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ABSTRACT 
This paper studies service integration infrastructures that support 
the execution of megaservices – large-scale applications that are 
composed of autonomous service modules.  Integration 
infrastructures are classified according to their control-flow and 
data-flow structures.  We analyze the effects of data-flows on the 
performances of the centralized and distributed data-flow models.  
A mathematical model is built to compare the performances of 
megaservices.  Particularly, aggregated cost and response time 
metrics are defined and evaluated.  We arrive at the conclusion that 
the distributed data-flow model is in general superior in 
performance.  We also identify the key system parameters as well 
as system bottlenecks.  The analysis provides recommendations for 
a few techniques to build high-performance and scalable service 
integration infrastructures based on the distribution of data-flows. 
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1. INTRODUCTION 
1.1. Background 
A software engineering paradigm has long been envisioned where 
large applications are decomposed into cooperating components 
[9].  Such vision is echoed in the megaprogramming framework [1, 
17], which builds on software components called megamodules 
that capture the functionality of services provided by large 
organizational units.  Megamodules are independently maintained 
and provide their clients with services specified by their interface 
and encapsulate local structures that implement their services [11].  
Megamodules are linked together according to composition 
specifications [15] to form megaservices. 

With the rapid development of Internet and network 
technologies, the foundation to realize such a vision of software 
composition exists.  The computing world is evolving toward an 
interconnected web of autonomous services that are managed 

under the providers’ administrative domains.  Autonomous 
services are typically computational or data intensive.  The Internet 
provides a wide variety of services, although they are rarely 
envisaged for composition.  Examples include travel reservation, 
book purchasing, weather services, financial data summaries, and 
newsgathering.  Other services include simulation programs [16], 
engineering, logistics, and business services. 

In service composition, a systematic integration framework is 
required to incorporate transmission protocols for control 
messages and data traffic so that autonomous services can be 
coordinated to perform a task.  A service integration infrastructure 
ties together distributed computing resources to form a coherent 
computing environment.  Specifically, integration infrastructures 
provide support for execution of various autonomous services, 
scheduling and coordination of the services, data communication 
among the services, and exception handlings, etc. 

1.2. Objectives 
The focus of this paper is on analyzing the effects of data-flows on 
the performance of various service integration infrastructures.  
Much research effort has been devoted in the past decades to 
control-flow scheduling in order to enhance the performance of 
distributed services.  Less attention was given to data-flow based 
optimization techniques.  The objectives of this paper are to point 
out the significance of data-flows on performance and to provide 
mathematical basis for developing service integration 
infrastructures that utilize distribution of data-flows. 

We start our analysis by classifying service integration 
infrastructures into four conceptual models.  The classification is 
based on how controls and data are communicated among 
autonomous services and megaservices.  The computing 
environment is then modeled as a set of processors interconnected 
by a completely connected communication network, which can 
represent most modern computing environments.  A mathematical 
model is built to characterize the performance metrics of individual 
system components, based on which aggregated cost and response 
time for executing megaservices can be evaluated. 

Given an abstract mathematical representation for the 
integration models, we analyze and compare in detail the 
performances of the centralized data-flow model and the 
distributed data-flow model.  By tuning the values of the 
underlying system components, we can study how the overall 
system responds to different settings of hardware platform.  The 
results provide valuable information toward designing high-
performance and scalable service integration infrastructure based 
on distribution of data-flows. 

 



2. SYSTEM OVERVIEW 
2.1. Service Integration Models 
Conceptually, a distributed computing environment is viewed as a 
set of processors interconnected by a communication network.  We 
characterize the work performed by megaservice and autonomous 
services in terms of either computation or communication.  For 
computation, local processing is conducted on a single processor, 
and it involves no interaction between multiple processors.  For 
communication, messages are passed between two processors.  We 
do not include special support for broadcast and multicast, which 
can be modeled as multiple pair-wise messages.  There are two 
types of messages: control messages and data messages, 
distinguished by their use at the recipients of the messages.  
Control messages are mostly short messages that are used to trigger 
state changes at the receiving services.  Data messages are mostly 
large data contents that are given to the receiving services for 
processing.  Examples of control message include service 
invocation requests and status polling requests.  Examples of data 
messages include engineering design data and weather information 
to conduct simulation. 

To execute a megaservice, control and data messages need to 
be exchanged among autonomous services.  We use control-flow 
to describe the set of partially ordered control messages, and use 
data-flow to describe the set of partially ordered data messages.  
Service integration infrastructures differ in how control-flows and 
data-flows are formed and managed.  As shown in Figure 1, 
service integration infrastructures are categorized into four models: 

• Centralized control-flow, centralized data-flow (1C1D)  
• Centralized control-flow, distributed data-flow (1CnD)  
• Distributed control-flow, centralized data-flow (nC1D)  
• Distributed control-flow, distributed data-flow (nCnD)  
The 1C1D model has the simplest structure.  The megaservice 

is the central exchange point for both control and data messages.  
It naturally fits client-server architectures, where autonomous 
services act as servers and the megaservice functions as the client.  
Data and requests are often passed together from the megaservice 
to a desired autonomous service, and the results are returned to the 
megaservice for further processing.  When additional 
functionalities are needed from other autonomous services, data 
and requests are again sent out from the megaservice. 

Due to its simple conceptual model and easy implementation, 
the 1C1D model is the most common model for current service 
integration infrastructures.  However, megaservices become 
communication bottlenecks in the 1C1D model.  The centralized 
communication topology makes the 1C1D model unscalable.  It is 
especially problematic in an Internet environment, where the 
communication links between the megaservice and autonomous 
services are likely to be of limited bandwidth.  On the other hand, 
the high-speed networks deployed between autonomous services 
will not be utilized under the 1C1D model. 

The 1CnD model can alleviate the deficiencies in the 1C1D 
model.  The 1CnD model maintains the same centralized control 
mechanism as the 1C1D model.  However, the improvement come 
from the scheme that data can be passed directly between 
autonomous services without going through the megaservice.  Data 
communications among autonomous services are introduced, 
resulting in distributed data-flows.  The megaservice does not need 
to function as an intermediate node on the data-flow path when 
data are exchanged between two autonomous services.  The 
megaservice can simply instruct two autonomous services to 

establish a data-flow through which data can be directly 
communicated.  For example, as illustrated in Figure 1(b), suppose 
the megaservice M needs S2 to process some data generated by S1.  
Rather than fetch the data from S1 and then pass the data onto S2, 
M can inform S2 to fetch data directly from S1. 
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Figure 1: Service Integration Models 

Two integration models with distributed control-flow are 
included to complete the classification.  The nC1D model is a 
variation of the 1C1D model with distributed control-flow, and the 
nCnD model is an extension of the 1CnD model.  In the distributed 
control-flow models, control messages can be sent between 
autonomous services, and the course of megaservice execution is 
coordinated by multiple autonomous services.  A good example of 
distributed control-flow model can be found in data-flow computer 
architectures [3, 5, 13] where the execution of a program is 
partially controlled by the flow of data rather than successive 
fetching of instructions.  A parallel program is compiled into 
operational code segments that are distributed to distinctive 
functional units, and the presence of operands activates the 
execution of the code segments.  Given its ability to exploit the 
natural parallelism of algorithms [4], data-flow architecture has 
been seen as a promising approach in designing high performance 
multi-processor machines. 

However, there are difficulties in effectively applying 
distributed control-flow models to conduct service composition.  
Because operational code segments need to be distributed to 
relevant function units for execution, the distributed control-flow 
models would require homogeneity in the underlying hardware 
platform.  This requirement may easily be met in building parallel 
computers, but not in constructing heterogeneous service 
composition infrastructure.  Also, it remains a technical challenge 
to convert a centralized specification of control sequences that a 
megaservice uses into operational code segments that can be 
effectively used to execute the megaservice.  Due to these 
limitations, distributed control-flow models have been adopted 
only for special-purpose applications, where code segments are 
installed on individual functional units and a distributed 



application environment is constructed from bottom up.  The 
topics of exploiting distribute control-flow models are beyond the 
scope of this paper.  We will focus our analysis on centralized 
control-flow models. 

We have argued intuitively that the distribution of data-flows 
among an integration infrastructure would have significant impact 
on the system performance.  For the rest of this paper, we will 
formalize our observation and conduct comparison between the 
1C1D model and the 1CnD model. 

2.2. System Modeling 
In order to evaluate the performance of megaservices under 
different integration models, we need to first characterize and give 
mathematical definition to the components within the computing 
environment, including the hardware platform, the autonomous 
services, and the megaservices. 

As illustrated in Figure 2, the hardware platform is modeled as 
a set of processor nodes P = {P0, P1, … , Pn} tied together by a 
completely connected network.  Associated with every processor Pi 
is the processor capacity CPi expressed in terms of number of 
cycles that the processor can handle in unit time.  Furthermore, 
associated with each pair of processors (Pi, Pj) is the 
communication capacity CMij expressed in terms of the volume of 
data that can be transmitted from processor Pi to processor Pj in 
unit time.  A communication channel originated from a processor 
Pi to itself can also exist, with capacity CMii. 

The communication network is modeled as a set of point-to-
point links that connect every processor with each other.  Each 
communication link operates independent of each other, as there is 
no shared medium between links.  It is a simplified model for most 
of the real-world network architectures, but a sufficient 
approximation for the purpose of the analysis here.  More complex 
models can be built by introducing additional constraints on the 
communication capacities. 
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Figure 2: Integration System Modeling 

S = {S1, … , Sn} is a set of autonomous services, each 
performing some specific operations.  Conceptually, autonomous 
service Si runs on the local processor Pi, and the execution of Si is 
independent of any other autonomous services.  In the case where 
multiple services reside on a single processor, a physical processor 
can serve multiple virtual processors and set appropriate capacity 
parameters for the virtual processors.  Also, complex autonomous 
services that involve multiple processors for execution can be 
further partitioned into atomic service units such that each atomic 
service unit only performs operations on its local processor.  As a 
result, we can establish a simple one-to-one mapping between a 
processor and an autonomous service for our analysis. 

Control-flow and data-flow are both modeled as 
communication messages, either originated or received at an 
autonomous service.  Autonomous service Si is invoked by 
receiving input data of size SIi, including both control and data.  It 
is executed at a cost of SPi expressed in terms of number of cycles.  
An output data of size SOi is generated as the result of executing 
Si, again including both control and data. 

A megaservice M is a running instance that specifies a partially 
ordered sequence of tasks.  Without loss of generality, we assume 
that M runs on processor P0.  In the case where the megaservice M 
runs on processor Pi (i≠0), our analysis holds by simply treating 
the invocation of autonomous service Si as part of local processing. 

A megaservice M is regarded as a transcript of accomplished 
tasks in our performance analysis.  Tasks are classified as either 
local processing or remote invocations of autonomous services in 
S.   The workload of each type of tasks is then evaluated.  Local 
processing takes place on P0 and the workload is denoted as MP 
number of cycles.  Remote invocations of autonomous services is 
modeled as a frequency vector F = {f1, … , fn}, where fi denotes 
the number of times Si is invoked during the execution of M. 

Given the mathematical model for the computing environment, 
we proceed to analyze the performance of a megaservice with two 
specific metrics: the aggregated cost and the response time. 

3. AGGREGATED COST 

3.1. Aggregated Cost Definition 
Before giving a definition of aggregated cost, we need to first 
define cost function for individual system resource components.  
In our model, we refer to a cost evaluation function Cef, which is 
formally a mapping defined as the following:  Given a megaservice 
M and a processor network P, Cef(M) is the tuple (vp, vm) , where 

• vp = {vp0, … , vpn}, where vpi is the load in terms of the 
number of processor cycles consumed by processor Pi. 

• vm = {vmij | 0 ≤ i, j ≤ n}, where vmij is the load due to the 
message traffic generated from processor Pi and to 
processor Pj. 

Notice that vp and vm represent the processing costs and the 
communication costs, respectively. 

The aggregated cost for a megaservice is defined as the sum of 
all individual cost components.  It measures the amount of system 
resource consumed by a megaservice.  We assume that the 
processing costs and the messaging costs of a megaservice can be 
linearly scaled.  The weights of the scale given to the processing 
costs and the messaging costs are given as α and β respectively.  
Hence, we define the aggregated cost of a megaservice COST(M) 
over a processor network P as the following: 

∑∑
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where (vp, vm) = Cef(M) and α, β ≥ 0. 
The weights, α and β, can be set to appropriate values to reflect 

the relative scarcity of the processor resources to the 
communication resources.  In the extreme case where α = 0, the 
system has unlimited processing power and is limited in its 
network bandwidth.  On the other hand, if β = 0, the system has 
unlimited networking bandwidth and is limited in its processing 
power. 

According to the definition, the aggregated cost is a linear 
aggregation of the cost components defined in the cost evaluation 



function.  Our analysis hence focuses on determining the vp and 
the vm vectors.  

3.2. Centralized Data-flow Model 
We start with the centralized data-flow model.  Processing cost 
components vp are computed using Equation 1.  Since the 
megaservice M is the only local process running on P0, the 
processing load of processor P0 equals MP.  The processing loads 
of other processors equal to the execution costs of the autonomous 
services running on them multiplied by the number of times that 
the autonomous services are invoked. 
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The calculation of the messaging cost components vm is show 
in Equation 2.  The only network traffic in the system is caused by 
the invocation of services.  Messages are sent from P0 to other 
processors for invocation of autonomous services, and results are 
returned to P0 as messages from the processors where the 
autonomous services execute. 
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The messaging load of the communication link (P0, Pi) equals 
the input data load for autonomous service Si multiplied by the 
number of times that Si is invoked.  The load of the communication 
link (Pi, P0) equals the result data load from autonomous service Si 
multiplied by the number of times that Si is invoked.  There is no 
other network traffic within the system, and hence all other 
communication links have a message load of 0. 

With vp and vm determined, we compute the aggregated cost 
by its definition as shown in Equation 3: 

∑∑

∑∑

==

≤≤=

+××+×+×=

×+×=

n

i
iii

n

i
ii

nji
ij

n

i
ic

SOSIfSPfMP

vmvpMCOST

11

,00

)()(

)(

βα

βα  
(3)

3.3. Distributed Data-flow Model 
The processing cost components vp are the same in the distributed 
data-flow model as in the centralized data-flow model.  The 
difference is in the communication cost components.  To compute 
the communication costs, we first model the network traffic pattern 
within the distributed data-flow model. 

A data distribution coefficients vector is defined as ∆∆∆∆ = {δij | 1 
≤ i ≤ n, 0 ≤ j ≤ n} that describes the level of distributed data flow 
among the autonomous services.  δij is computed as: 

iijij SOdd=δ  

where ddij is the size of the output data generated by autonomous 
service Si that transmits directly from processor Pi to processor Pj 
for further processing.  The data distribution coefficients have the 
following property: 

0 ≤ δij ≤ 1, for all 1 ≤ i ≤ n, 0 ≤ j ≤ n. 
We would like to point out two special cases regarding the data 

distribution coefficients.  (1) δij = 0 for all 1 ≤ i, j ≤ n: The 
distributed data-flow model converges with the centralized data-
flow model, where data-flows only exist between autonomous 

services Si and the megaservice;  (2) δi0 = 0 for all 1 ≤ i ≤ n: The 
integration model becomes a fully distributed data-flow model, 
where all data-flows are established directly between autonomous 
service, and no data is returned back to the megaservice for 
processing.  The majority of the distributed data-flow integration 
infrastructures fall between the above special cases. 

Given the data distribution coefficient vector, messaging cost 
components for the distributed data-flow model are computed in 
Equation 4.  There are four types of messaging cost components: 

• vm0j refers to the costs on the communication link (P0, Pj) 
for invoking autonomous service Sj.  The data volume 
from the megaservice to the autonomous service Sj equals 
the total size of invocation data SIj minus the portion 
contributed by other autonomous services. 

• vmi0 refers to the costs on the communication link (Pi, P0) 
for sending the result data from autonomous service Si 
back to the megaservice.  The data distribution coefficients 
are applied to the total output data size generated by Si. 

• vmij refers to the costs on the communication link (Pi, Pj) 
for sending the data between autonomous services.  For 
each invocation of autonomous service Sj, data of size 

iij SO×δ  needs to be sent from Pi to Pj. 

• The last messaging cost components refer to the messaging 
costs from the megaservice to itself, which equals 0. 
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Combing the cost components, we can derive the aggregated 
cost for the distributed data-flow model as shown in Equation 5: 
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3.4. Model Comparisons 
The following proposition is drawn from the analysis on the 
aggregate costs of the two data-flow models. 
 
PROPOSITION 1.  The aggregated cost incurred by a 
megaservice under a distributed data-flow model is no greater 
than the aggregated cost under a centralized data-flow model. 
 
Proof.  The difference between the two aggregated costs of the 
centralized and distributed data-flow models can be computed 
using Equation 3 and Equation 5: 
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We observe that the savings in the aggregated cost of the 
distributed data-flow model comes from the difference in data 
passed from autonomous services back to the megaservice, as 
indicated by the (1-δi0) factor in the above proof.  Based on the 



observation, we propose two performance optimization approaches 
for megaservice execution.  The first is to form distributed data-
flows by discovering direct input-output data mappings among 
autonomous service invocations.  For instance, in the sample 
megaservice illustrated in Figure 3, the output of autonomous 
service S1 can be mapped to the input of autonomous service S2.  
By sending the output of S1 to S2 for processing without going 
through the megaservice, we can eliminate the potential data traffic 
between S1 and the megaservice M, reducing δ10 to 0. 

 
MEGAPROGRAM M {

b = S1(a)
c = S2(b)
d = local-transform(c)
e = S3(d)
f = S4(b)
result = local-processing(e, f)

}

Figure 3: A Sample Megaservice 

The second optimization approach utilizes code transfer to 
reduce data traffic.  Code segments are transferred to the most 
appropriate location for execution to reduce the amount of data 
communication between autonomous services and the 
megaservice.  Using the example shown in Figure 3, we notice that 
the output of autonomous service S2 needs to be processed by 
local-transform routine before passing on to S3 for further 
processing.  If the local-transform routine can be shipped onto and 
carried out on the processor serving S2, the transformed output 
data for S2 can be directly sent to S3.  In order to take advantage of 
this optimization approach, the integration infrastructure needs to 
support code-shipping and remote invocation of code segments.  
Our investigation indicates that active mediation technology [2, 6] 
can potentially be incorporated into the integration infrastructure 
to provide the necessary run-time support. 

4. RESPONSE TIME 
Another aspect of our performance analysis focuses on response 
time, i.e. the elapsed time between the start and the termination of 
a megaservice.  The response time analysis helps pinpointing 
bottlenecks of a system and providing a scalable design. 

4.1. Overview 
We analyze the response times for the two atomic operations 
performed by a megaservice: processing of computational load vp 
on processor Pi and sending a message of size vm from processor 
Pi to processor Pj .  Since the response time for atomic operations 
equals the workload divided by the system resource bandwidth, the 
computational operation has a response time of vp/CPi, and the 
communication operation has a response time of vm/CMij. 

A megaservice is as a sequence of partially ordered distributed 
atomic operations.  By executing atomic operations in parallel, 
processors can be better utilized, offering better response time for 
the megaservice.  Since complexities are introduced in the analysis 
of parallel executions of megaservices, we separate our analysis for 
the serial and parallel invocation schemes. 

The serialized invocation scheme assumes single threaded 
execution for a megaservice.  Autonomous service invocations are 
carried out in the order they are specified in the megaservice.  
Given the deterministic nature of the serialized invocation scheme, 
we compute and compare quantitatively the response times of 
megaservices.  The parallel invocation scheme favors overlapping 
execution of autonomous services, subject to data dependencies.  

We will model megaservices in Petri nets and conduct qualitative 
comparison of the centralized data-flow model against the 
distributed data-flow model. 

Interference of activities within the processor network, such as 
running instances of other megaservices, can generate conflicts in 
allocation of system resources, resulting variance in the response 
time.  For our response time analysis, we assume a single-user 
usage model, which approximates systems under light loads. 

4.2. Serialized Invocation Scheme 
The response time T for megaservice M consists of two 
components: the local processing time TM and the autonomous 
service invocation time TS.  Under serialized invocation scheme, 
TS equals the sum of individual TSi, the elapsed time for invoking 
autonomous service Si.  Each autonomous service consists of three 
sequential tasks:  input task SIi during which input parameters are 
prepared, processing task SPi during which computation is 
conducted on the input parameters, and output task SOi during 
which the results are returned back to the invoker of the 
autonomous service.  Each task is associated with an elapsed time, 
TSIi, TSPi, and TSOi, respectively. 

The relationship among components of the response time is 
illustrated in Equation 6.  The local processing time TM remains 
the same for both the 1C1D and the 1CnD models, whereas the 
autonomous service invocation time TS is expected to be different. 
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The response time for M under centralized data-flow model is 
computed in Equation 7.  The input elapsed time dedicates for the 
megaservice M sending the input data of size SIi to the autonomous 
service.  The processing elapsed time dedicates for Pi processing 
computational load of the autonomous service.  The output elapsed 
time dedicates for Si sending the output data of size SOi back to the 
megaservice M.  These components are aggregated to get the 
overall response time Tc for the megaservice. 

The components of the total elapsed time are grouped into two, 
one as processing costs and the other as communication costs.  It is 
clear that all communication costs are incurred for the traffic going 
through P0.  Hence, in designing centralized data-flow integration 
infrastructure, it is important to maximize the communication 
capacity between the processor on which the megaservice is 
initiated and the other processors on which the autonomous 
services reside.  On the other hand, the communication capacities 
between autonomous services have no effect on the response time. 
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The response time for M under distributed data-flow model is 
computed in Equation 8.  The processing costs of autonomous 



services remain the same as in the centralized data-flow model, 
while the communication costs differ.  
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The input elapsed time for autonomous service Si refers to the 
time to prepare the input parameters for the autonomous service.  
The time equals the maximum length of all the communication 
processes, during which related autonomous services and the 
megaservice send their portions of input data to Si. 

The output elapsed time equals the size of output data being 
sent back from autonomous service Si to the megaservice M 
divided by the bandwidth capacity of the communication link.  The 
output elapsed time is guaranteed to at least as short under 
distributed data-flow model as under the centralized data-flow 
model, since the values differs by a factor of δi0 under the two 
integration models. 

 
PROPOSITION 2.  The response time incurred by a megaservice 
under a distributed data-flow model is no greater than the response 
time under a centralized data-flow model, if the following 
conditions are met: 

• Autonomous services invocations are serialized; and 
• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0. 

 
Proof.  By the definition of data distribution coefficients: 

ikki SISO ≤×≤ δ0  for all k ≠ 0 and i ≠ 0 
Hence, we have: 
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Since the response time is a linear aggregation of the elapsed 
time components, comparing Equation 7 and Equation 8 deduces: 

)()( MTMT cd ≤ .                                                     
�� ��

 
 
The condition on communication capacities in the above 

proposition implies a communication backbone among the 
autonomous services with at least as much bandwidth as between 
the megaservice and the autonomous services.  Many computing 
networks easily satisfy this condition.  For instance, in many 
intranets that consist of uniformly connected processor networks, 
all communication links have the same bandwidth.  Another 
example is the client-server network, where autonomous services 
reside on well-connected server farms and the megaservices are 
clients accessing the servers from remote sites.  The Internet and 
mobile service networks both can be categorized as this type. 

4.3. Parallel Invocation Scheme 
We extend the response time analysis to parallel invocation 
scheme, where causally unrelated autonomous services can be 

executed in parallel, improving megaservice performance by 
reducing the overall response time.  The megaservice performance 
is affected by multiple factors, such as the degree of parallelism in 
a megaservice, the process scheduling algorithms, etc.  In order to 
make relevant comparison on the effects of data-flows between the 
1C1D and 1CnD models, we make the assumption that the control-
flows remain the same for the integration models used, namely the 
partial order of autonomous service invocations are identical. 

We first model the execution of a megaservice.  It has been 
shown that timed Petri net [12] models can be used as an effective 
modeling tool for representing synchronization and concurrency 
[8, 10].  We model the execution of a megaservice as a timed 
marked graph (TMG), a well-known subclass of Petri nets that 
allows representations of concurrency and synchronization, but not 
decision or conflicts.  Branches and loops within a megaservice are 
unfolded during the execution so that a megaservice can be seen as 
a partially ordered string of execution tasks, each being either an 
autonomous service or a local processing segment of the 
megaservice. 

Figure 4 illustrates a TMG representation of the megaservice 
defined in Figure 3.  Places, drawn as circles, are used to represent 
tasks.  Transitions, drawn as boxes, are used to represent 
synchronization points.  Places are labeled as one of the following: 
(1) an input task of an autonomous service (e.g. SI1_a), (2) a 
processing task of an autonomous service (e.g. SP1_a), (3) an 
output task of an autonomous service (e.g. SO1_a), or (4) a local 
processing segment of the megaservice (e.g. MP_c).  A unique 
subscription to distinguish the multiple invocations of an 
autonomous service is attached to the end of each label. 

 

MPc SI3_d SP3_d SO3_d

MP_f

SI2_b SP2_b SO2_b

SI1_a SP1_a SO1_a

SI4_e SP4_e SO4_e

 
Figure 4: Timed Marked Graph Representation of Megaservice 

Each place is assigned a time delay τP that equals the elapsed 
time to perform the task represented by the place P.  A single token 
is placed in the initial place as the starting marking.  Such a Petri 
net model is known as a deterministic timed net, and the response 
time of the megaservice equals the minimum cycle time of the net. 
 
PROPOSITION 3.  The response time incurred by a megaservice 
under a distributed data-flow model is no greater than the response 
time under a centralized data-flow model, if the following 
conditions are met: 

• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0. 
 

Proof.  It was shown in [10] that the minimum cycle time of the 
TMG equals the maximum of the total delays in all directed 
circuits.  Hence the response time incurred by a megaservice 
equals the total delay of the longest non-cyclic path in the graph. 



Consider two TMGs: TMGc and TMGd, representing 
megaservice executions under the centralized-data flow model and 
the distributed data-flow model, respectively.  By construction, 
TMGc and TMGd have the same structure, i.e. the same set of 
places, transitions, arcs and initial markings.  They differ only in 
the time delays that are assigned to the places, which are denoted 
as τc

p and τd
p for a place p in TMGc and TMGd respectively.  As 

shown in Equation 7 and Equation 8, τc
p ≥ τd

p, if CMki ≥ CM0i for 
all k ≠ 0 and i ≠ 0. 

Let’s denote the longest non-cyclic path in TMGd as P.  The 
response time for the distributed control model equals the total 
delay of the path P in TMGd, which is ∑ ∈Pp

d
pτ .  The response time 

for the centralized model is no less than the total delay for the path 
P in TMGc, which is ∑ ∈Pp

c
pτ .

 

Since ∑∑ ∈∈
≥

Pp
d
pPp

c
p ττ , the proposition holds.             �� ��  

 
It is clear that Proposition 3 covers Proposition 2, since 

serialized invocation is a special case of parallel invocation.  
Therefore, we have proved that the distributed data-flow model has 
better response time performance than the centralized data-flow 
model if the system communication capacity condition is met. 

5. EXAMPLE SCENARIOS 
We study the performance of megaservices in an example 

engineering service environment.  The runtime performances are 
measured and compared against the results obtained through our 
analytical models. 

Figure 5 illustrates a scenario where three autonomous services 
are used in collaboration to conduct engineering planning and 
scheduling.  The ModelRetriever service fetches a project model 
from information sources based on the name of the project.  The 
Scheduler service generates new schedules for the input project 
model.  The ChangeManager service manages the changes 
introduced by the new schedules.  The autonomous services run on 
distributed servers that are connected via a switch with 10mbps 
bandwidth on each port. 
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Switch

Mega
Service

 MegaService  {
    model = ModelRetriever(name)
    new_model = Scheduler(model)
    ChangeManager(new_model)
 }

Scheduler

Change
Manager

 
Figure 5: A Megaservice for Engineering Services 

The megaservice is composed of three autonomous services.  It 
is designed to retrieve a specific project model using the 
ModelRetriever service, then conduct scheduling on the model 
using the Scheduler service, and finally notify the related parties 
about the change via the ChangeManager service.  The level of 
data-flow distribution can be described by the data distribution 
coefficients of the megaservice, which can be generated from the 
megaservice specification.  For instance, all the coefficients 
between megaservice and autonomous services are 0, and the 
coefficient from ModelRetriever to Scheduler equals 1. 

The megaservice runs on a client machine that is connected to 
the servers either directly via the switch or via an 802.11 wireless 
access point.  The two network connection settings yield different 
performance results since the wireless access has much lower 
communication bandwidth. 

We implement the megaservice with two different integration 
models: (1) SOAP [14] is used as the reference platform for the 
1C1D model, where each service invocation is a remote procedure 
call initiated from the megaservice; and (2) FICAS [7] is used as 
the reference platform for 1CnD model, where data-flows are 
formed between autonomous services. 

The response times of megaservices are measured with 
different settings on the size of the project model.  Since the 
computational elapsed times contributed to the autonomous service 
executions are identical under both integration models, we 
compare only the communication elapsed time, which is calculated 
as the megaservice response time minus the sum of processing 
elapsed times of autonomous services.  Figure 6 shows the 
performances of the megaservice measured with two service access 
media and two integration models. 
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Figure 6: Performance of the Megaservice 

We first verify that the real-world behavior of the megaservice 
is consistent with the prediction of our analytical model.  Data 
points can be used to deduce the system parameters by applying 
the numbers to the analytical equations.  For instance, we use the 
performance numbers measured for the model size of 1000KB.  
Applying Equation 7, we calculate the communication capacity on 
the LAN connection as: 

mbpsKB 6.2
12226ms

10004 ≈×  

and the communication capacity on the wireless connection as: 

mbpsKB 63.0
51286ms

10004 ≈×
. 

Linear regression techniques may also be used on multiple data 
points when more accurate estimation is desired. 

The values of the communication capacities are then applied to 
Equation 7 and Equation 8 to calculate the communication elapsed 
times for other model sizes.  Our analytical model is a good 
approximation of the real-world megaservice behavior and the 
calculated values agree well with the measured values. 

The communication capacities between autonomous services 
are clearly not the same as the network bandwidth between the 
servers on which the services run.  In fact, the effective rate by 



which the autonomous service can exchange data is affected by 
many factors, ranging from the implementation of the integration 
software, the construction of the server platform, to the layout of 
the communication network, etc.  The example scenario 
demonstrates how the communication capacities of an integration 
infrastructure can be estimated with a few measured data points on 
overall megaservice performance. 

Further possible observations can be made that are consistent 
with our mathematical analysis conducted in earlier sections: 

• The response times in the 1CnD model are better than 
their counterparts in the 1C1D models under all load 
settings.  As we have proven in Proposition 2 and 3, the 
1CnD model performs better than the 1C1D model when 
the system communication capacity condition is met. 

• The response time increases linearly with respect to the 
volume of the data-flows.  The response times under the 
1C1D model increase at much faster rates than the 
response times under the 1CnD model.  The rate of 
increase is especially significant in the wireless 
connection scenario, where data communications between 
client machines and servers become a bottleneck in the 
1C1D model.  On the other hand, we observe small 
increase in response time in the 1CnD model with large 
model sizes.  The 1CnD model alleviates the bottleneck 
by distributing network traffic within the server farm. 

6. CONCLUSIONS 
With the advances in computer system and software component 
technology, there will be increasing interests in infrastructures that 
facilitate service composition.  Service integration infrastructures 
are classified into four complementary models based on how 
controls and data are exchanged.  We have focused our study on 
the two models with centralized control-flow structure, partly due 
to our belief that the ease of use makes the models easier to be 
adopted for service composition. 

Performance analysis on service integration models with 
centralized and distributed data-flows is conducted in terms of the 
aggregated cost and the response time metrics.  We have shown 
that the distributed data-flow model always has better performance 
in aggregated cost.  Also, the distributed data-flow model has 
better performance in response time with uniformly connected 
processor networks and client-server networks, where the 
autonomous services have a communication backbone with at least 
as much bandwidth as the communication channels from the 
megaservice to the autonomous services. 

During the course of our analysis, we have identified a few 
critical system parameters that correlate with the performance of 
megaservice executions.  Techniques to improve performance of 
service integration infrastructures are introduced.  First, 
performance can be improved by distributing data-flows among 
autonomous services, hence reducing the amount of data-flows 
between megaservices and autonomous services.  Secondly, we 
motivated the use of dynamic code-shipping technique to conduct 
remote processing of data.  The technique can establish more 
distributed data-flows and reduce the communication traffic 
between megaservices and autonomous services even further.  
Finally, we identified system bottlenecks via the response time 
analysis.  The findings will help guide building appropriate system 
architectures for composing autonomous services. 
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