
Data-flow Distribution in FICAS Service Composition Infrastructure

David Liu

Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

davidliu@stanford.edu

Kincho H. Law

Dept. of Civil and Environmental Engineering
Stanford University
Stanford, CA 94305

law@cive.stanford.edu

Gio Wiederhold

Computer Science Department
Stanford University
Stanford, CA 94305

gio@db.stanford.edu

Abstract

This paper presents FICAS, a distributed data-flow
infrastructure for composing software services into
megaservices. We discuss the basic features of FICAS that
enable the distribution of data-flows within megaservices.
An autonomous service access protocol, ASAP, is defined to
enforce the explicit separation of control-flows from data-
flows of software services. We illustrate the procedure to
construct and optimize megaservice execution plans that
form distributed data-flows among collaborating services.
The megaservice performance under FICAS is evaluated and
compared with that under the centralized data-flow
infrastructures. FICAS enhances the megaservice
performance and is especially suitable for large-scale service
composition.

1. INTRODUCTION

1.1. Background

As computation and communication technologies evolve,
we are seeing a change in how large software applications
are built. Rather than being constructed from ground up,
applications are constructed by gluing together software
services, each provides portion of functionalities. The
megaprogramming framework [3, 12] and more recently
Computational Grids computing systems [2] echo the vision
of software composition that links together autonomous
services to form megaservices. Though distributed and
heterogeneous, autonomous services can be utilized as if
they were locally available to the megaservices.

Service composition infrastructure is responsible for
composing and executing megaservices. There are three
goals in building service composition infrastructure: (1)
Ease of composition – effective and convenient specification
of service compositions by the application programmers; (2)
Scalability – integration and management of large number of
autonomous service in the service composition
infrastructure; and (3) Performance – high efficiency in the
execution of megaservices.

We build on prior systems such as CHAIMS (Compiling
High-level Access Interfaces for Multi-site Software) [11]
for autonomous service composition. The compositional
language developed in CHAIMS supports well the goal for

ease of composition. We intend to improve the scalability
and the performance of the megaservices in CHAIMS via
the distribution of data-flows at runtime. Given that many
existing service composition infrastructures employ similar
execution model as CHAIMS, our findings should also be
broadly applicable to other systems.

1.2. Overview

A service composition runtime environment is
conceptually viewed as a set of service nodes interconnected
by a communication network. Messages are passed between
pairs of service nodes. There are two types of messages:
control messages and data messages, distinguished by their
use at the recipients of the messages. Control messages are
mostly short messages that trigger state changes at the
receiving services. Data messages are mostly large data
packets that are given to the receiving services for
processing. We use control-flow to describe a group of
related and partially ordered control messages, and use data-
flow to describe a group of related and partially ordered data
messages.

Service composition runtime environments differ in how
control-flows and data-flows are formed and managed.
Figure 1(a) illustrates the control-flows and the data-flows
exhibited by a megaservice in the CHAIMS runtime. The
megaservice control node serves as the hub for all the data
communications. We call this runtime model the centralized
control-flow centralized data-flow model, or 1C1D model.
The 1C1D model represents the simplest form of service
composition runtime environment. Examples of the 1C1D
model include CORBA, DCOM, Java RMI, and SOAP [10].

There are performance and scalability issues associated
with the 1C1D model, where the centralized megaservice
control node becomes the communication bottleneck when
large amount of data are exchanged among autonomous
services. The issues observed in the 1C1D model motivate
us to distribute the data-flows for the executions of
megaservices. Figure 1(b) shows the control-flows and the
data-flows exhibited in a distributed data-flow infrastructure.
The megaservice has the ability to inform two or more
autonomous services to establish a data-flow through which
data can be directly communicated. For instance, data are
exchanged between autonomous services, from Service1 to
Service2, and from Service2 to Service3, without going

through the megaservice. We call this runtime model the
centralized control-flow distributed data-flow model, or
1CnD model. This paper explores the techniques that
support the distribution of data-flows within the service
composition infrastructure.

Service
1

Service
3

Mega
Service

(a) (b)

Control-flow

Data-flow

Service
2

Service
1

Service
3

Mega
Service

Service
2

Figure 1: Centralized and Distributed Data-flows

2. FICAS

FICAS (Flow-based Infrastructure for Composing
Autonomous Services) is a service composition
infrastructure that supports distributed data-flows. FICAS
consists of many interrelated components. As shown in
Figure 2, FICAS is divided into buildtime and runtime. The
buildtime components are responsible for composing
megaservices and compiling megaservice specifications into
control sequences that serve as inputs to the runtime
environment. The runtime components are responsible for
the executions of the control sequences.

Composition of autonomous services starts with the
megaservice specification. For FICAS, we have defined
CLAS (Compositional Language for Autonomous Services)
to provide the application programmers the necessary
abstractions to describe the behaviors of their megaservices
[8]. CLAS focuses on functional composition of autonomous
services. A CLAS program is essentially a sequential
specification of the relationships among collaborating
autonomous services. It does not provide any primitives to
schedule and coordinate control-flows and data-flows. The
CLAS program is translated by the buildtime component
into a control sequence that can be executed by the runtime
environment. The control sequence is language and
platform independent, providing a bridge between
megaservice specification and megaservice execution.

The FICAS runtime environment is responsible for
executing the control sequences. The megaservice
controller is the entity that carries out the execution of a
megaservice. The controller first converts an input control
sequence into an execution plan, and then follows the plan to
coordinate control-flows among the respective autonomous
services. The controller serves as the centralized
coordinator for all the control messages incurred by the
megaservice. Since the megaservice execution is carried out

with parallel invocations of autonomous services, the
controller is also responsible for synchronizing control-
flows and conducting performance optimization.

FICAS Buildtime

Autonomous
Service

Directory

Communication
Network

CLAS
Program

FICAS
Controls

Autonomo
us Service

Autonomous
Service Mediator

Autonomo
us Service

Autonomous
Service Mediator

Autonomo
us Service

Autonomous
Service Mediator

Software
Application

Autonomous
Service Mediator

FICAS RuntimeFICAS Buildtime

Megaservice
Controller

Figure 2: FICAS Architecture

Building a scalable runtime environment requires a
mechanism to easily incorporate new software applications.
This is achieved by wrapping each software application into
an autonomous service with a mediator. The autonomous
service mediator supports a common protocol that is
developed to provide uniform access to the autonomous
services. Autonomous services can join (or quit) the service
composition infrastructure by directly connecting to (or
disconnecting from) the communication network. The
modularity of the autonomous services provides the
infrastructure scalability and fault isolation.

The autonomous service directory is created to index the
autonomous service parameters. It keeps track of available
autonomous services within the infrastructure. The directory
is viewed globally as a centralized entity, while it may be
implemented as a distributed structure. The address of the
directory is universally known to all the components within
FICAS.

3. AUTONOMOUS SERVICE

The behavior of autonomous services is characterized by
the autonomous service metamodel, based on which an
access protocol is defined to provide uniform access to the
autonomous services.

3.1. Autonomous Service Metamodel

Figure 3 illustrates the FICAS autonomous service
metamodel, where an autonomous service consists of a
service core, an input event queue, an output event queue, an
input data container, and an output data container. The most
important characteristic of the autonomous service
metamodel is the explicit separation of control-flows from
data-flows. For data-flow, the autonomous service primarily
concerns about performing services on the data elements.
For control-flow, the autonomous service primarily concerns
about the state management of an autonomous service.

The service core represents the core functionality of the
autonomous service. It is responsible for performing
computation on the input data elements and generating the
result data elements. We can usually wrap an existing
software application into a service core.

Events are exchanged between services to control the
flow of autonomous service executions. Asynchronicity of
autonomous service execution is achieved by using queues
for event processing. Incoming events are placed at the tail
of the input event queue, and outgoing events are placed at
the tail of the output event queue. The default queuing
system used in FICAS is the FIFO queue, where events are
processed in the order by which they are received.

Data-flow

Control-flow

Input Data Container

Output Data Container

Input Event Q
ueue

O
utput Event Q

ueue

Service Core

Figure 3: FICAS Autonomous Service Metamodel

The data containers are groupings of input and output
data elements for the autonomous service. The input data
elements are fetched from the input data container and
processed by the service core. The generated data elements
are put into the output data container. The data containers
enable autonomous services to look up generated data
elements. The existence of data containers is essential for
the distribution of data-flows. Under the 1CnD model, the
data-flows can be formed between data containers of two
autonomous services, while control-flows continue to go
through the megaservice controller.

3.2. Protocol Support for Data-flow Distribution

Given the autonomous service metamodel, we define an
autonomous service access protocol, ASAP, by which the
autonomous services are accessed. The protocol removes
the barriers imposed by different megaservice programming
languages and distribution protocols.

ASAP manages control-flows and data-flows through a
set of events. These events exist in the form of XML based
messages that are used to interact with autonomous services.
The hierarchical structure of XML provides a convenient
method of defining the composition of an event. ASAP is
asynchronous and non-blocking. The sender of an event
may not wait for the response of the event. Instead, the
sender can continue to execute other activities that are not
dependent on the response of the event.

For simplicity, we represent the ASAP events using their
abbreviated functional representations instead of their full
XML representations. The key ASAP events that related to
data-flow scheduling are listed below. More complete
information on the ASAP protocol is given in [8].

• SETUP (Service)
The SETUP event is used to initialize an autonomous

service. The autonomous service is informed to prepare
necessary system resources for the actual invocations.

• TERMINATE (Service)
The TERMINATE event unconditionally terminates an

autonomous service. Garbage collection is conducted
during the termination process, when system resources
involved with an autonomous service instance are released.

• INVOKE (Service)
The INVOKE event is used to request an autonomous

service. The service core of the autonomous service is
started upon the processing of the INVOKE event. After the
completion of the service invocation, output data elements
are generated by the service core and are placed onto the
output data container.

• MAPDATA (DataElement, SourceService,
DestinationService)

The MAPDATA event is used to establish a data-flow
between two data containers. The event enables the
distribution of data-flows within the service composition
infrastructure. The sender of the MAPDATA event does not
need to be the recipient of the data element. The events are
usually sent from the megaservice controller that coordinates
the autonomous service invocations, and the data elements
are exchanged directly among the data containers of the
autonomous services.

4. DISTRIBUTED DATA-FLOW SCHEDULING

FICAS assigns the megaservice controller the sole
responsibility in coordinating control-flows for a
megaservice. The controller is responsible for issuing the
ASAP events and monitoring their results. An execution
plan is generated to determine the choice, timing and
sequence of ASAP events.

There are three steps in generating an execution plan.
First, the megaservice program is analyzed to discover data
dependencies among the invocations of autonomous
services. Then, a data dependency graph is constructed to
identify independent data-flows. Finally, based on the data
dependency graph, the megaservice controller can build an
execution plan for the megaservice.

The megaservice program segment in Figure 4 shows
implicit data dependencies between autonomous services.
For instance, invocation of Service3 takes A and B as input,
which are the outputs of the invocations of Service1 and
Service2, respectively. Hence, Service3 is data dependent
on Service1 and Service2.

Invocation1 = Service1.INVOKE()
Invocation2 = Service2.INVOKE()

A = Invocation1.EXTRACT();
B = Invocation2.EXTRACT();

Invocation3 = Service3.INVOKE(A,
B)

C = Invocation3.EXTRACT();

Invocation4 = Service4.INVOKE(C)
D = Invocation4.EXTRACT();

Figure 4: Sample Megaservice Program Segment

The data dependencies are mapped into a data
dependency graph (DDG) as shown in Figure 5. The nodes
represent autonomous service invocations, and the directed
arcs represent data dependencies between autonomous
service invocations. Each directed arc points to the
dependent autonomous service and is tagged with the data
elements exchanged between the pair of autonomous
services. For example, the arc between Invocation1 and
Invocation3 represents that Invocation3 is dependent on
Invocation1, with A being the data element passed from
Invocation1 to Invocation3.

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

Figure 5: Sample DDG

The DDG can be further converted into a megaservice
execution plan in the form of an event dependency graph
(EDG). The megaservice controller uses the EDG to
coordinate the execution of autonomous services. In an
EDG, the nodes represent the ASAP events managed by the
megaservice controller, and the arcs represent the
dependency between a pair of related ASAP events.
Invocation nodes in the DDG can be directly mapped into
the INVOKE event nodes in the EDG. The mapping of the
directed arcs in the DDG is more complex. Different
mapping schemes may produce different data-flow models
for the megaservice.

Figure 6 shows the mapping scheme where data
communications are directed between dependent
autonomous services, resulting in the 1CnD execution
model. The megaservice controller functions merely as a
coordinator for the ASAP events that control the data

communication activities. Each directed arc in the DDG is
mapped into a MAPDATA event node with arcs connecting
the predecessor and successor event nodes. For instance, the
arc tagged with A in the DDG (shown in Figure 5) is
mapped into the MAPDATA(A, Service1, Service3) event
node in the EDG (shown in Figure 6).

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
 (A, Service1,

Service3)

INVOKE
(Service3)

MAPDATA
(C, Service3,

Service4)

MAPDATA
(B, Service2,

Service3)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

Figure 6: EDG with Distributed Data-flows

5. PERFORMANCE ANALYSIS

The distribution of data-flows improves performances
and scalability by avoiding the data communication
bottleneck at the megaservice controller. In this section, we
study the performance characteristics of megaservices under
different system settings.

5.1. FICAS vs. SOAP

We study the performance of megaservices in an example
engineering service environment as shown in Figure 7. The
megaservice is specified to retrieve a specific project model
using the ModelRetriever service, then conduct scheduling
on the model using the Scheduler service, and finally notify
the related parties about the change via the ChangeManager
service.

Model
Retriever

Switch

Mega
Service

 MegaService {
 model = ModelRetriever(name)
 new_model = Scheduler(model)
 ChangeManager(new_model)
 }

Scheduler

Change
Manager

Figure 7: A Megaservice for Engineering Services

The autonomous services run on distributed servers that
are connected via a switch with 10mbps bandwidth on each
port. The megaservice runs on a client machine that is

connected to the servers either directly via the switch or via
an 802.11 wireless access point. The two network settings
facilitate our comparison of megaservice performances.

We implement the megaservice with two different
integration models: (1) SOAP [10] is used as the reference
platform for the 1C1D model, where each service invocation
is a remote procedure call initiated from the megaservice;
and (2) FICAS is used as the reference platform for 1CnD
model, where data-flows are distributed.

The response times of megaservices are measured with
different settings on the size of the project model. Since the
computational elapsed times contributed to the autonomous
service executions are identical under both integration
models, we compare only the communication elapsed time,
which is calculated as the megaservice response time minus
the sum of processing elapsed times of autonomous services.
Figure 8 shows the megaservice performances measured
with various network settings and integration models.

0

10000

20000

30000

40000

50000

60000

100 200 300 400 500 600 700 800 900 1000
Model Size (KB)

Co
m

m
un

ic
at

io
n

El
ap

se
d

Ti
m

e
 (m

s)

LAN SOAP LAN FICAS Wireless SOAP Wireless FICAS

Figure 8: Performance of the Megaservice

A couple of observations can be made that are consistent
with our mathematical analysis conducted in [7]. First, the
response times under FICAS are better than their
counterparts under SOAP for all load settings. The larger
the project model size, the more significant the performance
improvement the FICAS model has over the SOAP model.
Secondly, the response time increases linearly with respect
to the volume of the data-flows. The response times under
SOAP increase at much faster rates than the response times
under FICAS. The rate of increase is especially significant
in the wireless connection scenario, when data
communications between client machines and servers
become a bottleneck in SOAP. On the other hand, we
observe small increase in response time in FICAS with large
model sizes. The FICAS (1CnD) model alleviates the
bottleneck by distributing network traffic among the
autonomous services.

5.2. Performance Impact of Control-flows

When the control message size is comparable to the data
message size, the impact of control-flows on the
performance of megaservices needs to be accounted for.

Under the 1C1D model, a SOAP service invocation
consists of two messages: (1) an invocation request message
sent from the megaservice controller to the autonomous
service, and (2) a message returned from the autonomous
service containing the result of the service invocation.
Under the 1CnD model, FICAS breaks up a service
invocation into multiple stages, introducing a sequence of
messages: (1) an invocation request message sent from the
megaservice controller to the autonomous service, (2) an
acknowledgement message sent back to notify the
completion of the service, (3) a MAPDATA message sent
from the megaservice to notice the autonomous service
where the result data should be forwarded, (4) a data
message forwarding the data content between two
autonomous services, and (5) an acknowledgement message
notifying the megaservice controller the completion of the
MAPDATA task.

We model the cost of messages as a linear function to
their sizes. Each message has a fixed setup cost of λ0 (e.g.
the cost of initialization, buffering, etc.). In addition, a
control message has a payload of 1, and a data message has
a payload of λd. Hence, each control message incurs a cost
of (λ0+1), and each data message incurs a cost of (λ0+λd).

The aggregated communication cost for a service
invocation can be calculated by adding up the costs of all
messages. Under the 1C1D model, the aggregated cost is
(2λ0+1+2λd). Under the 1CnD model, the aggregated cost is
(5λ0+4+λd). Figure 9 illustrates the costs under both models
with different λ0 and λd settings.

Figure 9: Communication Costs for Service Invocations

We observe that higher message setup cost λ0 attributes
to higher communication cost for service invocations. The
performance in the 1CnD model is more adversely affected
than in the 1C1D model. Since the 1CnD model incurs
more messages for each service invocation, its performance
is more sensitive to the message setup cost. Furthermore
with a small data payload, the 1C1D model may perform
better that the 1CnD model. However, the communication
cost for 1C1D model scales up much faster than for the
1CnD model. The 1CnD model outperforms the 1C1D

model with a larger data payload. The 1CnD model
becomes a preferred environment for the composition of
autonomous services when exchanged data are much larger
than the control messages.

6. RELATED WORK

Dataflow network based systems [6, 9] are similar to
FICAS in how data-flows are distributed. However, there
are several important differences: (1) Computational nodes
in dataflow networks usually handle fine-grained tasks and
require homogeneity in the underlying hardware platform,
whereas autonomous services in FICAS are coarser-grained
and heterogeneous in nature. (2) The dataflow networks use
the flow of information as the only control mechanism.
State transitions within a node are caused by arrivals of its
input data. FICAS adopts an event driven paradigm where
control logic is centrally specified and executed, greatly
simplifying the programming and execution model. (3) The
dataflow network is established at initialization time, prior to
the program execution. This lack of ability to dynamically
establish links between computational nodes limits the use
of dataflow networks in realistic applications.

MANIFOLD [1] introduces event driven control
paradigm to complement the dataflow like control
mechanism. Events and the logic to handle the events are
explicitly specified in MANIFOLD programs. Facilities are
provided to explicitly manage synchronization, proper
ordering, and timing of activities involved in a program.
Compared to MANIFOLD, FICAS has a much simpler
programming model that is intended for application
specialist with minimum programming experience.
Furthermore, MANIFOLD programs explicitly specify data
communication links between concurrent processes, whereas
megaservices in FICAS rely on the runtime system to
perform optimization and schedule dynamic data-flows
between autonomous services.

In our research, we use the CHAIMS system as a point of
departure. There are other compositional tools and
frameworks that we could have chosen, such as Globus [4]
or Ninja Paths [5]. The purely compositional nature of
CHAIMS allowed us to focus wholly on data-flow
distribution without the distraction of the non-compositional
(e.g., brokering, security) aspects of alternative frameworks.

7. CONCLUSIONS

This paper presents FICAS, a service composition
infrastructure with distributed data-flows. Autonomous
services are built to support the service access protocol
ASAP, which enforces the explicit separation of data-flows
from control flows. ASAP serves as the basis for building
the high-performance, scalable, and distributed data-flow
service composition runtime environment.

We illustrate the construction of the megaservice
execution plan that takes advantage of the distributed data-
flows. The performance of megaservices is analyzed and
compared between the 1C1D model and the 1CnD model.
We conclude that the distribution of data-flow in FICAS
enhances megaservice performance and thus is especially
suitable for large-scale autonomous service composition.

8. ACKNOWLEDGEMENT

This research is partially sponsored by the National
Institute of Standards and Technology and the Center for
Integrated Facility Engineering at Stanford University.

REFERENCES
[1] F. Arbab, I. Herman, et al., "An Overview of Manifold

and its Implementation", Concurrency: Practice and
Experience, vol. 5(1), Feb 1993, pp. 23-70.

[2] M. Baker, R. Buyya, et al., "The Grid: International
Efforts in Global Computing", Proceedings of
International Conference on Advances in Infrastructure
for Electronic Business, Science, and Education on the
Internet (SSGRR 2000), Italy, 2000.

[3] B. Boehm and B. Scherlis, "Megaprogramming",
Proceedings of DARPA Software Technology
Conference, Los Angeles, April 1992, pp. 68-82.

[4] I. Foster and C. Kesselman, "Globus: A Metacomputing
Infrastructure Toolkit", International Journal of
Supercomputer Applications, vol. 11(2), 1997, pp. 115-
128.

[5] S. Gribble, M. Welsh, et al., "The Ninja Architecture for
Robust Internet-Scale Systems and Services", U.C.
Berkeley, To appear in a Special Issue of Computer
Networks on Pervasive Computing, 2002,
http://ninja.cs.berkeley.edu/dist/papers/ninja.ps.gz.

[6] J. Herath, N. Saiko, et al., "Dataflow Computing Models,
Languages and Machines for Intelligence
Computations", IEEE Transactions on Software
Engineering, vol. 14, 1988, pp. 1805-1828.

[7] D. Liu, K. Law, et al., "Analysis of Integration Models
for Service Composition", Proceedings of Third
International Workshop on Software and Performance,
Rome, Italy, July 2002.

[8] D. Liu, K. Law, et al., "FICAS: A Distributed Data-Flow
Service Composition Infrastructure", Stanford
University, Unpublished Report, 2002,
http://mediator.stanford.edu/papers/FICAS.pdf.

[9] P. Suhler, J. Bitwas, et al., "TDFL: A Task-level
Dataflow Language", Journal of Parallel and
Distributed Computing, vol. 9, 1990, pp. 103-115.

[10] W3C, "Simple Object Access Protocol (SOAP)", 2000,
http://www.w3.org/TR/SOAP.

[11] G. Wiederhold, D. Beringer, et al., "Composition of
Multi-site Services", Proceedings of IDPT'99, Kusadasi,
Turkey, June 1999.

[12] G. Wiederhold, P. Wegner, et al., "Towards
Megaprogramming", Comm. ACM, vol. 35(11), Nov
1992, pp. 89-99.

	INTRODUCTION
	Background
	Overview

	FICAS
	AUTONOMOUS SERVICE
	Autonomous Service Metamodel
	Protocol Support for Data-flow Distribution

	DISTRIBUTED DATA-FLOW SCHEDULING
	PERFORMANCE ANALYSIS
	FICAS vs. SOAP
	Performance Impact of Control-flows

	RELATED WORK
	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

