
Analysis of Integration Models for Service Composition
David Liu

Dept. of Electrical Engineering
Stanford University

Stanford, CA 94305, USA
davidliu@stanford.edu

Kincho H. Law
Dept. of Civil & Environmental Engineering

Stanford University
Stanford, CA 94305, USA
law@cive.stanford.edu

Gio Wiederhold
Computer Science Department

Stanford University
Stanford, CA 94305, USA
gio@db.stanford.edu

ABSTRACT
This paper studies service integration infrastructures that support
the execution of megaservices – large-scale applications that are
composed of autonomous service modules. Integration
infrastructures are classified according to their control-flow and
data-flow structures. We analyze the effects of data-flows on the
performances of the centralized and distributed data-flow models.
A mathematical model is built to compare the performances of
megaservices. Particularly, aggregated cost and response time
metrics are defined and evaluated. We arrive at the conclusion that
the distributed data-flow model is in general superior in
performance. We also identify the key system parameters as well
as system bottlenecks. The analysis provides recommendations for
a few techniques to build high-performance and scalable service
integration infrastructures based on the distribution of data-flows.

Keywords
Service composition, performance evaluation, distributed data-
flow, service integration infrastructure, FICAS

1. INTRODUCTION
1.1. Background
A software engineering paradigm has long been envisioned where
large applications are decomposed into cooperating components
[9]. Such vision is echoed in the megaprogramming framework [1,
17], which builds on software components called megamodules
that capture the functionality of services provided by large
organizational units. Megamodules are independently maintained
and provide their clients with services specified by their interface
and encapsulate local structures that implement their services [11].
Megamodules are linked together according to composition
specifications [15] to form megaservices.

With the rapid development of Internet and network
technologies, the foundation to realize such a vision of software
composition exists. The computing world is evolving toward an
interconnected web of autonomous services that are managed

under the providers’ administrative domains. Autonomous
services are typically computational or data intensive. The Internet
provides a wide variety of services, although they are rarely
envisaged for composition. Examples include travel reservation,
book purchasing, weather services, financial data summaries, and
newsgathering. Other services include simulation programs [16],
engineering, logistics, and business services.

In service composition, a systematic integration framework is
required to incorporate transmission protocols for control
messages and data traffic so that autonomous services can be
coordinated to perform a task. A service integration infrastructure
ties together distributed computing resources to form a coherent
computing environment. Specifically, integration infrastructures
provide support for execution of various autonomous services,
scheduling and coordination of the services, data communication
among the services, and exception handlings, etc.

1.2. Objectives
The focus of this paper is on analyzing the effects of data-flows on
the performance of various service integration infrastructures.
Much research effort has been devoted in the past decades to
control-flow scheduling in order to enhance the performance of
distributed services. Less attention was given to data-flow based
optimization techniques. The objectives of this paper are to point
out the significance of data-flows on performance and to provide
mathematical basis for developing service integration
infrastructures that utilize distribution of data-flows.

We start our analysis by classifying service integration
infrastructures into four conceptual models. The classification is
based on how controls and data are communicated among
autonomous services and megaservices. The computing
environment is then modeled as a set of processors interconnected
by a completely connected communication network, which can
represent most modern computing environments. A mathematical
model is built to characterize the performance metrics of individual
system components, based on which aggregated cost and response
time for executing megaservices can be evaluated.

Given an abstract mathematical representation for the
integration models, we analyze and compare in detail the
performances of the centralized data-flow model and the
distributed data-flow model. By tuning the values of the
underlying system components, we can study how the overall
system responds to different settings of hardware platform. The
results provide valuable information toward designing high-
performance and scalable service integration infrastructure based
on distribution of data-flows.

2. SYSTEM OVERVIEW
2.1. Service Integration Models
Conceptually, a distributed computing environment is viewed as a
set of processors interconnected by a communication network. We
characterize the work performed by megaservice and autonomous
services in terms of either computation or communication. For
computation, local processing is conducted on a single processor,
and it involves no interaction between multiple processors. For
communication, messages are passed between two processors. We
do not include special support for broadcast and multicast, which
can be modeled as multiple pair-wise messages. There are two
types of messages: control messages and data messages,
distinguished by their use at the recipients of the messages.
Control messages are mostly short messages that are used to trigger
state changes at the receiving services. Data messages are mostly
large data contents that are given to the receiving services for
processing. Examples of control message include service
invocation requests and status polling requests. Examples of data
messages include engineering design data and weather information
to conduct simulation.

To execute a megaservice, control and data messages need to
be exchanged among autonomous services. We use control-flow
to describe the set of partially ordered control messages, and use
data-flow to describe the set of partially ordered data messages.
Service integration infrastructures differ in how control-flows and
data-flows are formed and managed. As shown in Figure 1,
service integration infrastructures are categorized into four models:

• Centralized control-flow, centralized data-flow (1C1D)
• Centralized control-flow, distributed data-flow (1CnD)
• Distributed control-flow, centralized data-flow (nC1D)
• Distributed control-flow, distributed data-flow (nCnD)
The 1C1D model has the simplest structure. The megaservice

is the central exchange point for both control and data messages.
It naturally fits client-server architectures, where autonomous
services act as servers and the megaservice functions as the client.
Data and requests are often passed together from the megaservice
to a desired autonomous service, and the results are returned to the
megaservice for further processing. When additional
functionalities are needed from other autonomous services, data
and requests are again sent out from the megaservice.

Due to its simple conceptual model and easy implementation,
the 1C1D model is the most common model for current service
integration infrastructures. However, megaservices become
communication bottlenecks in the 1C1D model. The centralized
communication topology makes the 1C1D model unscalable. It is
especially problematic in an Internet environment, where the
communication links between the megaservice and autonomous
services are likely to be of limited bandwidth. On the other hand,
the high-speed networks deployed between autonomous services
will not be utilized under the 1C1D model.

The 1CnD model can alleviate the deficiencies in the 1C1D
model. The 1CnD model maintains the same centralized control
mechanism as the 1C1D model. However, the improvement come
from the scheme that data can be passed directly between
autonomous services without going through the megaservice. Data
communications among autonomous services are introduced,
resulting in distributed data-flows. The megaservice does not need
to function as an intermediate node on the data-flow path when
data are exchanged between two autonomous services. The
megaservice can simply instruct two autonomous services to

establish a data-flow through which data can be directly
communicated. For example, as illustrated in Figure 1(b), suppose
the megaservice M needs S2 to process some data generated by S1.
Rather than fetch the data from S1 and then pass the data onto S2,
M can inform S2 to fetch data directly from S1.

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

(a) Centralized Control-flow
Centralized Data-flow Model

Control-flows Data-flows Megaservice
M

Autonomous
Services

S1, S2, S3, S4

(b) Centralized Control-flow
Distributed Data-flow Model

(c) Distributed Control-flow
Centralized Data-flow Model

(d) Distributed Control-flow
Distributed Data-flow Model

Figure 1: Service Integration Models

Two integration models with distributed control-flow are
included to complete the classification. The nC1D model is a
variation of the 1C1D model with distributed control-flow, and the
nCnD model is an extension of the 1CnD model. In the distributed
control-flow models, control messages can be sent between
autonomous services, and the course of megaservice execution is
coordinated by multiple autonomous services. A good example of
distributed control-flow model can be found in data-flow computer
architectures [3, 5, 13] where the execution of a program is
partially controlled by the flow of data rather than successive
fetching of instructions. A parallel program is compiled into
operational code segments that are distributed to distinctive
functional units, and the presence of operands activates the
execution of the code segments. Given its ability to exploit the
natural parallelism of algorithms [4], data-flow architecture has
been seen as a promising approach in designing high performance
multi-processor machines.

However, there are difficulties in effectively applying
distributed control-flow models to conduct service composition.
Because operational code segments need to be distributed to
relevant function units for execution, the distributed control-flow
models would require homogeneity in the underlying hardware
platform. This requirement may easily be met in building parallel
computers, but not in constructing heterogeneous service
composition infrastructure. Also, it remains a technical challenge
to convert a centralized specification of control sequences that a
megaservice uses into operational code segments that can be
effectively used to execute the megaservice. Due to these
limitations, distributed control-flow models have been adopted
only for special-purpose applications, where code segments are
installed on individual functional units and a distributed

application environment is constructed from bottom up. The
topics of exploiting distribute control-flow models are beyond the
scope of this paper. We will focus our analysis on centralized
control-flow models.

We have argued intuitively that the distribution of data-flows
among an integration infrastructure would have significant impact
on the system performance. For the rest of this paper, we will
formalize our observation and conduct comparison between the
1C1D model and the 1CnD model.

2.2. System Modeling
In order to evaluate the performance of megaservices under
different integration models, we need to first characterize and give
mathematical definition to the components within the computing
environment, including the hardware platform, the autonomous
services, and the megaservices.

As illustrated in Figure 2, the hardware platform is modeled as
a set of processor nodes P = {P0, P1, … , Pn} tied together by a
completely connected network. Associated with every processor Pi
is the processor capacity CPi expressed in terms of number of
cycles that the processor can handle in unit time. Furthermore,
associated with each pair of processors (Pi, Pj) is the
communication capacity CMij expressed in terms of the volume of
data that can be transmitted from processor Pi to processor Pj in
unit time. A communication channel originated from a processor
Pi to itself can also exist, with capacity CMii.

The communication network is modeled as a set of point-to-
point links that connect every processor with each other. Each
communication link operates independent of each other, as there is
no shared medium between links. It is a simplified model for most
of the real-world network architectures, but a sufficient
approximation for the purpose of the analysis here. More complex
models can be built by introducing additional constraints on the
communication capacities.

...
...

P2
S2

P3
S3

Pn
Sn

P1
S1

P0
M

Figure 2: Integration System Modeling

S = {S1, … , Sn} is a set of autonomous services, each
performing some specific operations. Conceptually, autonomous
service Si runs on the local processor Pi, and the execution of Si is
independent of any other autonomous services. In the case where
multiple services reside on a single processor, a physical processor
can serve multiple virtual processors and set appropriate capacity
parameters for the virtual processors. Also, complex autonomous
services that involve multiple processors for execution can be
further partitioned into atomic service units such that each atomic
service unit only performs operations on its local processor. As a
result, we can establish a simple one-to-one mapping between a
processor and an autonomous service for our analysis.

Control-flow and data-flow are both modeled as
communication messages, either originated or received at an
autonomous service. Autonomous service Si is invoked by
receiving input data of size SIi, including both control and data. It
is executed at a cost of SPi expressed in terms of number of cycles.
An output data of size SOi is generated as the result of executing
Si, again including both control and data.

A megaservice M is a running instance that specifies a partially
ordered sequence of tasks. Without loss of generality, we assume
that M runs on processor P0. In the case where the megaservice M
runs on processor Pi (i≠0), our analysis holds by simply treating
the invocation of autonomous service Si as part of local processing.

A megaservice M is regarded as a transcript of accomplished
tasks in our performance analysis. Tasks are classified as either
local processing or remote invocations of autonomous services in
S. The workload of each type of tasks is then evaluated. Local
processing takes place on P0 and the workload is denoted as MP
number of cycles. Remote invocations of autonomous services is
modeled as a frequency vector F = {f1, … , fn}, where fi denotes
the number of times Si is invoked during the execution of M.

Given the mathematical model for the computing environment,
we proceed to analyze the performance of a megaservice with two
specific metrics: the aggregated cost and the response time.

3. AGGREGATED COST

3.1. Aggregated Cost Definition
Before giving a definition of aggregated cost, we need to first
define cost function for individual system resource components.
In our model, we refer to a cost evaluation function Cef, which is
formally a mapping defined as the following: Given a megaservice
M and a processor network P, Cef(M) is the tuple (vp, vm) , where

• vp = {vp0, … , vpn}, where vpi is the load in terms of the
number of processor cycles consumed by processor Pi.

• vm = {vmij | 0 ≤ i, j ≤ n}, where vmij is the load due to the
message traffic generated from processor Pi and to
processor Pj.

Notice that vp and vm represent the processing costs and the
communication costs, respectively.

The aggregated cost for a megaservice is defined as the sum of
all individual cost components. It measures the amount of system
resource consumed by a megaservice. We assume that the
processing costs and the messaging costs of a megaservice can be
linearly scaled. The weights of the scale given to the processing
costs and the messaging costs are given as α and β respectively.
Hence, we define the aggregated cost of a megaservice COST(M)
over a processor network P as the following:

∑∑
≤≤=

×+×=
nji

ij

n

i
i vmvpMCOST

,00
)(βα

where (vp, vm) = Cef(M) and α, β ≥ 0.
The weights, α and β, can be set to appropriate values to reflect

the relative scarcity of the processor resources to the
communication resources. In the extreme case where α = 0, the
system has unlimited processing power and is limited in its
network bandwidth. On the other hand, if β = 0, the system has
unlimited networking bandwidth and is limited in its processing
power.

According to the definition, the aggregated cost is a linear
aggregation of the cost components defined in the cost evaluation

function. Our analysis hence focuses on determining the vp and
the vm vectors.

3.2. Centralized Data-flow Model
We start with the centralized data-flow model. Processing cost
components vp are computed using Equation 1. Since the
megaservice M is the only local process running on P0, the
processing load of processor P0 equals MP. The processing loads
of other processors equal to the execution costs of the autonomous
services running on them multiplied by the number of times that
the autonomous services are invoked.





≠×
=

=
0
0

iifSPf
iifMP

vp
ii

i

(1)

The calculation of the messaging cost components vm is show
in Equation 2. The only network traffic in the system is caused by
the invocation of services. Messages are sent from P0 to other
processors for invocation of autonomous services, and results are
returned to P0 as messages from the processors where the
autonomous services execute.









=≠×
≠=×

=
otherwise

jiifSOf
jiifSIf

vm ii

jj

ij

0
0,0
0,0

(2)

The messaging load of the communication link (P0, Pi) equals
the input data load for autonomous service Si multiplied by the
number of times that Si is invoked. The load of the communication
link (Pi, P0) equals the result data load from autonomous service Si
multiplied by the number of times that Si is invoked. There is no
other network traffic within the system, and hence all other
communication links have a message load of 0.

With vp and vm determined, we compute the aggregated cost
by its definition as shown in Equation 3:

∑∑

∑∑

==

≤≤=

+××+×+×=

×+×=

n

i
iii

n

i
ii

nji
ij

n

i
ic

SOSIfSPfMP

vmvpMCOST

11

,00

)()(

)(

βα

βα
(3)

3.3. Distributed Data-flow Model
The processing cost components vp are the same in the distributed
data-flow model as in the centralized data-flow model. The
difference is in the communication cost components. To compute
the communication costs, we first model the network traffic pattern
within the distributed data-flow model.

A data distribution coefficients vector is defined as ∆∆∆∆ = {δij | 1
≤ i ≤ n, 0 ≤ j ≤ n} that describes the level of distributed data flow
among the autonomous services. δij is computed as:

iijij SOdd=δ

where ddij is the size of the output data generated by autonomous
service Si that transmits directly from processor Pi to processor Pj
for further processing. The data distribution coefficients have the
following property:

0 ≤ δij ≤ 1, for all 1 ≤ i ≤ n, 0 ≤ j ≤ n.
We would like to point out two special cases regarding the data

distribution coefficients. (1) δij = 0 for all 1 ≤ i, j ≤ n: The
distributed data-flow model converges with the centralized data-
flow model, where data-flows only exist between autonomous

services Si and the megaservice; (2) δi0 = 0 for all 1 ≤ i ≤ n: The
integration model becomes a fully distributed data-flow model,
where all data-flows are established directly between autonomous
service, and no data is returned back to the megaservice for
processing. The majority of the distributed data-flow integration
infrastructures fall between the above special cases.

Given the data distribution coefficient vector, messaging cost
components for the distributed data-flow model are computed in
Equation 4. There are four types of messaging cost components:

• vm0j refers to the costs on the communication link (P0, Pj)
for invoking autonomous service Sj. The data volume
from the megaservice to the autonomous service Sj equals
the total size of invocation data SIj minus the portion
contributed by other autonomous services.

• vmi0 refers to the costs on the communication link (Pi, P0)
for sending the result data from autonomous service Si
back to the megaservice. The data distribution coefficients
are applied to the total output data size generated by Si.

• vmij refers to the costs on the communication link (Pi, Pj)
for sending the data between autonomous services. For
each invocation of autonomous service Sj, data of size

iij SO×δ needs to be sent from Pi to Pj.

• The last messaging cost components refer to the messaging
costs from the megaservice to itself, which equals 0.

















==

≠≠××

=≠××

≠=×−×

=

∑
=

0,00

0,0

0,0

0,0)(

0

1

jiif

jiifSOf

jiifSOf

jiifSOSIf

vm
iijj

iii

n

k
kkjjj

ij

δ

δ

δ

(4)

Combing the cost components, we can derive the aggregated
cost for the distributed data-flow model as shown in Equation 5:

∑∑

∑∑

==

≤≤=

×+××+×+×=

×+×=

n

i
iiii

n

i
ii

nji
ij

n

i
id

SOSIfSPfMP

vmvpMCOST

1
0

1

,00

)()(

)(

δβα

βα
(5)

3.4. Model Comparisons
The following proposition is drawn from the analysis on the
aggregate costs of the two data-flow models.

PROPOSITION 1. The aggregated cost incurred by a
megaservice under a distributed data-flow model is no greater
than the aggregated cost under a centralized data-flow model.

Proof. The difference between the two aggregated costs of the
centralized and distributed data-flow models can be computed
using Equation 3 and Equation 5:

∑
=

≥−×××=−
n

i
iiidc SOfMCOSTMCOST

1
0 0)1()()(δβ

�� ��

We observe that the savings in the aggregated cost of the
distributed data-flow model comes from the difference in data
passed from autonomous services back to the megaservice, as
indicated by the (1-δi0) factor in the above proof. Based on the

observation, we propose two performance optimization approaches
for megaservice execution. The first is to form distributed data-
flows by discovering direct input-output data mappings among
autonomous service invocations. For instance, in the sample
megaservice illustrated in Figure 3, the output of autonomous
service S1 can be mapped to the input of autonomous service S2.
By sending the output of S1 to S2 for processing without going
through the megaservice, we can eliminate the potential data traffic
between S1 and the megaservice M, reducing δ10 to 0.

MEGAPROGRAM M {

b = S1(a)
c = S2(b)
d = local-transform(c)
e = S3(d)
f = S4(b)
result = local-processing(e, f)

}

Figure 3: A Sample Megaservice

The second optimization approach utilizes code transfer to
reduce data traffic. Code segments are transferred to the most
appropriate location for execution to reduce the amount of data
communication between autonomous services and the
megaservice. Using the example shown in Figure 3, we notice that
the output of autonomous service S2 needs to be processed by
local-transform routine before passing on to S3 for further
processing. If the local-transform routine can be shipped onto and
carried out on the processor serving S2, the transformed output
data for S2 can be directly sent to S3. In order to take advantage of
this optimization approach, the integration infrastructure needs to
support code-shipping and remote invocation of code segments.
Our investigation indicates that active mediation technology [2, 6]
can potentially be incorporated into the integration infrastructure
to provide the necessary run-time support.

4. RESPONSE TIME
Another aspect of our performance analysis focuses on response
time, i.e. the elapsed time between the start and the termination of
a megaservice. The response time analysis helps pinpointing
bottlenecks of a system and providing a scalable design.

4.1. Overview
We analyze the response times for the two atomic operations
performed by a megaservice: processing of computational load vp
on processor Pi and sending a message of size vm from processor
Pi to processor Pj . Since the response time for atomic operations
equals the workload divided by the system resource bandwidth, the
computational operation has a response time of vp/CPi, and the
communication operation has a response time of vm/CMij.

A megaservice is as a sequence of partially ordered distributed
atomic operations. By executing atomic operations in parallel,
processors can be better utilized, offering better response time for
the megaservice. Since complexities are introduced in the analysis
of parallel executions of megaservices, we separate our analysis for
the serial and parallel invocation schemes.

The serialized invocation scheme assumes single threaded
execution for a megaservice. Autonomous service invocations are
carried out in the order they are specified in the megaservice.
Given the deterministic nature of the serialized invocation scheme,
we compute and compare quantitatively the response times of
megaservices. The parallel invocation scheme favors overlapping
execution of autonomous services, subject to data dependencies.

We will model megaservices in Petri nets and conduct qualitative
comparison of the centralized data-flow model against the
distributed data-flow model.

Interference of activities within the processor network, such as
running instances of other megaservices, can generate conflicts in
allocation of system resources, resulting variance in the response
time. For our response time analysis, we assume a single-user
usage model, which approximates systems under light loads.

4.2. Serialized Invocation Scheme
The response time T for megaservice M consists of two
components: the local processing time TM and the autonomous
service invocation time TS. Under serialized invocation scheme,
TS equals the sum of individual TSi, the elapsed time for invoking
autonomous service Si. Each autonomous service consists of three
sequential tasks: input task SIi during which input parameters are
prepared, processing task SPi during which computation is
conducted on the input parameters, and output task SOi during
which the results are returned back to the invoker of the
autonomous service. Each task is associated with an elapsed time,
TSIi, TSPi, and TSOi, respectively.

The relationship among components of the response time is
illustrated in Equation 6. The local processing time TM remains
the same for both the 1C1D and the 1CnD models, whereas the
autonomous service invocation time TS is expected to be different.

iiii

n

i
ii

TSOTSPTSITS

TSfTS

CP
MPTM

TSTMMT

++=

×=

=

+=

∑
=1

0

)(

(6)

The response time for M under centralized data-flow model is
computed in Equation 7. The input elapsed time dedicates for the
megaservice M sending the input data of size SIi to the autonomous
service. The processing elapsed time dedicates for Pi processing
computational load of the autonomous service. The output elapsed
time dedicates for Si sending the output data of size SOi back to the
megaservice M. These components are aggregated to get the
overall response time Tc for the megaservice.

The components of the total elapsed time are grouped into two,
one as processing costs and the other as communication costs. It is
clear that all communication costs are incurred for the traffic going
through P0. Hence, in designing centralized data-flow integration
infrastructure, it is important to maximize the communication
capacity between the processor on which the megaservice is
initiated and the other processors on which the autonomous
services reside. On the other hand, the communication capacities
between autonomous services have no effect on the response time.

∑∑
==

+×+×+=

=

=

=

n

i i

i

i

i
i

n

i i

i
ic

i

i
i

i

i
i

i

i
i

CM
SO

CM
SI

f
CC
SP

f
CP
MPMT

CM
SOTSO

CP
SPTSP

CM
SI

TSI

1 0010

0

0

)()()(

(7)

The response time for M under distributed data-flow model is
computed in Equation 8. The processing costs of autonomous

services remain the same as in the centralized data-flow model,
while the communication costs differ.

∑∑

∑

==

=

=

×
+×+×+=

×
=

=































 ×

×−
=

n

i i

ii
ii

n

i i

i
id

i

ii
i

i

i
i

ki

kki
n

k
i

n

j
jjii

i

CM
SOTSIf

CC
SPf

CP
MPMT

CM
SOTSO

CP
SP

TSP

CM
SOMax

CM

SOSI
MaxTSI

1 0

0

10

0

0

1
0

1

)()()(

,

δ

δ

δ
δ

(8)

The input elapsed time for autonomous service Si refers to the
time to prepare the input parameters for the autonomous service.
The time equals the maximum length of all the communication
processes, during which related autonomous services and the
megaservice send their portions of input data to Si.

The output elapsed time equals the size of output data being
sent back from autonomous service Si to the megaservice M
divided by the bandwidth capacity of the communication link. The
output elapsed time is guaranteed to at least as short under
distributed data-flow model as under the centralized data-flow
model, since the values differs by a factor of δi0 under the two
integration models.

PROPOSITION 2. The response time incurred by a megaservice
under a distributed data-flow model is no greater than the response
time under a centralized data-flow model, if the following
conditions are met:

• Autonomous services invocations are serialized; and
• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0.

Proof. By the definition of data distribution coefficients:

ikki SISO ≤×≤ δ0 for all k ≠ 0 and i ≠ 0
Hence, we have:

i

i

ki

kki
n

k CM
SI

CM
SO

Max
0

1
≤







 ×

=

δ
and

i

i

i

n

j
jjii

CM
SI

CM

SOSI

00

1 ≤
×−∑

=

δ

Since the response time is a linear aggregation of the elapsed
time components, comparing Equation 7 and Equation 8 deduces:

)()(MTMT cd ≤ .
�� ��

The condition on communication capacities in the above

proposition implies a communication backbone among the
autonomous services with at least as much bandwidth as between
the megaservice and the autonomous services. Many computing
networks easily satisfy this condition. For instance, in many
intranets that consist of uniformly connected processor networks,
all communication links have the same bandwidth. Another
example is the client-server network, where autonomous services
reside on well-connected server farms and the megaservices are
clients accessing the servers from remote sites. The Internet and
mobile service networks both can be categorized as this type.

4.3. Parallel Invocation Scheme
We extend the response time analysis to parallel invocation
scheme, where causally unrelated autonomous services can be

executed in parallel, improving megaservice performance by
reducing the overall response time. The megaservice performance
is affected by multiple factors, such as the degree of parallelism in
a megaservice, the process scheduling algorithms, etc. In order to
make relevant comparison on the effects of data-flows between the
1C1D and 1CnD models, we make the assumption that the control-
flows remain the same for the integration models used, namely the
partial order of autonomous service invocations are identical.

We first model the execution of a megaservice. It has been
shown that timed Petri net [12] models can be used as an effective
modeling tool for representing synchronization and concurrency
[8, 10]. We model the execution of a megaservice as a timed
marked graph (TMG), a well-known subclass of Petri nets that
allows representations of concurrency and synchronization, but not
decision or conflicts. Branches and loops within a megaservice are
unfolded during the execution so that a megaservice can be seen as
a partially ordered string of execution tasks, each being either an
autonomous service or a local processing segment of the
megaservice.

Figure 4 illustrates a TMG representation of the megaservice
defined in Figure 3. Places, drawn as circles, are used to represent
tasks. Transitions, drawn as boxes, are used to represent
synchronization points. Places are labeled as one of the following:
(1) an input task of an autonomous service (e.g. SI1_a), (2) a
processing task of an autonomous service (e.g. SP1_a), (3) an
output task of an autonomous service (e.g. SO1_a), or (4) a local
processing segment of the megaservice (e.g. MP_c). A unique
subscription to distinguish the multiple invocations of an
autonomous service is attached to the end of each label.

MPc SI3_d SP3_d SO3_d

MP_f

SI2_b SP2_b SO2_b

SI1_a SP1_a SO1_a

SI4_e SP4_e SO4_e

Figure 4: Timed Marked Graph Representation of Megaservice

Each place is assigned a time delay τP that equals the elapsed
time to perform the task represented by the place P. A single token
is placed in the initial place as the starting marking. Such a Petri
net model is known as a deterministic timed net, and the response
time of the megaservice equals the minimum cycle time of the net.

PROPOSITION 3. The response time incurred by a megaservice
under a distributed data-flow model is no greater than the response
time under a centralized data-flow model, if the following
conditions are met:

• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0.

Proof. It was shown in [10] that the minimum cycle time of the
TMG equals the maximum of the total delays in all directed
circuits. Hence the response time incurred by a megaservice
equals the total delay of the longest non-cyclic path in the graph.

Consider two TMGs: TMGc and TMGd, representing
megaservice executions under the centralized-data flow model and
the distributed data-flow model, respectively. By construction,
TMGc and TMGd have the same structure, i.e. the same set of
places, transitions, arcs and initial markings. They differ only in
the time delays that are assigned to the places, which are denoted
as τc

p and τd
p for a place p in TMGc and TMGd respectively. As

shown in Equation 7 and Equation 8, τc
p ≥ τd

p, if CMki ≥ CM0i for
all k ≠ 0 and i ≠ 0.

Let’s denote the longest non-cyclic path in TMGd as P. The
response time for the distributed control model equals the total
delay of the path P in TMGd, which is ∑ ∈Pp

d
pτ . The response time

for the centralized model is no less than the total delay for the path
P in TMGc, which is ∑ ∈Pp

c
pτ .

Since ∑∑ ∈∈
≥

Pp
d
pPp

c
p ττ , the proposition holds. �� ��

It is clear that Proposition 3 covers Proposition 2, since

serialized invocation is a special case of parallel invocation.
Therefore, we have proved that the distributed data-flow model has
better response time performance than the centralized data-flow
model if the system communication capacity condition is met.

5. EXAMPLE SCENARIOS
We study the performance of megaservices in an example

engineering service environment. The runtime performances are
measured and compared against the results obtained through our
analytical models.

Figure 5 illustrates a scenario where three autonomous services
are used in collaboration to conduct engineering planning and
scheduling. The ModelRetriever service fetches a project model
from information sources based on the name of the project. The
Scheduler service generates new schedules for the input project
model. The ChangeManager service manages the changes
introduced by the new schedules. The autonomous services run on
distributed servers that are connected via a switch with 10mbps
bandwidth on each port.

Model
Retriever

Switch

Mega
Service

 MegaService {
 model = ModelRetriever(name)
 new_model = Scheduler(model)
 ChangeManager(new_model)
 }

Scheduler

Change
Manager

Figure 5: A Megaservice for Engineering Services

The megaservice is composed of three autonomous services. It
is designed to retrieve a specific project model using the
ModelRetriever service, then conduct scheduling on the model
using the Scheduler service, and finally notify the related parties
about the change via the ChangeManager service. The level of
data-flow distribution can be described by the data distribution
coefficients of the megaservice, which can be generated from the
megaservice specification. For instance, all the coefficients
between megaservice and autonomous services are 0, and the
coefficient from ModelRetriever to Scheduler equals 1.

The megaservice runs on a client machine that is connected to
the servers either directly via the switch or via an 802.11 wireless
access point. The two network connection settings yield different
performance results since the wireless access has much lower
communication bandwidth.

We implement the megaservice with two different integration
models: (1) SOAP [14] is used as the reference platform for the
1C1D model, where each service invocation is a remote procedure
call initiated from the megaservice; and (2) FICAS [7] is used as
the reference platform for 1CnD model, where data-flows are
formed between autonomous services.

The response times of megaservices are measured with
different settings on the size of the project model. Since the
computational elapsed times contributed to the autonomous service
executions are identical under both integration models, we
compare only the communication elapsed time, which is calculated
as the megaservice response time minus the sum of processing
elapsed times of autonomous services. Figure 6 shows the
performances of the megaservice measured with two service access
media and two integration models.

0

10000

20000

30000

40000

50000

60000

100 200 300 400 500 600 700 800 900 1000
Model Size (KB)

Co
m

m
un

ic
at

io
n

El
ap

se
d

Ti
m

e
 (m

s)

LAN SOAP LAN FICAS Wireless SOAP Wireless FICAS

Figure 6: Performance of the Megaservice

We first verify that the real-world behavior of the megaservice
is consistent with the prediction of our analytical model. Data
points can be used to deduce the system parameters by applying
the numbers to the analytical equations. For instance, we use the
performance numbers measured for the model size of 1000KB.
Applying Equation 7, we calculate the communication capacity on
the LAN connection as:

mbpsKB 6.2
12226ms

10004 ≈×

and the communication capacity on the wireless connection as:

mbpsKB 63.0
51286ms

10004 ≈×
.

Linear regression techniques may also be used on multiple data
points when more accurate estimation is desired.

The values of the communication capacities are then applied to
Equation 7 and Equation 8 to calculate the communication elapsed
times for other model sizes. Our analytical model is a good
approximation of the real-world megaservice behavior and the
calculated values agree well with the measured values.

The communication capacities between autonomous services
are clearly not the same as the network bandwidth between the
servers on which the services run. In fact, the effective rate by

which the autonomous service can exchange data is affected by
many factors, ranging from the implementation of the integration
software, the construction of the server platform, to the layout of
the communication network, etc. The example scenario
demonstrates how the communication capacities of an integration
infrastructure can be estimated with a few measured data points on
overall megaservice performance.

Further possible observations can be made that are consistent
with our mathematical analysis conducted in earlier sections:

• The response times in the 1CnD model are better than
their counterparts in the 1C1D models under all load
settings. As we have proven in Proposition 2 and 3, the
1CnD model performs better than the 1C1D model when
the system communication capacity condition is met.

• The response time increases linearly with respect to the
volume of the data-flows. The response times under the
1C1D model increase at much faster rates than the
response times under the 1CnD model. The rate of
increase is especially significant in the wireless
connection scenario, where data communications between
client machines and servers become a bottleneck in the
1C1D model. On the other hand, we observe small
increase in response time in the 1CnD model with large
model sizes. The 1CnD model alleviates the bottleneck
by distributing network traffic within the server farm.

6. CONCLUSIONS
With the advances in computer system and software component
technology, there will be increasing interests in infrastructures that
facilitate service composition. Service integration infrastructures
are classified into four complementary models based on how
controls and data are exchanged. We have focused our study on
the two models with centralized control-flow structure, partly due
to our belief that the ease of use makes the models easier to be
adopted for service composition.

Performance analysis on service integration models with
centralized and distributed data-flows is conducted in terms of the
aggregated cost and the response time metrics. We have shown
that the distributed data-flow model always has better performance
in aggregated cost. Also, the distributed data-flow model has
better performance in response time with uniformly connected
processor networks and client-server networks, where the
autonomous services have a communication backbone with at least
as much bandwidth as the communication channels from the
megaservice to the autonomous services.

During the course of our analysis, we have identified a few
critical system parameters that correlate with the performance of
megaservice executions. Techniques to improve performance of
service integration infrastructures are introduced. First,
performance can be improved by distributing data-flows among
autonomous services, hence reducing the amount of data-flows
between megaservices and autonomous services. Secondly, we
motivated the use of dynamic code-shipping technique to conduct
remote processing of data. The technique can establish more
distributed data-flows and reduce the communication traffic
between megaservices and autonomous services even further.
Finally, we identified system bottlenecks via the response time
analysis. The findings will help guide building appropriate system
architectures for composing autonomous services.

7. ACKNOWLEDGEMENT
This research is partially sponsored by the National Institute of
Standards and Technology and Center for Integrated Facility
Engineering at Stanford University.

8. REFERENCES
[1] B. Boehm and B. Scherlis, "Megaprogramming",

Proceedings of DARPA Software Technology Conference,
Los Angeles, April 1992, pp. 68-82.

[2] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and
G. Tsudik, "Itinerant Agents for Mobile Computing", IEEE
Personal Communications, vol. 2(5), October 1995, pp.
34-49.

[3] J. B. Dennis and G. R. Gao, "An Efficient Pipelined
Dataflow Processor Architecture", Proceedings of
Supercomputing '88, IEEE Computer Society Press,
November 1988, pp. 368-373.

[4] J. B. Dennis and D. P. Misunas, "A Preliminary
Architecture for a Basic Data Flow Processor", Proceedings
of 2nd Annual Symposium on Computer Architecture, New
York, 1975.

[5] J.-L. Gaudiot and L. Bic (eds.), "Advanced Topics in Data-
Flow Computing", Prentice-Hall, 1991.

[6] D. Liu, K. Law, and G. Wiederhold, "CHAOS: An Active
Security Mediation System", Proceedings of International
Conference on Advanced Information Systems
Engineering, LNCS, vol.1789, B. Wangler and L. Bergman
(eds.), Springer-Verlag, 2000, pp. 232-246.

[7] D. Liu, K. Law, and G. Wiederhold, "FICAS: A Distributed
Data-Flow Service Composition Infrastructure", Stanford
University, Unpublished Report, 2002,
http://mediator.stanford.edu/papers/FICAS.pdf.

[8] J. Magott, "Performance Evalucation of Concurrent
Systems Using Petri Nets", Information Processing Letter,
vol. 18(1), 1984, pp. 7-13.

[9] M. D. McIlroy, "Mass Produced Software Components",
Software Engineering, NATO Science Committee, January
1969, pp. 138-150.

[10] T. Murata, "Petri Nets: Properties, Analysis and
Applications", Proceedings of the IEEE, vol. 77(4), April
1989, pp. 541-580.

[11] D. L. Parnas, "On the Criteria to be Used in Decomposing
Systems into Modules", P. Freeman and A. I. Wasserman,
Tutorial on Software Design Techniques, IEEE Computer
Society Press, 1983.

[12] C. Petri, "Kommunikation mit Automaten", University of
Bonn, Ph.D. dissertation, 1962.

[13] A. H. Veen, "Data Flow Machine Architecture", ACM
Computing Surveys, December 1986.

[14] W3C, "Simple Object Access Protocol (SOAP)", 2000,
http://www.w3.org/TR/SOAP.

[15] G. Wiederhold, D. Beringer, N. Sample, and L. Melloul,
"Composition of Multi-site Services", Proceedings of
IDPT'99, Kusadasi, Turkey, June 1999.

[16] G. Wiederhold and R. Jiang, "Information Systems That
Really Support Decision-Making", Journal of Intelligent
Information Systems, vol. 14, March 2000, pp. 85-94.

[17] G. Wiederhold, P. Wegner, and S. Ceri, "Towards
Megaprogramming", Comm. ACM, vol. 35(11), Nov 1992,
pp. 89-99.

	INTRODUCTION
	Background
	Objectives

	SYSTEM OVERVIEW
	Service Integration Models
	System Modeling

	AGGREGATED COST
	Aggregated Cost Definition
	Centralized Data-flow Model
	Distributed Data-flow Model
	Model Comparisons

	RESPONSE TIME
	Overview
	Serialized Invocation Scheme
	Parallel Invocation Scheme

	EXAMPLE SCENARIOS
	CONCLUSIONS
	ACKNOWLEDGEMENT
	REFERENCES

