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ABSTRACT 
This paper presents a loosely coupled service-composition 
paradigm.  This paradigm employs a distributed data flow that 
differs markedly from centralized information flow adopted by 
current service integration frameworks, such as CORBA, J2EE 
and SOAP. Distributed data flows support direct data 
transmission to avoid many performance bottlenecks of 
centralized processing. In addition, active mediation is used in 
applications employing multiple web services that are not fully 
compatible in terms of data formats and contents. Active 
mediation increases the applicability of the services, reduces data 
communication among the services, and enables the application to 
control complex computations.  The benefits of distributed data 
flow and active mediation are illustrated with various 
applications, such as dynamic type conversion, result extraction, 
and engineering application.  It is shown that active mediation, 
combining with distributed data flows, can greatly improve the 
performance of an application utilizing multiple web services.  

Categories and Subject Descriptors 

D.2.11 [Software Engineering]: Software Architectures – 
information hiding, patterns; H.3.4 [Information Storage and 
Retrieval]: Systems and Software – distributed systems, 
information networks, performance evaluation; H.2.5 [Database 
Management]: Heterogeneous Databases – Data translation, 
program translation. 

General Terms 
Algorithms, Performance, Design, Languages, Experimentation, 
Standardization, Theory. 

Keywords 
Web services; service integration; direct data transmission; active 
mediation; mobile class; handheld services 

1. INTRODUCTION 
We experience a continuing increase in both the size and the 
performance of computer networks. As networks become 
pervasive and ubiquitous, all computing facilities can be accessed 
from any geographic location.  This development enables the use 
of remote software services over the web.  Web services is now 
one of the foundations of a vision called utility computing – the 
idea that computing power should be as easy to tap into as the 
electrical grid. However, unlike the electrical grid where the 
power is generated by limited number of sources, the computing 
grid has numerous machines and services.  Integrating related 
services to form composed application requires complex planning, 
control, monitoring, and execution.  

There are many issues associated with the current service 
composition frameworks, and two noticeable ones are interface 
incompatibility and performance.  Web services are normally 
provided as software services managed by independent service 
providers [6, 31].  They are globally heterogeneous and adhere to 
a variety of conventions for control and data.  Even when 
standards are promulgated, such as SQL, the precise meaning and 
scope of the output will not necessarily match the expectations of 
another service.  A prime example of available web services today 
are information providers, which expose their functionalities 
through XML, SQL, and report generators, but are not geared to 
interoperate with other services, as analytical services or 
predictive simulations [28].  In a typical composed application, all 
results from one web service have to be shipped to the application 
site, handled there, and then shipped to the next web service.  In 
most cases, the centralized data-flow approach is inefficient for 
integrating large-scale software services.  This inefficiency is 
implicit in all common composition protocols, such as CORBA, 
DCOM, J2EE, SOAP, and Microsoft .NET.   

In order to deal with the issues associated with the current service 
composition frameworks, we demonstrate a Flow-based 
Infrastructure for Composing Web Services (FICAS) [15]. FICAS 
is implemented as a collection of software modules that support 
the construction of web services, facilitate the functional 
composition of web services into composed application, and 
conduct the execution of performance-enhanced applications. 
FICAS addresses three design concerns: (1) scalability – 
integration and management of large number of web services in 
the service composition infrastructure; (2) performance – high 
efficiency in the execution of composed applications; and (3) ease 
of composition – effective and convenient specification of service 

 



compositions by the application programmers. FICAS uses 
distributed data-flows to achieve greatly improved scalability and 
performance without sacrificing ease of composition. 

FICAS applies the concept of active mediation to enhance 
efficient execution of applications employing composed services.  
Active mediation allows code to be provided to remote services to 
resolve format and content incompatibilities [17].  Without being 
able to delegate such a capability to the remote service such 
incompatibilities have to be resolved at the application site.  
Active mediation exploits the notion of mobile code [12] to 
provide for unforeseen remote information processing.  
Specifically, matching, reformatting, rearranging, and mapping of 
data being sent or received among services can be embodied in 
mobile code, and shipped by the composed application to the 
remote service as needed.  Remote services that can accept active 
mediation now have the ability to adapt their behavior to the 
client requests.  Active mediation distributes a class of 
computations within the service framework, and reduces the 
amount of data traffic significantly by moving computations 
closer to the data. 

Active mediation, enabled by the mobile class and distributed 
dataflow, is an effective approach to resolve service interface 
incompatibilities and improve the performance of the composed 
application.  The concept of active mediation will have a major 
impact on the semantic web [4].  In cases where the composed 
application is operated on a handheld device, the cost of shipping 
intermediate data to and from the handheld can become the 
bottleneck of overall system. Planned properly, mobile classes can 
be placed onto an appropriate service to minimize the amount of 
data communications. This is especially beneficial when the 
controlling node of a composed application is on a low bandwidth 
device.  Such low bandwidth mobile devices are very attractive to 
manage complex scenarios in access to government services [14], 
engineering [16], regulations [16], and healthcare [4].  

2. SERVICE INTEGRATION FRAMEWORK 
Web services execute processes that involve one or more software 
applications along with their domain data.  Web services are 
composed in a loosely-coupled fashion to allow flexible 
integration of heterogeneous systems in a variety of domains.  
There has been much significant research in service composition, 
particularly in creating uniform ways of describing, deploying, 
and accessing applications [10].  Many standards have been 
proposed to represent processes using web services, such as 
BPEL4WS [1], WSCL [3], and DAML-S [2].  FICAS contributes 
a software composition paradigm that supports distributed data 
flow with active mediation and addresses the performance 
implications of service composition. 

2.1 SOFTWARE SERVICE MODEL 
The composition of multiple web services into a composed 
application consists of three phases.  First, existing services that 
provide composable functionalities are catalogued.  Existing 
services that decide to participate will expose their interfaces.  
Missing services are constructed, or, rather, their construction by 
others is encouraged or contracted.  Second, the composed 
application is specified so that it will employ the most suitable 
combination of web services.  Issues to be considered when 
composing web services include scalability of the services, 
robustness of the services, security of the service interaction, 

effective and convenient specification of the compositions, and 
performance of the composed applications.  Third, the composed 
application is executed as often as needed.  

In FICAS, web services are specified as a homogeneous model 
that promotes communication and cooperation with each other.   
Figure 1 illustrates the web service metamodel, which consists of 
a service core, an input event queue, an output event queue, an 
input data container, and an output data container: 

� The service core represents the core functionality of the web 
service.  It is responsible for performing computation on the 
input data elements and generating resultant data elements.  
We can often wrap existing software applications into a 
service core. 

� Events (messages) are exchanged between services to control 
the flow of web service executions.  Asynchronous execution 
of web services is achieved by using queues for event 
processing.  The default queuing protocol in FICAS is FIFO 
(first in and first out), so event messages are processed in the 
order they arrive, but other methods are being developed [20]. 

� The data containers are groupings of input and output data 
elements for the web service.  Input data elements are fetched 
from the input data container and processed by the service 
core.  The generated data elements are put into the output data 
container.  The data containers enable web services to look up 
generated data elements.  
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Figure 1: FICAS web service metamodel 

Web services export the service functionalities contained in the 
encapsulated software applications. Although the service 
functionalities differ, the way by which the functionalities are 
exported is similar for all our web services. The web services 
share many common components, such as the event queues and 
the data containers.  In addition, the interactions among the 
components are largely identical.  Hence, the construction of web 
services can be significantly simplified by building the common 
components into a standard module.  We call that module, which 
facilitates the encapsulation of software applications into web 
services, the web service wrapper. 



In FICAS, the web service wrapper has been implemented in Java.  
The Java classes and interfaces are incorporated into a Java 
library.  With the FICAS web service wrapper, the adaptation of a 
software application into a web service is simplified to defining 
the ServiceCore interface, which has functions for setting up, 
executing and terminating a service. The setup() method defines 
the actions of the application when the service is initialized; the 
execute() method is called when the service is invoked, triggering 
the application to process the data in the containers; and the 
terminate() method is called when the service is terminated.  Each 
method takes three parameters: the inputcontainer provides the 
reference to the input data container of the autonomous service; 
the outputcontainer provides the reference to the output data 
container of the autonomous service; and the flowid identifies the 
flow to which the service request belongs.  With the references to 
the data containers and the flow identifier of the request, the 
software application can look up the input parameters from the 
input data container and generate the results into the output data 
container. 

2.2 MEDIATION 
Services are usually built by leveraging existing software 
capabilities and information resources.  These resources have had 
incompatibilities in many e-commerce and e-business 
applications.  Mediators are intelligent middleware that sit 
between the information sources and the clients [27, 30].  
Mediators reduce the complexity of information integration and 
minimize the cost of system maintenance.  They provide 
integrated information, without the need to integrate the actual 
information sources.  Specifically, mediators perform functions 
such as accessing and integrating domain-specific data from 
heterogeneous sources, restructuring the results into objects, and 
extracting appropriate information. 

Figure 2(a) illustrates the mediation architecture, which 
conceptually consists of three layers.  The information source 
provides raw data through its source access interface.  The 
mediation layer resides between the information source and the 
information client, performing value-added processing by 
applying domain-specific knowledge processing.  The information 
client accesses the integrated information via the client access 
interface.  The architecture of the information-oriented service can 
be mapped to a processing-oriented architecture, as shown in 
Figure 2(b). The application software corresponds to the 
information source layer, the service wrapper corresponds to the 
mediation layer, and the composed application matches the 
information consumer layer.  The software is accessed through the 
application-specific interface. The service wrapper obtains 
specifications from the services and exposes its capabilities 
through the access protocol.  

In traditional mediators, code is written to handle information 
processing tasks at the time the mediators are constructed.  Such 
mediators are static, and only modified when the sources change 
interfaces or behavior.  Static mediators are appropriate when 
resource behavior is known at construction time.  In contrast, the 
active mediators introduced in this paper allow clients to adapt the 
services, in particular their interfaces. 
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Figure 2: Conceptual layers in mediation and in service 
integration 

3. DISTRIBUTED DATA-FLOW 
In FICAS, the composed application controller has the 
responsibility for managing the control-flows.  Based on an 
execution plan, the controller executes and schedules web services 
by managing and coordinating the choice, timing, sequence, and 
dependencies of control events.  The purpose of scheduling is to 
improve the Qualify of Service (QoS) of the composed 
application. Many techniques used to improve QoS for distributed 
workflows have been proposed for web service processes [5, 32]. 
In our current implementation, we focus on minimizing the 
aggregate data-communication cost among services. 

3.1 SEPARATING CONTROL AND DATA FLOWS  
A distinguishing characteristic of FICAS is its distributed data-
flow model, which allows direct data-flow to occur among remote 
services. In the common web services management, the site of the 
composed application is the central hub for all the control and all 
the data traffic, so that there is both centralized control and 
centralized data-flow. The distributed data-flow model provides 
better performance and scalability than the centralized data-flow 
model when data is significant. The distribution of data 
communications exploits the network capacity among the 
services, and avoids bottlenecks at the composed application. 
Especially when the composed application resides on a mobile 
device, relying on centralized data-flow would severely stress its 
limited bandwidth.  Control, i.e., the invocation of a remote 
service, remains centralized in FICAS.  We find it difficult to 
apply proposed distributed control-flow models effectively to 
conduct service composition.  There remain many technical 
challenges to construct distributed operational code segments. 

The separation of control-flow and data-flow is also presented in 
several emerging service composition standards, for example, 
BPEL4WS [3], WSCL [6] and DAML-S [4], demonstrating that 
the importance of separating control-flow and data-flow is being 
recognized.  The idea of separating data-flow from control-flow 
can also be seen in some distributed workflow environments. For 
instance, Exotica/FMQM adopts distributed workflow execution 
and data management for distributed workflow applications [2, 
26]. However, data flow in those environments is typically 
supported by a set of loosely synchronized replicated databases 
instead of managed direct transfers. 



Figure 3 shows a schematic composed application in FICAS 
where the data are directly exchanged among web services.  By 
distributing data-flows, FICAS eliminates the focused, redundant, 
and heavy-duty data traffic caused by the forwarding of 
everything through the composed application.  The distributed 
data-flow model utilizes the communication network among web 
services, and thus alleviates communication loads on the 
composed application.  Furthermore, FICAS allows computations 
to be distributed efficiently to where data resides, so that the data 
can be processed without incurring communication traffic. 
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Figure 3: Sample control flow and data flow in FICAS 

3.2 PLANNING DISTRIBUTED DATA FLOWS 
Optimizing the placement of data processing to minimize data 
transfer has been of interest for distributed database systems [9, 
23].  Query optimisation of distributed databases requires 
deciding where to ship the data and where to perform query 
operations.  A similar concept is adopted in FICAS to plan the 
distributed data-flows.  There are three steps in generating an 
execution plan.  First, the composed application is analysed to 
discover data dependencies among web services.  Then, a data 
dependency graph is constructed to identify independent data-
flows.  Finally, based on the data dependency graph, the 
controller then builds an execution plan. 

The program segment in Figure 4 shows implicit data 
dependencies between web services. For instance, invocation of 
Service3 takes A and B as inputs, which are the outputs of the 
invocations of Service1 and Service2, respectively. Hence, 
Service3 is data dependent on Service1 and Service2. The data 
dependencies among the web services are analysed when the 
program is interpreted.  The dependencies are mapped into a data 
dependency graph (DDG) as shown in Figure 5.  The nodes 
represent service invocations, and the directed arcs represent data 
dependencies between service invocations.  Each directed arc 
points to the dependent service and is tagged with the data 
elements exchanged between the pair of services.  For example, 
the arc between Invocation1 and Invocation3 represents that 
Invocation3 is dependent on Invocation1, with A being the data 
element passed from Invocation1 to Invocation3. 

The composed application execution plan is represented by the 
event dependency graph (EDG), as shown in Figure 6.  The node 
in the EDG contains an outgoing control event from the 

controller. The arc establishes a predecessor-successor 
relationship between a pair of events.  The successor event cannot 
be sent until the action taken by the predecessor event is 
completed, i.e., the controller receives the response of the 
predecessor event.  The controller uses the EDG to coordinate the 
execution of the composed application.  Invocation nodes in the 
DDG can be directly mapped into the INVOKE event nodes in the 
EDG.  The mapping from the arcs in the DDG to the event nodes 
in the EDG is more complex.  

Figure 6 shows the mapping scheme where data communications 
are directed among dependent web services.  The controller 
functions merely as a coordinator for the events that control the 
data communication activities.  Each directed arc in the DDG is 
mapped onto a MAPDATA event node with arcs connecting the 
predecessor and successor event nodes.  For instance, the arc 
tagged with A in the DDG (shown in Figure 5) is mapped onto the 
MAPDATA(A, Service1, Service3) event node in the EDG (shown 
in Figure 6). This example shows a simple example of service 
execution, i.e. predecessor-successor relationships. More 
complicated control constructs, such as switch and loop, are also 
specified in FICAS to describe a variety of services [15].   

 

Invocation1 = Service1.invoke() 
Invocation2 = Service2.invoke() 
 
A = Invocation1.extract(); 
B = Invocation2.extract(); 
 
Invocation3 = Service3.invoke(A, B) 
 
C = Invocation3.extract(); 
 
Invocation4 = Service4.invoke(C) 
D = Invocation4.extract(); 

Figure 4: Sample program segment for service integration 
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Figure 5: Sample DDG 
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Figure 6: EDG with Distributed Data-flows 

The presented scheduling algorithm is applicable to relatively 
static data flows, in which the volume of data flows can be 
estimated before the execution of web services. Major 
perturbations may require re-analysis.  Similar control constructs 
have also been included in other service composition protocols.  
For example, DAML-S defines a set of control constructs that 
consists of Sequence, Split, Split + Join, Choice, Unordered, 
Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until 
[2]. 

4. MOBILE CLASSES AND ACTIVE MEDIATION 
While FICAS gains substantial performance from direct data 
communication among the services, it still requires the capability 
provided in mediator nodes to map incompatible sources or to 
integrate information from diverse sources.  In the semantic web 
setting, where we expect many and diverse providers, we cannot 
expect that each service will deliver results that will be fully 
compatible and useful to further services that the composed 
application will need to invoke. 

Active mediation applies the notion of mobile code [12] to 
support unforeseen remote information processing.  Specifically, 
matching, reformatting, rearranging, and mapping of data being 
sent or received among services can be embodied in mobile code, 
and shipped by the composed application to the remote service as 
needed.  Remote services that can accept active mediation now 
have the ability to adapt their behavior to the client requests.  For 
instance, an information client can forward a compression routine 
to a service so that queried information is compressed before 
returned.  A service that computes monthly taxes due state-by-
state can have chronological transaction data rearranged and 
summarized as it needs.  In general, with active mediation to 
provide client-specific functionalities, services can be viewed as if 
they were intended for the specific needs of the client. 

4.1 MOBILE CLASSES 
A mobile class is an information-processing module that can be 
dynamically loaded and executed.  Conceptually, a mobile class is 
a function that takes some input data elements, performs certain 
operations, and then outputs a new data element.  The underlying 
programming support of mobile class in FICAS is similar to that 
of the mobile agent technology [7, 26].  They both utilize 
executable programs that can migrate during execution from 
machine to machine in a heterogeneous network. Through a set of 
domain independent active and intelligent registries, called mobile 
agents, web services can be discovered for interoperation [24].  
However, the mobile agents are self-governing in that they decide 
when and where to migrate on their own.  On the other hand, the 
mobile class in FICAS is an integral part of the service 
composition framework.  Since mobile classes are controlled by 
composed application, their management and deployment 
becomes easier.  There are also efforts of applying mobile agent 
approach to lightweight process workflow [13, 25].  Such mobile 
code, which is used to carry out process-based dynamic 
adaptation, has been called worklet [13]. 

Mobile classes can be implemented in many general-purpose 
programming languages [8, 11, 18].  In our work, Java is chosen 
as the specification language for mobile classes.  First, Java is 
suitable for specifying computational intensive tasks.  There are 
many available standard libraries that provide a wide range of 
computational functionalities.  Second, Java has extensive support 
for portability.  Java programs can be executed on any platform 
that incorporates a Java virtual machine.  Third, Java supports 
dynamic linking and loading.  Java class files are object files 
rather than executables in the traditional sense.  Linking is 
performed when the Java class files are loaded onto the Java 
virtual machine.  Compiled into a Java class, the mobile class can 
be dynamically loaded at runtime. 

Figure 7 presents the MobileClass interface, which contains a 
single function that represents the functionality of a mobile class.  
The execute() function takes a vector of data elements as the input 
and generates a data element as the output.  The execute() function 
is overloaded by a mobile class to provide specific processing 
functionality.  Figure 8 shows the definition of the DataElement 
class representing a data element, which is used for data exchange 
among services in FICAS.  Since services and mobile classes use 
the same representation for data, data can be exchanged among 
the services and the mobile classes without any conversion.  
Internally, a data element is represented in XML.  There are two 
constructors for DataElement, one for creating an empty data 
element, the other for creating a data element based on its XML 
representation.  The class provides functions to query the type and 
the size of the data element.  In the case that the data element is of 
a primitive type (i.e., Boolean, integer, real, or string), functions 
are provided to set, fetch and compare values for the data element.  
Otherwise, the content of the data element can be fetched as a byte 
array. 

 
public interface MobileClass { 
  public DataElement execute(Vector params); 
} 

Figure 7: Definition of the MobileClass Interface 

 



public class DataElement { 
  public DataElement(); 
  public DataElement(Document doc); 
 
  // Return XML document representation 
  Document doc(); 
  // Return byte array representation           
  byte[] getByteArray();  
  // Return a string in XML printout form       
  String toString(); 
 
  // Return the size of the element 
  int getSize(); 
  // Return the type of the element 
  int getType(); 
 
  DataElement setValue(boolean value); 
  DataElement setValue(double value); 
  DataElement setValue(int value); 
  DataElement setValue(java.lang.String value); 
  DataElement setValue(byte[] arr); 
 
  boolean getBooleanValue();   
  int getIntValue();           
  double getRealValue();       
  String getStringValue();     
             
  int compare(DataElement e); 
  boolean eq(DataElement e);   
  boolean ge(DataElement e);   
  boolean gt(DataElement e);   
  boolean le(DataElement e);   
  boolean lt(DataElement e);   
  boolean ne(DataElement e);   
} 

Figure 8: Definition of the DataElement Class 

4.2 ACTIVE MEDIATION 
To enable active mediation in FICAS, a composed application 
needs to be able to invoke mobile classes on a service, and the 
service needs to support the execution of the mobile classes.  To 
allow a composed application to coordinate the invocation of 
mobile classes on services, we have introduced a Mobile Class 
event, which is sent from a composed application to a service to 
invoke a mobile class.  A service supports the execution of mobile 
classes through the incorporation of an active mediator. Figure 9 
illustrates the architecture of the active mediator: 
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Figure 9: Architecture of active mediation 

� The Mobile Class Fetcher is responsible for loading the 
mobile class.  The source location of the Java class is specified 
by the mclass-name in the MCLASS event.  The loaded Java 
class is stored into the Mobile Class Cache. 

� The Mobile Class Cache is a temporary storage for mobile 
classes. The Mobile Class Cache is used to avoid the duplicate 
loading of a mobile class.  It is looked up every time before 
any mobile class is loaded.  The Mobile Class Fetcher is used 
to load the Java byte code only when the cache miss occurs. 

� The Mobile Class Runtime is the execution engine for the 
mobile classes.  To execute a mobile class, the Mobile Class 
Runtime loads the Java class from the Mobile Class Cache and 
invokes the execute() function.  The input parameters of the 
execute() function are looked up from the Input Data 
Container.  The result of the execute() function is put into the 
Output Data Container. 

� The Mobile Class API Library stores the utility classes that 
make the construction of mobile classes more convenient.  For 
instance, the Java Development Kit (JDK) library is provided 
as part of the Mobile Class API Library. 

� The Exception Handling module provides error handling for 
the loading and the execution of the mobile class. 

Upon receiving a Mobile Class event, a service directs the Mobile 
Class Fetcher to load the mobile class into the Mobile Class 
Cache.  The execute() function of the mobile class is then invoked 
to process data local to the service.  Since the service wrapper 
handles the interchange of the data among services, the active 
mediator is only concerned with the data processing that is local 
to the service. 

4.3 PLACEMENT OF MOBILE CLASSES 
The choice of which web service executes the mobile class affects 
how the data-flows are formed.  The placement of the mobile class 
therefore has significant impact on the performance of the 
composed application.  An example, shown in Figure 10, is used 
to demonstrate such impact. The application has two web 
services, S1 and S2, and one mobile class.  The mobile class 
FILTER takes a large string as input, filters through the content, 
and returns a string that consists of every 10th character of the 
input string.  We have three potential placement strategies, as 
shown in Figure 10: 

� Strategy 1:  By placing the mobile class FILTER at the web 
service that hosts the controller, we can construct the 
execution plan as shown in Figure 10(a).  S1 generates the 
data element A and passes it to the mobile class for 
processing. The processed result B is then sent to S2 for 
further processing. 

� Strategy 2:  Placing the mobile class FILTER at S1 constructs 
the execution plan as shown in Figure 10(b).  S1 generates the 
data element A and processes it locally using the mobile class.  
The result B is sent from S1 to S2 for further processing. 

� Strategy 3:  By placing the mobile class FILTER at S2, we can 
construct the execution plan as shown in Figure 10(c).  S1 
generates the data element A and passes it to S2.  S2 processes 
A locally using the mobile class to generate the result B. 
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Figure 10: Execution plans with different placements for the mobile class 

 

To compare the strategies, we assume that the performance of 
loading and executing the mobile class is the same on all web 
services.  Strategy 1 requires both the input data element A and 
the output data element B to be transmitted among the composed 
application and the web services.  Thus Strategy 1 incurs the most 
communication traffic compared to the other two strategies.  
Strategy 2 and Strategy 3 differ in the data sent between the web 
services.  Since the data element B is one tenth the volume of data 
element A, Strategy 2 incurs the least amount of communication 
traffic and has the best performance. 

The above observation can be generalized as the following 
algorithm to determine the optimal placement of a mobile class. 
The criterion used is minimizing the amount of data transmission 
among web services.  For a mobile class, each input data element 
to the mobile class is represented as a pair, (Si, Vi), where Si is the 
web service that generates the ith input data element, and Vi is the 
volume of the data element. The output is a (S0, V0) pair, where S0 
is the destination web service to which the result of the mobile 
class will be sent, and V0 is the size of the data element.  Two 
observations can be made.  First, the sum of Vi remains the same 
regardless where the mobile class is executed. Second, by placing 
the mobile class on the web service Si, we can eliminate the 
corresponding data-flow volume Vi as the data element is local to 
the web service.  Therefore, the optimal placement of the mobile 
class is the web service Si that has the largest aggregated Vi. 

Figure 11 shows the LDS (Largest Data Size) algorithm that 
selects the web service that generates and consumes the largest 
volume of data for a given mobile class.  The algorithm first 
computes the total amount of data attributed to each unique web 
service.  Then, the web service with the largest data volume is 
selected as Smax, which represents the optimal placement for the 
mobile class.  The LDS algorithm is applicable when the input 
and output data sizes are known.  For a situation where the output 
data size of a mobile class is only determined after the execution 
of the mobile class, we need to estimate the output data size.  We 
view the output data size of a mobile class as a function of the 
input data sizes: SO = f (SA, SB, …).  The function f is called the 
sizing function of the mobile class, where SO is the output data 
size and SA, SB are the input data sizes.  The sizing function may 
be stored along with the Java byte codes in the mobile class 

repository.  The controller can then use the sizing function to 
estimate the output data size for running the LDS algorithm. 

The LDS algorithm assumes that the network links among all web 
services are of comparable performance.  When this assumption 
does not hold, a more complicated model can be adopted to 
minimize the aggregated time.   Various network parameters, such 
as topology of network and bandwidth of network channels, can 
have impact on the performance of the composed application, and 
other algorithms (for example, see [22]) can also be implemented 
in FICAS. 
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5. EXAMPLE APPLICATIONS 
Several examples are presented in this section to demonstrate that 
FICAS is well suited for integrating web services that exchange 
large amount of data and for solving interface incompatibility.  
The distribution of data-flows and active mediation can facilitate 
service composition and improve the performance of composed 
application. 

5.1 TYPE MEDIATION 
Data generated by a service can be directly used by other services 
if they share the same data types, structure, formats, and 
granularities, etc.  However, such homogeneity cannot be assumed 



within a large-scale service composition infrastructure.  Data exist 
in various types and will continue to appear in different types that 
suit different applications.  Many potential services never took the 
need for composition into account, assuming their results were 
what the consumer desired.  Data type conversion is inevitable in 
supporting service composition. 

Traditionally, a service serving as type broker or a distributed 
network of type brokers is used to mediate the difference among 
data in various formats [19]. The type brokers can convert data 
from one format to another acceptable format for the information 
client. The type brokers serve as proxies connecting client 
requests with appropriate source services.  A type graph is used to 
figure out a chain of necessary conversions.  There are two issues 
associated with using type brokers: efficiency and availability. 
First, the use of type brokers for type mediation can be inefficient.  
Large amount of data are forwarded to and from the brokers. The 
problem is exacerbated when a chain of conversions is involved.  
Second, the necessary type brokers may not exist for the desired 
data type. Since there are a large number of data formats, it is 
impractical to prepare a comprehensive set of type brokers 
covering all existing and future data types.  New type brokers 
need to be created and maintained to conduct the type conversions 
needed by an application or a common intermediate format must 
be adopted, leading to a high conversion cost. 

In our approach, mobile classes are used in place of type brokers 
to handle data conversion and integration of multiple input 
streams.  The mobile classes are created by the application 
programmers as part of the specification for the composed 
applications.  Rather than forwarding data among the type 
brokers, the composed application loads the mobile classes on the 
services to provide the type mediation functions.  Similar to the 
chain of type brokers, multiple mobile classes for type mediation 
can be utilized together.  Since the mobile classes are invoked on 
the source service, the multiple interim data transfers can be 
eliminated and the data traffic is limited to essential transmissions.  
The application of the mobile classes successfully addresses the 
efficiency and availability issues associated with type mediation. 

5.2 RESULT EXTRACTION 
Services can produce a wide variety of data suitable for extraction 
and reporting. A composed application has upstream services 
generating data that is consumed by downstream services.  
Selective result extraction is required when the output model of an 
upstream service is incompatible with the input model of a 
downstream service.  For instance, an upstream service delivers an 
SQL cursor, but the downstream service expects a relation.  In this 
example, an upstream service produces data progressively, while 
the downstream service consumes the data as a whole.  Such a 
mismatch of how data is produced and consumed will stymie the 
downstream recipient.  This is when mobile classes become 
valuable.  A mobile class can be constructed to scroll the SQL 
cursor to fill a complete relation, and return the relation as the 
output.  The mobile class is loaded onto the upstream service to 
mediate the output data for the downstream service.  As the result, 
both services can collaborate despite the difference in how one 
generates data and how the other consumes the data. 

Services are invariably built with the expected clients in mind.  
However, if their services are valuable, they will acquire more 
clients and be composed into more complex scenarios. Changing 
their interfaces would frustrate their original, intended clients.  

But ignoring new opportunities would cause the services to fall 
into disuse and be replaced by newer services with similar 
functionalities [29].  

The difference in how an upstream service produces data and how 
a downstream service consumes data can present a seemingly 
insurmountable block to effective composition of services, 
particularly when the number of collaborating services and their 
applications grow.   The use of active mediators, implemented 
through mobile classes, resolves the problems stemming from 
such incompatibilities. 

5.3 ENGINEERING APPLICATION 
FICAS is also applicable to integrate engineering services. In this 
section, we illustrate the implementation of a civil engineering 
information service infrastructure [16].  For a typical construction 
project scenario, different construction applications can reside at 
different locations, such as site offices or the company 
headquarters.  Furthermore, these applications may have different 
interfaces and require different data formats.  Project information 
is not shared and accessible among all project participants at all 
time. It is difficult and time-consuming for project managers on 
the construction sites to get the latest project information from the 
company headquarter and other places.  If there are some changes 
on the construction site, it is also hard for project managers to 
evaluate the impacts of the changes on the whole project 
immediately. Project managers cannot reschedule the project on 
the construction site right away without the latest information. To 
improve the process, a ubiquitous environment is desirable, so 
that project participants can access and manage the latest project 
information from various engineering services, using software 
applications at different locations, including sites without 
computing services.   

The infrastructure shown in Figure 12 has been developed using 
FICAS model. There are five types of clients and applications 
involved in the environment. Palm PDA devices are used to 
access project information via wireless modems, and web 
browsers provide project information to users who usually have 
access to high-speed Internet connections and more powerful 
computing devices. Three engineering software applications are 
included to manage the design and scheduling aspects of the 
project.  An Oracle 8i relational database serves as the backbone 
information storage for this distributed service infrastructure.  The 
active mediator acts as an intelligent bridge that connects various 
applications and devices with the database.  It captures the client 
requests in the form of active objects from devices such as Palm 
and desktop browsers.  Source queries are constructed and sent to 
the Oracle 8i database. The active mediator retrieves the 
information from the Oracle 8i database and conduct client-
specific information processing by invoking the mobile classes 
incorporated in the client requests.  The processed information 
with desired abstraction and suitable format is returned to the 
clients for displaying.   

In this application, the engineering software applications all have 
different proprietary data models for describing project schedule 
information.  By applying a common data model and utilizing 
FICAS, different applications are able to communicate with each 
other.  The data converters are implemented as mobile classes, 
which act as bridges to map between the propriety data models 
and the relational data model, enabling the Oracle 8i database to 
serve as the backbone information store [16]. 
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6. CONCLUSIONS 
This paper investigates the integration of services that 
communicate large volumes of data.  Traditionally, a composed 
application is the central hub for all the data traffic, while each 
web services process data supplied by the composed application.  
This centralized data flow is shown to be inefficient when data are 
substantial. To improve effective use, the distributed data flow 
approach is introduced which allows direct data exchange among 
the web services.    

The FICAS architecture is defined to enable smooth adoption of 
distributed data-flow and active mediation in services 
composition.  Active mediation increases the customizability and 
flexibility of web services.  Specifically, it enables interoperation 
of web services without requiring that heterogeneous data be 
transmitted via central nodes.  It utilizes code mobility to facilitate 
dynamic information processing in service composition.  
Delegating the maintenance of software that has not been written 
by oneself is an important benefit of the services model [29].  
Active mediation allows data-processing tasks to be specified for 
composed applications, at the same time separating computation 
from composition. Through some application scenarios, we 
presented the effectiveness and flexibility of active mediation in 
facilitating service composition. 

An algorithm for planning distributed data-flows is presented. It 
enables the construction of a web services invocation sequence to 
minimize aggregate network traffic. A second algorithm that 
determines the optimal placement of mobile classes is introduced, 
and the applicability of the algorithm is discussed.  Used 
appropriately, active mediation will greatly facilitate service 
composition, both in functionality and in performance. In the 
example engineering applications, the controlling node can run on 
a low bandwidth device and thus has tremendous effects on 
performance.  Typically, mobile devices are attractive to manage 
complex scenarios in dealing with governmental regulation [14], 
engineering [16], healthcare [4], and military situations [21].  In 
those cases the benefits of distributed dataflow, enabled by active 
mediation, are striking. 
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