and forwards several times, a sequence of motions that

violates the ADAAG accessible route parameters.

The discrepancy between Mr. Cavanaugh’s mobility and the usage parameters set forth

by the ADAAG illustrates the difficulty in providing a performance-based access code

that encompasses all wheelchair users and provides guidelines for usage and comfort.

However, adjustments to the performance-based analysis tailored to a group of similar

users might provide better insight to the actual accessibility of a facility for these users

than a prescriptive-based analysis.

The following discusses the results of four facilities, namely a set of bookshelves, the

Women’s Bathroom, the Men’s Bathroom, and the Interview Rooms.

Bookshelves

The analysis reports that there is no accessible route to the bookshelf in the

library/research area as illustrated in Figure 6.7. The viewpoint shows the back of the

bookshelf, and, according to the analysis, the desk in front of the bookshelf blocks access

to this building component.

The analysis assumes a front approach to the bookshelf. However, as shown in Figure

6.8, the wheelchair user has comfortable access to a bookshelf using a side approach.

Indeed, the ADAAG makes provisions for both front and side approach to storage

facilities including bookshelves, and the original exclusion of this approach was an

oversight in the developed motion-planning goal point description for this building

component. From the ADAAG:

CHAPTER 6. TEST CASE EXAMPLE 170

Figure 6.7: The disabled access analysis report: the bookshelf is inaccessible.

Figure 6.8: Wheelchair user access to bookshelf (desk size and position unmodified).

CHAPTER 6. TEST CASE EXAMPLE 171

Figure 6.9: The ADAAG graphic illustrating side approach reach parameters.

ENTRANCE

WOMEN

MEN

OFFICE
C02

OFFICE
C04

RESEARCH
DESK DESK

BOOKSHELF

Figure 6.10: Wheelchair route to bookshelf enabling the side-approach method.

CHAPTER 6. TEST CASE EXAMPLE 172

4.25 Storage.

4.25.1 General. Fixed storage facilities such as cabinets, shelves, closets, and drawers
required to be accessible by 4.1 shall comply with 4.25.

4.25.2 Clear Floor Space. A clear floor space at least 30 in by 48 in (760 mm by 1220
mm) complying with 4.2.4 that allows either a forward or parallel approach by a person
using a wheelchair shall be provided at accessible storage facilities.

In addition, as indicated by the wheelchair user’s extended arm in Figure 6.8,

bookshelves should be restricted by reach parameters as suggested by the ADAAG

graphic shown in Figure 6.9.

Figure 6.10 shows the motion-plan generated accessible route to the bookshelf enabling

the side-approach goal for storage-related building components.

Women’s Bathroom

The analysis reports that there is no accessible route to the accessible toilet in the

Women’s Bathroom as illustrated in Figure 6.11. The performance-based parameters

used the ADAAG toilet stall clearance areas as a guideline for the motion-planning goal

parameters for toilets, and the accessible stall violates these guidelines. Since there are

no accessible toilets, the bathroom is not considered to be accessible, and in turn, the

whole facility is deemed inaccessible.

However, as shown in Figure 6.12, the wheelchair user has comfortable access to this

toilet. The user in fact has easily positioned himself for side transfer, a position that is

more difficult to achieve than a diagonal transfer for this given stall.

By slightly adjusting the toilet goal parameters, the analysis now shows that the toilet is

accessible. The modified goal position and orientation of the wheelchair for diagonal

transfer is shown in Figure 6.13.

The generated path from the bathroom entrance to the toilet with the modified goal

parameters is shown in Figure 6.14. Note that the path is not continuous between

adjacent spaces (the bathroom entry area and the stall), since the motion planner

CHAPTER 6. TEST CASE EXAMPLE 173

Figure 6.11: The disabled access analysis report: the women’s toilet is inaccessible.

Figure 6.12: Wheelchair user access to the women’s toilet.

CHAPTER 6. TEST CASE EXAMPLE 174

42”

36
”

Figure 6.13: Modified goal parameters for women’s toilet.

Figure 6.14: Wheelchair path to the women’s toilet using the modified goal parameters.

CHAPTER 6. TEST CASE EXAMPLE 175

generates a path from the initial point of one door opening to goal point of another door

opening. As stated in 4.2.2 research has developed the goal point/initial point pair of an

opening such that a usable wheelchair path exists for the wheelchair user to move from

the goal point to the initial point of an opening.

The goal parameters of the toilet had been prescribed in accordance to an ADAAG

approach parameter. This example illustrates that even this parameter is too restrictive,

and that the performance-based method should be more flexible by describing a range of

possible goal areas and orientations.

Men’s Bathroom

The analysis reports that there is no accessible route to the accessible toilet in the Men’s

Bathroom as illustrated in Figure 6.15. As with the analysis of the Women’s bathroom,

since there are no accessible toilets, the bathroom is not considered to be accessible, and

in turn, the whole facility is deemed inaccessible.

Figure 6.16 confirms the inaccessibility of the toilet. Here, the wheelchair user is not

able to pass through the stall doorway. The original plans for this toilet did not include

the partition walls as shown in Figure 6.5. These walls must have been added to ensure

privacy for the toilet user. Ironically, the addition of these walls has made the toilet

inaccessible.

Without the partition walls, the motion planner can generate an accessible route to the

stall. Figure 6.17 shows the path from the entrance to the accessible toilet with these

partition walls removed. Again, the path is discontinuous between adjacent spaces.

CHAPTER 6. TEST CASE EXAMPLE 176

Figure 6.15: The disabled access analysis report: men’s toilet is inaccessible.

Figure 6.16: Wheelchair user unable to pass through men’s toilet stall door.

CHAPTER 6. TEST CASE EXAMPLE 177

ENTRANCE RECEPTION
DESK

WOMEN

MEN

OFFICE
C01

OFFICE
C03

OFFICE
C02

OFFICE
C04

OFFICE
C07

OFFICE
C09

OFFICE
C08

OFFICE
C10

OFFICE
A02

OFFICE
A03

OFFICE
A04

OFFICE
A05ADMINISTRATION

ADMINISTRATION

INT RM
R06

C
O

M
PU

TER

C
O

M
PU

TE
R

D
ES

K
S

RESEARCH
DESK

RESEARCH
DESK RECEPTION

DESK

INT RM
R07

INT RM
R08

INT RM
R09

INT RM
R10

INT RM
R11

INT RM
R16

INT RM
R12

INT RM
R13

INT RM
R14

INT RM
R15

DESK

BOOKSHELF

Figure 6.17: Wheelchair route to men’s toilet (stall partitions removed).

Interview Rooms

The automated analysis reports that there are no accessible routes to any of the Interview

Room desks. Figure 6.18 highlights one of the desks. The motion planner does not even

evaluate the existence of an accessible route from an Interview Room door to a desk

because the doorway widths do not comply with the ADAAG. Recall that this comfort

level determination has been taken directly from the ADAAG in the construction of

accessible routes.

Figure 6.19 confirms the narrowness of the doorway. Even with his wheelchair (the chair

is smaller than the chair used in the ADAAG provisions), the wheelchair user has

difficulty negotiating the doorway. Once through the doorway, as shown in Figure 6.20,

the closeness of the interview desk to the door makes it difficult but not impossible to

position the wheelchair at the interview desk provided that an interview chair is not

obstructing the path.

CHAPTER 6. TEST CASE EXAMPLE 178

Figure 6.18: The disabled access analysis report: interview room desks are inaccessible.

Figure 6.19: Wheelchair user in an interview room doorway.

CHAPTER 6. TEST CASE EXAMPLE 179

Figure 6.20: Wheelchair user at an interview desk (after numerous backups).

Figure 6.21: Wheelchair route to an interview desk (doorway width and desk position
modified).

After modifying an Interview Room in the facility by widening the doorway and placing

the interview desk further from the door, the motion planner can generate an accessible

route to the interview desk. The generated path is shown in Figure 6.21.

CHAPTER 6. TEST CASE EXAMPLE 180

In general, having some fraction of a set of identically functioning spaces be accessible is

acceptable under the equivalent access to facilities intent. In this case, upon initial

inspection, providing one accessible Interview Room satisfies this intent. However, as

noted by CDC staff member Betsy Cuisinot, it is difficult to match disabled interviewees

with interviewers in an accessible room beforehand, and it is unfair and at times

impossible to have these already nervous candidates wait for an accessible room to be

made available. Thus, following the intent of the code, the interview process is a special

case in which to truly satisfy accessibility, all interview rooms should be made usable for

wheelchair users.

6.3 The Analysis of the Modified Design

Figure 6.22 shows the report generated for the analysis of the modified design. The floor

of the facility is no longer red (a dark color) indicating that the performance-based

analysis of the CDC (with the modifications discussed in the previous section) finds that

the facility is now accessible:

• The motion-planning parameters have been adjusted to reflect the usability of the

bookshelf and the women’s bathroom.

• The stall partitions in the men’s bathroom have been removed.

• One interview room has been modified (the door opening has been widened and the

interview desk has been moved).

This particular analysis assumes that one accessible Interview Room is sufficient, and

there is only one accessible Interview Room in the design since only one of the Interview

Room doorways was widened in this modified design. The figure shows the comments

associated with a doorway that was not widened, and thus the associated interview desk

does not have an accessible route.

CHAPTER 6. TEST CASE EXAMPLE 181

Figure 6.22: The disabled access analysis report for the modified design.

The analysis has two errors. The analysis reports that two of the four computer desks in

the library/research area do not have accessible routes. Figure 6.23 shows the analysis of

one of these desks. Visual inspection indicates that these desks do lie on an accessible

route, and Figure 6.24 shows the generated path to an adjacent desk. The error can be

traced to the structure of the facility model. The analysis program has the limitation

allowing only rectangular spaces that are separated by walls and openings. The offending

computer desk does not lie completely in a corridor space as shown in Figure 6.25 and is

therefore not considered in the analysis of the space. To circumvent this problem, the

analysis must allow a space to be constructed using a collection of different shapes.

CHAPTER 6. TEST CASE EXAMPLE 182

Figure 6.23: The disabled access analysis report: computer desk is inaccessible.

OFFICE
C07

OFFICE
C09

OFFICE
C08

OFFICE
C10

INT RM
R13

INT RM
R14

INT RM
R15

C
O

M
PU

TER
 D

ESK
S

Figure 6.24: Wheelchair route to adjacent computer desk.

CHAPTER 6. TEST CASE EXAMPLE 183

OFFICE
C07

OFFICE
C09

OFFICE
C08

OFFICE
C10

INT RM
R13

INT RM
R14

INT RM
R15

CORRIDOR
(SPACE)

OPENING

D
ESK

D
ESK

Figure 6.25: Upper computer desk is not fully contained by the corridor space.

6.4 Summary and Discussion

This chapter presented the automated performance-based analysis of a facility at Stanford

University Campus. The results and a comparison with an actual wheelchair user’s

interaction with the facility influenced several modifications to the performance-based

methods. In addition, the analysis revealed some of the shortcomings of using the

prescriptive-based parameters to develop the performance-based parameters.

Specifically, setting the goal point based on the ADAAG-prescribed clearance of a

building component is overly restrictive.

As shown in the Interview Room example, the equivalent access to facilities intent

depends on a clear understanding of the functionality of a set of spaces. While basing

usability on intent instead of a set of prescribed provisions provides the most flexibility,

the execution of this intent must cover all situations or at provide the facility to cover

future provisions.

CHAPTER 6. TEST CASE EXAMPLE 184

Upon completion of the analysis of the CDC, the findings and a set of recommendations

were presented to the University’s ADA/Section 5048 Compliance Officer, Rosa

Gonzalez. One recommendation affects the current CDC building and makes suggestions

on the future design of the future CDC building. Ms. Gonzalez agreed with these

recommendations and will have them implemented.

As noted by the analysis and as confirmed by the onsite investigation, the addition of the

stall partitions in the Men’s bathroom not only inhibits comfortable usage of the toilet

facility, it completely inhibits the use of the toilet for the wheelchair user as shown in

Figure 6.16. The analysis also showed that the removal of these stall partitions would

restore the accessibility of the facility.

With the removal of the partitions, the Men’s bathroom would revert back to a single-

occupancy from a multiple-occupancy toilet. However, ensuring usability of the facility

for wheelchair users should be the main priority. Therefore, the recommendation to

remove these partitions was made to Ms. Gonzales. Though the current CDC is slated for

impending demolition, Ms. Gonzales stated that she would recommend the removal of

the partitions since the facility may be operational for several more years.

The future CDC will also have interview facilities, and while the ADAAG does not

specifically address the accessibility of Interview Rooms, only some fraction of the

rooms will probably be required to be accessible since, by definition, the rooms serve the

same functionality. However, as noted in the analysis of the CDC Interview Rooms, the

unique interview environment makes it necessary for all Interview Rooms to be usable by

persons with disabilities.

From the experience of analyzing the current CDC, the recommendation was made to

Ms. Gonzalez that in the event that all the Interview Rooms are not ADAAG code-

8 The United States Department of Education Office of Civil Rights Section 504 of the Rehabilitation Act

of 1973 requires that no qualified handicapped person shall, on the basis of handicap, be excluded from
participation in, be denied the benefits of, or be subjected to discrimination under any program or activity
which receives or benefits from Federal financial assistance.

CHAPTER 6. TEST CASE EXAMPLE 185

compliant, they should at least be made usable. The performance-based motion-planning

accessible route methods developed in this thesis could be a viable tool to determine the

usability of these new rooms. As the intent of the ADAAG is to give equivalent access to

facilities, whether or not these facilities actually meet some set of prescribed

measurements should be secondary to providing actual usability. Ms. Gonzalez

concurred and said that an effort would be made to make sure that all the rooms were, if

not code-compliant, at least made usable as measured by some alternative metrics.

Chapter 7

Discussion and Summary

This research has developed a framework to aid the designer with the understanding of

disabled access issues in the design of a facility, specifically the wheelchair access to a

facility’s building components. Two goals motivated the development of the disabled

access design-aid framework:

• Providing the designer with a set of disabled access analysis tools that complement

the prescriptive-based code-checking analysis process.

• Providing designers with an integrated computer environment in which they can

access these tools.

These two goals have generated the following research objectives:

• Development of a conceptual model (the design-intent model) that extracts the intent

of the disabled access code to provide a computational environment that supports

automated analysis.

186

CHAPTER 7. DISCUSSION AND SUMMARY 187

• Development of performance-based methods that capture wheelchair movement and

behavior and show with examples the superiority of these methods to the prescriptive-

based building code methods

• Development of a flexible computer environment that allows the seamless integration

of the conceptual model, the performance-based methods, and other complementary

analysis mechanisms.

This chapter discusses the research findings and examines possible future extensions to

the work. Through the investigation of the ADAAG, the development of the wheelchair

motion-planning methods, and the analysis of a University facility using the developed

framework and methods, this research found inconsistencies and contradictions in the

ADAAG. As a result, this chapter presents a set of suggested alternative provisions to

the ADAAG. In addition, this chapter examines the developed research both in the

context of future extensions and limitations of the disabled access work and the issues

involved with applying the developed framework and methods to other forms of design-

related analyses.

The chapter is organized as follows:

• Section 7.1 describes example alternative ADAAG provisions.

• Section 7.2 describes future directions and limitations of the presented research.

• Section 7.3 provides the final discussion of the developed research.

• Finally, Section 7.4 summarizes the research presented in this thesis.

7.1 Proposed Alternative ADAAG Provisions

This research has developed an automated analysis of facility designs against the intent of

the ADAAG. Accessibility analysis methods have been developed in contrast to the

CHAPTER 7. DISCUSSION AND SUMMARY 188

static prescribed ADAAG provisions. As a result, this section presents example

provision recommendations that provide the designer with alternative and more accurate

methods to demonstrate wheelchair accessibility as well as to support the automated

disabled access analysis process. The last alternative provision presented in this section

evolved as a result of the test case analysis of the Career Development Center (CDC) and

discussions with the employees of the CDC as well as with Rosa Gonzales, the

University’s ADA/Section 504 Compliance Officer.

An Alternative, Computable Definition of the Accessible Route:

The ADAAG defines an accessible route as follows [1]:

3.5 Definitions.

Accessible Route. A continuous unobstructed path connecting all accessible elements
and spaces of a building or facility. Interior accessible routes may include corridors,
floors, ramps, elevators, lifts, and clear floor space at fixtures. Exterior accessible routes
may include parking access aisles, curb ramps, crosswalks at vehicular ways, walks,
ramps, and lifts.

This research developed and demonstrated a computable form of the accessible route as

described in Chapters 3 and 4. The recommendation is to incorporate into the ADAAG

an alternative definition that would accept a computable accessible route. This

alternative definition defines the elements and the sequence of elements that compose any

accessible route through a facility. As with the ADAAG accessible route definition,

alternative accessible route definition does not define the accessibility of the individual

components; these definitions are presented subsequently in other proposed provisions.

The proposed alternate definition is given as follows:

CHAPTER 7. DISCUSSION AND SUMMARY 189

An accessible route R is defined as a composition of accessible components:

R = Rinit + Σ Rsos + Rgoal

where:

Rsos = Rseg <+ Ropen + Rseg>,

Rinit = the initial point (the starting point of an accessible route),

Rgoal = the goal point (the ending point of an accessible route),

Rseg = a segment of the accessible route within a space,

Ropen = the clearance area at an opening, and

<> = optional arguments

Rinit and Rgoal nodes may also be instances of Ropen nodes.

An Alternative Definition for Maneuvering Clearance:

The ADAAG defines multiple maneuvering clearances at building components to address

the different approaches to these components. As noted in Chapter 4, the static nature of

the accessible route test methods dictates the need for multiple clearance boxes. In

addition, accessibility of doors can be demonstrated even if the maneuvering clearances

are violated. If the ADAAG allowed dynamic accessible route test methods, a simpler,

more accurate “approach” definition could be used as an alternative to the maneuvering

clearance definition.

The following is the ADAAG maneuvering clearance definitions at doors [1]:

Maneuvering Clearances at Doors. Minimum maneuvering clearances at doors that are
not automatic or power-assisted shall be as shown in Fig. 25 (shown below). The floor or
ground area within the required clearances shall be level and clear.

CHAPTER 7. DISCUSSION AND SUMMARY 190

The following proposed alternate definition reduces the number of geometries that must

be tested by directly modeling the door approach:

Approach to Doors may be alternatively defined as shown in the below figure as long as
an accessible path to the approach point is also defined. The floor or ground area within
the required clearances shall be level and clear.

CHAPTER 7. DISCUSSION AND SUMMARY 191

equal

18
”

18
”

18
”

18
”

(c) Pushside Initial Point (d) Pushside Goal Point

(a) Pullside Initial Point (b) Pullside Goal Point
equal

equal equal equal equal

A Definition for Accessible Route Width:

As demonstrated in Chapter 4, the ADAAG prescribed accessible route width does not

accurately address all possible facility configurations. The chapter illustrated a non-

compliant usable example and a possibly-compliant unusable example. To address the

shortcomings in the accessible route width definition, the following is a proposed

alternative definition:

Variances will be allowed for accessible route widths and configurations that adhere to
the ergonomic and anthropometric parameters set forth in this document (the ADAAG)
that can be demonstrated visually, either manually or computationally.

An example of a visual demonstration would be the path generated by the motion-

planning techniques developed in this research.

CHAPTER 7. DISCUSSION AND SUMMARY 192

An Alternative Definition for Equivalent Access to Facilities:

Finally, this research recommends a more general definition for equivalent access to

facilities than currently exists in the ADAAG since all possible facility functions and

their accessibility equivalents cannot possibly be defined in the ADAAG a priori:

Equivalent access to facilities or facility components that is not explicitly defined in this
document (the ADAAG) shall be defined on a case-by-case basis by the relevant
Department of Justice enforcing body.

7.2 Future Directions and Limitations

7.2.1 Extending the Disabled Access Analysis Research
Section 4.2.5 discussed several of the limitations of the performance-based motion-

planning techniques developed to address wheelchair accessibility analysis. This section

examines some of the other limitations and proposals to address these limitations. In

addition, this section examines other aspects of the disabled access code that must be

addressed to provide full disabled access usability analysis. Finally, this section outlines

a proposal to gather information about the interaction of “digital actors” to examine the

usability of a facility over an established time frame.

This research has attempted to develop motion-planning techniques to directly model

wheelchair motion and behavior, but even within this performance-based approach, the

research has prescribed goal point parameters assuming usability of a particular building

component once the motion planner has directed the wheelchair robot to the goal point.

A logical extension to this assumption is the direct modeling of the wheelchair user

interacting with the building component. The technique would involve combining the

wheelchair robot planner developed in this research with path-planning algorithms to

automatically generate sequences for human figures as described by Koga et al. [40].

CHAPTER 7. DISCUSSION AND SUMMARY 193

Modeling the wheelchair user’s actions provides a more complete analysis of the user’s

interaction with a particular building component.

This research has not addressed other disabled access issues such as sight and hearing

impairment. Specifically addressing sight disabilities, motion-planning techniques can be

applied to model the motion and behavior of blind persons through a facility. For this

particular problem, however, the configuration of the facility should not be pre-calculated

as the individual must “discover” the path as he or she moves toward the goal. Kuffner

and Latombe have developed techniques that allow the digital actor to discover the

surrounding area through visual perception, and these techniques could be adjusted to

allow the digital actor to discover the configuration by modeling cane interaction with the

facility [42].

Finally, an even more dynamic approach than the wheelchair analysis developed in this

research involves developing a time-elapsed simulation using multiple digital actors

assigned typical tasks and collecting statistics on the actions and reactions of the actors.

The collection of actions, such as the number of required backups and the average time

needed to execute a particular task, would provide insight into the usability of a facility

by directly modeling the “quality of life” of the individual or set of individuals in the

facility.

7.2.2 Applying Motion Planning to other Design-related

Processes
While this research has applied motion-planning techniques to wheelchair behavior, more

generally, motion-planning techniques can be applied to design and construction analyses

that involve movement of particles, people, and equipment or the coordination of a

combination of these elements. Specifically, these techniques can directly capture the

motion and behavior of the elements in question. The techniques that will be developed

will be domain-specific, and accurate modeling of the particular behavior is not a trivial

CHAPTER 7. DISCUSSION AND SUMMARY 194

issue. Thus the development of domain-specific performance-based analyses depends on

the researcher’s ability to accurately model the relevant behavior.

Motion-planning techniques naturally lend themselves to the egress problem as the main

issue concerns the movement of people through a space (and through the facility) along

an exit path or route. As with the wheelchair accessible route problem, motion planning

can be used to directly model person movement, and the egress motion planning extends

the basic motion-planning problem. As with the sight impaired example presented in the

previous section, techniques involving discovering the configuration space apply to this

problem since the individuals may not know the layout of the facility a priori [42].

Egress motion planning would also need to take into consideration the coordination of

multiple moving objects [37]. The multiple moving objects motion-planning problem

extends the notion of the configuration space to a configuration-time space, and the time

dimension is different from the other dimensions in that it is not reversible. For the

egress problem, this difference reflects the actual situation: the amount of time needed to

exit a space based on the exiting arrangement is a critical parameter in determining the

safety of the space. Multiple robots dramatically increase the problem’s dimension.

High-dimensional configuration spaces necessitate the introduction of techniques such as

randomized path planning to reduce the computation time [37].

Finally, motion-planning techniques could be applied to provide

Architecture/Engineering/Construction (AEC) professionals with insight into

construction and assembly sequences. Geem et al. develop mobility analysis for

feasibility studies in industrial environments as part of the Motion for Logisistics

(MOLOG) effort, a group dedicated to the development of “motion design technology in

the framework of the logistics engineering of industrial installations” [19].9

9 See http://www.laas.fr/molog/.

CHAPTER 7. DISCUSSION AND SUMMARY 195

7.2.3 Extending the Design-aid Framework to Modeling

Other Building Codes
This research has demonstrated the power of the design-aid framework and its interacting

components (the design-intent model, the product model, and the document model), but

has not addressed the generality of the framework. This section outlines the incorporation

of egress analysis into the framework developed in this research. The process for

developing the egress analysis model is identical to the disabled access modeling process:

1. Develop a design-intent model of egress analysis by extracting the intent hierarchy

from an egress building code.

2. Develop the motion-planning performance-based methods that capture the behavior

of persons exiting a facility and populate the design-intent model with these methods.

The motion-planning performance-based egress methods have been discussed in the

previous section. Figure 7.1 shows a possible egress design-intent hierarchy. The intent

of the Uniform Building Code (UBC) egress code can be refined to providing a safe

exiting system, and an exiting system terminates to a public way or equivalent [26]. As

shown in Figure 7.1 with the OR arc between the connections emanating from the safe

exiting system intent, UBC alternatively allows an exiting system to terminate to an area

of refuge for persons with disabilities.

As with the disabled access problem, the egress problem decomposes the analysis of a

facility by architectural functionality (buildings, stories, and spaces), and the egress

design-intent model shown in Figure 7.1 reflects this decomposition for both the public

way intent and area of refuge intent.

In modeling other analyses such as fire and egress that are dependent on the architectural

functionality decomposition or view of a facility (buildings, stories, and spaces), some

portion of the design-intent model’s hierarchy will incorporate the same intent

CHAPTER 7. DISCUSSION AND SUMMARY 196

To Public Way
(or equivalent)

To Area
of Refuge

Space
Issues

Story
Issues

Safe Exiting
System

Egress
Building Code

Building
Issues

Space
Issues

Story
Issues

Building
Issues

Figure 7.1: An egress design-intent model hierarchy.

decomposition developed for the disabled access problem. However, capturing all

aspects of a code’s intent is not always straightforward. The evolution of a certain

prescribed provision may obscure the design intent of the provision. For example, the

UBC specifies that exit doors must swing in the direction of egress if the serviced area

has an occupant load of fifty or more [58]. The origin or intent behind this prescribed

occupant load is not directly evident, but an occupant load of fifty or more classifies a

space as an assembly area [58], and the exit door swing direction is related to the

assembly area occupancy load criteria.10

7.3 Discussion

The research presented in this thesis consists of a collection of models and methods that,

when combined, produce a powerful framework that enables the automated analysis of a

10 Andrew Aldeman, former chief building official of the City of San Jose, pointed out this connection in a

December 4, 1996 International Conference of Building Officials (ICBO) Peninsula Chapter meeting.

CHAPTER 7. DISCUSSION AND SUMMARY 197

facility for disabled access usability. This section reviews the developed models,

methods, and environments examining the developed research from a more general

perspective.

7.3.1 The Design-aid Framework
The design-intent module of the design-aid framework provides a flexible approach to

organize the intent of a design standard. Using this approach, this research has been able

to develop methods associated with the generated intent of the disabled access code that

analyze a facility’s wheelchair usability. Casting the ADAAG as a hierarchical design-

intent structure provides more flexibility than the prescriptive-based provisions that

constitute the disabled access code.

The intent of equivalent access to facilities is an extremely powerful concept since if the

code is organized around this concept as opposed to require the designer to adhere to a set

of prescriptive provisions, the code could be more flexible and be tailored to

accommodate non-standard situations. Requirements could be adjusted according to the

parameters of the situation. For example, the ADAAG specifically prescribes parking

parameters for a general and a limited number of special situations such as outpatient

facilities and facilities that cater to the mobility impaired. Using the design-intent model

with another flexible approach such as Garcia’s Active Design Documents (ADD) model,

one can imagine tailoring the parking requirements based on a dynamic set of

requirements while still adhering to the concept of equivalent access [17].

This research developed the product model using the form-function-behavior (FFB)

approach to provide the maximum flexibility in defining the parameters of both the

facility description and the analysis results. The research quickly realized the power of

this approach through the ease of incorporating new combined form, function, or

behavior concepts to the analysis. For example, the research easily incorporated the

concept of the accessible route in the model using the description (the form) of a polyline

CHAPTER 7. DISCUSSION AND SUMMARY 198

to describe the route and associating this geometric description with the accessibility

concept (the function) of a system of building components.

This research has demonstrated the power of the design-aid framework for the disabled

access problem and makes the argument that the interaction of the three developed

models (the symbolic product model, the design-intent model, and the document model)

that constitute the design-aid framework can be applied to other code-related analyses.

The research has also indirectly validated Yabuki’s Hyper-Object-Logic model since the

system architecture of the design-aid framework was strongly influenced by Yabuki’s

design [60]. Based on the success of the design-aid framework for the disabled access

problem, this research submits that the structure of the design-aid framework should be

used to design other usability and code-related automated analyses applications. The

design-intent model is a powerful tool for organizing the often ambiguous, contradictory,

and insufficient abstractions of prescribed provisions that constitute a design standard. In

addition the flexibility and interaction of the developed product model with the design-

aid framework allows for the description of the functionality of building components or

systems of building components as well as the analysis results.

This research has developed the design-aid framework and the motion-planning

techniques to model wheelchair movement separately and has presented other design and

construction-related analyses that would be suitable to motion-planning techniques in this

chapter. However, the application of the motion-planning methods to the design-intent

methods used to test the intent of the disabled access code underlines the strong

connection between these techniques for the disabled access problem. More generally,

this connection is applicable when the intent of a code or process can be demonstrated

with the direct modeling of moving elements, either persons, particles, or building

components.

CHAPTER 7. DISCUSSION AND SUMMARY 199

Internet

CAD Client Joystick Client

Joystick
Server

CAD
Server

Disabled Access Analysis
(DAA) Server

...

 DAA Client

Egress Analysis
(EA) Server

...

 EA Client

...

Figure 7.2: Adding egress analysis to the distributed object service environment (DOSE).

7.3.2 The Distributed Object Service Environment
Finally, the distributed object service environment (DOSE) represents a general

component-based approach to aggregating engineering analysis systems. This research

demonstrated the power and generality of the Service object three-tiered architecture

by implementing the various accessibility tools of design-aid framework with this system

architecture. Indeed, the proposed egress framework outlined earlier in this chapter could

be incorporated in the developed system architecture as easily as the incorporation of

each of the disabled access design tools. Figure 7.2 shows the incorporation of the egress

design-aid framework into the distributed object service environment (DOSE).

CHAPTER 7. DISCUSSION AND SUMMARY 200

The egress intents would map to instances of Intent objects, and these objects are

implemented as Service objects in the DOSE. The DOSE would view the egress

Intent objects as a composite service (an aggregation of Service objects). The

Visual Interactive Environment/Workbench (VIEW) would send the facility design to

this composite service through the Egress Server, a Service object that is analogous to

the Analysis Servers developed for the disabled access analysis. The VIEW would have

to be modified to be aware of the existence of the added Egress Server. Given the

models and methods developed in this research, developing an egress analysis model and

incorporating this model into the DOSE are straightforward steps.

To be even more general, the DOSE must be modified to accommodate a variety of

analyses in the following manner. The communication protocol developed in this

research can still be utilized for a variety of analyses, but a Service object will need to

accommodate different product models, and some service components will simply be

mapping services between disparate product models. Finally, while the DOSE

communication protocol acts as a common interface to aggregate disparate analyses, the

overhead associated with the distributed object environment makes it impractical as a

protocol for high-bandwidth, interprocess communication among many nodes. In this

case, an interprocess-specific direct communication protocol would be more appropriate,

and the DOSE should consist of some hybrid of the standard distributed object

communication protocol and interprocess-specific direct communication protocol.

7.4 Summary

This research provided a computer environment that aids the designer with disabled

access design. Toward this goal, the research developed a disabled access design-aid

framework consisting of the interaction among three models:

• The description of the facility (the developed symbolic product model)

CHAPTER 7. DISCUSSION AND SUMMARY 201

• The intent of the Americans with Disabilities Act Accessibility Guidelines (ADAAG)

(the disabled access design-intent model)

• A document model

The disabled access design-intent model extracts the facility design from an instance of

the product model, the design-intent model analyzes the facility, and the design-aid

framework adds the analysis results to the product model’s building components. The

disabled access design-aid framework then provides the designer with text and graphical

analysis results of the facility utilizing the document model. As shown in the generated

analysis of the test case, this research has designed of the components of the disabled

access design-aid framework with the flexibility to analyze the facility using the

performance-based methods while displaying the ADAAG provisions that motivated the

specific analysis.

In summary, this research has focused on providing the designer with a computer

environment with access to a variety of disabled access analysis tools. Toward this goal,

the research has:

• Abstracted the design intent of the ADAAG to form a hierarchical model that enables

the automated disabled access analysis of a facility design.

• Developed a computable form of the accessible route, the most critical concept

related to access of a facility.

• Demonstrated a performance-based approach using motion-planning techniques to

model the wheelchair accessibility analysis methods associated with design-intent

model.

• Demonstrated the flexibility of the developed product model that incorporates both

the facility design description and analysis results.

CHAPTER 7. DISCUSSION AND SUMMARY 202

• Demonstrated the power of the design-aid framework in analyzing a facility for

wheelchair accessibility by providing the interaction among the developed product

model, the design-intent model, and a document model to generate the analysis

results.

• Implemented the framework in a distributed object service environment representing

a flexible component-based approach to aggregating engineering analysis systems.

Finally, from the results of the Career Development Center analysis, the research

presented a set of recommendations to the University to increase the usability of the

current and future CDC. The United States Department of Justice enforces the

prescriptive-based ADAAG, and this research does not seek to replace the ADAAG with

the developed framework and the performance-based analysis methods. However, in

developing and testing the performance-based methods, this research has pointed out

some of the inadequacies and contradictions of the prescriptive-based ADAAG. In

addition, the research proposed a set of alternative provisions based on the performance-

based work that will hopefully be deemed acceptable by the regulatory governing body,

United States Access Board, the developer and maintainer of the ADAAG.

Bibliography

[1] Americans with disabilities act accessibility guidelines, Access Board, U.S.

Architectural and Transportation Barriers Compliance Board, Washington, D.C.,

1997.

[2] Godfried Augenbroe (Ed.), COMBINE 1 final report, CEC-JOULE report,

Brussels, 1993.

[3] Godfried Augenbroe (Ed.), COMBINE 2 final report, CEC-JOULE report,

Brussels, 1995.

[4] AutoCAD customization manual, AutoCAD release 12, Publication 100891-01.

Autodesk, Inc., 1997.

[5] Aart Bihl, “Computer aided housing and sight layout: experience of research

software in a production environment,” Proceedings, PARC’79, International

Conference on the Applications of Computers in Architecture, Building Design and

Urban Planning, 283-304, 1979.

[6] B-C Björk, “Basic structure of a building product model,” Computer-Aided Design,

1989, (22) 71-78, 1989.

203

BIBLIOGRAPHY 204

[7] W.K. Chow and W.K. Mok, “CFD fire simulations with four turbulence models

and their combinations,” Journal of Fire Sciences, 17(3), 209-239, 1999.

[8] CIMsteel: the logical product model, Version 3.3, University of Leeds, 1993.

[9] Marcel de Waard. Computer aided conformance checking: checking residential

building designs against building regulations with the aid of computers, Ph.D.

thesis, The Hague, The Netherlands, 1992.

[10] Lester E. Dubins. “On curves of minimal length with a constraint on average

curvature with prescribed initial and terminal positions and tangents,” American

Journal of Mathematics, (79) 497-516, 1957.

[11] Charles M. Eastman. Building product models, CRC Press, Boca Raton, Florida,

1999.

[12] John P. Eberhard, “Computer based code systems and the performance concept,”

Performance Concept in Buildings, NBS Special Publication 361, Volume 2, 1972.

[13] Steven J. Fenves. “Tabular decision logic for structural design,” Journal of

Structural Engineering, 92(6), 473-490, 1966.

[14] Steven J. Fenves, J.H. Garrett, H. Kiliccote, K.H. Law, and K.A. Reed. “Computer

representations of design standards and building codes: U.S. perspective,” The

International Journal of Construction Information Technology, 3(1), 13-34, 1995.

[15] Steven J. Fenves, R. Wright, F. Stahl, and K. Reed. Introduction to SASE:

standards analysis, synthesis and expression, NBSIR 87-3513, 1987.

[16] Teresa Forowicz, “Modeling of energy demands for residential buildings with html

interface,” Automation in Construction, 8(4):481-487, 1999.

[17] Ana Cristina Bicharra Garcia, H.C. Howard, M.J. Stefik. Active design documents:

a new approach for supporting documentation in preliminary routine design,

BIBLIOGRAPHY 205

Technical Report 82, Center for Integrated Facility Engineering, Stanford

University, 1993.

[18] James H. Garrett, Jr. and M. Hakim. “Object-oriented model of engineering design

standards,” Journal of Computing in Civil Engineering, 6(3):323-347, 1992.

[19] C. Van Geem, T. Simeon, J.P. Laumond, J.L. Bouchet, and J.F. Rit. “Mobility

analysis for feasibility studies in cad models of industrial environments,” IEEE

International Conference on Robotics and Automation, 1999.

[20] Michael P. Gibbens. California disabled accessibility guidebook 1998, Builder’s

Book, Inc., Canoga Park, California, 1998.

[21] Wim F. Gielingh. General AEC reference model, ISO TC 184/SC4/WG1 3.2.2.1,

TNO Report BI-88-150, 1988.

[22] Glossary of building and civil engineering terms, BS6100, British Standards

Institute, London, England, 1992.

[23] George V. Hadjisophocleous and N. Benichou. “Performance criteria used in fire

safety design,” Automation in Construction, 8(4):489-501, 1999.

[24] Charles S. Han, J.C. Kunz, and K.H. Law. “A client/server framework for on-line

building code checking,” Journal of Computing in Civil Engineering, ASCE, 12(4),

181-194, 1998.

[25] Charles S. Han, J.C. Kunz, and K.H. Law. “Building design services in a

distributed architecture,” Journal of Computing in Civil Engineering, ASCE, 13(1),

12-22, 1999.

[26] Handbook to the uniform building code: an illustrative commentary, International

Conference of Building Code Officials, Whittier, California, 1991.

BIBLIOGRAPHY 206

[27] E.M. Hoskins, “The OXSYS system”, Computer Applications in Architecture, 343-

391, 1977

[28] H. Craig Howard, J.A. Abdalla, and D.H.D. Phan. A primitive-composite approach

for structural data modeling, Technical Report 52, Center for Integrated Facility

Engineering, Stanford University, 1989.

[29] David Hsu, R. Kindel, J. Latombe, and S. Rock. “Randomized kinodynamic motion

planning with moving obstacles,” Workshop on Algorithmic Foundations of

Robotics, 2000.

[30] Initial graphics exchange standard, Version 5.1, NISTIR 4412. U.S. National

Bureau of Standards, Gathersburg, Maryland, 1991

[31] Industry foundation classes release 1.5, IFC specifications development guide.

International Alliance for Interoperability, Washington D.C., 1997

[32] Industry foundation classes release 1.5, Model architecture guide. International

Alliance for Interoperability, Washington D.C., 1997.

[33] Industry foundation classes release 1.5, Specifications volumes 1-4. International

Alliance for Interoperability, Washington D.C., 1997.

[34] Information technology—computer graphics and image processing—the virtual

reality modeling language (VRML)—Part 1: Functional specification and UTF-8

encoding. ISO/IEC 14772-1:1997, International Standards Organization, Geneva,

Switzerland, 1997.

[35] Integrated information support system, Volume V: Common data model subsystem,

Mantech Technology Transfer Center, WL/MTX, Wright-Patterson AFB, Ohio,

1985.

BIBLIOGRAPHY 207

[36] Kenji Ito, Y. Ueno, R.E. Levitt, and A. Darwiche. Linking knowledge-based

systems to CAD design data with an object-oriented building product model,

Technical Report 17, Center for Integrated Facility Engineering, Stanford

University, 1989.

[37] Jean-Claude Latombe. Robot motion planning, Kluwer Academic Publishers,

Norwell, Massachusetts, 1991.

[38] Gregory Paul Luth. Representation and reasoning for integrated structural design,

Ph.D. thesis, Department of Civil Engineering, Stanford University, 1991.

[39] Han Kiliccote. A standards processing framework, Ph.D. thesis, Department of

Civil and Environmental Engineering, Carnegie Mellon University, 1996.

[40] Yoshihito Koga, K. Kondo, J.J. Kuffner, and J-C Latombe, “Planning motions with

intentions,” Proceedings of SIGGRAPH'94, Computer Graphics Proceedings,

Annual Conference Series, 395-408, 1994.

[41] Helmut Krawinkler, “Advancing performance-based earthquake engineering,” Peer

Center News, 2(1), Pacific Earthquake Engineering Research Center, Richmond,

California, 1999.

[42] James J. Kuffner, Jr. and J-C Latombe, “Fast synthetic vision, memory, and

learning models for virtual humans,” Proceedings of CA’99: IEEE International

Conference on Computer Animation, 118-127, 1999.

[43] T. Kusuda and F.J. Powell, “Use of modern computer programs to evaluate

dynamic heat transfer and energy use processes in buildings,” Performance

Concept in Buildings, NBS Special Publication 361, Volume 2, 1972

[44] Manual of steel construction—Load & resistance factor design, First Edition,

American Institute of Steel Construction, Inc., 1986.

BIBLIOGRAPHY 208

[45] Chris Marrin. Proposal for a VRML 2.0 informative annex: External authoring

interface reference, an unpublished draft of a proposal to the ISO, 1997.

[46] Chris Marrin and B. Campbell. Teach yourself VRML 2 in twenty-one days,

Sams.net Publishing, Indianapolis, Indiana, 1997.

[47] K.B. McGrattan, H.R. Baum, and R.G. Rehm, “Large eddy simulations of smoke

movement,” Fire Safety Journal, 30(2), 161-178, 1998.

[48] G.M. Nijssen and T. Halpin, Conceptual schema and relational database design: A

fact-oriented approach, Prentice Hall, London, 1989

[49] Performance concept in buildings, NBS Special Publication 361, Volumes 1 and 2,

United States Department of Commerce, Washington D.C., 1972.

[50] Product data representation and exchange, Part 1: Overview and fundamental

principles. ISO 10303-1, International Standards Organization, Geneva,

Switzerland, 1994.

[51] Product data representation and exchange, Part 106: Integrated resources:

Building core construction model (Draft). ISO 10303-11, International Standards

Organization, Geneva, Switzerland, 1996.

[52] Product data representation and exchange, Part 11: Description methods: The

EXPRESS language reference manual. ISO 10303-11, International Standards

Organization, Geneva, Switzerland, 1994.

[53] Product data representation and exchange, Part 225: Application protocol:

Building elements using explicit shape representation. ISO 10303-225,

International Standards Organization, Geneva, Switzerland, 1999.

[54] Douglas Schenk and P. Wilson, Information modeling the EXPRESS way, Oxford

University Press, New York, 1994.

BIBLIOGRAPHY 209

[55] James A. Reeds and R.A. Shepp. “Optimal paths for a car that goes both forward

and backward,” Pacific Journal of Mathematics, 145(2), 367-393, 1991.

[56] L.G. Seigel, “A performance approach to the design of fire-resistive buildings,”

Performance Concept in Buildings, NBS Special Publication 361, Volume 2, 1972.

[57] Title 24, Section 6—Energy efficiency standards for residential and nonresidential

buildings, California Energy Commission, Sacramento, California, 1999.

[58] Uniform building code, International Conference of Building Code Officials,

Whittier, California, 1991.

[59] Andreas Vogel and K. Duddy. Java programming with CORBA, John Wiley and

Sons, Inc., New York, N.Y., 1997.

[60] Nobuyoshi Yabuki. An integrated framework for design standards processing,

Ph.D. thesis, Stanford University, 1992

[61] F.Y. Yokel and N.F. Somes, “Philosophy and scope of structural performance

criteria,” Performance Concept in Buildings, NBS Special Publication 361, Volume

2, 1972.

	Problem Statement
	Related Research
	Building Standards Research
	Decision Tables and Standards Analysis, Synthesis and Evaluation
	An Object-Oriented Approach
	The Hyper-Object-Logic Model
	Performance- and Objective-based Codes

	Product and Process Model Research
	Standard Exchange of Product Model Data (STEP) and Related Efforts
	Industry Foundation Classes
	The Primitive-composite Approach
	A Design Rationale Model to Capture the Design Process

	The Design-intent Model for Disabled Access
	Organization of the Thesis
	The Product Model
	The Design-intent Model
	Accessible Route Analysis
	Analyzing an Accessible Route for Prescriptive-based Code-Compliance
	Analyzing an Accessible Route for Performance-based Usability

	System-wide Usability Analysis

	The Document Model
	The Standard or Code Document
	The Report

	The Prototype
	Summary
	The Manual Disabled Access Analysis Process
	Manual Analysis of the Bathroom Facility
	Discussion

	A Product Model to Support Disabled Access Analysis
	Reification of Components
	Reification of Component Relationships

	The Design-intent Model and Disabled Access
	The Accessible Route Analysis Process
	Decomposition of the Accessible Route
	The Brute-force Approach
	Establishing Rinit
	Analyzing Potential Ropen Accessible Route Components
	Analyzing Potential Rgoal Accessible Route Components
	Generating Rseg Route Segments
	Traversing the Accessible Route Graph

	System-wide Usability Analysis
	Case Example
	First-order Accessible Route Analysis
	Second-order System-wide Usability Analysis

	Summary
	Automated Prescriptive-Based Analysis: The Code-Compliant Accessible Route
	Motion Planning Basics
	Determining the Ropen Components
	Determining the Rinit and Rgoal Components
	Determining Rseg Accessible Route Components
	The 36-inch-wide Path
	The Turn-around-an-obstruction Exceptions
	The Wheelchair Turning Circle

	Prescriptive-based Analysis Discussion

	Automated Performance-based Analysis: The Usable Accessible Route
	Overview of Performance-based Motion Planning: Developing a Non-holonomic Planner
	Determining the Ropen Components
	Determining the Rinit and Rgoal Components
	Determining the Rseg Components
	Performance-based Analysis Discussion

	A Comparison of Prescriptive- and Performance-Based Analysis Results
	Example 1
	Example 2
	Wheelchair Manipulation and Animation
	Joystick Manipulation of the Wheelchair
	Wheelchair Animation Techniques

	Summary
	The Three-Tiered Architecture
	A Visual Interactive Environment/Workbench (VIEW) for Accessible Route Analysis
	The VIEW CAD Service
	The VIEW Analysis Services
	The VIEW Joystick Service

	The Design-aid Framework Implementation
	The VRML External Authoring Interface (EAI)
	The Applet Graphical User Interface
	The Product Model
	The CORBA Interface

	The CAD Service CORBA Implementation
	The Analysis Services CORBA Implementation
	The Joystick Service CORBA Implementation
	Summary
	The Career Development Center
	The Analysis

	Bookshelves
	Women’s Bathroom
	Men’s Bathroom
	Interview Rooms
	The Analysis of the Modified Design
	Summary and Discussion
	Proposed Alternative ADAAG Provisions

	An Alternative, Computable Definition of the Accessible Route:
	An Alternative Definition for Maneuvering Clearance:
	A Definition for Accessible Route Width:
	An Alternative Definition for Equivalent Access to Facilities:
	Future Directions and Limitations
	Extending the Disabled Access Analysis Research
	Applying Motion Planning to other Design-related Processes
	Extending the Design-aid Framework to Modeling Other Building Codes

	Discussion
	The Design-aid Framework
	The Distributed Object Service Environment

	Summary

