
Efficient Integration of Web Services with Distributed
Data Flow and Active Mediation

David Liu
Electrical Engineering

Stanford University

davidliu@stanford.edu

Jun Peng
Civil & Env. Engineering

Stanford University

junpeng@stanford.edu

Kincho H. Law
Civil & Env. Engineering

Stanford University

law@stanford.edu

Gio Wiederhold
Computer Science
Stanford University

gio@cs.stanford.edu

ABSTRACT
This paper presents a loosely coupled service-composition
paradigm. This paradigm employs a distributed data flow that
differs markedly from centralized information flow adopted by
current service integration frameworks, such as CORBA, J2EE
and SOAP. Distributed data flows support direct data
transmission to avoid many performance bottlenecks of
centralized processing. In addition, active mediation is used in
applications employing multiple web services that are not fully
compatible in terms of data formats and contents. Active
mediation increases the applicability of the services, reduces data
communication among the services, and enables the application to
control complex computations. The benefits of distributed data
flow and active mediation are illustrated with various
applications, such as dynamic type conversion, result extraction,
and engineering application. It is shown that active mediation,
combining with distributed data flows, can greatly improve the
performance of an application utilizing multiple web services.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –
information hiding, patterns; H.3.4 [Information Storage and
Retrieval]: Systems and Software – distributed systems,
information networks, performance evaluation; H.2.5 [Database
Management]: Heterogeneous Databases – Data translation,
program translation.

General Terms
Algorithms, Performance, Design, Languages, Experimentation,
Standardization, Theory.

Keywords
Web services; service integration; direct data transmission; active
mediation; mobile class; handheld services

1. INTRODUCTION
We experience a continuing increase in both the size and the
performance of computer networks. As networks become
pervasive and ubiquitous, all computing facilities can be accessed
from any geographic location. This development enables the use
of remote software services over the web. Web services is now
one of the foundations of a vision called utility computing – the
idea that computing power should be as easy to tap into as the
electrical grid. However, unlike the electrical grid where the
power is generated by limited number of sources, the computing
grid has numerous machines and services. Integrating related
services to form composed application requires complex planning,
control, monitoring, and execution.

There are many issues associated with the current service
composition frameworks, and two noticeable ones are interface
incompatibility and performance. Web services are normally
provided as software services managed by independent service
providers [6, 31]. They are globally heterogeneous and adhere to
a variety of conventions for control and data. Even when
standards are promulgated, such as SQL, the precise meaning and
scope of the output will not necessarily match the expectations of
another service. A prime example of available web services today
are information providers, which expose their functionalities
through XML, SQL, and report generators, but are not geared to
interoperate with other services, as analytical services or
predictive simulations [28]. In a typical composed application, all
results from one web service have to be shipped to the application
site, handled there, and then shipped to the next web service. In
most cases, the centralized data-flow approach is inefficient for
integrating large-scale software services. This inefficiency is
implicit in all common composition protocols, such as CORBA,
DCOM, J2EE, SOAP, and Microsoft .NET.

In order to deal with the issues associated with the current service
composition frameworks, we demonstrate a Flow-based
Infrastructure for Composing Web Services (FICAS) [15]. FICAS
is implemented as a collection of software modules that support
the construction of web services, facilitate the functional
composition of web services into composed application, and
conduct the execution of performance-enhanced applications.
FICAS addresses three design concerns: (1) scalability –
integration and management of large number of web services in
the service composition infrastructure; (2) performance – high
efficiency in the execution of composed applications; and (3) ease
of composition – effective and convenient specification of service

compositions by the application programmers. FICAS uses
distributed data-flows to achieve greatly improved scalability and
performance without sacrificing ease of composition.

FICAS applies the concept of active mediation to enhance
efficient execution of applications employing composed services.
Active mediation allows code to be provided to remote services to
resolve format and content incompatibilities [17]. Without being
able to delegate such a capability to the remote service such
incompatibilities have to be resolved at the application site.
Active mediation exploits the notion of mobile code [12] to
provide for unforeseen remote information processing.
Specifically, matching, reformatting, rearranging, and mapping of
data being sent or received among services can be embodied in
mobile code, and shipped by the composed application to the
remote service as needed. Remote services that can accept active
mediation now have the ability to adapt their behavior to the
client requests. Active mediation distributes a class of
computations within the service framework, and reduces the
amount of data traffic significantly by moving computations
closer to the data.

Active mediation, enabled by the mobile class and distributed
dataflow, is an effective approach to resolve service interface
incompatibilities and improve the performance of the composed
application. The concept of active mediation will have a major
impact on the semantic web [4]. In cases where the composed
application is operated on a handheld device, the cost of shipping
intermediate data to and from the handheld can become the
bottleneck of overall system. Planned properly, mobile classes can
be placed onto an appropriate service to minimize the amount of
data communications. This is especially beneficial when the
controlling node of a composed application is on a low bandwidth
device. Such low bandwidth mobile devices are very attractive to
manage complex scenarios in access to government services [14],
engineering [16], regulations [16], and healthcare [4].

2. SERVICE INTEGRATION FRAMEWORK
Web services execute processes that involve one or more software
applications along with their domain data. Web services are
composed in a loosely-coupled fashion to allow flexible
integration of heterogeneous systems in a variety of domains.
There has been much significant research in service composition,
particularly in creating uniform ways of describing, deploying,
and accessing applications [10]. Many standards have been
proposed to represent processes using web services, such as
BPEL4WS [1], WSCL [3], and DAML-S [2]. FICAS contributes
a software composition paradigm that supports distributed data
flow with active mediation and addresses the performance
implications of service composition.

2.1 SOFTWARE SERVICE MODEL
The composition of multiple web services into a composed
application consists of three phases. First, existing services that
provide composable functionalities are catalogued. Existing
services that decide to participate will expose their interfaces.
Missing services are constructed, or, rather, their construction by
others is encouraged or contracted. Second, the composed
application is specified so that it will employ the most suitable
combination of web services. Issues to be considered when
composing web services include scalability of the services,
robustness of the services, security of the service interaction,

effective and convenient specification of the compositions, and
performance of the composed applications. Third, the composed
application is executed as often as needed.

In FICAS, web services are specified as a homogeneous model
that promotes communication and cooperation with each other.
Figure 1 illustrates the web service metamodel, which consists of
a service core, an input event queue, an output event queue, an
input data container, and an output data container:

� The service core represents the core functionality of the web
service. It is responsible for performing computation on the
input data elements and generating resultant data elements.
We can often wrap existing software applications into a
service core.

� Events (messages) are exchanged between services to control
the flow of web service executions. Asynchronous execution
of web services is achieved by using queues for event
processing. The default queuing protocol in FICAS is FIFO
(first in and first out), so event messages are processed in the
order they arrive, but other methods are being developed [20].

� The data containers are groupings of input and output data
elements for the web service. Input data elements are fetched
from the input data container and processed by the service
core. The generated data elements are put into the output data
container. The data containers enable web services to look up
generated data elements.

Data-flow

Control-
flow

Input Data Container

Output Data Container

In
p

u
t E

ven
t Q

u
eu

e

O
u

tp
u

t E
ven

t Q
u

eu
e

Service Core

Figure 1: FICAS web service metamodel

Web services export the service functionalities contained in the
encapsulated software applications. Although the service
functionalities differ, the way by which the functionalities are
exported is similar for all our web services. The web services
share many common components, such as the event queues and
the data containers. In addition, the interactions among the
components are largely identical. Hence, the construction of web
services can be significantly simplified by building the common
components into a standard module. We call that module, which
facilitates the encapsulation of software applications into web
services, the web service wrapper.

In FICAS, the web service wrapper has been implemented in Java.
The Java classes and interfaces are incorporated into a Java
library. With the FICAS web service wrapper, the adaptation of a
software application into a web service is simplified to defining
the ServiceCore interface, which has functions for setting up,
executing and terminating a service. The setup() method defines
the actions of the application when the service is initialized; the
execute() method is called when the service is invoked, triggering
the application to process the data in the containers; and the
terminate() method is called when the service is terminated. Each
method takes three parameters: the inputcontainer provides the
reference to the input data container of the autonomous service;
the outputcontainer provides the reference to the output data
container of the autonomous service; and the flowid identifies the
flow to which the service request belongs. With the references to
the data containers and the flow identifier of the request, the
software application can look up the input parameters from the
input data container and generate the results into the output data
container.

2.2 MEDIATION
Services are usually built by leveraging existing software
capabilities and information resources. These resources have had
incompatibilities in many e-commerce and e-business
applications. Mediators are intelligent middleware that sit
between the information sources and the clients [27, 30].
Mediators reduce the complexity of information integration and
minimize the cost of system maintenance. They provide
integrated information, without the need to integrate the actual
information sources. Specifically, mediators perform functions
such as accessing and integrating domain-specific data from
heterogeneous sources, restructuring the results into objects, and
extracting appropriate information.

Figure 2(a) illustrates the mediation architecture, which
conceptually consists of three layers. The information source
provides raw data through its source access interface. The
mediation layer resides between the information source and the
information client, performing value-added processing by
applying domain-specific knowledge processing. The information
client accesses the integrated information via the client access
interface. The architecture of the information-oriented service can
be mapped to a processing-oriented architecture, as shown in
Figure 2(b). The application software corresponds to the
information source layer, the service wrapper corresponds to the
mediation layer, and the composed application matches the
information consumer layer. The software is accessed through the
application-specific interface. The service wrapper obtains
specifications from the services and exposes its capabilities
through the access protocol.

In traditional mediators, code is written to handle information
processing tasks at the time the mediators are constructed. Such
mediators are static, and only modified when the sources change
interfaces or behavior. Static mediators are appropriate when
resource behavior is known at construction time. In contrast, the
active mediators introduced in this paper allow clients to adapt the
services, in particular their interfaces.

Client Access
Interface

Source Access
Interface

(a) Mediation (b) Web Service

Application Specific
Interface

Autonomous Service
Access Protocol

Information
Client

Autonomous
Service
Wrapper

Mediator

Composed
Application

Software
Application

Information
Source

Figure 2: Conceptual layers in mediation and in service
integration

3. DISTRIBUTED DATA-FLOW
In FICAS, the composed application controller has the
responsibility for managing the control-flows. Based on an
execution plan, the controller executes and schedules web services
by managing and coordinating the choice, timing, sequence, and
dependencies of control events. The purpose of scheduling is to
improve the Qualify of Service (QoS) of the composed
application. Many techniques used to improve QoS for distributed
workflows have been proposed for web service processes [5, 32].
In our current implementation, we focus on minimizing the
aggregate data-communication cost among services.

3.1 SEPARATING CONTROL AND DATA FLOWS
A distinguishing characteristic of FICAS is its distributed data-
flow model, which allows direct data-flow to occur among remote
services. In the common web services management, the site of the
composed application is the central hub for all the control and all
the data traffic, so that there is both centralized control and
centralized data-flow. The distributed data-flow model provides
better performance and scalability than the centralized data-flow
model when data is significant. The distribution of data
communications exploits the network capacity among the
services, and avoids bottlenecks at the composed application.
Especially when the composed application resides on a mobile
device, relying on centralized data-flow would severely stress its
limited bandwidth. Control, i.e., the invocation of a remote
service, remains centralized in FICAS. We find it difficult to
apply proposed distributed control-flow models effectively to
conduct service composition. There remain many technical
challenges to construct distributed operational code segments.

The separation of control-flow and data-flow is also presented in
several emerging service composition standards, for example,
BPEL4WS [3], WSCL [6] and DAML-S [4], demonstrating that
the importance of separating control-flow and data-flow is being
recognized. The idea of separating data-flow from control-flow
can also be seen in some distributed workflow environments. For
instance, Exotica/FMQM adopts distributed workflow execution
and data management for distributed workflow applications [2,
26]. However, data flow in those environments is typically
supported by a set of loosely synchronized replicated databases
instead of managed direct transfers.

Figure 3 shows a schematic composed application in FICAS
where the data are directly exchanged among web services. By
distributing data-flows, FICAS eliminates the focused, redundant,
and heavy-duty data traffic caused by the forwarding of
everything through the composed application. The distributed
data-flow model utilizes the communication network among web
services, and thus alleviates communication loads on the
composed application. Furthermore, FICAS allows computations
to be distributed efficiently to where data resides, so that the data
can be processed without incurring communication traffic.

Composed

Application

Service
Wrapper

Control flows

Service
Wrapper

Service
Wrapper

Service
Wrapper

Service
Wrapper

Software

Service

Software

Service

Software

Service

Software

Service

Software

Service

Data flows

Request

Result

Figure 3: Sample control flow and data flow in FICAS

3.2 PLANNING DISTRIBUTED DATA FLOWS
Optimizing the placement of data processing to minimize data
transfer has been of interest for distributed database systems [9,
23]. Query optimisation of distributed databases requires
deciding where to ship the data and where to perform query
operations. A similar concept is adopted in FICAS to plan the
distributed data-flows. There are three steps in generating an
execution plan. First, the composed application is analysed to
discover data dependencies among web services. Then, a data
dependency graph is constructed to identify independent data-
flows. Finally, based on the data dependency graph, the
controller then builds an execution plan.

The program segment in Figure 4 shows implicit data
dependencies between web services. For instance, invocation of
Service3 takes A and B as inputs, which are the outputs of the
invocations of Service1 and Service2, respectively. Hence,
Service3 is data dependent on Service1 and Service2. The data
dependencies among the web services are analysed when the
program is interpreted. The dependencies are mapped into a data
dependency graph (DDG) as shown in Figure 5. The nodes
represent service invocations, and the directed arcs represent data
dependencies between service invocations. Each directed arc
points to the dependent service and is tagged with the data
elements exchanged between the pair of services. For example,
the arc between Invocation1 and Invocation3 represents that
Invocation3 is dependent on Invocation1, with A being the data
element passed from Invocation1 to Invocation3.

The composed application execution plan is represented by the
event dependency graph (EDG), as shown in Figure 6. The node
in the EDG contains an outgoing control event from the

controller. The arc establishes a predecessor-successor
relationship between a pair of events. The successor event cannot
be sent until the action taken by the predecessor event is
completed, i.e., the controller receives the response of the
predecessor event. The controller uses the EDG to coordinate the
execution of the composed application. Invocation nodes in the
DDG can be directly mapped into the INVOKE event nodes in the
EDG. The mapping from the arcs in the DDG to the event nodes
in the EDG is more complex.

Figure 6 shows the mapping scheme where data communications
are directed among dependent web services. The controller
functions merely as a coordinator for the events that control the
data communication activities. Each directed arc in the DDG is
mapped onto a MAPDATA event node with arcs connecting the
predecessor and successor event nodes. For instance, the arc
tagged with A in the DDG (shown in Figure 5) is mapped onto the
MAPDATA(A, Service1, Service3) event node in the EDG (shown
in Figure 6). This example shows a simple example of service
execution, i.e. predecessor-successor relationships. More
complicated control constructs, such as switch and loop, are also
specified in FICAS to describe a variety of services [15].

Invocation1 = Service1.invoke()
Invocation2 = Service2.invoke()

A = Invocation1.extract();
B = Invocation2.extract();

Invocation3 = Service3.invoke(A, B)

C = Invocation3.extract();

Invocation4 = Service4.invoke(C)
D = Invocation4.extract();

Figure 4: Sample program segment for service integration

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

Figure 5: Sample DDG

INVOKE
(Service1)

INVOKE
(Service2)

MAPDATA
 (A, Service1,

Service3)

INVOKE
(Service3)

MAPDATA
(C, Service3,

Service4)

MAPDATA
(B, Service2,

Service3)

INVOKE
(Service4)

MAPDATA
(D, Service4,
Megaservice)

Figure 6: EDG with Distributed Data-flows

The presented scheduling algorithm is applicable to relatively
static data flows, in which the volume of data flows can be
estimated before the execution of web services. Major
perturbations may require re-analysis. Similar control constructs
have also been included in other service composition protocols.
For example, DAML-S defines a set of control constructs that
consists of Sequence, Split, Split + Join, Choice, Unordered,
Condition, If-Then-Else, Iterate, Repeat-While, and Repeat-Until
[2].

4. MOBILE CLASSES AND ACTIVE MEDIATION
While FICAS gains substantial performance from direct data
communication among the services, it still requires the capability
provided in mediator nodes to map incompatible sources or to
integrate information from diverse sources. In the semantic web
setting, where we expect many and diverse providers, we cannot
expect that each service will deliver results that will be fully
compatible and useful to further services that the composed
application will need to invoke.

Active mediation applies the notion of mobile code [12] to
support unforeseen remote information processing. Specifically,
matching, reformatting, rearranging, and mapping of data being
sent or received among services can be embodied in mobile code,
and shipped by the composed application to the remote service as
needed. Remote services that can accept active mediation now
have the ability to adapt their behavior to the client requests. For
instance, an information client can forward a compression routine
to a service so that queried information is compressed before
returned. A service that computes monthly taxes due state-by-
state can have chronological transaction data rearranged and
summarized as it needs. In general, with active mediation to
provide client-specific functionalities, services can be viewed as if
they were intended for the specific needs of the client.

4.1 MOBILE CLASSES
A mobile class is an information-processing module that can be
dynamically loaded and executed. Conceptually, a mobile class is
a function that takes some input data elements, performs certain
operations, and then outputs a new data element. The underlying
programming support of mobile class in FICAS is similar to that
of the mobile agent technology [7, 26]. They both utilize
executable programs that can migrate during execution from
machine to machine in a heterogeneous network. Through a set of
domain independent active and intelligent registries, called mobile
agents, web services can be discovered for interoperation [24].
However, the mobile agents are self-governing in that they decide
when and where to migrate on their own. On the other hand, the
mobile class in FICAS is an integral part of the service
composition framework. Since mobile classes are controlled by
composed application, their management and deployment
becomes easier. There are also efforts of applying mobile agent
approach to lightweight process workflow [13, 25]. Such mobile
code, which is used to carry out process-based dynamic
adaptation, has been called worklet [13].

Mobile classes can be implemented in many general-purpose
programming languages [8, 11, 18]. In our work, Java is chosen
as the specification language for mobile classes. First, Java is
suitable for specifying computational intensive tasks. There are
many available standard libraries that provide a wide range of
computational functionalities. Second, Java has extensive support
for portability. Java programs can be executed on any platform
that incorporates a Java virtual machine. Third, Java supports
dynamic linking and loading. Java class files are object files
rather than executables in the traditional sense. Linking is
performed when the Java class files are loaded onto the Java
virtual machine. Compiled into a Java class, the mobile class can
be dynamically loaded at runtime.

Figure 7 presents the MobileClass interface, which contains a
single function that represents the functionality of a mobile class.
The execute() function takes a vector of data elements as the input
and generates a data element as the output. The execute() function
is overloaded by a mobile class to provide specific processing
functionality. Figure 8 shows the definition of the DataElement
class representing a data element, which is used for data exchange
among services in FICAS. Since services and mobile classes use
the same representation for data, data can be exchanged among
the services and the mobile classes without any conversion.
Internally, a data element is represented in XML. There are two
constructors for DataElement, one for creating an empty data
element, the other for creating a data element based on its XML
representation. The class provides functions to query the type and
the size of the data element. In the case that the data element is of
a primitive type (i.e., Boolean, integer, real, or string), functions
are provided to set, fetch and compare values for the data element.
Otherwise, the content of the data element can be fetched as a byte
array.

public interface MobileClass {
 public DataElement execute(Vector params);
}

Figure 7: Definition of the MobileClass Interface

public class DataElement {
 public DataElement();
 public DataElement(Document doc);

 // Return XML document representation
 Document doc();
 // Return byte array representation
 byte[] getByteArray();
 // Return a string in XML printout form
 String toString();

 // Return the size of the element
 int getSize();
 // Return the type of the element
 int getType();

 DataElement setValue(boolean value);
 DataElement setValue(double value);
 DataElement setValue(int value);
 DataElement setValue(java.lang.String value);
 DataElement setValue(byte[] arr);

 boolean getBooleanValue();
 int getIntValue();
 double getRealValue();
 String getStringValue();

 int compare(DataElement e);
 boolean eq(DataElement e);
 boolean ge(DataElement e);
 boolean gt(DataElement e);
 boolean le(DataElement e);
 boolean lt(DataElement e);
 boolean ne(DataElement e);
}

Figure 8: Definition of the DataElement Class

4.2 ACTIVE MEDIATION
To enable active mediation in FICAS, a composed application
needs to be able to invoke mobile classes on a service, and the
service needs to support the execution of the mobile classes. To
allow a composed application to coordinate the invocation of
mobile classes on services, we have introduced a Mobile Class
event, which is sent from a composed application to a service to
invoke a mobile class. A service supports the execution of mobile
classes through the incorporation of an active mediator. Figure 9
illustrates the architecture of the active mediator:

Web
Service
Wrapper

Mobile
Class

Fetcher

Mobile
Class

Runtime

Exception
Handling

Mobile Class
Cache

Mobile Class
Repository

Input Data Container

Output Data Container

Mobile
Class
API

Library

Active Mediator

Figure 9: Architecture of active mediation

� The Mobile Class Fetcher is responsible for loading the
mobile class. The source location of the Java class is specified
by the mclass-name in the MCLASS event. The loaded Java
class is stored into the Mobile Class Cache.

� The Mobile Class Cache is a temporary storage for mobile
classes. The Mobile Class Cache is used to avoid the duplicate
loading of a mobile class. It is looked up every time before
any mobile class is loaded. The Mobile Class Fetcher is used
to load the Java byte code only when the cache miss occurs.

� The Mobile Class Runtime is the execution engine for the
mobile classes. To execute a mobile class, the Mobile Class
Runtime loads the Java class from the Mobile Class Cache and
invokes the execute() function. The input parameters of the
execute() function are looked up from the Input Data
Container. The result of the execute() function is put into the
Output Data Container.

� The Mobile Class API Library stores the utility classes that
make the construction of mobile classes more convenient. For
instance, the Java Development Kit (JDK) library is provided
as part of the Mobile Class API Library.

� The Exception Handling module provides error handling for
the loading and the execution of the mobile class.

Upon receiving a Mobile Class event, a service directs the Mobile
Class Fetcher to load the mobile class into the Mobile Class
Cache. The execute() function of the mobile class is then invoked
to process data local to the service. Since the service wrapper
handles the interchange of the data among services, the active
mediator is only concerned with the data processing that is local
to the service.

4.3 PLACEMENT OF MOBILE CLASSES
The choice of which web service executes the mobile class affects
how the data-flows are formed. The placement of the mobile class
therefore has significant impact on the performance of the
composed application. An example, shown in Figure 10, is used
to demonstrate such impact. The application has two web
services, S1 and S2, and one mobile class. The mobile class
FILTER takes a large string as input, filters through the content,
and returns a string that consists of every 10th character of the
input string. We have three potential placement strategies, as
shown in Figure 10:

� Strategy 1: By placing the mobile class FILTER at the web
service that hosts the controller, we can construct the
execution plan as shown in Figure 10(a). S1 generates the
data element A and passes it to the mobile class for
processing. The processed result B is then sent to S2 for
further processing.

� Strategy 2: Placing the mobile class FILTER at S1 constructs
the execution plan as shown in Figure 10(b). S1 generates the
data element A and processes it locally using the mobile class.
The result B is sent from S1 to S2 for further processing.

� Strategy 3: By placing the mobile class FILTER at S2, we can
construct the execution plan as shown in Figure 10(c). S1
generates the data element A and passes it to S2. S2 processes
A locally using the mobile class to generate the result B.

S1

Composed
Application

S2

S1

S2

mobile class
FILTER

S1

S2mobile class
FILTER

(a) Placing FILTER at Composed Application (b) Placing FILTER at S1 (c) Placing FILTER at S2

1

2

1

2

1

2

Data-flow
Service

Invocation

mobile class
FILTER

A

B

B AComposed
Application

Composed
Application

Figure 10: Execution plans with different placements for the mobile class

To compare the strategies, we assume that the performance of
loading and executing the mobile class is the same on all web
services. Strategy 1 requires both the input data element A and
the output data element B to be transmitted among the composed
application and the web services. Thus Strategy 1 incurs the most
communication traffic compared to the other two strategies.
Strategy 2 and Strategy 3 differ in the data sent between the web
services. Since the data element B is one tenth the volume of data
element A, Strategy 2 incurs the least amount of communication
traffic and has the best performance.

The above observation can be generalized as the following
algorithm to determine the optimal placement of a mobile class.
The criterion used is minimizing the amount of data transmission
among web services. For a mobile class, each input data element
to the mobile class is represented as a pair, (Si, Vi), where Si is the
web service that generates the ith input data element, and Vi is the
volume of the data element. The output is a (S0, V0) pair, where S0
is the destination web service to which the result of the mobile
class will be sent, and V0 is the size of the data element. Two
observations can be made. First, the sum of Vi remains the same
regardless where the mobile class is executed. Second, by placing
the mobile class on the web service Si, we can eliminate the
corresponding data-flow volume Vi as the data element is local to
the web service. Therefore, the optimal placement of the mobile
class is the web service Si that has the largest aggregated Vi.

Figure 11 shows the LDS (Largest Data Size) algorithm that
selects the web service that generates and consumes the largest
volume of data for a given mobile class. The algorithm first
computes the total amount of data attributed to each unique web
service. Then, the web service with the largest data volume is
selected as Smax, which represents the optimal placement for the
mobile class. The LDS algorithm is applicable when the input
and output data sizes are known. For a situation where the output
data size of a mobile class is only determined after the execution
of the mobile class, we need to estimate the output data size. We
view the output data size of a mobile class as a function of the
input data sizes: SO = f (SA, SB, …). The function f is called the
sizing function of the mobile class, where SO is the output data
size and SA, SB are the input data sizes. The sizing function may
be stored along with the Java byte codes in the mobile class

repository. The controller can then use the sizing function to
estimate the output data size for running the LDS algorithm.

The LDS algorithm assumes that the network links among all web
services are of comparable performance. When this assumption
does not hold, a more complicated model can be adopted to
minimize the aggregated time. Various network parameters, such
as topology of network and bandwidth of network channels, can
have impact on the performance of the composed application, and
other algorithms (for example, see [22]) can also be implemented
in FICAS.

INPUT: input pairs(S
1
, V

1
), …, (S

n
,V

n
)

 output pair (S
0
, V

0
)

OUTPUT: S
max

METHOD:
 V

max
=0

 for every unique S in input and
 output pairs
 V=0
 for i=0,…,n
 if S

i
==S

 V=V+V
i

 if V>V
max

 S
max
=S

 V
max
=V

Figure 11: LDS Algorithm for Optimal Mobile Class
Placement

5. EXAMPLE APPLICATIONS
Several examples are presented in this section to demonstrate that
FICAS is well suited for integrating web services that exchange
large amount of data and for solving interface incompatibility.
The distribution of data-flows and active mediation can facilitate
service composition and improve the performance of composed
application.

5.1 TYPE MEDIATION
Data generated by a service can be directly used by other services
if they share the same data types, structure, formats, and
granularities, etc. However, such homogeneity cannot be assumed

within a large-scale service composition infrastructure. Data exist
in various types and will continue to appear in different types that
suit different applications. Many potential services never took the
need for composition into account, assuming their results were
what the consumer desired. Data type conversion is inevitable in
supporting service composition.

Traditionally, a service serving as type broker or a distributed
network of type brokers is used to mediate the difference among
data in various formats [19]. The type brokers can convert data
from one format to another acceptable format for the information
client. The type brokers serve as proxies connecting client
requests with appropriate source services. A type graph is used to
figure out a chain of necessary conversions. There are two issues
associated with using type brokers: efficiency and availability.
First, the use of type brokers for type mediation can be inefficient.
Large amount of data are forwarded to and from the brokers. The
problem is exacerbated when a chain of conversions is involved.
Second, the necessary type brokers may not exist for the desired
data type. Since there are a large number of data formats, it is
impractical to prepare a comprehensive set of type brokers
covering all existing and future data types. New type brokers
need to be created and maintained to conduct the type conversions
needed by an application or a common intermediate format must
be adopted, leading to a high conversion cost.

In our approach, mobile classes are used in place of type brokers
to handle data conversion and integration of multiple input
streams. The mobile classes are created by the application
programmers as part of the specification for the composed
applications. Rather than forwarding data among the type
brokers, the composed application loads the mobile classes on the
services to provide the type mediation functions. Similar to the
chain of type brokers, multiple mobile classes for type mediation
can be utilized together. Since the mobile classes are invoked on
the source service, the multiple interim data transfers can be
eliminated and the data traffic is limited to essential transmissions.
The application of the mobile classes successfully addresses the
efficiency and availability issues associated with type mediation.

5.2 RESULT EXTRACTION
Services can produce a wide variety of data suitable for extraction
and reporting. A composed application has upstream services
generating data that is consumed by downstream services.
Selective result extraction is required when the output model of an
upstream service is incompatible with the input model of a
downstream service. For instance, an upstream service delivers an
SQL cursor, but the downstream service expects a relation. In this
example, an upstream service produces data progressively, while
the downstream service consumes the data as a whole. Such a
mismatch of how data is produced and consumed will stymie the
downstream recipient. This is when mobile classes become
valuable. A mobile class can be constructed to scroll the SQL
cursor to fill a complete relation, and return the relation as the
output. The mobile class is loaded onto the upstream service to
mediate the output data for the downstream service. As the result,
both services can collaborate despite the difference in how one
generates data and how the other consumes the data.

Services are invariably built with the expected clients in mind.
However, if their services are valuable, they will acquire more
clients and be composed into more complex scenarios. Changing
their interfaces would frustrate their original, intended clients.

But ignoring new opportunities would cause the services to fall
into disuse and be replaced by newer services with similar
functionalities [29].

The difference in how an upstream service produces data and how
a downstream service consumes data can present a seemingly
insurmountable block to effective composition of services,
particularly when the number of collaborating services and their
applications grow. The use of active mediators, implemented
through mobile classes, resolves the problems stemming from
such incompatibilities.

5.3 ENGINEERING APPLICATION
FICAS is also applicable to integrate engineering services. In this
section, we illustrate the implementation of a civil engineering
information service infrastructure [16]. For a typical construction
project scenario, different construction applications can reside at
different locations, such as site offices or the company
headquarters. Furthermore, these applications may have different
interfaces and require different data formats. Project information
is not shared and accessible among all project participants at all
time. It is difficult and time-consuming for project managers on
the construction sites to get the latest project information from the
company headquarter and other places. If there are some changes
on the construction site, it is also hard for project managers to
evaluate the impacts of the changes on the whole project
immediately. Project managers cannot reschedule the project on
the construction site right away without the latest information. To
improve the process, a ubiquitous environment is desirable, so
that project participants can access and manage the latest project
information from various engineering services, using software
applications at different locations, including sites without
computing services.

The infrastructure shown in Figure 12 has been developed using
FICAS model. There are five types of clients and applications
involved in the environment. Palm PDA devices are used to
access project information via wireless modems, and web
browsers provide project information to users who usually have
access to high-speed Internet connections and more powerful
computing devices. Three engineering software applications are
included to manage the design and scheduling aspects of the
project. An Oracle 8i relational database serves as the backbone
information storage for this distributed service infrastructure. The
active mediator acts as an intelligent bridge that connects various
applications and devices with the database. It captures the client
requests in the form of active objects from devices such as Palm
and desktop browsers. Source queries are constructed and sent to
the Oracle 8i database. The active mediator retrieves the
information from the Oracle 8i database and conduct client-
specific information processing by invoking the mobile classes
incorporated in the client requests. The processed information
with desired abstraction and suitable format is returned to the
clients for displaying.

In this application, the engineering software applications all have
different proprietary data models for describing project schedule
information. By applying a common data model and utilizing
FICAS, different applications are able to communicate with each
other. The data converters are implemented as mobile classes,
which act as bridges to map between the propriety data models
and the relational data model, enabling the Oracle 8i database to
serve as the backbone information store [16].

PSLXML

4D
Viewer

Active
Mediator

Palm Desktop
Browser

Primavera
P3

Microsoft
Project

Oracle 8i
Relational
Database

Figure 12: Integration of engineering services

6. CONCLUSIONS
This paper investigates the integration of services that
communicate large volumes of data. Traditionally, a composed
application is the central hub for all the data traffic, while each
web services process data supplied by the composed application.
This centralized data flow is shown to be inefficient when data are
substantial. To improve effective use, the distributed data flow
approach is introduced which allows direct data exchange among
the web services.

The FICAS architecture is defined to enable smooth adoption of
distributed data-flow and active mediation in services
composition. Active mediation increases the customizability and
flexibility of web services. Specifically, it enables interoperation
of web services without requiring that heterogeneous data be
transmitted via central nodes. It utilizes code mobility to facilitate
dynamic information processing in service composition.
Delegating the maintenance of software that has not been written
by oneself is an important benefit of the services model [29].
Active mediation allows data-processing tasks to be specified for
composed applications, at the same time separating computation
from composition. Through some application scenarios, we
presented the effectiveness and flexibility of active mediation in
facilitating service composition.

An algorithm for planning distributed data-flows is presented. It
enables the construction of a web services invocation sequence to
minimize aggregate network traffic. A second algorithm that
determines the optimal placement of mobile classes is introduced,
and the applicability of the algorithm is discussed. Used
appropriately, active mediation will greatly facilitate service
composition, both in functionality and in performance. In the
example engineering applications, the controlling node can run on
a low bandwidth device and thus has tremendous effects on
performance. Typically, mobile devices are attractive to manage
complex scenarios in dealing with governmental regulation [14],
engineering [16], healthcare [4], and military situations [21]. In
those cases the benefits of distributed dataflow, enabled by active
mediation, are striking.

7. ACKNOWLEDGMENTS
This work is partially sponsored by the Center for Integrated
Facility Engineering at Stanford University, the Air Force (Grants
F49620-97-1-0339 and F30602-00-2-0594), and the Product
Engineering Program headed by Dr. Ram D. Sriram at NIST

(National Institute of Standards and Technology). The authors
would also like to acknowledge an equipment grant from Intel
Corporation for the support of this research.

8. REFERENCES
[1] Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein,

J., Leymann, F., Liu, K., Roller, D., Smith, D., Thatte, S.,
Trickovic, I., and Weerawarana, S. BPEL4WS Specification:
Business Process Execution Language for Web Services
Version 1.1, 2003, http://www-
106.ibm.com/developerworks/library/ws-bpel/.

[2] Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O.,
Martin, D.L., McIlraith, S.A., Narayanan, S., Paolucci, M.,
Payne, T., Sycara, K., and Zeng, H. DAML-S: Semantic
Markup for Web Services. In Proceedings of the
International Semantic Web Working Symposium (Stanford,
CA, 2001), 2001.

[3] Banerji, A., Bartolini, C., Beringer, D., Chopella, V.,
Govindarajan, K., Karp, A., Kuno, H., Lemon, M.,
Pogossiants, G., Sharma, S., and Williams, S. Web Services
Conversation Language (WSCL) 1.0, 2002,
http://www.w3.org/TR/2002/NOTE-wscl10-20020314/.

[4] Berners-Lee, T., Hendler, J., and Lassila, O. The Semantic
Web. Scientific American, 284, 5 (2001), 34-43.

[5] Blake, M.B. Coordinating Multiple Agents for Workflow-
Oriented Process Orchestration. Information Systems and e-
Business Management, 1, (2003), 1-18.

[6] Boehm, B., and Scherlis, B. Megaprogramming. In
Proceedings of DARPA Software Technology Conference
(Los Angeles, CA, 1992), 1992, 68-82.

[7] Brewington, B., Gray, R., Moizumi, K., Kotz, D., Cybenko,
G., and Rus, D. Mobile Agents in Distributed Information
Retrieval. in Klusch, M. ed. Intelligent Information Agents,
Springer-Verlag, 1999, 355-395.

[8] Cardelli, L. A Language with Distributed Scope. Computing
Systems, 8, 1 (1995), 27-59.

[9] Ceri, S., Pernici, B., and Wiederhold, G. Distributed
Database Design Methodologies. Proceedings of the IEEE,
75, 5 (1987), 533-546.

[10] Curbera, F., Khalaf, R., Mukhi, N., Tai, S., and
Weerawarana, S. The Next Step in Web Services.
Communications of the ACM, 46, 10 (2003), 29-34.

[11] Douglis, F., and Ousterhout, J. Transparent Process
Migration: Design alternative and the Sprite Implementation.
Software: Practice and Experience, 21, 8 (1991), 757-785.

[12] Fuggetta, A., Picco, G.P., and Vigna, G. Understanding Code
Mobility. IEEE Transactions on Software Engineering, 24, 5
(1998), 342-361.

[13] Kaiser, G., Stone, A., and Dossick, S. A Mobile Agent
Approach to Lightweight Process Workflow. In Proceedings
of International Process Technology Workshop (Villard de
Lans, France, 1999), 1999.

[14] Lau, G.T., Kerrigan, S., Law, K.H., and Wiederhold, G. An
E-Government Information Architecture for Regulation
Analysis and Compliance Assistance. In Proceedings of

ICEC'04: Sixth International Conference on Electronic
Commerce (Delft, The Netherlands, 2004), 2004.

[15] Liu, D. A Distributed Data Flow Model for Composing
Software Services. Ph.D. Thesis, Stanford University,
Stanford, CA, 2003.

[16] Liu, D., Cheng, J., Law, K.H., Wiederhold, G., and Sriram,
R.D. Engineering Information Service Infrastructure for
Ubiquitous Computing. Journal of Computing in Civil
Engineering, 17, 4 (2003), 219-229.

[17] Liu, D., Sample, N., Peng, J., Law, K.H., and Wiederhold, G.
Active Mediation Technology for Service Composition. In
Proceedings of Workshop on Component-Based Business
Information Systems Engineering (CBBISE'03) (Geneva,
Switzerland, 2003), 2003.

[18] Moizumi, K. Implementing Distributed Services with Mobile
Code: The Case of the Messenger Environment. In
Proceedings of the IASTED International Conference on
Parallel and Distributed Systems (Austria, 1998), 1998.

[19] Ockerbloom, J. Mediating Among Diverse Data Formats.
Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA,
1998.

[20] Sample, N., Keyani, P., and Wiederhold, G. Scheduling
Under Uncertainty: Planning for the Ubiquitous Grid. In
Proceedings of 5th International Conference on Coordination
Models and Languages (Coord2002) (York, UK, 2002),
2002.

[21] Sheng, S., Chandrakasan, A., and Brodersen, R.W. A
Portable Multimedia Terminal. IEEE Communications
Magazine, 30, 12 (1992), 64-75.

[22] Sheth, A., Cardoso, J., Miller, J., Kochut, K., and Kang, M.
QoS for Service-Oriented Middleware. In Proceedings of the
2002 Conference on Systemics, Cybernetics and Informatics
(SCI'02) (Orlando, FL, 2002), 2002.

[23] Sheth, A.P., Singhal, A., and Liu, M.T. An Analysis of the
Effect of Network Parameters on the Performance of

Distributed Database Systems. IEEE Transactions on
Software Engineering, 11, 10 (1985), 1174-1184.

[24] Sycara, K. Multi-Agent Infrastructure, Agent Discovery,
Middle Agents for Web Services and Interoperation. in
Mutli-Agents Systems and Applications, Springer-Verlag
New York, Inc., New York, USA, 2001, 17 - 49.

[25] Valetto, G., Kaiser, G., and Kc, G.S. A Mobile Agent
Approach to Process-based Dynamic Adaptation of Complex
Software Systems. In Proceedings of the 8th European
Workshop on Software Process Technology (Vienna,
Austria, 2001), 2001, 102-116.

[26] White, J.E. Mobile Agents. in Bradshaw, J.M. ed. Software
Agent, MIT Press, 1997, 437-472.

[27] Wiederhold, G. Mediators in the Architecture of Future
Information Systems. IEEE Computer, (1992), 38-49.

[28] Wiederhold, G. Information Systems that also Project into
the Future. In Proceedings of Databases in Networked
Information Systems (DNIS 2002) (Aizu, Japan, 2002),
2002, 1-14.

[29] Wiederhold, G. The Product Flow Model. In Proceedings of
15th Conference on Software Engineering and Knowledge
Engineering (SEKE) (Skokie, IL, 2003), 2003, 183-186.

[30] Wiederhold, G., and Genesereth, M. The Conceptual Basis
for Mediation Services. IEEE Expert, Intelligent Systems and
Their Applications, 12, 5 (1997), 38-47.

[31] Wiederhold, G., Wegner, P., and Ceri, S. Towards
Megaprogramming: A Paradigm for Component-Based
Programming. Communications of the ACM, 35, 11 (1992),
89-99.

[32] Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., and
Sheng, Q.Z. Quality Driven Web Services Composition. In
Proceedings of the Twelfth International World Wide Web
Conference (WWW2003) (Budapest, Hungary, 2003), 2003,
411-421.

