
 

A DISTRIBUTED DATA FLOW MODEL 
FOR COMPOSING SOFTWARE SERVICES 

 
 
 
 
 
 
 
 
 

A DISSERTATION 

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING 

AND THE COMMITTEE ON GRADUATE STUDIES 

OF STANFORD UNIVERSITY 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

 

Wanqian David Liu 

June 2003 



 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright by Wanqian David Liu 2003 

All Rights Reserved 

 ii



 
I certify that I have read this dissertation and that, in my opinion, it is 
fully adequate in scope and quality as a dissertation for the degree of 
Doctor of Philosophy. 

 

__________________________________ 
Gio Wiederhold 

(Principal Advisor) 
 
 

I certify that I have read this dissertation and that, in my opinion, it is 
fully adequate in scope and quality as a dissertation for the degree of 
Doctor of Philosophy. 

 

__________________________________ 
Kincho H. Law 
(Co-Advisor) 

 
 

I certify that I have read this dissertation and that, in my opinion, it is 
fully adequate in scope and quality as a dissertation for the degree of 
Doctor of Philosophy. 

 

__________________________________ 
Armando Fox 

 
 
 

I certify that I have read this dissertation and that, in my opinion, it is 
fully adequate in scope and quality as a dissertation for the degree of 
Doctor of Philosophy. 

 

__________________________________ 
Ram D. Sriram 

 
 
 
 

Approved for the University Committee on Graduate Studies. 

 iii



 

Abstract 

This thesis presents a distributed data-flow model for composing autonomous software 

services, as might be provided over the web. The autonomous services are linked to form 

a data processing system, controlled by one node, which we call the megaservice.  The 

distributed data-flow model allows direct data exchange among the autonomous services.  

This is different from the traditional centralized data-flow model where the megaservice 

is the central hub for all the data traffic.  A theoretical analysis shows that the distributed 

data-flow model has better performance and scalability than the centralized data-flow 

model.  The distribution of data communications fully utilizes the network capacity 

among the autonomous services, and avoids bottlenecks at the megaservice. 

A prototype infrastructure for service composition, the Flow-based Infrastructure for 

Composing Autonomous Services (FICAS), has been implemented to support the 

distributed data-flow model.  FICAS is a collection of software modules that support the 

construction of autonomous services, facilitate the specification of the megaservice, and 

enable the efficient execution of the megaservice.  The distribution of data 

communications is enabled by a metamodel defined for autonomous services, which 

separates the data interchange from the control processing in the services.  Autonomous 

services conforming to the metamodel can be coordinated by a centralized controller, 

while data communications are distributed among the services. 

 iv



Data transformations and similar computational tasks are often needed to interface 

autonomous services.  Since in the distributed data-flow model the data do not flow 

through the megaservice, such transformations have to be carried out externally.  To 

achieve that we define mobile classes, dynamic processing routines that can be loaded 

onto an autonomous service to prepare data local to the service.  By moving 

computations closer to data, the amount of data traffic can be significantly reduced for a 

megaservice, hence improving the performance of the megaservice. 

Based on FICAS, an engineering service infrastructure is constructed for project 

management applications in the construction industry.  The infrastructure demonstrates 

that the distributed data-flow model is suitable for composing large-scale software 

services. 

 

 v



 

Acknowledgments 

There have been a number of truly exceptional people who contributed to my research 

and social life at Stanford University. 

I wish to express gratitude to my principal advisor, Gio Wiederhold, for his constant 

support.  Gio has provided me with the intellectual guidance, while giving me the 

freedom to pursue independent research.  I am deeply indebted to my co-advisor Kincho 

H. Law.  His passion for research and his insights in life have made profound influence 

on me.  I am privileged to have Kincho as a mentor and a friend.  I would also like to 

thank the other members of my reading committee, Armando Fox and Ram D. Sriram, 

for their invaluable comments and advices. 

I would like to acknowledge my family, who are more special to me than words can 

describe.  My parents, Zhongying Wan and Dachun Liu, have guided, supported and 

believed in me constantly ever since my first memories.  My sister, Weiran Liu, has been 

a special friend with whom to share joys and sorrows. 

Finally, I am grateful to the members of the Engineering Informatics Group, including 

Jun Peng, Jim Cheng, Jerome Lynch, Jie Wang, Chuck Han, Shawn Kerrigan, Gloria 

Lau, Charles Heenan, Li Zhang, Bill Labiosa, Yang Wang, Pooja Trivedi, Haoyi Wang, 

and Xiaoshan Pan, for helping me with various aspects of my research and life. 

 vi



I gratefully acknowledge the financial support provided by the Center for Integrated 

Facility Engineering at Stanford University, the Air Force (Grant F49620-97-1-0339, 

Grant F30602-00-2-0594), and the Product Engineering Program at National Institute of 

Standards and Technology. 

 vii



 

Table of Contents 

Abstract iv 

Acknowledgments vi 

List of Tables xii 

List of Figures xiii 

1 Introduction 1 

1.1 Overview...........................................................................................................1 

1.1.1 Composition of Autonomous Services ....................................................2 

1.1.2 Distributed Data-flow Model ..................................................................6 

1.2 Related Research...............................................................................................8 

1.2.1 Distributed Computing Environment ......................................................8 

1.2.2 Common Object Request Broker Architecture......................................10 

1.2.3 CHAIMS................................................................................................11 

1.2.4 Shared Dataspace...................................................................................12 

1.2.5 Web Services .........................................................................................14 

1.3 Organization of the Thesis ..............................................................................17 

2 Service Composition Infrastructures 19 

2.1 Service Integration Models .............................................................................20 

2.1.1 Model Classification..............................................................................20 

2.1.2 Centralized Control-flow and Centralized Data-flow Model ................22 

2.1.3 Distributed Control-flow Models ..........................................................23 

 viii



2.1.4 Centralized Control-flow and Distributed Data-flow Model ................24 

2.2 System Modeling ............................................................................................26 

2.3 Aggregated Cost of a Megaservice .................................................................28 

2.3.1 Aggregated Cost Definition...................................................................28 

2.3.2 Centralized Data-flow Model ................................................................29 

2.3.3 Distributed Data-flow Model ................................................................31 

2.3.4 Comparison of Centralized and Distributed Data-Flow Models ...........33 

2.4 Response Time For Megaservices ..................................................................34 

2.4.1 Serialized Invocation of Megaservices..................................................35 

2.4.2 Parallel Invocation of Megaservices......................................................41 

2.5 Performance Impact of Control-flows ............................................................44 

2.6 Summary .........................................................................................................47 

3 Autonomous Services 49 

3.1 Autonomous Service Metamodel....................................................................50 

3.1.1 Hierarchical Model ................................................................................51 

3.1.2 Data Model ............................................................................................53 

3.1.3 Service Interaction Model .....................................................................57 

3.1.3.1 Identification for Autonomous Services..................................57 

3.1.3.2 Control-flows and Data-flows .................................................58 

3.1.3.3 Events in FICAS......................................................................59 

3.1.3.4 Data Container and Data Map .................................................60 

3.1.4 Structural Model ....................................................................................62 

3.2 Autonomous Service Access Protocol ............................................................65 

3.2.1 Initialization and Termination Events ...................................................66 

3.2.2 Invocation Events ..................................................................................68 

3.2.3 Data-flow Events ...................................................................................70 

3.2.4 Auxiliary Events ....................................................................................72 

3.3 Autonomous Service Wrapper ........................................................................73 

3.4 Summary .........................................................................................................77 

 ix



4 Buildtime Environment of FICAS 79 

4.1 Compositional Specification...........................................................................82 

4.1.1 Data Types and Operations....................................................................82 

4.1.2 Autonomous Service Statement ............................................................86 

4.1.3 Conditional Statements..........................................................................88 

4.1.4 Comparison Between CLAS and CLAM ..............................................89 

4.2 CLAS Compiler and FICAS Control Sequence..............................................91 

4.2.1 Lexical Analysis ....................................................................................92 

4.2.2 Syntax Analysis .....................................................................................94 

4.2.3 Code Generation....................................................................................96 

4.2.4 Example Demonstration ......................................................................100 

4.3 Computational Specification.........................................................................102 

4.3.1 Constructing Mobile Class ..................................................................102 

4.3.2 Mobile Class for Data Processing .......................................................106 

4.3.3 Mobile Class for Type Mediation........................................................109 

4.3.4 Mobile Class for Extraction Model Mediation....................................111 

4.4 Summary .......................................................................................................112 

5 Runtime Environment of FICAS 114 

5.1 Architecture of the Runtime Environment....................................................115 

5.1.1 Autonomous Service Directory ...........................................................116 

5.1.2 Megaservice Controller .......................................................................119 

5.1.2.2 Processing of the Conditional Statement...............................121 

5.1.2.3 Processing of the Autonomous Service Statement................121 

5.1.2.4 Processing of the Mobile Class Statement ............................123 

5.2 Distribution of Data-flows ............................................................................125 

5.2.1 Megaservice Execution Plan ...............................................................125 

5.2.2 Performance Analysis..........................................................................131 

5.3 Mobile Class and Active Mediation..............................................................138 

5.3.1 Active Mediation for Autonomous Service.........................................138 

 x



5.3.2 Enabling Active Mediation in FICAS .................................................141 

5.3.3 Placement of Mobile Class ..................................................................144 

5.3.4 Enabling Optimization for Mobile Classes .........................................147 

5.3.5 Performance Analysis..........................................................................150 

5.4 Example Infrastructure for Engineering Services.........................................152 

5.5 Summary .......................................................................................................159 

6 Summary and Future Directions 161 

6.1 Summary .......................................................................................................161 

6.2 Future Directions...........................................................................................165 

Bibliography 167 

 xi



 

List of Tables 

Number Page 

Table 2.1: Communication Parameters of the Example Computing Environments..........40 

Table 2.2: Response Times of the Example Megaservice .................................................41 

Table 3.1: Initialization and Termination Events in the ASAP Protocol...........................67 

Table 3.2: Invocation Events in the ASAP Protocol..........................................................69 

Table 3.3: Data-flow Events in the ASAP Protocol ..........................................................71 

Table 3.4: Auxiliary Events in the ASAP Protocol ...........................................................73 

Table 4.1: Simple Data Types and the Assignment Operator............................................83 

Table 4.2: Operators for Boolean Comparison ..................................................................84 

Table 4.3: Data Type Conversions for Boolean Comparison ............................................85 

Table 4.4: Tokens in the CLAS Language.........................................................................93 

Table 4.5: BNF Representation of the CLAS Grammar....................................................95 

Table 4.6: Definitions of the FICAS Control Elements.....................................................99 

Table 4.7: Relational Operators and Their Corresponding Mobile Classes ....................108 

Table 5.1: Mobile Class Events in the ASAP Protocol ...................................................141 

Table 5.2: Sizing Functions for the Relational Mobile Classes.......................................149 

 xii



 

List of Figures 

Number Page 

Figure 1.1: The Trend of Software Development (from [91]).............................................3 

Figure 1.2: Calling Stack in the Distributed Computing Environment ...............................9 

Figure 1.3: Web Service Stack...........................................................................................15 

Figure 2.1: Classification of Service Integration Models ..................................................21 

Figure 2.2: Megaservices with Centralized and Distributed Data-flows...........................25 

Figure 2.3: System Modeling of the Service Composition Infrastructure .........................27 

Figure 2.4: Example Megaservice that Demonstrates Performance Optimizations ..........40 

Figure 2.5: Timed Marked Graph Representation of the Example Megaservice ..............43 

Figure 2.6: Messages Involved in a Service Invocation ....................................................46 

Figure 2.7: Comparison of the Messaging Costs for a Service Invocation .......................46 

Figure 3.1: Hierarchical Model of Autonomous Services .................................................52 

Figure 3.2: A Simple Data Element and Its XML Representation ....................................56 

Figure 3.3: A Composite Data Element and Its XML Representation ..............................56 

Figure 3.4: Structural View of the Data Container ............................................................60 

Figure 3.5: Structural Model of an Autonomous Service ..................................................64 

Figure 3.6: XML Representation of an ASAP Event ........................................................65 

Figure 3.7: Autonomous Service Wrapper ........................................................................75 

Figure 3.8: Definition of the ServiceCore Interface ..........................................................76 

Figure 3.9: Example Autonomous Service that Performs Addition on Two Numbers .....76 

 xiii



Figure 4.1: Architecture of the Buildtime Environment of FICAS ...................................81 

Figure 4.2: Example Program for Testing the CLAS Language .....................................100 

Figure 4.3: FICAS Control Sequence Generated for the Example CLAS Program........101 

Figure 4.4: Definition of the MobileClass Interface........................................................104 

Figure 4.5: Definition of the DataElement Class.............................................................104 

Figure 4.6: Example Mobile Class that Converts Data from Integer to Float .................105 

Figure 4.7: Example Mobile Class that Implements the Select Operator........................108 

Figure 4.8: Type Mediation Using Type Brokers and Mobile Classes............................110 

Figure 5.1: Architecture of the FICAS Runtime Environment........................................115 

Figure 5.2: Autonomous Service Directory .....................................................................118 

Figure 5.3: Architecture of the Megaservice Controller ..................................................120 

Figure 5.4: Example Segment of FICAS Control Sequence............................................126 

Figure 5.5: Autonomous Service Invocation Table .........................................................127 

Figure 5.6: Data Dependency Graph ...............................................................................128 

Figure 5.7: Event Dependency Graph..............................................................................130 

Figure 5.8: Test Environment for Comparing SOAP and FICAS ...................................133 

Figure 5.9: Comparison Between FICAS and SOAP on Local Area Network ...............135 

Figure 5.10: Megaservice Performance Under Different Network Configurations ........137 

Figure 5.11: Conceptual Layers in Mediation and Autonomous Service Architecture...139 

Figure 5.12: Architecture of the Active Mediator ...........................................................143 

Figure 5.13: Example Megaservice that Utilizes the Mobile Class “FILTER”...............145 

Figure 5.14: Execution Plans with Different Placements for the Mobile Class ..............145 

Figure 5.15: LDS Algorithm for Optimal Placement of Mobile Class............................147 

Figure 5.16: Comparison Between Mobile Class and Autonomous Service...................151 

Figure 5.17: Example Autonomous Service that Utilizes Primavera P3 .....................154 

Figure 5.18: Example Mobile Class that Converts Data from PSL to Excel ...............155 

Figure 5.19: Example Megaservice that Conducts Project Scheduling...........................155 

Figure 5.20: Reviewing the Project Schedule in Primavera P3 ...................................157 

Figure 5.21: Revising the Project Schedule via a Palm Device.......................................157 

 xiv



Figure 5.22: Reviewing the Updated Project Schedule in Microsoft Excel.................158 

Figure 5.23: Reviewing the Updated Schedule in Microsoft Project...........................158 

 xv



Chapter 1  

Introduction 

1.1 Overview 

A software engineering paradigm where large software services are decomposed into 

cooperating components has been envisioned for over 30 years [58].  Under this 

paradigm, software components are linked together through an integration framework to 

form composed software applications called megaservices [96].  Software components 

are provided as processes managed by independent service providers.  The components 

have clearly defined functions with accessible interfaces.  We call these software 

components autonomous services.  With the rapid development of the Internet and 

networking technologies, the computing environment is evolving toward an 

interconnected web of autonomous services, both inside and outside of enterprise 

boundaries.  The integration of the autonomous services becomes an important issue in 

software engineering. 



CHAPTER 1. INTRODUCTION  2

1.1.1 Composition of Autonomous Services 

As software becomes more complex, there is a shift that moves from coding as the focus 

of programming to a focus on integration.  Traditionally, large programs are partitioned 

into subtasks of manageable sizes.  The subtasks are assigned to programmers who code 

the instructions in a programming language.  The resulting subtasks are subsequently 

submitted for integration.  Larger portion of the overall software engineering effort is 

now spent on integration.  This trend is depicted as shown in Figure 1.1 [91].  

Software integration takes place in many forms.  Early approaches are based on code 

reuse.  The simplest approach is to copy the source code wherever the desired 

functionality is needed.  There are significant drawbacks to this approach, ranging from 

compiler incompatibility to difficulty in maintaining duplicate copies of code.  To deal 

with these drawbacks, shared libraries are used in place of copied code.  Software 

components written in a programming language are compiled into shared libraries.  The 

shared libraries have public interfaces, through which the users invoke the functions 

contained in the libraries.  Software integration based on code reuse assumes that the 

ownership of the reused software components belongs to the users of the software 

components.  In addition, the software components are executed on the same machine as 

the invoker of the components. 

The development of network computing allows software components to be distributed to 

multiple machines.  Each software component runs as a separate process, communicating 

with each other by exchanging messages.  This software integration model is called 

distributed component model.  When software components are managed by a single 

administrator, we refer this type of integration model as the tightly coupled component 

model.  The software components follow a set of proprietary rules that allow access to 

software components across the physical border of a single machine.  For instance, 

 

 



CHAPTER 1. INTRODUCTION  3

Coding

Integration

1970 1990 2010  

Figure 1.1: The Trend of Software Development (from [91]) 

CORBA software components use a low-level platform-independent data format for 

representing data exchanged over the network [64].  For software components managed 

by different providers, the loosely coupled component model is used for integration.  The 

software components exist as autonomous services.  Different from the tightly coupled 

component model where the software components are subservient to the calling routine 

[25], the loosely coupled component model assumes that the management of the 

autonomous services is hidden from their users [74]. 

The autonomous services may be computational or data intensive, distributed, and 

heterogeneous.  A prime example of autonomous services today is database management 

systems, which expose their functionalities through SQL and report generators [86].  The 

Internet also provides a wide variety of autonomous services.  Web services are a special 

type of autonomous services that are made available on the web.  Providers of web 

services are generally known as application service providers.  Web services range from 

comprehensive services such as storage management and customer relationship 

management to more specific services such as travel reservation, book purchasing, 

weather forecasts, financial data summaries, and newsgathering.  Other services include 

simulation programs, engineering, logistics, and business services [95]. 

 



CHAPTER 1. INTRODUCTION  4

There are three phases in composing autonomous services: (1) construction of the 

services, (2) specification of megaservices, and (3) execution of megaservices.  Different 

design decisions need to be made for each phase, taking into consideration the complex 

issues involved in each phase.  The issues range from the scalability of the services, the 

robustness of the services, the security of the service interaction, the effective and 

convenient specification of the compositions, to the performance of the megaservices. 

For the construction of autonomous services, a consistent access model is needed to 

provide homogeneity to the services.  Since autonomous services are developed and 

maintained by independent providers, the access model hides away the disparities in the 

network, platform, and language.  The access model includes a data representation for 

exchanging data among the services, and an interface through which the service 

functionalities can be invoked.  Services can use wrappers to convert data between their 

internal data representations and a common representation.  The use of wrappers for data 

integration has been examined separately in collaboration with Cheng, et al [21, 54].  As 

a result, the autonomous services are utilized as if they were locally available to the 

megaservice.   

To facilitate service integration, the autonomous services are assumed to handle requests 

as transactions, and the services are designed to achieve the ACID semantics (i.e., 

atomicity, consistency, isolation, and durability) [41, 60].  The ACID semantics places 

strict requirements on the concurrency and fault-handling behavior of the services.  For 

atomicity, an autonomous service processes a request as a single logical unit with respect 

to other transactions and failures.  For consistency, the service either creates a new valid 

state of data after processing the request, or if any failure occurs, returns the data to 

before the request.  For isolation, the processing of one request by the service should not 

affect the processing of another request by the service.  For durability, the service saves 

the committed data so that data is always available in its correct state.  By conforming to 

the ACID semantics, the service is well designed to handle concurrent invocations and 

failures.  The ACID semantics can be relaxed sometimes to simplify the construction of 

 



CHAPTER 1. INTRODUCTION  5

the service.  For instance, the consistency requirement can be relaxed.  Rather than 

returning the data to the state before the request when a failure occurs, the service may 

only guarantee that the data is in a valid state after handling the failure.  On the other 

hand, a client of the service is required to handle the situations when the service fails to 

process its requests [27, 28]. 

Security in the integration environment is another important issue.  Interactions among 

services need to be authenticated.  Each service has to verify that its clients possess the 

necessary access rights, and the client has to verify that the services are not counterfeited.  

Encryption and certification technologies can be applied to ensure the authenticity of the 

service interactions [48, 51].  The result is that mutual trust can be established among the 

services and their clients. 

Provided with an integration environment where service functionalities can be accessed, a 

megaprogrammer can define for a megaservice which autonomous services are invoked, 

what service functionalities are utilized, and how the functionalities are put together.  The 

megaprogrammer is not expected to be a technical expert of middleware systems or an 

experienced programmer.  Instead, the megaprogrammer would focus on solving the 

problem at hand, e.g., obtaining information from a weather forecast service and feeding 

that information to a project scheduling service.  Tools are needed to provide the high-

level abstractions for compositions and hide the implementation details away from the 

megaprogrammer [92]. 

Among the many issues in service composition, this thesis focuses on performance.  The 

objective is to explore the technologies that enable efficient execution of megaservices.  

At the same time, other issues are taken into consideration.  For instance, it is an 

underlying assumption that the integration of large number of autonomous services 

should be supported.  Furthermore, performance gain should not come at the sacrifice of 

ease of composition. 

 



CHAPTER 1. INTRODUCTION  6

1.1.2 Distributed Data-flow Model 

A megaservice is executed by exchanging messages with autonomous services.  Control 

messages are used to coordinate the execution of the services, and data messages are used 

to exchange data among the services.  The control messages involved in a task form a 

control-flow, and the data messages involved in the task form a data-flow.  The 

management of the control-flows and data-flows affects the performance of the 

megaservice.  Traditionally, a megaservice is the central controller for invoking, 

monitoring, querying, and terminating autonomous services.  The megaservice acts as a 

client that makes requests to the autonomous services, which function as servers.  The 

autonomous services process the data supplied by the megaservice and return the result to 

the megaservice.  Since the megaservice is the central hub of all data traffic, this 

execution model behaves as a centralized data-flow model.  Examples of the centralized 

data-flow model can be found in software integration frameworks such as CORBA [64], 

J2EE [13], and Microsoft .NET [47]. 

This thesis demonstrates through a theoretical analysis that the centralized data-flow 

model is not efficient for composing autonomous services that communicate large 

volumes of data.  In the centralized data-flow model, the megaservice acts as a hub to 

collect and to forward data to autonomous services even when the data produced by one 

service is utilized by another service.  Since the data is sent indirectly, redundant data 

traffic occurs.  Furthermore, the megaservice in the centralized data-flow model becomes 

a communication bottleneck and a critical system resource.  In this thesis, a distributed 

data-flow model is proposed.  In the distributed data-flow model, data are exchanged 

directly among the autonomous services, and redundant data traffic is eliminated.  The 

distributed data-flow model utilizes the existing communication network among the 

autonomous services and alleviates the communication load on the megaservice.  Finally, 

since data is distributed among the autonomous services, computations can be distributed 

to allow the data to be processed across the network. 

 



CHAPTER 1. INTRODUCTION  7

This thesis presents an implementation of the distributed data-flow model, namely the 

Flow-based Infrastructure for Composing Autonomous Services (FICAS).  FICAS is a 

collection of software modules that support the three phases of service composition: 

• Construction of autonomous services.  The distributed data-flow model must support 

direct data communications among the services.  Within an autonomous service, the 

data-flows are separated from the control processing.  While the autonomous service 

is coordinated by one entity, the input data may come from another entity, and the 

output data may be sent to yet another entity.  In FICAS, a metamodel is defined to 

coordinate the autonomous services and to specify the distribution of data-flows. 

• Specification of megaservices.  Abstractions are necessary to describe the behaviors 

of the megaservice.  In FICAS, a high-level language is introduced and designed to 

separate the compositional specification from the computational specification of a 

megaservice.  The compositional specification defines the relationships and the data 

dependencies among the autonomous services.  For computational specification, 

mobile class is introduced and is used to specify how data generated by the 

autonomous services should be processed by the megaservice. 

• Execution of megaservices.  A megaservice is managed by a central controller, which 

serves as the sole coordinator of all the autonomous services that make up the 

megaservice.  Parallelism among the autonomous services is exploited during the 

execution of the megaservice, with the assumption that the autonomous services 

without data dependencies can be executed in parallel.  While there is extensive 

literature on parallel job scheduling [32, 33], FICAS focuses on the utilization of the 

distributed data-flows to conduct performance optimization for megaservices. 

As an experimental implementation of the distributed data-flow model, FICAS reaffirms 

the findings of the theoretical analysis.  In addition, FICAS provides a test bed for 

investigating performance issues along with other complex issues involved in service 

composition. 

 



CHAPTER 1. INTRODUCTION  8

1.2 Related Research 

There are several existing approaches in building frameworks where a number of 

distributed software components may be integrated and work together.  This section 

provides a brief review on some of these existing approaches. 

1.2.1 Distributed Computing Environment 

The Distributed Computing Environment (DCE) from the Open Software Foundation 

(OSF) is a collection of modern concepts and products that help users set up and run 

client server applications in a heterogeneous computer network [65, 66, 77].  DCE is one 

of the earlier efforts in enabling interoperability among distributed software components.  

It provides developers with capabilities to hide differences among the hardware and 

software elements in a large network.  DCE provides many functions that can be found in 

other computer networking environments, but packages the functions to make them easier 

to use.  For instance, the Remote Procedure Call (RPC) facility provides a way of 

communicating between software modules running on different systems.  The RPC is 

much simpler to code than earlier methods, such as socket calls.  The RPC automatically 

converts data from the format used by one computer to that used by another.   

DCE establishes a framework through which functionalities from multiple software 

components can be integrated in a homogenous manner.  A procedural program can be 

distributed onto multiple computers via the following steps: 

1. Partition the program's data and the functions into multiple components that have 

clearly defined RPC interfaces;  

2. Distribute those components across multiple hosts; and 

3. Change function calls for the components to RPCs.  

 



CHAPTER 1. INTRODUCTION  9

Client Host

Client OS

Client Stub Generated
By IDL Compiler

Application Code

Server Host

Server OS

Service Code

Server Stub Generated
By IDL Compiler

Client Application Distributed Component

Communication Network

 

Figure 1.2: Calling Stack in the Distributed Computing Environment 

Data and functions are encapsulated as components, and the only way to access the 

components is through their RPC interfaces.  Figure 1.2 shows an overview on how 

service requests are handled in DCE.  An Interface Definition Language (IDL) is used to 

specify the service interface.  The interface is compiled into the client and server stubs, 

which provide a homogeneous access protocol layer for the distributed components.  A 

client application calls a client stub to request a service.  The client stub interacts with the 

client operating system, which sends the request to the server host via the communication 

network.  Eventually, the server stub is invoked, and the service code is executed to 

perform the requested service.  The transmission of service requests and responses 

between clients and servers is handled by DCE so that applications need not deal with 

concerns such as the network location of the clients and servers, the differences between 

hardware platforms, operating systems, implementation languages, and networking 

protocols, etc. 

DCE provides a high-level, coherent environment for developing and running 

applications on a distributed system.  It can be used when data and resource sharing, 

extensibility, availability, and interoperability are desired.  However, there are a few 

limitations when applying DCE for service composition.  First, DCE is most suitable for 

tightly coupled integration scenarios, since it uses a proprietary low-level data format for 

 



CHAPTER 1. INTRODUCTION  10

representing the data for exchange among distributed components over the network.  

Second, DCE does not support languages other than C.  Extensive programming expertise 

is required to compose service functionalities.  Third, DCE is no longer in development; 

it is not being maintained, nor is it being ported to the current releases of operating 

systems.  Finally, the communications in DCE among the clients and the components 

utilize the centralized data-flow model, and there is no distinction between control-flows 

and data-flows.  As this thesis will show, the centralized data-flow model is not suitable 

for the integration of components that require the exchange of large volumes of data. 

1.2.2 Common Object Request Broker Architecture 

The Common Object Request Broker Architecture (CORBA) makes the reuse of software 

possible through distributed object computing, which combines the concept of distributed 

computing with object-oriented computing [64, 67].  As two related distributed 

computing technologies, CORBA and DCE share many similarities.  In fact, CORBA can 

be regarded as the object-oriented heir to DCE.  Both use IDL to define the service 

interface and compiles IDL into client and server stubs.  Both use the same calling stack 

(as previously shown in Figure 1.2) for invoking distributed software components.  The 

fundamental difference between CORBA and DCE lies in the fact that DCE was 

designed to support procedural programming, whereas CORBA was designed to support 

object-oriented programming.  Object-oriented programming environments are usually 

characterized by their support for encapsulation, abstraction, inheritance, and 

polymorphism.  On the other hand, a procedural programming environment can be used 

to implement an object-oriented programming environment.  Many CORBA systems are 

implemented on top of DCE. 

CORBA has the advantage of being object-oriented, more modern and supports more 

comprehensive features than DCE.  However, CORBA has had a great disadvantage of 

being too low-level and complicated.  Comparing to DCE, CORBA is difficult to learn, 

and often requires skillful developers to use.  For service composition, CORBA shares 
 



CHAPTER 1. INTRODUCTION  11

many issues that exist in DCE: (1) CORBA is most suitable for composition when the 

user of the software components also owns the components; (2) CORBA lacks the high-

level abstraction in its programming support for conducting service composition [80]; 

and (3) CORBA is inefficient when integrating services that communicate large volumes 

of data, since it uses the centralized data-flow model. 

1.2.3 CHAIMS 

The Compiling High-level Access Interfaces for Multi-site Software (CHAIMS) project 

focuses on the composition of large distributed services [59, 74, 80, 92].  Rather than 

following the traditional waterfall model for developing software applications, which 

starts from specifications, through design, to code generation, CHAIMS assumes that 

large applications can best be composed from existing services through 

megaprogramming [14].  In megaprogramming, functionalities of services provided by 

large organizations are captured by megamodules.  The megamodules are internally 

homogeneous, independently maintained software systems managed by a community 

with its own terminology, goals, knowledge and programming traditions.  Each 

megamodule describes its externally accessible data structures and operations and has an 

internally consistent behavior. 

A key feature of CHAIMS is the high-level compositional language CLAM [80].  As a 

purely compositional language, CLAM does not include any primitives for computation.  

The separation of the composition from the computation reduces the required 

programming expertise and provides a clean way to specify megaservices.  Furthermore, 

CLAM is intended for large-scale environment where performance is important.  The 

long duration of megamodule execution necessitates asynchronous invocation and 

collection of results.  Whereas traditional programming languages assume synchrony in 

the invocation of remote routines, CLAM extends the simple notion of composition by 

splitting the traditional invocation to provide parallelism for asynchronicity.  The 

divisions are the initialization, execution, and result delivery phases of programs, due to 
 



CHAPTER 1. INTRODUCTION  12

the fact that each of these program phases behaves differently.  Also, CLAM supports 

heterogeneous computing environment, and is not tied to any specific communication 

protocols.  The compiler for CLAM generates a variety of invocation sequences for 

current and developing standards of software interoperation, e.g., CORBA and JAVA 

RMI.  Finally, by not conducting computations on user’s data, CLAM is not restricted in 

its ability to pass data between arbitrary megamodules.  CLAM uses an opaque data type 

to handle all data objects returned by the megamodules. 

CHAIMS serves as a point of departure for this thesis.  FICAS follows the 

megaprogramming paradigm.  The autonomous services are the megamodules, and 

service composition is regarded as an act of megaprogramming.  The compositional 

language in FICAS is based on CLAM, and FICAS utilizes many optimization 

techniques employed by CHAIMS to improve the performance of the composed services.  

On the other hand, FICAS extends CHAIMS in several areas.  First and foremost, FICAS 

investigates the use of distributed data-flows for the execution of the composed services.  

Megamodules are built as autonomous services that separate their data-flows from their 

control-flows.  The autonomous services are centrally coordinated in the same fashion as 

in CHAIMS, however the data can be directly exchanged among the services in FICAS.  

Second, although it separates composition from computation, FICAS improves on 

CHAIMS’s ability to support computation through the use of mobile class to conduct 

dynamic information processing.  Third, FICAS extends the megaprogramming model.  

The megamodules are no longer software entities providing fixed functionalities.  

Through active mediation, a service client can send dynamic routines to an autonomous 

service to expand the functionalities of the service.  This increases the customizability 

and flexibility of the autonomous service.   

1.2.4 Shared Dataspace 

A shared dataspace is a place where arbitrary, application-specific objects can be shared 

among distributed users [2, 76].  It is used as a medium for communication in a 
 



CHAPTER 1. INTRODUCTION  13

distributed and parallel data-driven system.  The shared medium also becomes a 

synchronization mechanism during the concurrent execution of the processes involved in 

a computation.  Conceptually centralized, shared dataspace can be implemented as a 

distributed infrastructure, similar to the concept of building a distributed shared memory 

system to provide the abstraction of the shared memory across multiple network nodes. 

Operating as a global communication buffer, a shared dataspace plays the role of traffic 

cop for data flowing from one process to another in parallel and distributed systems.  The 

shared dataspace imposes no schema restrictions, ideal for distributed programming 

where a general data delivery mechanism is needed.  Linda and TSpaces are two shared 

dataspace systems.  Linda [16, 17, 37, 38] is one of the original systems that use the 

shared dataspace model.  The IBM TSpaces system [98] extends the shared dataspace 

model with database features, e.g., persistent repository, indexing and query capabilities. 

The shared dataspace can be used to conduct service integration when the application 

scenario is data driven.  For instance, TSpaces was used to build the Event Heap for the 

Stanford Interactive Workspaces Project [34].  In the shared dataspace, the relationships 

among distributed components are implicitly implied rather than explicitly specified.  

Each component is responsible for detecting the presence of data values and examining 

their actual contents.  The shared dataspace approach lacks the mechanism to conduct 

central coordination, and therefore is ineffective when it is desired to define a process 

flow for the distributed components.  FICAS, on the other hand, is more suitable for 

integration scenarios that are process driven.  The process flow is explicitly specified, and 

the dependencies of the distributed components are predefined.  Furthermore, the shared 

dataspace approach and FICAS differ in how the service composition is specified.  The 

shared dataspace approach does not separate between computation, communication and 

synchronization in the distributed components.  Each component is a “smart” entity in 

which the computational code is interspersed with the communication, coordination and 

synchronization code.  The shared dataspace approach places much burden on the 

development of the distributed components.  FICAS relies on the “dumb” services that 

 



CHAPTER 1. INTRODUCTION  14

use a simple request reply model.  The services perform computations when and only 

when they are asked to.  This approach reduces the complexity in developing the 

services. 

1.2.5 Web Services 

The concept of web services has emerged as an important paradigm for general 

application integration in the Internet environment.  Web services are self-contained, self-

describing, modular applications that can be described, published, located and invoked 

across the Web [78].  Web services perform functions that can be anything from simple 

requests to complicated business processes.  Related to this thesis, web services are 

autonomous services in the context of the Web. 

Interactions with the web services are conducted through SOAP (Simple Object Access 

Protocol) [15].  SOAP is an XML-based messaging protocol for information exchange in 

a decentralized, distributed environment.  SOAP is essentially a flexible form of the 

traditional remote procedure call (RPC) mechanism for gluing heterogeneous distributed 

applications together.  XML-based messaging allows the applications running on 

different platforms to understand the exchange message without the need to conduct data 

marshalling.  Another key advantage of SOAP is its simplicity, which enables its quick 

and wide adoption.  SOAP is intended to provide the basic functionality as a messaging 

protocol for invoking web services.  The complex functionalities that exist in other 

distributed component middleware technologies are supported by separate level of 

protocols in the web service stack, as shown in Figure 1.3: 

• The bottom layer supports the transportation of messages among web services.  

HTTP and SMTP are the two widely adopted protocols for exchanging messages in 

the distributed computing environments.  They come with many nice features such as 

easy routing through firewalls, extensible security and authentication features, etc.  

 



CHAPTER 1. INTRODUCTION  15

By trading performance with features, other protocols, such as TCP/IP, can also be 

used. 

• The messaging layer uses SOAP to enable homogeneous information exchange 

among web services.  SOAP and web services are implicitly associated with each 

other: applications that support SOAP are called web services, and all web services 

support SOAP.  In addition, SOAP also has shown considerable promise for 

interoperability among the different distributed component models.  Given its 

simplicity, SOAP can be used as a platform to implement the messaging standards 

used in other frameworks, e.g., CORBA and Java RMI [46]. 

• The service description layer uses the Web Service Description Language (WSDL) to 

describe the interfaces of web services and the methods for interacting with the 

services [23]. 

• The service discovery layer uses the Universal Description, Discovery and Integration 

(UDDI) protocol as the means for publishing and discovering services [85]. 

Network

Messaging

Service Description

Service Discovery

Service Flow

HTTP, SMTP,
TCP/IP ...

SOAP

WSDL

UDDI

WSFL

 

Figure 1.3: Web Service Stack 

 



CHAPTER 1. INTRODUCTION  16

• Sitting at the top layer of the web service stack, the Web Service Flow Language 

(WSFL) manages business processes by modeling the participants in a workflow as 

web services [53].  

One main application area of web services is in workflow management.  A workflow is 

defined as “the automation of a business process, in whole or part, during which the 

documents, information or tasks are passed from one participant to another for action, 

according to a set of procedural rules” [97].  A workflow coordinates and monitors 

execution of multiple tasks arranged to form a complex business process.  The workflow 

approach to coordinating task execution provides a natural way of exploiting distributed 

object and middleware technologies [39].  The WSFL considers two models for 

composing web services into integrated workflows.  The first type is known as flow 

model, where a composition is specified as an execution sequence of functionalities 

provided by the web services.  The second type is known as global model, where a 

composition is specified as a description of how web services interact with each other in 

the workflow.  The interactions, modeled as links between endpoints of the web services’ 

interface, are decentralized and distributed.  FICAS provides a hybrid of the two models 

considered by WSFL.  The specification of megaservices is based on the flow model.  

Procedural rules are applied to control the execution of the autonomous services.  At the 

same time, the execution of megaservices utilizes the global model, where the 

interactions among the services are decentralized and distributed. 

The key difference between the web service stack and FICAS is in the messaging layer.  

SOAP, based on the RPC call mechanism, invokes web services using function calls.  

The interactions among the web services use the centralized data-flow model; the result 

generated by a service is always returned to the entity that invokes the service.  While 

suitable for many application scenarios that integrate simple business services, SOAP is 

not suitable for integrating large-scale services that communicate large volumes of data.  

Through FICAS, the thesis demonstrates that the distributed data-flow model is better 

suited by allowing direct data exchanges among the services. 

 



CHAPTER 1. INTRODUCTION  17

1.3 Organization of the Thesis 

The rest of this thesis is organized as follows: 

• Chapter 2 categorizes service composition infrastructures into four models based on 

how the control-flows and data-flows are managed.  The advantages and 

disadvantages of the models are analyzed using a formal performance model, where 

parameters are assigned to the system resources such as computational nodes and 

communication networks.  We show that the distributed data-flow model has better 

performance and it scales better than the centralized data-flow model.  This analysis 

provides the motivation to introduce FICAS, an infrastructure that utilizes the 

distributed data-flow model for composing services. 

• Chapter 3 defines a metamodel for the autonomous service to enable the 

homogeneous access within FICAS.  Given the metamodel, we define an access 

protocol for the autonomous service, ASAP, through which the services can be 

coordinated.  The programming support for building ASAP-enabled autonomous 

services is described in the chapter.   

• Chapter 4 describes the buildtime environment of FICAS.  The CLAS language is 

introduced as the high-level compositional language to support the compositional 

specification of megaservices.  The language provides the support for the distribution 

of data-flows among autonomous services.  The mobile class is introduced to support 

computational specification of megaservices.  Using the mobile class, a megaservice 

can separate its compositional specification from its computational specification. 

• Chapter 5 describes the runtime environment of FICAS with the focus on the 

planning and utilization of the distributed data-flows.  Performance analysis is 

conducted to compare the centralized and distributed data-flow models.  Furthermore, 

the chapter describes the runtime support for the mobile class that is used to conduct 

 



CHAPTER 1. INTRODUCTION  18

active mediation and to minimize data-flows for the megaservice.  Finally, an 

infrastructure for engineering services is built based on FICAS to demonstrate that the 

distributed data-flow model is suitable for composing large-scale software services. 

• Chapter 6, the final chapter, contains a summary and discussion of the material 

presented in this thesis.  The chapter summarizes the research contributions.  In 

addition, the chapter discusses possible future extensions of the research. 

 

 



 

Chapter 2  

Service Composition Infrastructures 

Software services managed autonomously are linked together to form a data processing 

system controlled by a megaservice.  Through composition, the megaservice utilizes the 

functionalities provided by the autonomous services.  The megaservice controls the 

executions of the autonomous services by exchanging messages with the autonomous 

services.  The flow of the control messages is called control-flow.  The executions of the 

autonomous services generate data that need to be exchanged among the collaborating 

autonomous services.  The flow of data is called data-flow.  The service composition 

infrastructures differ in how the control-flows and the data-flows are managed.  For 

instance, control messages may be sent in sequence or in parallel; data messages may be 

channeled through the megaservice or distributed among the autonomous services.  The 

performance of a megaservice can be greatly affected by the flows of the control and data 

messages. 

Parallel execution of autonomous services is the underlying assumption in service 

composition, and the objective of control-flow scheduling is to take advantage of the 

parallelism among autonomous services.  Much research effort has been devoted to 

control-flow scheduling in the past [1, 8, 82].  On the other hand, less attention has been 

given to data-flow based performance optimization techniques.  This chapter points out 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  20

the significant impact of data-flow scheduling on megaservice performance and to 

provide a mathematical basis for evaluating service composition infrastructures that 

utilize distribution of data-flows. 

2.1 Service Integration Models 

Conceptually, a distributed computing environment is viewed as a set of processors 

interconnected by a communication network.  We regard the work performed by 

autonomous services as a combination of computation and communication.  Computation 

is conducted on a processor and involves no interaction among the multiple processors.  

For communication, messages are passed among the multiple processors.  There are two 

types of messages: control messages and data messages, distinguished by their use at the 

recipient of the messages.  Examples for control messages include service invocation 

requests and status polling requests.  Examples for data messages include engineering 

design data and weather information to conduct simulation.  Control messages are short 

messages that are used to trigger and signal state changes at the autonomous services.  

Data messages are used to transmit large data contents for the autonomous services.   

2.1.1 Model Classification 

To execute a megaservice, control and data messages need to be exchanged among 

autonomous services.  The control-flow describes the set of partially ordered control 

messages, and data-flow describes the set of partially ordered data messages.  Figure 2.1 

illustrates how the control-flows and data-flows are formed among the services.  A thin 

arrow indicates the existence of control-flows between two service nodes, and a thick 

arrow indicates the existence of data-flows between two service nodes.  Service 

composition infrastructures are classified into four integration models:   

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  21

 

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

M

S1

S2 S3

S4

(1C1D) Centralized Control-flow
and Centralized Data-flow Model

Control-flows Data-flows Megaservice
M

Autonomous
Services

S1, S2, S3, S4

(1CnD) Centralized Control-flow
and Distributed Data-flow Model

(nC1D) Distributed Control-flow
and Centralized Data-flow Model

(nCnD) Distributed Control-flow
and Distributed Data-flow Model

 

Figure 2.1: Classification of Service Integration Models 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  22

• Centralized control-flow and centralized data-flow model (1C1D):  Because of its 

simplicity, the 1C1D model is the most widely used. 

• Centralized control-flow and distributed data-flow model (1CnD):  The 1CnD model 

extends the 1C1D model by allowing data-flows to move directly among services, 

bypassing the central control node. 

• Distributed control-flow and centralized data-flow model (nC1D):  The nC1D model 

distributes the control-flows while maintaining a centralized hub for data-flow 

exchanges.  It is a variation of the 1C1D model with distributed control-flows. 

• Distributed control-flow and distributed data-flow model (nCnD):  The nCnD model 

allows both control-flows and data-flows to be distributed.  It is a variation of the 

1CnD model with distributed control-flows. 

The 1C1D model is described in Section 2.1.2.  We combine the description of the 

distributed control-flow models (i.e., nC1D and nCnD) in Section 2.1.3.  Finally, the 

1CnD model is introduced in 2.1.4.   

2.1.2 Centralized Control-flow and Centralized Data-flow 

Model 

The Centralized Control-flow and Centralized Data-flow (1C1D) model has the simplest 

structure.  The megaservice is the central exchange point for both control and data 

messages.  The 1C1D model naturally fits the client-server architecture, where 

autonomous services act as servers and the megaservice functions as the client.  Data and 

controls are passed from the megaservice to a desired autonomous service, and the results 

are returned to the megaservice for further processing.  When additional functionalities 

are needed from other autonomous services, data and controls are again sent out from the 

megaservice. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  23

In today’s practice, the 1C1D model dominates.  Simplicity is its key advantage.  Most 

service integration environments, e.g., CORBA [64], J2EE [13], and Microsoft .NET 

[47], use the 1C1D model.  However, there are drawbacks associated with the centralized 

approach.  Since data generated by the autonomous services need to be processed by the 

megaservice before being forwarded onto subsequent autonomous services, the processor 

that the megaservice runs on must possess fair amount of processing power and 

communication bandwidth.  Many scenarios can be found to have difficulty in deploying 

the 1C1D model.  For example, Internet service composition occurs in an environment 

where the autonomous services normally run on fairly high performance servers and the 

megaservices run on devices that are configured for browsing rather than for processing.  

Since large volumes of data may be produced, the megaservices become communication 

bottlenecks in the 1C1D model.  The centralized communication topology makes the 

1C1D model not easily scalable.  It is especially problematic in an Internet environment, 

where the communication links between the megaservice and autonomous services are 

likely to be of limited bandwidth.  At the same time, since all the control-flows and data-

flows are channeled through the megaservice, there is no communication between any 

pairs of autonomous services.  The high-speed networks deployed between autonomous 

services will not be utilized under the 1C1D model. 

2.1.3 Distributed Control-flow Models 

In the distributed control-flow models, control messages can be sent between autonomous 

services, and the course of megaservice execution is coordinated by multiple autonomous 

services.  A good example of distributed control-flows can be found in data-flow 

computer architectures [30, 36, 87] where the execution of a program is partially 

controlled by the flow of data rather than successive fetching of instructions.  A parallel 

program is compiled into operational code segments that are distributed to distinctive 

functional units, and the presence of operands activates the execution of the code 

segments.  Given its ability to exploit the natural parallelism of algorithms [31], data-

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  24

flow computer architecture has been seen as a promising approach in designing high 

performance multi-processor machines. 

However, there are difficulties in effectively applying distributed control-flows to 

conduct service composition.  Since control-flows are coordinated in a distributed 

fashion, operational code segments need to be distributed to relevant function units for 

execution.  This places the requirement for homogeneity on the underlying hardware 

platform.  Although such a requirement may easily be met in building parallel computers, 

it is difficult to distribute arbitrary operational code segments in a heterogeneous service 

composition infrastructure.  In addition, there remain many technical challenges to 

convert a centralized megaservice specification of control sequences into distributed 

operational code segments that can be used to execute the megaservice.  Due to these 

limitations, distributed control-flows have been adopted only for special-purpose 

applications, where code segments are installed on individual functional units and a 

distributed application environment is constructed from bottom up.  Hence, this thesis 

will focus only on the centralized control-flow models, i.e., the 1C1D and 1CnD models. 

2.1.4 Centralized Control-flow and Distributed Data-flow 

Model 

While maintaining the same centralized control-flow approach as in the 1C1D model, the 

Centralized Control-flow and Distributed Data-flow (1CnD) model can improve 

megaservice performance by exploiting the distribution of data-flows.  The 

improvements come from the scheme that data are passed directly between autonomous 

services without going through the megaservice.  Data communications among 

autonomous services are coordinated, resulting in distributed data-flows.  The 

megaservice can instruct two autonomous services to establish a data-flow through which 

data are directly exchanged, and the megaservice does not need to function as an 

intermediate node on the data-flow path.  For example, Figure 2.2(a) illustrates the 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  25

control-flows and the data-flows exhibited by a megaservice in the 1C1D model.  The 

megaservice coordinates autonomous services and serves as the hub for all the data 

communications.  Figure 2.2(b) shows the control-flows and the data-flows that the 

megaservice exhibits in the 1CnD model.  Data are exchanged directly among the 

autonomous services, from S1 to S2, and from S2 to S3, without going through the 

megaservice.  The megaservice avoids becoming the communication bottleneck when 

large amount of data are exchanged among the autonomous services.  Intuitively, the 

distribution of data-flows in a service composition infrastructure can improve the 

performance of a megaservice.  The rest of this chapter formalizes the comparison 

between the 1C1D model and the 1CnD model. 

M

S1

S2

S3

M

S1

S2

S3

(a) 1C1D

Control-flow Data-flow

(b) 1CnD  

Figure 2.2: Megaservices with Centralized and Distributed Data-flows 

 

 

 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  26

2.2 System Modeling 

In order to evaluate the performance of megaservices under different integration models, 

we need to first characterize and give a formal definition to the components within the 

computing environment.  The components include the hardware platform, the 

autonomous services, and the megaservices. 

As illustrated in Figure 2.3, the hardware platform is modeled as a set of processor nodes 

{P0, P1, … , Pn} tied together by a completely connected network.  Associated with every 

processor Pi is the processor capacity CPi expressed in terms of the number of cycles that 

the processor can handle in unit time.  Furthermore, associated with each pair of 

processors (Pi, Pj) is the communication capacity CMij expressed in terms of the volume 

of data that can be transmitted from processor Pi to processor Pj in unit time.  A 

communication channel originating from a processor Pi to itself may also exist, with 

capacity CMii.  The communication network is modeled as a set of point-to-point links 

that interconnect every processor with each other.  As there is no shared medium among 

links, each communication link operates independent of each other.  This model is a 

simplified model for most of the real-world network architectures, but is sufficient to 

serve the purpose of the analysis here.  More complex models can be built by introducing 

additional constraints on the system parameters. 

Let {S1, … , Sn} denote a set of autonomous services, each performing some specific 

operations.  Conceptually, an autonomous service Si runs on a local processor Pi, and the 

execution of Si is independent of any other autonomous services.  In the case where 

multiple services reside on the same processor, a physical processor can serve multiple 

virtual processors and set appropriate capacity parameters for the virtual processors.  

Complex autonomous services that involve multiple processors for execution can be 

further partitioned into atomic service units such that each atomic service unit only 

performs operations on its local processor.  As a result, in our analysis we can establish a 

simple one-to-one mapping between a processor and an autonomous service. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  27

...
...

CP2 CPn

CPn

CP1

CP0
CM0n/CMn0

S1: f1 (SI1, SP1, SO1)

CM01
/C

M10

S2: f2 (SI2, SP2, SO2) Sn: fn (SIn, SPn, SOn)

Sn: fn (SIn, SPn, SOn)M: (_, MP, _)

 

Figure 2.3: System Modeling of the Service Composition Infrastructure 

A megaservice M is regarded as a partially ordered sequence of tasks for our performance 

analysis.  Tasks are classified as either local processing or remote invocations of the 

autonomous services.  The workload of each type of task is then evaluated.  Without loss 

of generality, we assume that the megaservice M runs on the processor P0.  Thus, local 

processing takes place on P0 and its workload is denoted as MP number of cycles.  In the 

case where the megaservice M runs on processor Pi (i≠0), we can treat the invocation of 

the autonomous service Si as part of local processing.  Remote invocations of 

autonomous services is modeled using a frequency vector {f1, … , fn}, where fi denotes 

the number of times Si is invoked during the execution of M.  The autonomous service Si 

is invoked by receiving input data of size SIi.  It is executed at a cost of SPi expressed in 

terms of the number of cycles.  An output data of size SOi is generated as the result of 

executing Si.  Data-flows are modeled as a collection of communication messages.  Each 

message has an initialization cost, which is treated as a fixed size header added onto the 

message.  The size of the message header is denoted as a constant λ. 

Given the mathematical model for the computing environment, we can analyze the 

performance of a megaservice in the distributed data-flow model and compare with that 

in the centralized data-flow model.  We first assume that control messages are 
 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  28

insignificant as compared to data messages in terms of both the consumed system 

resources and the communication times.  This is a valid assumption for most service 

composition scenarios, where the volume of data-flows is much more than that of 

control-flows.  We therefore ignore control-flows and assume that the operations of 

autonomous services are solely depending on the availability of their input data.  Section 

2.3 analyzes the impact of distributed data-flows on the system resources consumed by 

megaservices.  Section 2.4 analyzes the time to execute individual megaservices with or 

without distributed data-flows.  To complete the performance comparison, Section 2.5 

brings control-flows into consideration.  Assuming that the control message size is 

comparable to the data message size, we compare the performance of a service invocation 

for the 1C1D and the 1CnD models. 

2.3 Aggregated Cost of a Megaservice 

We first focus the analysis on the overall system bandwidth requirements of different 

integration models.  The aggregated cost of a megaservice measures the amount of 

system resource consumed by the megaservice. 

2.3.1 Aggregated Cost Definition 

Before giving a definition of the aggregated cost of a megaservice, we need to first 

determine the cost function for individual components of the system resource.  In our 

model, we define a cost evaluation function Cef, which is formally a mapping defined as 

follows:  Given a megaservice M and a set of processors {P0, P1, … , Pn}, the cost 

evaluation function Cef(M) returns the tuple (vp, vm) , where 

• vp = {vpi | 0 ≤ i ≤ n}, where vpi is the load in terms of the number of processor cycles 

consumed by processor Pi. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  29

• vm = {vmij | 0 ≤ i, j ≤ n}, where vmij is the load due to the message traffic generated 

from processor Pi and to processor Pj. 

The vectors vp and vm represent, respectively, the processing costs and the 

communication costs of the megaservice. 

The aggregated cost of a megaservice is defined as the sum of all individual cost 

components.  We assume that the processing costs and the messaging costs of a 

megaservice can be linearly scaled relative to each other.  The weights of the scale given 

to the processing costs and the messaging costs are denoted as α and β respectively.  

Hence, we define the aggregated cost of a megaservice as: 

∑∑
≤≤=

×+×=
nji

ij

n

i
i vmvpMCOST

,00
)( βα  

where (vp, vm) = Cef(M) and α, β ≥ 0.  The weights, α and β, can be set to appropriate 

values to reflect the relative scarcity of processor resources to communication resources.  

In the extreme case where α = 0, the system has unlimited processing power, and the 

aggregated cost is a sum of the communication costs.  On the other hand, if β = 0, the 

system has unlimited networking bandwidth, and the aggregated cost is a sum of the 

processing costs.  The analysis of aggregated cost is now a problem of determining the 

processing cost vp and the communication cost vm.  

2.3.2 Centralized Data-flow Model 

We start with the centralized data-flow model.  Each component vpi of the processing 

cost can be calculated using Equation 2.1: 





≠×
=

=
0
0

iifSPf
iifMP

vp
ii

i  (2.1)

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  30

The processing load on the processor P0 is MP, as defined earlier in the system model.  

The megaservice M is the only local process running on P0.  The processing load on 

processor Pi is equal to the execution cost of the autonomous service Si that runs on the 

processor multiplied by the number of times fi that the service Si is invoked. 

The calculation of the messaging cost vm is equally straightforward.  The only types of 

network traffic in the system are caused by the invocation of services.  Messages are sent 

from P0 to other processors for the invocation of the autonomous services, and the results 

are returned to P0 as messages originated from where the autonomous services are 

executed.   Each component vmij of the messaging cost can be calculated using Equation 

2.2: 









=≠+×
≠=+×

=
otherwise

jiifSOf
jiifSIf

vm ii

jj

ij

0
0,0)(
0,0)(

λ
λ

 (2.2)

The input data SIj of the autonomous service Sj along with the message header λ is sent on 

the communication link (P0, Pj) for each invocation of the service Sj.  The load is 

multiplied by fj, the number of times that Sj is invoked.  The output data SOi of the 

autonomous service Si along with the message header λ is sent on the communication link 

(Pi, P0) for each invocation of the service Si.  The load is multiplied by fi, the number of 

times that Si is invoked.  Since there is no other network traffic caused by the 

megaservice, the messaging load on all other communication links is 0. 

The aggregated cost COSTc(M) for the centralized data-flow model can thus be calculated 

as: 

∑∑

∑∑

==

≤≤=

++××+×+×=

×+×=

n

i
iii

n

i
ii

nji
ij

n

i
ic

SOSIfSPfMP

vmvpMCOST

11

,00

)2()(

)(

λβα

βα
 (2.3)

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  31

2.3.3 Distributed Data-flow Model 

In the distributed data-flow model, the processing cost vp remain the same as in the 

centralized model.  The difference is in the communication cost.  To compute the 

communication costs, we first model the network traffic pattern within the distributed 

data-flow model. 

Let the vector of data distribution coefficients ∆ = {δij | 1 ≤ i ≤ n, 0 ≤ j ≤ n} describe the 

level of distributed data flow among the autonomous services.  Each coefficient δij is 

computed as: 

iijij SOdd=δ  

where ddij is the size of the output data generated by the autonomous service Si that 

transmits directly from processor Pi to processor Pj for further processing.  Since the data 

needs to be generated before transmitted, the data distribution coefficients have the 

following property: 

0 ≤ δij ≤ 1, for all 1 ≤ i ≤ n, 0 ≤ j ≤ n. 

We would like to point out two specific cases regarding the data distribution coefficients.  

(1) In the case where δij = 0 for all 1 ≤ i, j ≤ n, the distributed data-flow model converges 

to the centralized data-flow model, i.e., data-flows only exist between autonomous 

services Si and the megaservice.  (2) In the case where δi0 = 0 for all 1 ≤ i ≤ n, the data-

flows become fully distributed in the integration model.  In other words, the data-flows 

are established directly between autonomous services, and no data is returned to the 

megaservice for processing.  We expect majority of the distributed data-flow composition 

infrastructures to be somewhere in between of the two specific cases. 

Each component vmij of the messaging cost for the distributed data-flow model can be 

calculated using Equation 2.4: 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  32

















≠≠××+×

=≠××+×

≠=×−+×

=

∑
=

otherwise

jiifjimSOf

jiifimSOf

jiifSOSIf

vm
iijj

iii

n

k
kkjjj

ij

0

0,0),()(

0,0)0,()(

0,0)(

0

1

δλ

δλ

δλ

 

where  




≠
=

=
01
00

),(
ij

ij

if
if

jim
δ
δ

(2.4)

The equation is derived based on the following observations: 

• vm0j refers to the messaging load on the communication link (P0, Pj) for invoking the 

autonomous service Sj.  The volume of data sent from the megaservice equals the 

amount of invocation data SIj less the sum of the input data kkj SO×δ  contributed by 

each autonomous service Sk. 

• vmi0 refers to the messaging load on the communication link (Pi, P0) for sending the 

result data from the autonomous service Si back to the megaservice.  The data 

distribution coefficient δi0 are applied to the total output data size generated by Si.  

The function m(i, j) indicates the existence of distributed data-flow on the 

communication link. 

• vmij refers to the messaging load on the communication link (Pi, Pj) for sending the 

data between autonomous services.  For each invocation of the autonomous service 

Sj, input data of size iij SO×δ  needs to be sent from the processor Pi to the processor 

Pj. 

• The last type of messaging cost refers to sending the data from the megaservice to 

itself, which is considered negligible in our model. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  33

As a result, the aggregated cost of the megaservice for the distributed data-flow model 

can be calculated using Equation 2.5: 

∑ ∑

∑

∑∑

= =

=

≤≤=









××+×+++××

+×+×=

×+×=

n

i

n

j
jiiii

n

i
ii

nji
ij

n

i
id

jimfSOSIimf

SPfMP

vmvpMCOST

1 1
0

1

,00

),()))0,(1((

)(

)(

λδλβ

α

βα

(2.5)

2.3.4 Comparison of Centralized and Distributed Data-

Flow Models 

From Equations 2.3 and 2.5, the difference in the aggregated costs between the 

centralized and the distributed data-flow models can be calculated using Equation 2.6: 

( )∑
=

+×=−
n

i
messagedatadc iDiDMCOSTMCOST

1

)()()()( β  

where 

 








×−−××=

−××=

∑
=

n

j
jimessage

iiidata

jimfimfiD

SOfiD

1

0

),())0,(1()(

)1()(

λ

δ
(2.6)

 

The performance difference is due to their data volumes and message overheads.  The 

first component, Ddata, represents the difference in the volumes of data-flow between the 

two models.  In the centralized data-flow model, all output data are sent back to the 

megaservice. Whereas in distributed data-flow model, only a portion (i.e., δi0) of the data 

are sent back to the megaservice.  The second component, Dmessage, represents the 

difference in messaging overheads between the two models.  The distributed model 

initiates more data messages than the centralized model.  Since messages have an 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  34

initialization cost, more messages may incur higher overall communication cost, even 

though the amount of data content delivered by the messages decreases. 

Typical applications of service composition are coarse-grain and distributed computing 

scenarios, where the overhead is assumed to be smaller than the size of the messages 

themselves, i.e., λ << SI, SO.  Hence, the dominating factor in comparing aggregated cost 

between the two models is Ddata.  The distributed data-flow model is more appropriate for 

service composition because of the better performance.  On the other hand, in a fine-

grain, parallel computing scenario, the overhead cost of messages may become 

significant and outweighs the savings from reduced data-flows. 

2.4 Response Time For Megaservices 

Another aspect of our performance analysis focuses on the response time, i.e., the elapsed 

time between the start and the termination of a megaservice.  The response time analysis 

is useful in pinpointing bottlenecks of a system and gives guidance in designing a 

scalable system. 

We look at the response times for two types of atomic operations performed by a 

megaservice: executing a code segment on a processor and sending a message between 

two processors.  It is assumed that the response time for atomic operations is the 

workload per resource capacity.  Hence local processing of computational load vpi on 

processor Pi wih capacity CPi has a response time of vpi/CPi, and sending a message of 

size vmij from processor Pi to processor Pj with communication capacity CMij has a 

response time of vmij/CMij. 

A megaservice can be considered as a sequence of partially ordered distributed atomic 

operations.  The scheduling of the atomic operations affects the response time of a 

megaservice.  By executing atomic operations in parallel, the processors in the network 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  35

are better utilized, and can potentially decrease the overall response time of a 

megaservice.  In the following, we analyze the parallel executions of megaservice by 

considering two invocation schemes: 

• The serialized invocation scheme adopts a single threaded execution model.  

Autonomous services are invoked in the order as specified by the megaservice.  

Given the deterministic nature of the serialized invocation scheme, we can compute 

and compare quantitatively the response times of megaservices. 

• The parallel invocation scheme favors overlapping execution of autonomous services, 

subject to data dependencies.  We will model megaservices using Petri nets and 

conduct qualitative comparison of the centralized data-flow model against the 

distributed data-flow model. 

Interference of activities within the processor network, such as concurrent instances of 

other megaservices, can generate conflicts in allocation of system resources, causing 

variance in the response time.  While formal analysis of interacting system models is 

sometimes possible, discrete-event simulation remains the most general technique 

available for assessing the model’s behavior.  For the analysis of response time, we 

assume a single-user model, where system usage is light and there is no conflicts on 

system resource allocation. 

2.4.1 Serialized Invocation of Megaservices 

The response time of a megaservice under serialized invocation scheme can be calculated 

using Equation 2.7.  The response time T(M) for the megaservice M consists of two 

components: (1) TM is the time to perform the computational load MP on the processor 

P0 with capacity CP0.  TM is the same for both the centralized and the distributed data-

flow models.  (2) TS is the total elapsed time for executing the autonomous services.  

Each autonomous service Si consists of three sequential tasks: the input task with elapsed 

time TSIi during which input parameters are prepared, the processing task with elapsed 
 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  36

time TSPi during which computation is conducted on the input parameters, and the output 

task with elapsed time TSOi during which the results are returned back to the invoker of 

the autonomous service. 

TSTMMT +=)(  

iiii

n

i
ii

TSOTSPTSITSand

TSfTS

CP
MPTMwhere

++=

×=

=

∑
=1

0

 

(2.7)

The response time for M under the centralized data-flow model can be calculated as: 

∑∑

∑

==

=

+×+×+=

++×+=

n

i
iii

n

i
ii

n

i
iiiic

TSOTSIfTSPf
CP
MP

TSOTSPTSIfTMMT

110

1

)()(

)()(
 

where 

0

0

i

i
i

i

i
i

i

i
i

CM
SO

TSO

CM
SI

TSI

CP
SP

+
=

+
=

=

λ

λ

TSP

 

(2.8)

The processing elapsed time TSPi is the result of Pi processing the computational load of 

the autonomous service Si.  The input elapsed time TSIi is the result of the megaservice M 

sending the input data of size SIi to the autonomous service.  The output elapsed time 

TSOi is the result of Si sending the output data of size SOi back to the megaservice M.  

These components are aggregated to give the overall response time Tc for the 

megaservice.  The components of the elapsed time are broken into the processing costs 

and the communication costs.  In the centralized data-flow model, all communication 

costs are incurred for the traffic going through P0.  Hence, in designing centralized data-

flow composition infrastructure, it is important to maximize the communication capacity 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  37

between the processor on which the megaservice is initiated and the other processors on 

which the autonomous services reside.  On the other hand, the communication capacities 

between autonomous services have no effect on the response time at all. 

The response time for M under the distributed data-flow model can be calculated as: 

∑∑

∑

==

=

+×+×+=

++×+=

n

i
iii

n

i
ii

n

i
iiiid

TSOTSIfTSPf
CP
MP

TSOTSPTSIfTMMT

110

1

)()(

)()(
 

where

 

0

0

0

1

1

)0,(

,),(

i

ii
i

i

n

j
jjii

ki

kki
n

ki

i

i
i

CM
SOimTSO

CM

SOSI

CM
SOikmMaxMax

CP
SPTSP

×+×
=


















×−+







 ×+×

=

=

∑
=

=

δλ

δλ
δλTSI  

(2.9)

While the processing costs of autonomous services remain the same as in the centralized 

data-flow model, the communication costs differ.  Let’s look at the input elapsed time 

TSIi for the autonomous service Si.  Each autonomous service Sj contributes portion of its 

output data jji SO×δ  to Si.  The megaservice contributes the rest of the input data to Si.  

Since these data messages can be sent in parallel, the time to prepare the input parameters 

is the lengthiest among all the communication processes. 

The output elapsed time TSOi is spent to send the output data generated by the 

autonomous service Si to the megaservice M.  Since only a portion (i.e., δi0) of the output 

data SOi needs to be sent to the megaservice in the distributed data-flow model, the 

output elapsed time under the distributed model is guaranteed to be at least as short as 

under the centralized model, where all of the output data is sent back to the megaservice 

after the invocation of the autonomous service. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  38

PROPOSITION 2.1.  The response time incurred by a megaservice under a distributed 

data-flow integration model is no greater than the response time under a centralized data-

flow integration model, if the following conditions are met: 

• Autonomous services invocations are serialized; and 

• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0. 

Proof.  By the definition of data distribution coefficients: 

ikki SISO ≤×≤ δ0  for all k ≠ 0 and i ≠ 0 

Hence, we have: 

i

i

ki

kki
n

k CM
SI

CM
SOikm

Max
0

1

),( +
≤







 ×+×

=

λδλ
, 

i

i

i

n

j
jjii

CM
SI

CM

SOSI

00

1 +
≤

×−+ ∑
= λ

δλ
, and 

00

0)0,(

i

i

i

ii

CM
SO

CM
SOim +

≤
×+× λδλ

 

Comparing Equation 2.8 and Equation 2.9, we conclude T )()( MTM cd ≤ . � 

The key to establish Proposition 2.1 is the system communication capacity condition, 

which can be described as follows: the autonomous services need to have a 

communication backbone with at least as much bandwidth as the communication 

channels between the megaservice and the autonomous services. 

Most real-world computing networks easily satisfy this condition.  First to come to mind 

is uniformly connected processor networks, where all communication links have the same 

bandwidth.  This type of networks can be found in many corporate intranet settings where 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  39

all computing facilities are connected on a uniform backbone.  The second type is the 

client-server network, where autonomous services reside on well-connected server farms 

and the megaservices are clients accessing the servers from remote sites.  The 

communication capacity between the megaservice and the autonomous services may be 

order of magnitude smaller than the communication capacities among the autonomous 

services.  The Internet and wireless service networks both can be categorized as this type 

of networks. 

Some typical communication parameters are shown in Table 2.1.  These values will be 

used to derive sample data points for the response times in the two integration models.  

The Corporate Intranet A represents a typical Intranet computing environment where all 

machines are fully connected via a high-speed switch.  The Corporate Network B 

represents an Intranet computing facility with remote access capability, where servers are 

connected via a high-speed backbone to form a server farm and client machines connects 

with the server farm remotely.  The Wireless Network C represents a similar computing 

environment as Corporate Network B except that client machines access the server farm 

via wireless modems. 

Let’s evaluate the response times for the example megaservice shown in Figure 2.4.  The 

megaservice involves four autonomous services and two processing routines, which are 

carried out locally on the megaservice.  The autonomous services are specified as 

functions that take input data and generate output data.   We assume that autonomous 

services run on servers and megaservices are initiated from client machines.  As an 

example, the following parameters are assigned to the megaservice: 

• The size of data item b is 1 MB and the sizes of other data items are 1 KB; 

• The size of message header λ=128B; 

• Each autonomous service can be processed in 100 ms; and 

• The local-transform and local-processing routines can be processed in 100 ms. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  40

Table 2.1: Communication Parameters of the Example Computing Environments 

 Corporate 
Intranet A 

Corporate 
Network B 

Wireless 
Network C 

Network Bandwidth Among Servers 100M bps 100M bps 100M bps 

Network Bandwidth Between Clients 
and Servers 100M bps 1M bps 10K bps 

 

 

MEGASERVICE M 
    b = S1(a) 
    c = S2(b) 
    d = local-transform(c) 
    e = S3(d) 
    f  = S4(b) 
    result = local-processing(e, f) 
END 

Figure 2.4: Example Megaservice that Demonstrates Performance Optimizations 

Following Equation 2.8 and Equation 2.9, the response times are tabulated in Table 2.2.  

A few observations can be made: 

• The response times in distributed data-flow models are better than their counterparts 

in the centralized data-flow models.  This is due to the fact that the system 

communication capacity condition in Proposition 2.1 is met for all three types of 

networks. 

• The response times degrade with lower communication capacity between client 

machines and servers.  This is due to higher communication elapsed time with lower 

network bandwidth. 

 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  41

Table 2.2: Response Times of the Example Megaservice 

 Corporate 
Intranet A 

Corporate 
Network B 

Wireless 
Network C 

Centralized Data-flow Model 840.5 ms 24,647 ms 2,405,288 ms 

Distributed Data-flow Model 760.5 ms 804 ms 5,155 ms 
 

 

• Network bandwidth between client machines and servers becomes a bottleneck in 

centralized data-flow model, rendering the Wireless Network C inoperable to execute 

the megaservice.  On the other hand, the distributed data-flow model alleviates the 

bottleneck by distributing network traffic within the server farm. 

2.4.2 Parallel Invocation of Megaservices 

Our objective in this section is to extend the response time analysis to the cases where 

autonomous services can be invoked and executed in parallel, thus reducing the overall 

response time of the megaservice.  Compared to the sequential invocation scheme, the 

parallel invocation scheme brings performance enhancement to both the distributed data-

flow model and the centralized data-flow model.  The degree of enhancement depends on 

many factors, such as the degree of parallelism in a megaservice, the process scheduling 

algorithms, etc.  Many of these factors may only be effective under one integration model 

but not both, making a relevant comparison difficult.  To compare the two data-flow 

models, we make the assumption that the control-flows remain the same for the 

integration models used, namely the partial order of autonomous services and 

megaservice local processing are identical. 

Our first task is to model the execution of a megaservice.  It has been shown that timed 

Petri nets are capable of modeling synchronization and concurrency [56, 61, 75].  We 

model the execution of a megaservice as a timed marked graph (TMG), a well-known 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  42

subclass of Petri nets that allows representations of concurrency and synchronization, but 

not decision or conflicts.  Branches and loops within a megaservice are unfolded during 

the execution so that a megaservice can be seen as a partially ordered stream of execution 

tasks, each being either an autonomous service or a local processing segment of the 

megaservice. 

Figure 2.5 illustrates a TMG representation of the megaservice defined in Figure 2.4.  

Places, drawn as circles, are used to represent tasks.  Transitions, drawn as boxes, are 

used to represent synchronization points.  Places are labeled as one of the following: (1) 

an input task of an autonomous service (e.g. SI1_a), (2) a processing task of an 

autonomous service (e.g. SP1_a), (3) an output task of an autonomous service (e.g. SO1_a), 

or (4) a local processing segment of the megaservice (e.g. MP_c).  A unique subscription 

to distinguish the multiple invocations of an autonomous service is attached to the end of 

each label.  The time delay of a place is equal to the elapsed time to perform the task 

represented by the place.  The elapsed times are calculated in Equation 2.8 for the 

centralized data-flow model, and in Equation 2.9 for the distributed data-flow model.  

The elapsed time TSIi is assigned to the place SIi_x, TSPi is assigned to the place SPi_x, 

TSOi is assigned to the place SOi_x, and TM is assigned to the place MP_x, where x 

denotes any subscription.  A single token is placed in the initial place as the starting 

marking.  Such a Petri net model is known as a deterministic timed net, and the response 

time of the megaservice equals the minimum cycle time of the net. 

PROPOSITION 2.2.  The response time incurred by a megaservice under a distributed 

data-flow integration model is no greater than the response time under a centralized data-

flow integration model, if the following conditions are met: 

• CMki ≥ CM0i for all k ≠ 0 and i ≠ 0. 

Proof.  It was shown in [61] that the minimum cycle time of the TMG equals the 

maximum of the total delays in all directed circuits.  Hence the response time incurred by 

a megaservice equals the total delay of the longest non-cyclic path in the graph. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  43

MP_c SI3_d SP3_d SO3_d

MP_f

SI2_b SP2_b SO2_b

SI1_a SP1_a SO1_a

SI4_e SP4_e SO4_e

 

Figure 2.5: Timed Marked Graph Representation of the Example Megaservice 

Consider two timed marked graphs: TMGc and TMGd, representing megaservice 

executions under the centralized-data flow model and the distributed data-flow model, 

respectively.  By construction, TMGc and TMGd have the same structure, i.e. the same set 

of places, transitions, arcs and initial markings.  They differ only in the time delays that 

are assigned to the places.  Follow the proof in Proposition 2.1, the times TM, TSI, TSP, 

and TSO under the centralized data-flow model are greater than or equal to those times 

under the distributed data-flow model, when the communication capacity condition (i.e., 

CMki ≥ CM0i for all k ≠ 0 and i ≠ 0) is met.  Let τp
c and τp

d represent the time delays of a 

place p in TMGc and TMGd.  Thus, τp
c ≥ τp

d, if CMki ≥ CM0i for all k ≠ 0 and i ≠ 0. 

Let’s denote the longest non-cyclic path in TMGd as P.  The response time for the 

distributed control model equals the total delay of the path P in TMGd, which is 

.  The response time for the centralized model is at least as long as the total 

delay for the same path P in TMGc, which is 

∑ ∈Pp
d
pτ

∑ ∈Pp
c
pτ .  Since ∑∑ ∈∈

≥
Pp

d
pPp

c
p ττ , the 

proposition holds. � 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  44

Clearly, Proposition 2.2 covers Proposition 2.1, as serialized invocation is a special case 

of parallel invocation.  Therefore, we have proved that the distributed data-flow 

integration model has better response time performance than the centralized data-flow 

integration model if the system communication capacity condition is met. 

2.5 Performance Impact of Control-flows 

When the control message size is comparable to the data message size, the impact of 

control-flows on the performance of megaservices needs to be accounted for.  Different 

control and data messages are involved for service invocations under the Centralized 

Control-flow Centralized Data-flow (1C1D) and the Centralized Control-flow Distributed 

Data-flow (1CnD) models.  Under the 1C1D model, a service invocation consists of two 

messages: a service invocation request sent from the megaservice containing the input 

data for the invocation, and a reply message returned from the autonomous service 

containing the result of the invocation.  Under the 1CnD model, a service invocation is 

broken up into three phases.  During the data preparation, the megaservice informs the 

autonomous service to prepare the necessary input data.  During the invocation phase, the 

megaservice sends a service invocation request to the autonomous service.  And during 

the reply phase, the autonomous service acknowledges the completion of its tasks. 

Let’s compare the performance of the two integration models for the service invocation 

shown in Figure 2.6.  The autonomous service S is invoked with an input data element, 

and generates an output data element.  The input data element was previously produced 

by the autonomous service Sinput.  The output data element will be utilized by another 

autonomous service.  As the execution times of the autonomous service under the 1C1D 

and the 1CnD models remain the same, the performance comparison of the two models 

can be compared based on the communication cost. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  45

For simplicity, we model the cost of messages as a linear function to their sizes.  

Furthermore, we assume a control message has a size of λc, a data message containing the 

data element has a size of λd, and the combined message have a size of (λc+λd) when data 

and control are sent together.  Under the 1C1D model, the messaging cost for the service 

invocation request is (λc+λd), and the cost for the reply message is (λc+λd) as well.  

Therefore, the cost for the service invocation is (2λc+2λd).  For the 1CnD model, five 

messages are involved for the service invocation: (1) the megaservice first sends a control 

message to the autonomous service Sinput to establish a data-flow with the autonomous 

service S; (2) The autonomous service Sinput sends the necessary input data to the 

autonomous service S using a data message; (3) The autonomous service Sinput notifies the 

megaservice the completion of the data transfer; (4) The megaservice sends a service 

invocation request to the autonomous service with a control message; and (5) Finally, the 

autonomous service S completes its processing and acknowledges the megaservice with a 

control message.  Overall, there are four control messages and one data message involved 

with the service invocation.  The total cost is (4λc+λd). 

Figure 2.7 illustrates the messaging costs for the service invocation under the 1C1D and 

the 1CnD models.  The control message size λc is treated as a constant factor.  The x-axis 

represents the relative size of the data message with respect to λc, and the y-axis measures 

the messaging cost in terms of λc.  First, we observe that larger data message sizes 

attribute to higher communication costs for service invocations under both models.  

Comparing the two models, the 1C1D model performs better than the 1CnD model when 

the data message is the same as the control message in size.  However, the 

communication cost for 1C1D model scales up much faster than for the 1CnD model.  

The 1CnD model quickly outperforms the 1C1D model with a larger data message size.  

For our example, the 1CnD model has better performance if the data message is at least 

twice as large as the control message.  As most autonomous services are expected to 

involve fair amount of data communications, the 1CnD model is a preferred model for 

service composition. 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  46

M

S

1

M

Sinput S

(a) 1C1D (b) 1CnD

3

2

4 51 2

1) Service Request
2) Service Reply

1) Data-flow Request
2) Data-flow
3) Data-flow Reply
4) Service Request
5) Service Reply

 

Figure 2.6: Messages Involved in a Service Invocation 

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8λ d/λ c

In
vo

ca
tio

n 
M

es
sa

gi
ng

 C
os

t (
λ

c)

1C1D 1CnD

 

Figure 2.7: Comparison of the Messaging Costs for a Service Invocation  

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  47

2.6 Summary 

Service composition infrastructures are classified into four complementary integration 

models based on how control-flows and data-flows are coordinated.  We have focused 

our study on the two models with centralized control-flows: the 1C1D model with 

centralized data-flows and the 1CnD model with distributed data-flows.  Performance 

analysis on the 1C1D and the 1CnD model is conducted in terms of the aggregated cost 

and the response time metrics.  We have shown that the 1CnD model has better 

aggregated cost performance.  Also, the 1CnD model has better response time when the 

network connections among the autonomous services are better than the access links 

connecting the megaservice to the autonomous services. 

Based on the aggregated cost analysis, we can identify a couple of techniques to improve 

the performance of a megaservice.  First, performance can be improved by establishing 

direct data-flows among the autonomous services, thus reducing the amount of data-flows 

between the megaservice and the autonomous services.  Chapter 3 will discuss how 

autonomous services are constructed to support distributed data-flows.  Chapter 4 will 

discuss how data dependencies are extracted from a megaservice in order to establish the 

direct data-flows among the autonomous services.  Chapter 5 will discuss the 

coordination of the distributed data-flows during the execution of the megaservice.  

Second, processing routines can be transmitted to the autonomous services to perform 

data processing remotely.  The technique reduces the amount of data being transferred 

back to the megaservice for processing.  Chapter 4 will discuss the specification of the 

processing routines that are transferable.  Chapter 5 will discuss the utilization of the 

active mediation technology [22, 55] to support the execution of processing routines on 

the autonomous services.  

During the response time analysis, we have identified the system bottlenecks that affect 

the performance of a megaservice.  For the centralized data-flow model, the access links 

connecting the megaservice to the autonomous service have significant impact on the 

 



CHAPTER 2. SERVICE COMPOSITION INFRASTRUCTURES  48

megaservice performance.  On the other hand, for the distributed data-flow model, the 

network connections among the autonomous services are more relevant to the 

megaservice performance.  These findings help guide building appropriate system 

architectures for the service composition infrastructure. 

 



 

Chapter 3  

Autonomous Services 

An autonomous service is a process that involves one or more software applications 

along with the domain data they operate on.  The autonomous service functions as a 

server that waits for service requests, and the client utilizes the autonomous service by 

making service requests.  To respond to the requests, the service invokes appropriate 

software applications.  The result of the invocation returns desired information to the 

client. 

Composition of autonomous services requires homogeneity among the services.  A 

standard mechanism is needed to utilize the functionalities provided by the services.  

However, heterogeneity is often implied for the different types of operating system, 

hardware platform, data representation format that are used to support the services.  The 

Internet is a good example of the type of heterogeneity we encounter in today’s 

computing environments.  There are dozens of operating systems, hundreds of hardware 

platforms, and thousands of data representation formats.  An access method needs to be 

defined for autonomous services in order to bridge the difference between the 

homogeneous access requirement and the heterogeneous environments. 



CHAPTER 3. AUTONOMOUS SERVICES  50

To enable distribution of data-flows, autonomous services need to support direct data 

communications.  This chapter introduces a metamodel that separates the data 

communications from the control processing of the services.  The metamodel allows the 

services to be centrally controlled, while their data communications are distributed.  

Based on the metamodel, an access protocol for autonomous services is defined to enable 

homogeneous access to the services.  Finally, this chapter illustrates the process by which 

a software application can be wrapped into an autonomous service. 

3.1 Autonomous Service Metamodel 

The metamodel offers a description of all properties of autonomous services that are 

independent of the states of the services.  The metamodel includes the following four 

models: 

• Hierarchical Model: The metamodel specifies the hierarchical composition of the 

services.  The hierarchical model describes the internal layers of the services as well 

as the interconnections among the layers. 

• Data Model: The metamodel defines the data model for the services.  Based on the 

data model, information can be exchanged among the services using a uniform 

representation. 

• Service Interaction Model: The metamodel specifies the interface through which the 

services are accessed.  The metamodel, together with a messaging protocol, provides 

a standard mechanism to interact with the services. 

• Structural Model: The metamodel specifies the functional components of the services 

and their interdependencies.  The structural model serves as a blueprint for building 

new services. 

 



CHAPTER 3. AUTONOMOUS SERVICES  51

3.1.1 Hierarchical Model 

Autonomous services are typically distributed.  With the proliferation of local area 

networks and the Internet, autonomous services are situated at diverse physical locations, 

and their most common access method is through the network.  Figure 3.1 illustrates the 

FICAS service composition infrastructure that consists of many autonomous services 

interconnected by a communication network.  Each autonomous service has four 

hierarchical layers: 

1. The “Host” layer represents the hardware platform the service runs on.  This layer 

provides the hardware means for executing application instructions and routing data 

through the communication network. 

2. The “Operating System” layer provides software support for the system resource 

required by the service.  It manages the processes of software applications that 

perform the service.  It also provides protocol support for the network 

intercommunications among different hardware platforms.  For instance, the TCP/IP 

[26] protocol support belongs to this layer. 

3. The “Access Protocol” layer provides protocol support for accessing the data and the 

functionalities of the service.  A service client running in one kind of operating 

system can communicate with an autonomous service in another operating system.  

The access protocol defines how to encode a request in order to invoke the service.  It 

also specifies the manner in which the service responds to the request. 

4. The “Autonomous Service” layer is the application layer, which is concerned with the 

semantics of the service.  Data integration is conducted at this layer so that the service 

can exchange information with its clients in a mutually understandable fashion. 

 



CHAPTER 3. AUTONOMOUS SERVICES  52

Autonomous
Service

Access
Protocol

Operating
System

Host

A

A

A

Autonomous
Service

Access
Protocol

Operating
System

Host

N

N

N

Physical Communication Backbone

Megaservice
Conceptual Composition of

Autonomous Services

Autonomous
Service

Access
Protocol

Operating
System

Host

B

B

B

Megaservice Controller

......

 

Figure 3.1: Hierarchical Model of Autonomous Services 

A megaservice is a conceptual composition of the functionalities exported by the 

autonomous services through the “Autonomous Service” layer.  The execution of the 

megaservice is coordinated by a controller.  There may exist multiple megaservice 

controllers in the service composition infrastructure.  There may also be multiple 

megaservices running at the same time.  However, the coordination of each given 

megaservice is by a single controller.  As FICAS utilizes the centralized control-flow 

integration model, all of the control processes that contribute to the execution of the 

megaservice go through the controller.  On the other hand, as FICAS utilizes the 

distributed data-flow integration model, data communication may be distributed among 

autonomous services. 

 



CHAPTER 3. AUTONOMOUS SERVICES  53

3.1.2 Data Model  

Autonomous services collaborate by exchanging information.  A project-scheduling 

service may need to obtain activity and duration information from a modeling service and 

sends the analysis results to an information retrieval service.  The heterogeneity in the 

computing environment implies different data representations for different services.  It is 

essential to have a reliable, simple and universally deployed data exchange model for 

effective interoperations of the services.  The exchange model serves as the proxy for an 

autonomous service.  Data destined to a different service is mapped from the internal 

representation to the exchange model before delivery, and data received from another 

service is mapped back to the internal representation before usage. 

In software integration, applications typically need to map their data models and formats 

to other applications, requiring what is often called ‘legacy wrapping’ [43].  There are 

several problems associated with this approach.  First, every connection between two 

applications will most likely require custom programming.  For each pair of applications, 

a custom wrapper needs to be built.  If many applications are involved, substantial 

programming effort will be needed.  Furthermore, the maintenance of the custom 

wrappers is expensive.  Any data model and format changes in an application will affect 

all wrappers that have one end connecting to the application.  Also, data corruption and 

parameter mismatch can cause unpredictable results, and debugging and error handling 

become difficult since many wrappers need to be looked at simultaneously.  Because of 

its fragility, legacy wrapping incurs high maintenance cost. 

The notion of objects can be effectively utilized for communicating information between 

various applications, as demonstrated previously for mediators [19, 24, 69-71].  When the 

underlying resources are modeled as objects, the connections among the resources can be 

encapsulated.  The basic unit for data communication within FICAS is an object called 

data element.  A data element consists of a name and a structure, which itself may be a 

tuple over other defined data elements.  Definition 3.1 provides the formal definition of 

 



CHAPTER 3. AUTONOMOUS SERVICES  54

the data element using the recursive constructor that is commonly used in the field of data 

modeling [86]: 

DEFINITION 3.1: Let V be the set of data elements, N be the set of names, and S be the 

set of structures. Then: 

1. 

A valid data element consists of a name and a defined structure; 

VsnSsNn >∈⇒<∈∧∈ ,  

2. Sk ∈ζζ ,,1 L , where kζζ ,,1 L represents existing atomic structures. 

3. SVVV ∈×⇒⊆  

A tuple over defined data elements is a valid structure. 

A data element is represented as a tree.  The name of the data element is the root of the 

tree, and the structure of the data element is the child of the root.  In the case of an atomic 

structure, there is only one child node, as shown in Figure 3.2(a).  In the case where the 

structure is a tuple over defined data elements, each defined data element is a child node 

of the root, as shown in Figure 3.3(a).  Recursively, each defined data element is 

represented as a sub-tree. 

Data elements, as defined, can be encoded in many different data formats.  We choose 

XML to represent data elements because of their structural similarity [88].  As a simple 

textual language, XML is quickly gaining popularity for data representation and 

exchange on the Web.  XML is a meta-markup language that consists of a set of rules for 

creating semantic tags used to describe data.  An XML element is made up of a start tag, 

an end tag, and content in between.  The start and end tags describe the content within the 

tags, which is considered the value of the element.  The tags of the XML element 

represent the name of the data element.  The value of the XML element represents the 

 



CHAPTER 3. AUTONOMOUS SERVICES  55

sub-structure of the data element.  In essence, XML provides a mechanism to describe the 

hierarchy of elements that forms the data element. 

The mapping between a data element and its XML representation is straightforward.  The 

name of a data element maps into a pair of start and end tags.  The structure of the data 

element maps into the value enclosed between the XML tags.  Figure 3.2 shows a simple 

data element and its corresponding XML representation.  The data element contains a 

name and an atomic structure.  The name is “STRING”, and the atomic structure is a 

string with the value “Hello World!”.  The corresponding XML representation of the data 

element therefore uses “<STRING>” and “</STRING>” as the start tag and the end tag, 

respectively.  Between the tags, the string value corresponds to the atomic structure of the 

data element. 

Figure 3.3 shows a composite data element and its corresponding XML representation.  

The name of the data element is “RECORD”, which serves as the start tag and the end tag 

of its corresponding XML representation.  The structure of the data element is a tuple of 

two data elements, which themselves are represented as XML elements with tag names of 

“NAME” and “PICTURE”, respectively.  The string value “John Doe” is directly mapped 

as the content of the XML element tagged “NAME”.  The picture is encoded into a valid 

XML string that serves as the content of the XML element tagged “PICTURE”.  A 

matching decoding scheme converts the encoded XML string back into a picture when 

the data element is used.  The encoding and decoding schemes are specific to the service 

composition infrastructure and should be shared by all autonomous services within the 

infrastructure. 

 



CHAPTER 3. AUTONOMOUS SERVICES  56

STRING

"Hello World!"

Name

Atomic
Structure

Start Tag

<STRING>

</STRING>

  Hello World!

End Tag

Value

(a) A Simple String Data Element (b) XML Representation of the Data Element  

Figure 3.2: A Simple Data Element and Its XML Representation 

RECORD

"John Doe"

Data Element

Structure
<RECORD>

    John Doe

  <NAME>

(a) A Composite Data Element (b) XML Representation of the Data Element

NAME PICTURE
  </NAME>

  <PICTURE>

    string encoding of the picture

  </PICTURE>

</RECORD>

Name

 

Figure 3.3: A Composite Data Element and Its XML Representation 

 



CHAPTER 3. AUTONOMOUS SERVICES  57

3.1.3 Service Interaction Model 

An autonomous service functions as a server in the client-server model.  The interactions 

with the service are achieved via the exchanges of communication messages.  To change 

the state of the service or to query information from the service, a client needs to send 

messages to the service.  The service interaction model specifies the structure of the 

messages and how the service responds to the messages.  

3.1.3.1 Identification for Autonomous Services 

There may exist many autonomous services in a service composition infrastructure.  The 

autonomous service identifier (ASID) provides a simple means for uniquely identifying a 

service within and beyond a service composition infrastructure.  An ASID is a compact 

string of characters for universally locating an autonomous service.   

DEFINITION 3.2: Let ASID be the autonomous service identifier for a service, ip be the 

IP address of the server machine on which the service runs, and port be the TCP/IP port 

on which the service listens.  Then, ASID = ip:port. 

As specified in Definition 3.2, the ASID of an autonomous service combines the IP 

address and the port number of the service.  The ASID not only uniquely identifies the 

service, but also serves as the physical access point for the service.  The IP address and 

the TCP/IP port can be derived from the ASID of the service, and the service actively 

listens for messages on the specified TCP/IP port of the machine with the specified IP 

address.  For example, service clients access the autonomous service with the ASID of 

“171.64.55.32:2400” by sending messages to the port 2400 of the machine located at 

171.64.55.32. 

While ASID provides a unique identification for autonomous services universally, the 

autonomous service name (ASN) provides a persistent and location-independent 

 



CHAPTER 3. AUTONOMOUS SERVICES  58

identification for services within a service composition infrastructure.  Each service is 

assigned a unique string as its ASN.  Using an appropriate mapping mechanism, an 

autonomous service referred by its ASN can dynamically look up its ASID.  For instance, 

“WeatherService” can be assigned as the ASN of an autonomous service, whose ASID is 

“171.64.55.32:2400”.  The use of the ASN provides an added level of indirection that 

allows autonomous services to be seamlessly relocated.  The specification of 

megaservices uses the ASN to refer to the autonomous service, and the execution of the 

megaservices uses the ASID to interact with the autonomous service. 

3.1.3.2 Control-flows and Data-flows 

Message is the basic means of communication within a service composition 

infrastructure.  A message semantically consists of a source, a destination, and a message 

body.  The source identifies where the message is originated.  It also serves as the reply 

address if there is any returning communication.  The destination identifies the service to 

where the message is targeted.  The message body contains the information to be 

delivered and the actions to be performed by the target service.  A set of messages that 

works together to accomplish a certain task forms a flow.  For instance, a pair of the 

service request and reply message may be considered a flow, since all the messages 

together are necessary to accomplish a service invocation. 

There are two types of messages: control messages and data messages.  The control 

messages are mostly short messages that manage the states of autonomous services.  The 

data messages are mostly used for transporting large data contents to autonomous 

services for processing.  Correspondingly, there are two types of flows: control-flows and 

data-flows.  A control-flow consists of control messages that coordinate the services in 

order to accomplish a task.  A data-flow, on the other hand, consists of data messages that 

transmit data among the services to accomplish a task. 

 



CHAPTER 3. AUTONOMOUS SERVICES  59

To associate a message with a flow, a flow identifier (FID) is provided to the message 

and included in the message body.  The FID identifies the task in which the message 

takes part.  Different FIDs need to be provided to messages associated with different 

tasks.  In FICAS, where controls are coordinated from a central megaservice controller, 

the FIDs can be uniquely assigned by using a counter.  When a new flow is instantiated, 

the counter is incremented. 

3.1.3.3 Events in FICAS 

Control messages are modeled as events in FICAS.  Each control message establishes a 

temporary communication link that carries an event from the source service to the 

destination service.  Multicasting and broadcasting of control messages are modeled as a 

set of events from the same source. 

Events are self-contained.  Once an event is received in whole by the destination service, 

it is ready to be processed.  Each event contains at least four components: source ASID, 

destination ASID, FID, and event type.  The source ASID identifies the originator of the 

event.  The destination ASID identifies the service that will process the event.  The FID 

identifies the flow to which the event belongs.  It assigns the event to a specific task.  The 

event type identifies the purpose of the event.  Depending on its type, an event may 

incorporate additional information. 

The combination of source ASID, destination ASID, FID, and event type uniquely 

identifies an event.  Within a given flow, only one event of a specific type is sent from a 

source service to a destination service.  For instance, it is not allowed to invoke a service 

twice from the same originating service within the same flow.  Each different invocation 

belongs to a unique flow.  This requirement allows the re-transmissions of events in case 

of communication failure, and an event should be ignored if an identical event has 

already been received. 

 



CHAPTER 3. AUTONOMOUS SERVICES  60

3.1.3.4 Data Container and Data Map 

The entities that hold data elements in an autonomous service are called data containers.  

The service consumes the data elements from its input data container, and produces and 

puts the data elements into its output data container.  The data containers are explicit 

groupings of the data elements associated with the service.  Figure 3.4 illustrates the 

structure of a data container.  The data container uses the flow identifier (FID) and the 

position index (PID) as indices for the data elements.  The FID identifies the flow to 

which a data element belongs, and the PID distinguishes a data element when multiple 

data elements are involved in the same flow.  The combination of FID and PID can 

therefore uniquely identifies a data element in the data container.  For instance, a flow, 

identified by FID “12345”, involves three data elements.  The three data elements are 

distinguished by their unique PIDs, “0”, “1”, and “2”. 

Two autonomous services exchange data elements by establishing a data map from the 

output data container of one service to the input data container of the other service.  If the 

service s2 needs a data element produced by the service s1, then a data map needs to be 

established from s1 to s2. 

Flow Identifier (FID) Position Index (PID) Data Element
12345 0

12345 1

12345 2

12456 0

12577 0

12577 1

… … …
 

Figure 3.4: Structural View of the Data Container 

 



CHAPTER 3. AUTONOMOUS SERVICES  61

DEFINITION 3.3: Let Sss ∈21 ,  be autonomous services.  A data connector is defined 

as: 

U
Sss

ssSS
∈

×℘→×∆
21 ,

21 ))()((: ιο , 

and an element  is called a data map, where ),(),( 2121 ssvv ∆∈

• ι(s) and ο(s) are the input data container and the output data container of the 

autonomous service s, respectively; 

• ))()((),( 2121 ssss ιο ×∈℘∆ : The data connector is a set of pairs of data elements from 

the output data container of the service s1 and the input data container of the service 

s2; 

• : Two different data maps cannot have 

the same data element as the target. 

U
Ω∈

=⇒∆∈∈∀
1

2121212 ),(),(),,(:
s

vvsszvzvSs

As specified in Definition 3.3, the data map is a pair (v1, v2), where the source data 

element v1 belongs to the output data container of the source service s1, and the target 

data element v2 belongs to the input data container of the target service s2.  The following 

properties can be observed: 

• The source service of a data map can be the same as the target service.  In this case, 

the data element generated by the service for one flow is utilized by the same service 

for another flow.  The data map is handled within the service, and does not cause any 

data messages being sent among the services. 

• Multiple data maps can have the same source data element.  In this case, the source 

data element is needed by multiple target services.  The data maps cause a message 

being sent from the source service to each target service. 

 



CHAPTER 3. AUTONOMOUS SERVICES  62

• Multiple data maps can have the same target service.  In this case, the target service 

consumes multiple data elements produced by multiple source services.  The data 

maps cause a message being sent from each source service to the target service.  

However, the data maps cannot have the same target data element.  Different source 

data elements must map to different target data elements.  This condition guarantees 

that the race conditions are avoided among the data maps. 

3.1.4 Structural Model 

The functionality of an autonomous service is modeled as a mapping from the data 

elements in its input data container to the data elements in its output data container.  Such 

mapping is called the service core, which is defined in Definition 3.4: 

Definition 3.4: Let Ψ(s) denote the service core for the autonomous service s.  Then Ψ(s) 

is a map: 

EvDOMEvDOMs
svsv

××→××Ψ
∈∈

))(())((:)(
)()( οι

 

where ι(s) is the input data container of s, ο(s) is the output data container of s, and E is 

the set of events. 

The service core maps an input event and the data elements in the input data container 

into an output event and the data elements in the output data container.  The service core 

usually functions in the following manner.  The service core takes an input event, which 

determines the actions to be taken by the service core.  An encapsulated software 

application is then called to process the data elements in the input data container.  The 

processing produces some data elements, which are put into the output data container.  

Finally, an output event is generated to inform the status of the processing. 

 



CHAPTER 3. AUTONOMOUS SERVICES  63

The service core by definition is stateless.  Given the input data elements and the input 

event, the output data elements and the output event can be determined.  The state of the 

service core has no effect on the functionality provided by the service core.  However the 

interactions with autonomous services may be stateful for many megaservices.  For 

instance, an autonomous service that manages a shopping cart needs to handle multiple 

user sessions, each of which contains state information.  This requires the service to 

provide state management for the encapsulated software application.  To implement state-

aware autonomous service, the service core needs to pass along its state information as 

data elements.  The key is to design the appropriate context that describes the current 

state of the encapsulated software application [42, 50].  The context can be saved as a 

data element and returned to the service client.  The data element is then used to restore 

the context during the future interactions with the service. 

An autonomous service is formed by tying together a service core with the components 

that manage events and data elements.  As shown in Figure 3.5, the autonomous service 

consists of an input event queue, an output event queue, an input data container, an output 

data container, and a service core: 

• The executions of autonomous services are controlled by events.  The event queues 

handle the difference in the rates at which events are received and processed.  Each 

event queue uses its own thread.  The input event queue buffers the incoming events 

to be processed by the service core, and the output event queue buffers the outgoing 

events generated by the service core.  FICAS uses the first-come-first-serve (FIFO) 

queues, where events are processed in the order by which they are received. 

• The data containers manage the data elements for the autonomous services.  The input 

data container hosts the data elements to be processed by the service core, and the 

output data container stores the data elements produced by the service core.  In 

addition, the data containers handle the exchange of data elements between two 

autonomous services.  The output data container can look up a data element and 

transfer it to the input data container of another service. 

 



CHAPTER 3. AUTONOMOUS SERVICES  64

Data-flow

Control-
flow

Input Data Container

Output Data Container

Input Event Q
ueue

O
utput Event Q

ueue
Service Core

 

Figure 3.5: Structural Model of an Autonomous Service 

• The service core resides in the center of the autonomous service.  It processes events 

in the input event queue one at a time.  The event specifies the actions to be taken by 

the autonomous service.  Based on the event, the service core processes the 

corresponding input data elements in the input data container using the encapsulated 

software application.  The resulting data elements are put into the output data 

container, and a response event is put into the output event queue. 

The key characteristic of the FICAS autonomous service model is the explicit separation 

of control-flow and data-flow.  For control-flow, the autonomous service is primarily 

concerned about the event processing and the state management of the service core.  For 

data-flow, the autonomous service is primarily concerned about the exchange of data 

elements between the data containers and the processing of the data elements by the 

service core.  The control-flows and the data-flows are managed by asynchronous 

components of the autonomous service.  While each component uses its own thread, the 

service core ties together the components into a coordinated entity. 

 



CHAPTER 3. AUTONOMOUS SERVICES  65

3.2 Autonomous Service Access Protocol 

The Autonomous Service Access Protocol (ASAP) is an application-level protocol for 

accessing autonomous services in a distributed environment.  The ASAP protocol is 

based on the FICAS autonomous service metamodel.  It manages the control-flows and 

the data-flows among autonomous services through a set of ASAP events.   

XML is used as the representation format for the events.  The hierarchical structure of an 

XML document provides a convenient method for specifying the components of an 

event.  XML is also well suited for the heterogeneous service composition environment.  

The semantics of an XML based event can be uniformly interpreted by all autonomous 

services.  Figure 3.6 illustrates a sample ASAP event.  The root element of the event is 

tagged “EVENT”.  The children of the root element describe the components of the 

event.  Each ASAP event contains at least four components: (1) The first child element, 

tagged “NAME”, specifies the event type; (2) The second child element, tagged “ASID”, 

specifies the source service that originates the event; (3) The third child element, also 

tagged “ASID”, specifies the destination service that receives the event; and (4) The 

fourth child element, tagged “FID”, specifies the flow to which the event belongs.  The 

sample event shown in Figure 3.6 is an event of the type “SETUP” that belongs to the 

flow “12345”.  The event is originated by the autonomous service “171.64.55.32:2400” 

and destined to the autonomous service “171.64.55.33:2500”.  

<EVENT> 
  <NAME> SETUP </NAME> 
  <ASID> 171.64.55.32:2400 </ASID> 
  <ASID> 171.64.55.33:2500 </ASID> 
  <FID> 12345 </FID> 
</EVENT> 

Figure 3.6: XML Representation of an ASAP Event 

 



CHAPTER 3. AUTONOMOUS SERVICES  66

Traditionally, function calls are used to invoke services in the client-server architecture.  

A request is made to a server along with the parameters to support the request, and a 

reply is returned to the client along with the result data.  The ASAP protocol splits the 

simple function call into multiple phases to support data-flow distribution and to provide 

parallelism.  The divisions are the initialization, invocation, termination, and data 

management phases.  Since each of these phases behaves differently, different events are 

used to manage each phase.  The events are categorized accordingly into the following 

four groups: 

1. Initialization and termination of autonomous services; 

2. Invocation of autonomous services; 

3. Management of the data-flows between autonomous services; and 

4. Auxiliary functions. 

The ASAP protocol defines the syntax and semantics of the events.  It also specifies the 

expected actions taken by the autonomous services responding to the events. 

3.2.1 Initialization and Termination Events 

Four events belongs to this group: SETUP, SETUPREPLY, TERMINATE, and 

TERMINATEREPLY.  The pair of SETUP and SETUPREPLY events are used to 

initialize autonomous services, and the pair of TERMINATE and TERMINATEREPLY 

events are used to terminate autonomous services.  Table 3.1 shows the syntax of the 

initialization and the termination events. 

The SETUP event requests the initialization of an autonomous service.  The event type is 

specified in the “NAME” element.  The source-service field specifies the source service 

that originates the initialization request.  The destination-service field specifies the target 

service to be initialized.  The flow-id field specifies the flow to which the request 

 



CHAPTER 3. AUTONOMOUS SERVICES  67

belongs.  Upon reception of the SETUP event, the target service initializes itself and 

prepares the necessary system resources for the future invocations of the service.  The 

target service expects that any parameters necessary for the initialization can be found in 

the input data container of the service.  The parameters should be prepared in advance of 

the SETUP event.  To initialize the service, the initialization parameters are fetched from 

the input data container with the flow identifier flow-id.  The initialization routine of the 

service core is called.  The output data elements are generated into the output data 

container when the initialization is completed.  They are assigned with the flow 

identifiers flow-id. 

Table 3.1: Initialization and Termination Events in the ASAP Protocol 

Event Type Event Syntax 

SETUP 

<EVENT> 
  <NAME> SETUP </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
</EVENT> 

SETUPREPLY 

<EVENT> 
  <NAME> SETUPREPLY </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <REPLY> reply </REPLY> 
</EVENT> 

TERMINATE 

<EVENT> 
  <NAME> TERMINATE </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
</EVENT> 

TERMINATEREPLY 

<EVENT> 
  <NAME> TERMINATEREPLY </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <REPLY> reply </REPLY> 
</EVENT> 

 

 



CHAPTER 3. AUTONOMOUS SERVICES  68

The SETUPREPLY event is used by the autonomous service to respond to the SETUP 

event.  The source-service and destination-service fields of the SETUPREPLY event are 

swapped with those in the corresponding SETUP event.  The source-service of the 

SETUP event becomes the destination-service of the SETUPREPLY event, and the 

destination-service of the SETUP event becomes the source-service of the 

SETUPREPLY event.  The flow-id of the SETUPREPLY event is identical to that of the 

SETUP event.  The reply field contains the information about the status of the service 

initialization.  For instance, the string “SUCCESS” indicates the successful initialization 

of the service, and the string “FAILURE” indicates that the initialization has failed. 

Symmetrical to the SETUP and the SETUPREPLY events used for service initialization, 

the TERMINATE and TERMINATEREPLY events are used for service termination.  

The TERMINATE event requests the termination of an autonomous service.  The source-

service field specifies the source service that originates the termination request.  The 

destination-service field specifies the target service to be terminated.  The flow-id field 

specifies the flow to which the request belongs.  Upon reception of the TERMINATE 

event, the target service releases the system resources allocated for the service 

invocations.  The termination routine of the service core is then called.  The parameters 

for the termination routine should be prepared in the input data container in advance of 

the termination request.  The parameters are looked up with the flow identifier flow-id.  

Garbage collection is conducted at the end to clear the temporary data elements hosted in 

the data containers.  As the result of the service termination, the target service generates a 

TERMINATEREPLY event to inform the source service that originates the 

TERMINATE event. 

3.2.2 Invocation Events 

Two events are used to support the invocation of autonomous services: INVOKE and 

INVOKEREPLY, as shown in Table 3.2. 

 



CHAPTER 3. AUTONOMOUS SERVICES  69

Table 3.2: Invocation Events in the ASAP Protocol 

Event Type Event Syntax 

INVOKE 

<EVENT> 
  <NAME> INVOKE </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
</EVENT> 

INVOKEREPLY 

<EVENT> 
  <NAME> INVOKEREPLY </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <REPLY> reply </REPLY> 
</EVENT> 

 

The INVOKE event is used to invoke the service functionality exported by an 

autonomous service.  The source-service field specifies the source service that originates 

the invocation request.  The destination-service field specifies the target service whose 

service functionality is invoked.  The flow-id field specifies the flow to which the request 

belongs.  The parameters for the service invocation are prepared in the input data 

container in advance of the invocation request.  Upon reception of the INVOKE event, 

the target service invokes its service core.  The flow identifier flow-id is used to look up 

the input parameters for the service invocation.  As the result of the invocation, output 

data elements are generated and placed into the output data container.  The target service 

can handle multiple service invocations at the same time.  If the software application 

encapsulated in the service core is able to handle multiple tasks in parallel, then the 

service core can support the concurrent processing of the service invocations.  Otherwise, 

the service core schedules the service invocations in sequence. 

When the service invocation is completed, an INVOKEREPLY event is sent by the target 

service as the response to the INVOKE event.  The source-service and destination-

service fields of the INVOKEREPLY event are swapped with those in the INVOKE 

event.  The flow-id of the INVOKEREPLY event is identical to that of the INVOKE 

 



CHAPTER 3. AUTONOMOUS SERVICES  70

event.  The reply field contains the information about the status of the service invocation.  

The reply field is not intended as a vehicle for passing data elements, but as a convenient 

mechanism for reporting the status of the service invocation. 

The service invocation, represented by the pair of INVOKE and INVOKEREPLY events, 

does not involve any movement of data elements into or out of an autonomous service.  

Data elements are processed and produced locally on the service.  The input data 

elements are prepared in advance of the service invocation, and the output data elements 

are to be moved after the service invocation.  Separate data-flows events are utilized for 

moving the data elements. 

3.2.3 Data-flow Events 

The movement of data elements among autonomous services is supported by two data-

flow events: MAPDATA and MAPDATAREPLY, as shown in Table 3.3. 

The MAPDATA event establishes a data map between two data elements.  The source-

service field specifies the service that issues the data map request.  The destination-

service field specifies the destination service that processes the request.  The flow-id field 

specifies the flow to which the request belongs.  Data elements are specified within the 

“DATA” element.  The first “DATA” element represents the source data element of the 

data map, and the second “DATA” element represents the target data element of the data 

map.  The source data element resides in the output data container of the service output-

container-asid.  The data element can be located using the flow identifier output-

container-fid and the position index output-container-pid.  The target data element will 

be put in the input container of the service input-container-asid.  The data element has 

the flow identifier input-container-fid and the position index input-container-pid. 

 



CHAPTER 3. AUTONOMOUS SERVICES  71

Table 3.3: Data-flow Events in the ASAP Protocol 

Event Type Event Syntax 

MAPDATA 

<EVENT> 
  <NAME> MAPDATA </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <DATA> 
    <ASID> output-container-asid </ASID> 
    <FID> output-container-fid </FID> 
    <POS> output-container-pid </POS> 
  </DATA> 
  <DATA> 
    <ASID> input-container-asid </ASID> 
    <FID> input-container-fid </FID> 
    <POS> input-container-pid </POS> 
  </DATA> 
</EVENT> 

MAPDATAREPLY 

<EVENT> 
  <NAME> MAPDATAREPLY </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <REPLY> reply </REPLY> 
</EVENT> 

 

Upon reception of the MAPDATA event, the destination service executes the data map.  

It looks up the source data element from the service output-container-asid, and transmits 

the data element to the service input-container-asid.  There are two possible 

implementations for the data map.  The first implementation, called “push data map”, is 

suitable for the scenario where the destination service is the source service of the data 

map (i.e., the destination-service field equals the output-container-asid field in the 

MAPDATA event).  In this scenario, the destination service looks up the data element 

from its output data container, and then pushes the data element over to the service input-

container-asid.  Another implementation, called “pull data map”, is suitable for the 

scenario where the destination service is the target service of the data map (i.e., the 

destination-service field equals the input-container-asid field in the MAPDATA event).  

In this scenario, the destination service queries the service output-container-asid for the 

 



CHAPTER 3. AUTONOMOUS SERVICES  72

source data element.  The data element is fetched over to the destination service and 

inserted into its input data container. 

When the transmission of the data element is completed, a MAPDATAREPLY event is 

sent by the destination service as the response to the MAPDATA event.  The source-

service and destination-service fields of the MAPDATAREPLY event are swapped with 

those in the MAPDATA event.  The flow-id of the MAPDATAREPLY event is identical 

to that of the MAPDATA event.  The reply field contains the status information of the 

data map request. 

The MAPDATA event is the key event that enables the distribution of the data-flows.  It 

separates the control-flows from the data-flows of a megaservice.  The autonomous 

service that originates the MAPDATA event does not need to be the target service that 

receives the data element.  Instead, a service can use the MAPDATA event to coordinate 

the data-flows between two other services.  Using the MAPDATA event, the controller 

for a megaservice can coordinate all the data-flows that are distributed among the 

autonomous services.  This enables the service composition infrastructure that has 

centralized control-flows and distributed data-flows.  The MAPDATA can also be used 

to support a service composition infrastructure that has centralized data-flows.  By 

ensuring that all data maps involve the controller for the megaservice, the data-flows can 

be centralized.  This is achieved by tying the source-service field of the MAPDATA 

event with either the output-container-asid field or the input-container-asid field.  It 

guarantees that the originator of the MAPDATA event is on either the sending end or the 

receiving end of the data map request. 

3.2.4 Auxiliary Events 

The instantiation of a megaservice is supported by the CONTROLFILE event, as shown 

in Table 3.4.  No reply event to the CONTROLFILE event is needed. 

 



CHAPTER 3. AUTONOMOUS SERVICES  73

Table 3.4: Auxiliary Events in the ASAP Protocol 

Event Type Event Syntax 

CONTROLFILE 

<EVENT> 
  <NAME> CONTROLFILE </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <CONTROLFILE> control-url </CONTROLFILE> 
  <CONTROLARG> control-arg </CONTROLARG> 
</EVENT> 

 

The source-service field specifies the source service that instantiates the execution of a 

megaservice.  The destination-service field specifies the target service that serves as the 

controller for the megaservice.  The flow-id field specifies the flow to which the request 

belongs.  The control-url field specifies the location where the megaservice specification 

can be found.  The control-arg provides the input parameters for the execution of the 

megaservice.  In FICAS, each autonomous service contains a control module.  When the 

service receives a CONTROLFILE event, the request is dispatched to the control module.  

The inclusion of the control module within the service removes the need to deploy 

separate controllers in the service composition infrastructure.  Chapter 5 will discuss the 

design of the controller in detail.   

3.3 Autonomous Service Wrapper 

Autonomous services export the service functionalities contained in the encapsulated 

software applications.  Although the service functionalities differ, the way by which the 

functionalities are exported is similar for the services.  The autonomous services share 

many common components, such as the event queues and the data containers.  In 

addition, the interactions among the components are largely identical.  Hence, the 

construction of the autonomous services can be significantly simplified by building the 

 



CHAPTER 3. AUTONOMOUS SERVICES  74

common components into a standard module.  We call such a module autonomous 

service wrapper.  The wrapper provides the support for the ASAP protocol, and 

facilitates the encapsulation of software applications into autonomous services. 

Figure 3.7(a) provides the structural view of an autonomous service.  The autonomous 

service wrapper incorporates all the components shown in the shaded area, including the 

data containers, the event queues, and a portion of the service core that provides support 

for the ASAP protocol.  In addition, the megaservice controller is built into the wrapper.  

The encapsulated software application sits in the middle of the service core.  Hooks are 

provided to connect the software application to the autonomous service wrapper.  Figure 

3.7(b) provides the hierarchical view of the autonomous service.  The autonomous 

service wrapper is shaded as shown in the figure.  The encapsulated application connects 

to the autonomous service wrapper through three connectors.  The “initialize” connector 

is activated when the service is initialized, triggering the encapsulated application to start 

its initialization process.  The “invoke” connector is activated when the service is 

invoked, triggering the encapsulated application to conduct processing of the data 

elements in the data containers.  The “terminate” connector is activated when the service 

is terminated, triggering the encapsulated application to enter the termination process. 

For FICAS, the autonomous service wrapper has been implemented as a Java library.  

With the autonomous service wrapper provided as a standard module, the wrapping of a 

software application into an autonomous service becomes a matter of defining the three 

connectors.  Figure 3.8 illustrates the Java interface ServiceCore, which specifies the 

interface for the connectors.  The setup() method corresponds to the “initialize” 

connector, the execute() method corresponds to the “invoke” connector, and the 

terminate() method corresponds to the “terminate” connector.  Each method takes three 

parameters.  The autonomous service wrapper fills in the values for the parameters when 

it activates the connector.  The inputcontainer and outputcontainer provide the references 

 

 



CHAPTER 3. AUTONOMOUS SERVICES  75

Input Data Container

Output Data Container

Input Event Q
ueue

O
utput Event Q

ueue

Service Core
(ASAP Support)

M
egaservice C

ontroller

Encapsulated
Software

Application

Autonomous
Service
Wrapper

Autonomous
Service
Wrapper

initialize invoke terminate

Encapsulated
Software

Application

(a) Structural View (b) Hierarchical View  

Figure 3.7: Autonomous Service Wrapper 

to the data containers of the service, and the flowid identifies the flow to which the 

service request belongs.  Using the reference to the data containers and the flow identifier 

of the request, the software application can look up the input parameters from the input 

data container and produces the results into the output data container. 

To build an autonomous service, an implementation of the ServiceCore interface is linked 

to an autonomous service wrapper (ASW).  Figure 3.9 shows a simple autonomous 

service that adds up two input integers.  The AdditionService class defines the service 

core.  No action is performed for the initialization and the termination of the service, as 

specified by the setup() method and the terminate() method, respectively.  The execute() 

method specifies the actions for the invocation of the service.  The two input numbers are 

fetched from the input data container.  Their values are added together, and the result is 

put into the output data container.  The autonomous service wrapper connects with the 

service core by using the AdditionService class as an input of its constructor.  The other 

parameter of the constructor specifies the TCP/IP port of the autonomous service. 

 



CHAPTER 3. AUTONOMOUS SERVICES  76

public interface ServiceCore { 
 
  public boolean setup(Container inputcontainer, 
                       Container outputcontainer, 
                       FlowId flowid); 
 
  public boolean execute(Container inputcontainer, 
                         Container outputcontainer, 
                         FlowId flowid); 
 
  public boolean terminate(Container inputcontainer,  
                           Container outputcontainer, 
                           FlowId flowid); 
}  

Figure 3.8: Definition of the ServiceCore Interface 

public class AdditionService implements ServiceCore 
{ 
  public boolean setup(Container inc, Container outc, FlowId inf) { 
    return true; 
  } 
 
  public boolean terminate(Container inc, Container outc, FlowId inf) 
  { 
    return true; 
  } 
 
  public boolean execute(Container inc, Container outc, FlowId inf) { 
    int input1 = inc.fetch(inf, 0).getIntValue(); 
    int input2 = inc.fetch(inf, 1).getIntValue(); 
    int result = input1 + input2; 
    outc.put(inf, 0, new DataElement().setValue(result)); 
    return true; 
  } 
 
  public static void main(String argv[]) throws Exception { 
    if (argv.length != 1) { 
      System.err.println("Usage: java P3Service port"); 
      return; 
    } 
 
    /* Creating the autonomous service */ 
    new ASW(Integer.parseInt(argv[0]), new AdditionService()); 
  } 
} 

Figure 3.9: Example Autonomous Service that Performs Addition on Two Numbers 

 



CHAPTER 3. AUTONOMOUS SERVICES  77

3.4 Summary 

This chapter reviews the modeling and the construction of autonomous services.  The 

FICAS metamodel is defined to describe the hierarchical composition of autonomous 

services, the data model for exchanging information among the services, the internal 

structure of the services, and the external interface for interacting with the services.  The 

metamodel allows the construction of homogeneous services in a heterogeneous 

computing environment.  Conceptually, every autonomous service consists a service 

core, an input event queue, an output event queue, an input container and an output 

container.  Within the service, the data-flows are managed by the data containers, and the 

control-flows are managed by the event queues.  The key feature of the FICAS 

metamodel is the separation of the data-flows from the control-flows.  This separation 

allows the autonomous services to be composed in a centralized control-flow and 

distributed data-flow service composition infrastructure. 

Based on the FICAS metamodel, the ASAP protocol defines the standard interface for 

interacting with the autonomous services.  The protocol specifies a set of events in XML, 

as well as the expected responses by the autonomous services to the events.  The protocol 

breaks down a traditional service functional call into the initialization, the invocation, the 

data management, and the termination phases.  Each phase employs a set of its own 

events.  The division allows the different phases to be executed asynchronously and in 

parallel.  Furthermore, the ASAP protocol supports the distribution of data-flows through 

the data management event, i.e., the MAPDATA event.  Using the MAPDATA event, a 

controller can coordinate the autonomous services centrally while at the same time 

distributes the data-flows among the services. 

The construction of an autonomous service is supported by the autonomous service 

wrapper.  The wrapper incorporates the common components of the service, such as the 

data containers, the event queues, a portion of the service core, the support for the ASAP 

protocol, and the megaservice controller.  A software application can be attached to the 

 



CHAPTER 3. AUTONOMOUS SERVICES  78

wrapper via three connectors, which specify the tasks to be performed by the application 

for the initialization, the termination and the invocation of the autonomous service.  An 

example is used to demonstrate the process of constructing an autonomous service.  The 

autonomous service wrapper is provided as a Java class, and the connectors are provided 

as three functions in a Java interface.  Wrapping a software application into an 

autonomous service becomes a matter of implementing the three functions for 

initialization, invocation and termination of the service.  The simple process of 

constructing autonomous services will greatly facilitate the integration of more legacy 

software applications. 

 



 

Chapter 4  

Buildtime Environment of FICAS 

A megaprogrammer conducts the composition of autonomous services by defining a 

formal specification, which specifies and brings together the functionalities provided by 

the autonomous services as an integrated entity.  The specification describes which 

autonomous services are involved in the megaservice, when the autonomous services are 

invoked, how the autonomous services interact with each other, and what other 

functionalities are required by the megaservice in addition to those provided by the 

autonomous services.  The specification is also known by myriad names such as 

megaprogram [14], ensemble [79], composition [74], grid program [10], and workflow 

[53].   

FICAS consists a buildtime environment for specifying the composition of the 

megaservice, and a runtime environment for executing the composition.  The buildtime 

environment provides the framework and the tools to describe the composition of 

autonomous services, to check the validity of the composition, and to compile the 

composition into an executable sequence.  The executable sequence serves as the 

interface between the buildtime and the runtime environments. 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  80

The buildtime environment of FICAS consists of three layers: the source layer, the 

compilation layer, and the executable layer, as shown in Figure 4.1.  The source layer 

provides the tools for specifying the megaservice.  The compilation layer is responsible 

for validating the source programs and converting the programs into executables.  The 

executable layer hosts the actual executables and serves as the interface to the runtime 

environment of FICAS.  Each layer consists of a compositional specification and a 

computational specification of the megaservice.  The compositional specification 

describes the interrelationships of the autonomous services involved in the megaservice, 

and the computational specification describes the processing of the data obtained from 

the autonomous services.  

For compositional specification, a purely compositional language CLAS is defined to 

facilitate a high-level abstraction for describing functionalities of a megaservice.  

Utilizing a high-level compositional language allows the specification be independent of 

any knowledge of the heterogeneous distributed systems, the client-server environment, 

and the computational programs.  The CLAS compiler takes a CLAS program as input, 

validates its content, and convert it into a control sequence.  The control sequence serves 

as the executable to be carried out by the runtime environment.  The use of the control 

sequence provides flexibility to the composition of the megaservice.  Other languages 

and tools may be used in FICAS to specify the composition, as long as the control 

sequence is generated as the result. 

The mobile class complements the CLAS language by providing a clean and powerful 

mechanism to specify computational functionalities.  The computational specification and 

the compositional specification of a megaservice are tied together through the mobile 

class construct in the CLAS language.  Using the construct, a CLAS program can invoke 

a mobile class to process data obtained from the autonomous services.  The CLAS 

program can also use the data generated by the mobile class the same way as the data 

generated by the autonomous services.  The source code for the mobile class is specified 

in Java [7].  As a general programming language, Java offers a wide range of 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  81

computational constructs.  A commercially available Java compiler is utilized to compile 

the source code into a Java class file that contains the Java byte codes, which are 

dynamically loaded by the runtime environment when the mobile class is invoked. 

Besides the basic requirements of a buildtime environment, such as the ease of use of the 

tools, the expressive power of the languages, etc., we also take into consideration various 

features for the performance optimization of the megaservices, particularly through the 

distribution of data-flows.  The rest of this chapter will describe the buildtime 

environment in detail. 

Executable

Compilation
CLAS

Compiler

FICAS
Control

Sequences

Java
Compiler

CLAS
Programs

Mobile
Class

Source
Codes

Mobile
Classes

Source

Compositional
Specification

Computational
Specification

 

Figure 4.1: Architecture of the Buildtime Environment of FICAS 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  82

4.1 Compositional Specification 

The Compositional Language for Autonomous Services (CLAS) is a practical general 

purpose language for composing megaservices using autonomous services.  The CLAS 

language provides the necessary high-level abstractions to describe the behavior of the 

megaservices.  It is built around concepts and abstractions that do not correspond directly 

to the features of the underlying machine, therefore hides the heterogeneity of the 

computing systems.  A compiler is used to compile a CLAS program into a control 

sequence that can be executed by the runtime environment.  The control sequence 

provides the separation between the specification and the execution of the megaservice. 

The CLAS language is designed to be a purely compositional language, which concerns 

with the act of combining parts and elements of a task into a whole.  It aims to alleviate 

the megaprogrammers the responsibility of explicitly managing autonomous services, so 

the megaprogrammers can focus on the composition of service functionalities.  In 

addition, the CLAS language is designed with performance in mind.  It is designed to be 

a simple yet powerful language that supports compile-time as well as run-time 

optimization. 

4.1.1 Data Types and Operations 

The CLAS language uses a weak data type system.  No type checking is performed at the 

compile time.  Types are checked during the runtime, and exceptions may be raised if 

type conflicts are detected.  There are five data types in CLAS: BLOB, Boolean, Integer, 

Real and String.  The first type, BLOB, is used exclusively for representing data 

transferred among autonomous services.  The BLOB data remains opaque to the CLAS 

programs.  A megaservice does not interpret or modify the BLOB data generated by the 

autonomous services.  No data operations are designed in the CLAS language for the 

BLOB data, which is used solely for establishing data-flows among the autonomous 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  83

services.  If decisions must be made about the BLOB data in a CLAS program, the 

megaprogrammer can employ either an autonomous service or a mobile class to process 

the data.  The other four types are simple types that are primarily used for control.  

Boolean comparisons can be performed among simple types.  The results of the 

comparisons determine the execution flow of a megaservice. 

Data can take the form of either a literal or a variable.  The literal represents a constant 

value, and the value of the variable is dynamically assigned at the runtime.  There are no 

type declarations for the variables.  The value of the variable implicitly determines its 

type.  Table 4.1 shows some examples of the simple data types and the use of the 

assignment operator.  There are two possible Boolean literals: TRUE and FALSE, both 

are reserved words.  Integer literals are specified as decimal based numbers.  Any Integer 

literal may be preceded by a minus sign to indicate that it is a negative Integer.  Real 

literals must contain either a decimal point, or an exponent, or both.  String literals are 

enclosed in double quotes.  Data assignment operator ‘=’ must have a variable on its left-

hand side, and can have either a literal or another variable on its right-hand side.  The 

assignment operator copies both the value and the type of the data on the right-hand side 

over to the variable on the left-hand side.  For instance, in Table 4.1, variable B1 is of the 

Boolean type with the value TRUE, and variable Str2 is of the String type with the value 

“hello world”. 

Table 4.1: Simple Data Types and the Assignment Operator 

Data Type Data Assignment 

Boolean B1 = TRUE 
B2 = FALSE 

Integer I1 = 5 
I2 = -1 

Real R1 = 9.7 
R2 = 1E-2 

String Str1 = “hello world” 
Str2 = Str1 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  84

The primary use of the simple types is for boolean expressions.  A boolean expression 

returns the value of either TRUE or FALSE.  The simplest boolean expression is a single 

boolean literal or variable.  More complex boolean expressions take the form of a 

boolean comparison.  Table 4.2 lists the boolean comparison operators.  Two data of the 

simple types can be compared using the boolean comparison operators.  While most of 

the types are supported for all the boolean comparison operators, some are not.  

Unsupported boolean comparisons will raise exceptions at the runtime.  For instance, the 

‘>’ comparison between two Boolean values is not permitted.   

When the data on both sides of the comparison operator do not have the same type, type 

conversions are implicitly performed at the runtime.  Both data are converted into a 

common type before their values are compared.  Table 4.3 shows the expected type 

conversions when a left-hand side value is compared against a right-hand side value.  For 

instance, when an Integer value is compared against a Real value, the Integer value is 

implicitly converted into the Real type; when a String value is compared against an 

Integer value, the String value is implicitly converted into the Integer type.  If no valid 

type conversion is found between the two values, runtime exceptions are raised.  For 

instance, it is illegal to compare an Integer value with a Boolean value. 

Table 4.2: Operators for Boolean Comparison  

Data Type 
Sign Name 

Boolean Integer Real String 

== Equal To     

> Greater Than     

< Less Than     

!= Not Equal To     

>= Greater Than or Equal To     

<= Less Than or Equal To     

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  85

Table 4.3: Data Type Conversions for Boolean Comparison 

Right-hand Side
Value

Left-hand 
Side Value 

Boolean Integer Real String 

Boolean Boolean    

Integer  Integer Real Integer 

Real  Real Real Real 

String  Integer Real String 
 

Boolean expressions can further compose of complex boolean expressions with the 

“NOT”, “AND”, and “OR” operators: 

• ! (expression): The NOT operator negates the value of the expression.  The operator 

returns TRUE if the expression is FALSE, and returns FALSE otherwise. 

• && (expression1, expression2): The AND operator returns TRUE if both expressions 

are TRUE, and returns FALSE otherwise.  There is no predetermined order for the 

evaluation of the sub expressions.  The design is different from many other 

programming languages (e.g., C/C++ [84]) that assume expressions are evaluated 

from left to right.  By assuming no particular order of evaluation, we can improve the 

performance of evaluating the boolean expression by conducting evaluation of the 

expressions in parallel. 

• || (expression1, expression2): The OR operator returns TRUE if either expression is 

TRUE, and returns FALSE otherwise.  The evaluation of the expressions is conducted 

in the same fashion as that in an AND clause.   

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  86

4.1.2 Autonomous Service Statement 

Traditionally, a remote procedural call is used to invoke an autonomous service [12].  

The call usually consists of invoking a method and getting its results back in a 

synchronous way.  The calling client waits during the procedure call, and the overall 

structure of the client program remains simple.  In contrast, an asynchronous call avoids 

any waits for the client but makes the client program more complex.  The client program 

needs to manage replies to the asynchronous call in a multithreaded fashion. 

The CLAS language combines the advantages of both the synchronous and the 

asynchronous procedure calls.  It intends to harness the potential parallelism within a 

megaservice, while at the same time keeps the megaservice program sequential and 

simple.  The procedural call to an autonomous service is split into four statements: 

SETUP, INVOKE, EXTRACT and TERMINATE.  While each statement is synchronous 

in nature, the call to the autonomous service is carried out asynchronously.  The result is 

that the megaservice is specified in a sequential and synchronous fashion, and the runtime 

optimizes the megaservice performance by conducting scheduling of the asynchronous 

statements. 

• Autonomous Service Setup 

ServiceHandle = SETUP(“Sample Service”) 

The SETUP statement is used to establish communication with an autonomous service 

referred by its autonomous service name.  The statement takes the autonomous service 

name as the input and returns a handle to the autonomous service.  The SETUP statement 

serves two purposes.  First, it requests the autonomous service to perform initialization 

for the future invocation requests.  The statement triggers the “initialize” connector of the 

autonomous service and invokes the setup() method in the service core.  Second, the 

statement establishes a service handle that contains the parameters necessary for 

subsequent interactions with the autonomous service. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  87

The autonomous service name is specified in the form of an ASCII string.  To hide 

implementation details from the language, the autonomous service name used by the 

megaservice specification is dynamically mapped to the information needed by the 

runtime environment.  For instance, “Sample Service” may be the autonomous service 

name that a megaprogrammer wishes to use.  It is mapped in runtime to such information 

as the IP address and the TCP/IP port number of the autonomous service.  Chapter 5 will 

discuss how the autonomous service directory is used to conduct the mapping in more 

detail. 

• Autonomous Service Invocation 

InvocationHandle = ServiceHandle.INVOKE(param1, param2, …) 

The INVOKE statement starts the invocation of an autonomous service referred by the 

handle returned from the SETUP statement.  Syntactically, the INVOKE statement is 

regarded as a method call on the service handle.  The INVOKE statement triggers the 

“invoke” connector of the autonomous service and invokes the execute() method in the 

service core.  The input data elements for the service invocation are provided as the 

parameters to the INVOKE statement.  The parameters are referred by position starting 

from 0.  The position index for param1 is 0, and the position index for param2 is 1, and 

so on.  The INVOKE statement returns an invocation handle, which can be used for 

further interactions with the invocation instance.   For instance, results can be extracted 

from the invocation using the invocation handle. 

• Autonomous Service Extraction 

Variable = InvocationHandle.EXTRACT() 

The EXTRACT statement collects the results of an autonomous service invocation 

referred by the invocation handle returned from the INVOKE statement.  The EXTRACT 

statement establishes the data dependencies among the autonomous services.  When the 

variable extracted from one autonomous service is used as the input to another 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  88

autonomous service, a data map is formed between the two autonomous services, and 

they are data dependent on each other. 

• Autonomous Service Termination 

ServiceHandle.TERMINATE() 

The TERMINATE statement ends the connection to a specific autonomous service.  

Garbage collection on the autonomous service is conducted for the megaservice as the 

result of the TERMINATE statement.  Terminating the connection to the autonomous 

service only affects the megaservice that initiates the TERMINATE statement.  Other 

megaservices accessing the same autonomous service are unaffected. 

4.1.3 Conditional Statements 

The CLAS language has a very limited set of control statements, with little regard for 

providing functionality beyond composition.  Conditional execution in a megaservice is 

achieved through the IF-THEN-ELSE and the WHILE statements, used in combination 

with the boolean expressions.  When the conditional statements are used, the behavior of 

the megaservice is dynamically determined at runtime based on the value of the boolean 

expressions. 

• Branch Statement 

IF (expression) THEN { Statement_List }  [ ELSE { Statement_List } ] 

The branch statement is a control mechanism used for making dynamic branching 

decisions based on the value of a boolean expression.  The keyword IF is followed by a 

set of parentheses containing the boolean expression to be tested.  If the expression 

evaluates to be TRUE, the list of statements contained in the THEN clause is executed.  

The ELSE clause is optional.  When the ELSE clause is present, it is executed if the 

boolean expression evaluates to be FALSE. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  89

• While Loop Statement 

WHILE (expression) { Statement_List } 

The while loop statement is a control mechanism that provides looping operations.  The 

boolean expression enclosed in parentheses is evaluated.  If the result is TRUE, then the 

body of the loop (i.e. the list of statements enclosed in braces) is executed.  Then the 

boolean expression is evaluated again.  And if it is TRUE again, the list of statements is 

executed once more.  This process continues until the boolean expression becomes 

FALSE. 

4.1.4 Comparison Between CLAS and CLAM 

The CLAS language is derived from the CLAM language [80], the compositional 

language used in the CHAIMS (Compiling High-level Access Interfaces for Multi-site 

Software) project.  The objective of CHAIMS is to investigate the compositional 

programming paradigm, which represents a high level of abstraction in programming [9, 

92].  The CLAM language enables programmers to use megamodules, a similar concept 

to the autonomous services, to conduct service composition.  The CLAM language serves 

as a point of departure for the CLAS language.  They share many similarities: 

• The CLAS language uses the same invocation model as the CLAM language.  The 

autonomous services are composed using the Ideal Worker Ideal Manager (IWIM) 

model [6, 68].  The IWIM model can be viewed as a contractual relationship, where a 

general contractor hires subcontractors to perform certain jobs.  The CLAS language 

treats autonomous services as entities with exposed methods, and a megaservice 

selects appropriate autonomous services to carry out the sub-tasks.  The megaservice 

is the general contractor, and the autonomous services are the subcontractors. 

• Similar to the CLAM language, the CLAS language decomposes a CALL statement 

into multiple phases.  In traditional programming languages, the CALL statement 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  90

typically assumes synchrony in execution [12], forcing possible parallel tasks into 

sequential execution order.  By breaking up the CALL statement into several 

primitives, we obtain the asynchronicity necessary to support parallel invocation of 

the remote methods from a sequential client.  The achieved parallelism is intrinsically 

important to the compositional programming paradigm because the autonomous 

megamodules are in general long running and resource intensive.  The split of the 

CALL statement allows runtime optimizations to be performed [74, 96]. 

• Both languages are purely compositional.  By ridding all computational constructs 

from the language, we intend to free the megaprogrammers from computational 

programming.  There are a small number of control constructs.  The structure of both 

languages reflects the simple elegance achievable when composition is the only goal.   

• Both languages assume heterogeneous computing environments, and no limitation on 

the runtime systems is implied.  Although FICAS is designed to support data-flow 

distribution, the CLAS language is data-flow agnostic.  It supports both centralized 

and distributed data-flow runtime environments.  Data communications among 

autonomous services are not explicitly specified.  Rather, the data-flows are derived 

from implicit data dependencies among the autonomous services. 

Despite the similarities, the two languages differ in many aspects: 

• The invocation and result passing schemes of the CLAM language are simplified.  

The primitives for manipulating parameters of a service invocation are built into the 

invocation primitive.  For CLAS, parameters are always passed along with the service 

invocation.  In addition, CLAS combines the primitives for result extraction and 

status examination of a service invocation.  A single primitive EXTRACT is used to 

query information from the service. 

• The CLAS language allows megaservices to take input parameters.  A special 

reserved keyword “%%” is introduced to represent the input parameter.  Although it 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  91

is a simple improvement over CLAM, the ability for megaservices to take input 

parameters is a big step toward a multi-tiered service composition infrastructure, 

where megaservices can be further composed. 

• The CLAS language improves on the CLAM language in its ability to handle 

computations.  Being a purely compositional language, the CLAM language offers no 

practical alternatives when some computations are desired.  Even complex 

comparisons in a megaservice require special autonomous services to be built.  It is 

inefficient to employ the autonomous services, since they in general involve a lot of 

overhead.  More importantly, there is a conflict in role and in expertise for 

megaprogrammers to serve as the owner of the autonomous services, which should be 

maintained independent of the megaservice.  FICAS addresses these issues by 

utilizing mobile classes to perform computations.  The way of invoking a mobile 

class is very similar to that of invoking an autonomous service, hence preserving the 

elegance and simplicity of the language.  In terms of ownership and maintenance, the 

mobile classes are considered attachments to the CLAS programs.  The 

megaprogrammer creates, owns and maintains the CLAS programs, as well as the 

associated mobile classes. 

4.2 CLAS Compiler and FICAS Control Sequence 

A megaservice program written in the CLAS language is compiled into a control 

sequence.  The CLAS compiler is built using the JavaCC compiler compiler [89], which 

conceptually consists of three phases: 

• Lexical analysis – The input symbols are scanned and grouped into meaningful units 

called tokens.  During the lexical analysis phase, literals are distinguished from 

variables.  Exceptions are raised for illegal combinations of letters and digits. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  92

• Syntax analysis – The tokens generated by the lexical analysis are grouped into 

syntactic units as statements.  During the process, a parse tree is generated to 

represent the syntactic structure of the program.  If a program does not meet the 

syntactic requirements as a well-formed program, then the parsing phase produces an 

error. 

• Code generation – The parse tree generated by the syntax analysis is mapped into a 

control sequence. 

4.2.1 Lexical Analysis 

Table 4.4 lists the legal tokens in the CLAS language.  Tokens are categorized as 

comments, separators, variables, literals, keywords, and operators: 

• A comment can be placed anywhere that white spaces (i.e., blanks and tabs) can 

appear, except within a string literal.  A comment consists of any text delimited by /* 

and */, and may occupy more than one line.  It can also consists of any text led by // 

on a single line.  Comments cannot be nested. 

• Separators are used to establish relative position of tokens within a CLAS program. 

• Variables are names for entities in a CLAS program.  They are composed of only 

letters, digits and underscores, and they cannot start with a digit.  In addition, 

variables cannot be any of the reserved words. 

• Literals are the constants used in a CLAS program.  There are only two Boolean 

literals: TRUE and FALSE, both reserved words.  An Integer literal consists of one or 

more digits.  It may be preceded by a minus sign to represent a negative number.  A 

Real literal consists of a series of digits representing the whole part of the number, 

followed by a decimal point, and a series of digits representing the fractional part.  A 

Real literal can also be represented in scientific notation, consisting of a mantissa in 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  93

decimal notation, followed by the letter E, and an exponent.  A String literal consists 

of double quotation marks containing any number of characters. The %% is 

considered a special String literal that represents the input parameter to the CLAS 

program. 

• Keywords are constructs reserved by the CLAS compiler for the autonomous service 

statements, the conditional statements, and the mobile class statement. 

• Operators are used for the assignment of values and for creating boolean expressions. 

Table 4.4: Tokens in the CLAS Language 

Token Type Token Values or Examples 

 Comment /* this is a comment */ 

 Separator (  )  {  }  ,  . 

 Variable ABC  abc  a0  a_  _a 

Boolean Literal TRUE  FALSE 

Integer Literal 0  1  -2 

Real Literal 1.2  -2.1  1E-2  -1E2 L
ite

ra
l 

String Literal “”  “hello world” %% 

Service Invocation  SETUP  INVOKE  EXTRACT  TERMINATE 

While Loop WHILE 

Branch IF  THEN  ELSE 

K
ey

w
or

d 

Mobile Class Invocation MCLASS 

Assignment = 

Comparison <  >  <=  =>  ==  != 

O
pe

ra
to

r 

Boolean Composition !  &&  || 

 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  94

4.2.2 Syntax Analysis 

The BNF grammar [57, 62] for the CLAS language is shown in Table 4.5.  Production 

rules are formed by interpreting the non-terminal symbols on the left-hand side as the 

sequences of symbols on the right-hand side.  String literals are single quoted.  Optional 

items are enclosed in brackets and are separated by ‘|’.  Repetitive items that may appear 

zero or more times are enclosed in parentheses followed by a ‘*’.  If an item is enclosed 

by a pair of parentheses followed by a ‘?’, it may appear at most once. 

A CLAS program starts with a programname, followed by an optional baseclasspath, and 

a sequential list of statements.  The programname is a variable that annotates the name of 

the megaservice.  The baseclasspath is a String literal that represents the default search 

path for the mobile class repository.  The baseclasspath is used in combination with the 

MclassStatement for the invocation of mobile classes. 

There are three types of statements in CLAS: branch statement, while loop, or simple 

statement.  Both branch statement and while loop are composite statements that include a 

boolean expression for the conditional test and an execution body that consists of one or 

two lists of statements.  A branch statement starts with the keyword “IF”, and a while 

loop statement starts with the keyword “WHILE”.  The syntax for the branch statement 

and the while loop were discussed earlier in Section 4.1.3. 

There are six types of simple statements.  The assignment statement was discussed in 

Section 4.1.1, and the four autonomous service statements (i.e., SETUP, INVOKE, 

EXTRACT and TERMINATE) were discussed in Section 4.1.2.  The BNF production 

rules provide the formal specifications for them.  The servicehandle, invocationhandle, 

and var are variables.  The servicename is a String literal.  The argument can be either a 

variable or a literal.  The definition for the mobile class statement is also provided, and 

details about the mobile classes will be discussed in Section 4.3. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  95

Table 4.5: BNF Representation of the CLAS Grammar 

Left-Hand Side  Right-Hand Side 

Megaservice := programname (baseclasspath)? 
‘{’ (Statement)* ‘}’ 

Statement := SimpleStatement | 
BranchStatement | 
WhileLoop 

BranchStatement := ‘IF’ ‘(’ BooleanExpression ‘)’ 
‘THEN’ ‘{’ (Statement)* ‘}’ 
(‘ELSE’ ‘{’ (Statement)* ‘}’)? 

WhileLoop := ‘WHILE’ ‘(’ BooleanExpression ‘)’ 
‘{’ (Statement)* ‘}’ 

SimpleStatement := SetupStatement | 
InvokeStatement | 
ExtractStatement | 
TerminateStatement | 
AssignStatement | 
MclassStatement 

SetupStatement := servicehandle ‘=’ ‘SETUP’ 
‘(’ servicename ‘)’ 

InvokeStatement := invocationhandle ‘=’ servicehandle  
‘.’ ‘INVOKE’ 
‘(’ (argument (‘,’ argument)*)? ‘)’ 

ExtractStatement := var ‘=’ invocationhandle ‘.’  
‘EXTRACT’ ‘(’ ‘)’ 

TerminateStatement := servicehandle ‘.’ ‘TERMINATE’ 
‘(’ ‘)’ 

AssignStatement := var ‘=’ [Literal | Variable] 

MclassStatement := var ‘=’ ‘MCLASS’ 
‘(’ mclassname (‘,’ argument)* ‘)’ 

 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  96

4.2.3 Code Generation 

The final phase of the CLAS compiler is code generation.  The parse tree formed by the 

syntax analysis is used to generate the control sequence that serves as the input to the 

runtime environment of FICAS.  The control sequence is encoded in XML, which is 

chosen for two reasons.  First, XML presents a homogeneous data layer for the 

heterogeneous runtime environment.  Any megaservice controller will be able to read and 

interpret the content of the control sequence.  Second, XML provides a simple 

mechanism to describe the hierarchical structure of the CLAS program.  The parse tree 

naturally maps to an XML document.  Each statement in the CLAS program can be 

represented as an XML tree, in which the child elements describe the components of the 

statement. 

Table 4.6 shows the definition of the elements for the FICAS control sequence.  The root 

element of the control sequence has the tag FICAS.  The first two child elements of the 

root element are the PROGRAMNAME element and the BASECP element.  The 

PROGRAMNAME element contains the programname field from the parse tree, 

representing the name of the megaservice.  The BASECP element is optional.  When 

used, it contains the baseclasspath field whose value represents the base URL for the 

mobile class repository. 

For each statement in the CLAS program, a corresponding FICAS control element is 

generated.  Each control element further consists of child elements that describe the 

components of a statement. 

• Branch Statement: The root element of a branch statement is tagged BRANCH.  The 

element has three child elements: a BOOLEAN element, a THEN element, and an 

optional ELSE element.  The BOOLEAN element is the root of a boolean expression 

parse tree, whose value determines the execution flow of the branch statement.  The 

THEN element contains the statement group that is executed if the boolean expression 

is evaluated to be TRUE.  The ELSE element contains the statement group that is 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  97

executed if the boolean expression is evaluated to be FALSE.  A statement group is a 

list of control elements, each representing a statement. 

• While Loop Statement: The root element of a while loop statement is tagged 

WHILELOOP.  The element has two child elements: a BOOLEAN element and a 

WHILEBODY element.  The BOOLEAN element is the root of a boolean expression 

parse tree, whose value is to be evaluated once for every execution of the loop body.  

The WHILEBODY element contains a statement group, which consists of a list of 

elements corresponding to the statements in the loop body. 

• Autonomous Service Setup Statement: The root element of an autonomous service 

setup statement is tagged SETUP.  The element has two child elements: a 

SERVICEHANDLE element and a SERVICENAME element.  The SERVICENAME 

element contains the name of the autonomous service to be initialized.  The 

SERVICEHANDLE element refers to the handle of the initialized service. 

• Autonomous Service Invocation Statement: The root element of an autonomous 

service invocation statement is tagged INVOKE.  The element has three child 

elements: an INVOCATIONHANDLE element, a SERVICEHANDLE element, and an 

optional VALUELIST element.  The SERVICEHANDLE element refers to the handle 

of the autonomous services to be invoked.  The VALUELIST element contains a list of 

elements that correspond to the input parameters for the service invocation.  The 

INVOCATIONHANDLE element refers to the handle of the returned invocation 

instance. 

• Autonomous Service Extraction Statement: The root element of an autonomous 

service extraction statement is tagged EXTRACT.  The element has two child 

elements: a VARIABLE element and an INVOCATIONHANDLE element.  The 

INVOCATIONHANDLE element refers to the specific service invocation instance 

from which the output data is queried.  The VARIABLE element contains the variable 

to which the result should be assigned. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  98

• Autonomous Service Termination Statement: The root element of an autonomous 

service termination statement is tagged TERMINATE.  The element has a single child 

element: a SERVICEHANDLE element.  The SERVICEHANDLE element refers to the 

handle of the autonomous service to be terminated. 

• Assignment Statement: The root element of an assignment statement is tagged 

ASSIGNMENT.  The element has two child elements that refer to the two sides of an 

assignment.  The first element, referring to the left-hand-side of the assignment, 

contains a variable to which the value of the right-hand-side of the assignment will be 

assigned.  The second element, referring to the right-hand-side of the statement, 

contains either a literal or a variable. 

• Mobile Class Statement: The root element of a mobile class statement is tagged 

MCLASS.  The element has three child elements: a VARIABLE element, a 

MCLASSNAME element, and an optional VALUELIST element.  The MCLASS 

element contains the name of the mobile class to be invoked.  The VALUELIST 

element contains a list of elements that correspond to the input parameters of the 

mobile class.  The VARIABLE element contains the variable to which the result of the 

mobile class invocation should be assigned. 

 

 

 

 

 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  99

Table 4.6: Definitions of the FICAS Control Elements 

Element Contains 

FICAS PROGRAMNAME, BASECP?, 
(WHILE | BRANCH | SETUP | INVOKE | EXTRACT | 
 TERMINATE | ASSIGNMENT | MCLASS)* 

BRANCH BOOLEAN, THEN, ELSE? 

THEN (WHILE | BRANCH | SETUP | INVOKE | EXTRACT | 
 TERMINATE | ASSIGNMENT | MCLASS)* 

ELSE (WHILE | BRANCH | SETUP | INVOKE | EXTRACT | 
 TERMINATE | ASSIGNMENT | MCLASS)* 

WHILE BOOLEAN, WHILEBODY 

WHILEBODY (WHILE | BRANCH | SETUP | INVOKE | EXTRACT | 
 TERMINATE | ASSIGNMENT | MCLASS)* 

SETUP SERVICEHANDLE, SERVICENAME 

INVOKE INVOCATIONHANDLE, SERVICEHANDLE, VALUELIST  

EXTRACT VARIABLE, INVOCATIONHANDLE 

TERMINATE SERVICEHANDLE 

ASSIGNMENT VARIABLE, 
(VARIABLE | BOOLEANLITERAL | REALLITERAL | 
 INTEGERLITERAL | STRINGLITERAL) 

MCLASS VARIABLE, MCLASSNAME, VALUELIST 

VALUELIST (VARIABLE | BOOLEANLITERAL | REALLITERAL | 
 INTEGERLITERAL | STRINGLITERAL)* 

BOOLEAN (BOP, BOOLEAN, BOOLEAN?) | 
(VARIABLE | BOOLEANLITERAL | REALLITERAL | 
 INTEGERLITERAL | STRINGLITERAL), 
COMPARESIGN, 
(VARIABLE | BOOLEANLITERAL | REALLITERAL | 
 INTEGERLITERAL | STRINGLITERAL) 

 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  100

4.2.4 Example Demonstration 

Figure 4.2 shows a sample megaservice program that utilizes most of the primitives 

provided by the CLAS language.  Three autonomous services are involved: ServiceRead, 

ServiceWrite, and ServiceAdd.  The megaservice reads two input numbers using the 

autonomous service ServiceRead, adds the numbers using the autonomous service 

ServiceAdd, and prints out the sum using the autonomous service ServiceWrite.  Based on 

the input values, the megaservice may repeat the operations.  The megaservice may also 

call the mobile class “demo.int2float” to convert an integer value into a float value.  The 

program uses the branch statement, the while loop, the autonomous service statements, 

and the mobile class statement. 

additiondemo "http://ficas.stanford.edu/Megaprogram" 
{ 
  read_svc = SETUP("ServiceRead") 
  write_svc = SETUP("ServiceWrite") 
  add_svc = SETUP("ServiceAdd") 
 
  num1 = 1 
  WHILE (num1 != 0) { 
    read1 = read_svc.INVOKE() 
    num1 = read1.EXTRACT() 
   
    read2 = read_svc.INVOKE() 
    num2 = read2.EXTRACT() 
 
    add1 = add_svc.INVOKE(num1, num2) 
    num3 = add1.EXTRACT() 
   
    IF (|| (num1 < 0, num2 < 0)) THEN { 
      dummy = write_svc.INVOKE(num3)   
      num4 = MCLASS("int2float", num3) 
      dummy = write_svc.INVOKE(num4) 
    } ELSE { 
      dummy = write_svc.INVOKE(num3) 
    } 
  } 
 
  read_svc.TERMINATE() 
  write_svc.TERMINATE() 
  add_svc.TERMINATE() 
} 

Figure 4.2: Example Program for Testing the CLAS Language 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  101

The CLAS compiler compiles the sample program into a control sequence, as shown in 

Figure 4.3.  The control sequence is an XML document that consists of the control 

elements to be interpreted and executed by the runtime environment. 

<FICAS> 
  <PROGRAMNAME>additiondemo</PROGRAMNAME> 
  <BASECP>http://ficas.stanford.edu/Megaprogram</BASECP> 
  <SETUP><SERVICEHANDLE>read_svc</SERVICEHANDLE> 
    <SERVICENAME>ServiceRead</SERVICENAME></SETUP> 
  <SETUP><SERVICEHANDLE>write_svc</SERVICEHANDLE> 
    <SERVICENAME>ServiceWrite</SERVICENAME></SETUP> 
  <SETUP><SERVICEHANDLE>add_svc</SERVICEHANDLE> 
    <SERVICENAME>ServiceAdd</SERVICENAME></SETUP> 
  <ASSIGNMENT><VARIABLE>num1</VARIABLE> 
    <INTEGERLITERAL>1</INTEGERLITERAL></ASSIGNMENT> 
  <WHILELOOP> 
    <BOOLEAN><VARIABLE>num1</VARIABLE><COMPARESIGN>NE</COMPARESIGN> 
      <INTEGERLITERAL>0</INTEGERLITERAL></BOOLEAN> 
    <WHILEBODY> 
      <INVOKE><INVOCATIONHANDLE>read1</INVOCATIONHANDLE> 
        <SERVICEHANDLE>read_svc</SERVICEHANDLE></INVOKE> 
      <EXTRACT><VARIABLE>num1</VARIABLE> 
        <INVOCATIONHANDLE>read1</INVOCATIONHANDLE></EXTRACT> 
      <INVOKE><INVOCATIONHANDLE>read2</INVOCATIONHANDLE> 
        <SERVICEHANDLE>read_svc</SERVICEHANDLE></INVOKE> 
      <EXTRACT><VARIABLE>num2</VARIABLE> 
        <INVOCATIONHANDLE>read2</INVOCATIONHANDLE></EXTRACT> 
      <INVOKE><INVOCATIONHANDLE>add1</INVOCATIONHANDLE> 
        <SERVICEHANDLE>add_svc</SERVICEHANDLE> 
        <VALUELIST><VARIABLE>num1</VARIABLE> 
          <VARIABLE>num2</VARIABLE></VALUELIST></INVOKE> 
      <EXTRACT><VARIABLE>num3</VARIABLE> 
        <INVOCATIONHANDLE>add1</INVOCATIONHANDLE></EXTRACT> 
      <BRANCH> 
        <BOOLEAN><BOP>OR</BOP> 
          <BOOLEAN><VARIABLE>num1</VARIABLE><COMPARESIGN>LT</COMPARESIGN> 
            <INTEGERLITERAL>0</INTEGERLITERAL></BOOLEAN> 
          <BOOLEAN><VARIABLE>num2</VARIABLE><COMPARESIGN>LT</COMPARESIGN> 
            <INTEGERLITERAL>0</INTEGERLITERAL></BOOLEAN></BOOLEAN> 
        <THEN> 
          <INVOKE><INVOCATIONHANDLE>dummy</INVOCATIONHANDLE> 
            <SERVICEHANDLE>write_svc</SERVICEHANDLE> 
            <VALUELIST><VARIABLE>num3</VARIABLE></VALUELIST> 
          </INVOKE> 
          <MCLASS><VARIABLE>num4</VARIABLE>  
            <MCLASSNAME>int2float</MCLASSNAME> 
            <VALUELIST><VARIABLE>num3</VARIABLE></VALUELIST> 
          </MCLASS> 
          <INVOKE><INVOCATIONHANDLE>dummy</INVOCATIONHANDLE> 
            <SERVICEHANDLE>write_svc</SERVICEHANDLE> 
            <VALUELIST><VARIABLE>num4</VARIABLE></VALUELIST> 
          </INVOKE></THEN> 
        <ELSE> 
          <INVOKE><INVOCATIONHANDLE>dummy</INVOCATIONHANDLE> 
            <SERVICEHANDLE>write_svc</SERVICEHANDLE> 
            <VALUELIST><VARIABLE>num3</VARIABLE></VALUELIST> 
          </INVOKE></ELSE></BRANCH></WHILEBODY></WHILELOOP> 
  <TERMINATE><SERVICEHANDLE>read_svc</SERVICEHANDLE></TERMINATE> 
  <TERMINATE><SERVICEHANDLE>write_svc</SERVICEHANDLE></TERMINATE> 
  <TERMINATE><SERVICEHANDLE>add_svc</SERVICEHANDLE></TERMINATE> 
</FICAS> 

Figure 4.3: FICAS Control Sequence Generated for the Example CLAS Program 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  102

4.3 Computational Specification 

In FICAS, a megaservice separates its computational specification from its compositional 

specification.  The CLAS language does not contain any computational primitives.  

However, data transformations and similar computational tasks are often needed to 

interface autonomous services.  Since in the distributed data-flow model the data do not 

flow through the central megaservice node, such transformations have to be carried out 

externally.  To achieve that we define a mobile class that can be attached to the 

autonomous services.  The mobile class can be used to build complex application logic.  

A CLAS program then invokes the computational functionalities specified in the mobile 

class.  As a result, the mobile class serves as the bridge for computation and composition 

in FICAS. 

This section first defines the mobile class and illustrates the process by which the mobile 

class is created.  From the functionality point of view, a mobile class is similar to a 

lightweight autonomous service used for data processing.  Both can provide modularized 

computational functionalities to a megaservice.  On the other hand, a mobile class is 

significantly different from an autonomous service.  Whereas an autonomous service is 

generally managed independent of a megaservice, a mobile class is created and 

maintained along with the megaservice.  Whereas an autonomous service is a process, a 

mobile class is a piece of code that is dynamically loaded and executed at the runtime.  

Due to the difference between a mobile class and an autonomous service, they serve 

different purposes.  A few applications are discussed to help identify when the mobile 

class is most useful in facilitating service composition. 

4.3.1 Constructing Mobile Class 

A mobile class is an information-processing module that can be dynamically loaded.  

Conceptually, the mobile class is a function that takes some input data elements, 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  103

performs certain operations, and then outputs a new data element.  For instance, 

, represents a mobile class named f that takes three data elements as 

input and produces an output data element y. 

),,( 321 xxxfy =

Java is chosen as the specification language for mobile classes in FICAS.  Such selection 

is made for a few reasons.  First, Java is a general programming language that is suitable 

for specifying computational intensive tasks.  There are many available standard libraries 

that provide a wide range of computational functionalities.  Second, Java has extensive 

support for portability.  Java programs can be executed on any platform that incorporates 

a Java virtual machine.  Third, Java supports dynamic linking and loading.  Java class 

files are object files rather than executables in the traditional senses.  Linking is 

performed when the Java class files are loaded onto the Java virtual machine.  Compiled 

into a Java class, the mobile class can be dynamically loaded at runtime. 

Figure 4.4 defines the MobileClass interface.  All mobile classes implement the interface.  

The interface contains a single function that represents the functionality of a mobile class.  

The execute() function takes a vector of data elements as the input and generates a data 

element as the output.  The execute() function is overloaded by the mobile class to 

provide specific processing functionality.  Figure 4.5 shows the definition of the 

DataElement class, which represents the data elements used in FICAS.  The class 

definition is part of the Java library of FICAS, which is also used to build the 

autonomous services.  Since the autonomous services and the mobile classes use the same 

representation for the data elements, the megaservice can pass the data elements between 

its compositional specification and computational specification.  Internally, a data 

element is represented in XML.  There are two constructors for DataElement, one for 

creating an empty data element, the other for creating a data element based on its XML 

representation.  The class provides functions to query the type and the size of the data 

element.  In the case that the data element is of a primitive type (i.e., boolean, integer, 

real, or string), functions are provided to set, fetch and compare values for the data 

element.  Otherwise, the content of the data element can be fetched as a byte array. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  104

public interface MobileClass { 
  public DataElement execute(Vector params); 
} 

Figure 4.4: Definition of the MobileClass Interface 

public class DataElement { 
  public DataElement(); 
  public DataElement(Document doc); 
 
  Document doc();             // Return XML document representation 
  byte[] getByteArray();      // Return byte array representation  
  String toString();          // Return a string in XML printout form 
 
  int getSize()               // Return the size of the element 
  int getType()               // Return the type of the element 
 
  DataElement setValue(boolean value); 
  DataElement setValue(double value); 
  DataElement setValue(int value); 
  DataElement setValue(java.lang.String value); 
  DataElement setValue(byte[] arr); 
 
  boolean getBooleanValue();  // Return boolean value  
  int getIntValue();          // Return integer value  
  double getRealValue();      // Return double value  
  String getStringValue();    // Return string value  
             
  int compare(DataElement e); 
  boolean eq(DataElement e);  // Equal to the argument 
  boolean ge(DataElement e);  // Greater than or equal to 
  boolean gt(DataElement e);  // Greater than 
  boolean le(DataElement e);  // Less than or equal to 
  boolean lt(DataElement e);  // Less than 
  boolean ne(DataElement e);  // Not equal to 
} 

Figure 4.5: Definition of the DataElement Class 

Figure 4.6 shows a simple mobile class that converts data from integer to float.  The 

int2float class implements the MobileClass interface.  The execute() function takes the 

first argument for the mobile class as the input data, converts the data from an integer 

number into a floating point number, and returns the floating point number as the output 

data element. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  105

public class int2float implements MobileClass 
{ 
  public DataElement execute(Vector params) { 
    DataElement arg = (DataElement) params.firstElement(); 
    int val = arg.getIntValue(); 
    double result = new Double(val).doubleValue(); 
    return new DataElement().setValue(result); 
  } 
} 

Figure 4.6: Example Mobile Class that Converts Data from Integer to Float 

Once coded, the mobile class is compiled into a Java class and put into the mobile class 

repository.  The Java class will be looked up later when the mobile class is invoked by a 

megaservice.  To invoke the mobile class from a CLAS program, the mobile class 

statement is used: 

Variable = MCLASS (mclassname, param1, param2, …) 

The argument mclassname refers to the name of the mobile class, followed by the input 

parameters for the mobile class.  The parameters for the invocation of the mobile class 

can be either literals or variables.  Literals represent constant value, and variables 

represent the data elements located on the autonomous services.  When the statement is 

executed, the megaservice first locates the Java class for the mobile class.  The Java class 

is loaded onto either the megaservice controller or an autonomous service.  The choice of 

is made at the runtime to optimize the megaservice performance.  Once the location to 

load the mobile class is determined, the megaservice coordinates the parameters to be 

transferred to the location.  The execute() function of the mobile class is then invoked.  

As the result, an output data element is generated. 

The name of the mobile class, along with the base URL for the mobile class repository, 

determines where the Java byte codes for the mobile class can be located.  The base URL 

is specified in the CLAS program.  It serves as the default source path for loading the 

Java byte codes.  The location to find the Java byte codes is determined in one of the 

following ways: 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  106

1. If the name of the mobile class starts with “http://”, then the URL for loading the Java 

byte codes can be obtained by appending “.class” to the name of the mobile class.  

For example, if the mobile class name is “http://mobile.class.repository/int2float”, 

then the Java class file for the mobile class can be found at 

“http://mobile.class.repository/int2float.class”. 

2. If the name of the mobile class is a normal string, then the URL for loading the Java 

byte codes can be obtained by prefixing the base URL and appending “.class” to the 

name of the mobile class.  For example, if the base class path for the megaservice is 

“http://mobile.class.repository”, then the Java class file for the mobile class int2float 

can be located at “http://mobile.class.repository/int2float.class”. 

4.3.2 Mobile Class for Data Processing 

To demonstrate the capability of the mobile class, we examine how the mobile class is 

used to support data processing.  Specifically, we look at examples using relational data 

operations.  Table 4.7 lists the relational operators, their relational algebra 

representations, and the corresponding mobile class interfaces.  The relational operators 

conduct processing on one or more input relations, and generate a new relation as the 

output.  A mobile class is constructed for each relational operator.  The input relations of 

the relational operator are the input parameters to the mobile class, and the value returned 

by the mobile class corresponds to the output relation of the relational operator.  For the 

mobile classes, the input and the output relations are encapsulated as data elements.  The 

encoding of the relations into data elements is predefined and understood by the mobile 

classes.  Various schemes may be used.  For instance, Peng et al discussed using XML as 

the data representation standard for encoding scientific data [73], including relational 

tables. 

Complex relational expressions can be built recursively by combining relational operators 

on expressions: 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  107

• Unary Operators (σ, π):  The select operator σ selects tuples that satisfy a given 

predicate condition.  The mobile class implementation of a select operator takes a 

relation as the input data element, checks the condition on every tuple within the 

relation, and generates a result data element that contains all the satisfying tuples.  

The project operator π reduces the number of columns in a relation with only the 

desired attributes left.  The mobile class implementation of a project operator takes a 

relation as the input data element, truncates all the undesired attributes, and returns 

the resulting relation as the output. 

• Set Operators (U, I, –):  The union operator U returns the tuples that appear in either 

or both of the relations.  The intersection operator I returns only the tuples that 

appear in both of the relations.  The difference operator – returns the tuples that 

appear in the first relation but are not in the second relation.  The mobile class 

implementations of the set operators take two relations as the input data elements, 

perform the set operation on the relations, and return the resulting relation as the 

output. 

• Combination Operators (×, ><):  The Cartesian product operator associates every 

tuple of the first relation with every tuple of the second relation.  The theta join 

operator combines a selection with Cartesian product, forcing the resulting tuples to 

satisfy the specific predicate condition.  The mobile class implementations of the 

combination operators take two relations as the input data elements, perform the 

combination operations on the relations, and return the resulting relation as the 

output. 

Figure 4.7 shows the mobile class that implements the select operator.  The input data 

element contains the input relation encoded in XML.  The mobile class first decodes the 

input data element, then applies the selection condition on individual rows, and finally 

inserts the selected rows into the result relation.  The result relation is encoded into a data 

element before it is returned as the output of the mobile class. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  108

Table 4.7: Relational Operators and Their Corresponding Mobile Classes 

Operator Relational Representation Mobile Class 

Select O = σ cond (A) O = MCLASS(“select”, A) 

Project O = π attr (A) O = MCLASS(“project”, A) 

Union O = A U B O = MCLASS(“union”, A, B) 

Intersect O = A I B O = MCLASS(“intersect”, A, B) 

Difference O = A – B O = MCLASS(“difference”, A, B) 

Cartesian product O = A × B O = MCLASS(“cartesian”, A, B) 

Theta join O = A ><cond B O = MCLASS(“join”, A, B) 

 

 

public class select implements MobileClass 
{ 
  public DataElement execute(Vector params) { 
    DataElement arg = (DataElement)params.elementAt(0); 
    Element source = 
      (Element)arg.doc().getElementsByTagName("TABLE").item(0); 
 
    NodeList rows = source.getElementsByTagName("ROW"); 
   
    Document result = new DocumentImpl(); 
    Element root = result.createElement("TABLE"); 
  
    for (int i=0; i<rows.getLength(); i++) { 
      Element row = (Element) rows.item(i); 
      if (condition_is_met(row)) 
        root.appendChild(InsertRow(result, row)); 
    } 
 
    result.appendChild(root); 
   
    return new DataElement(result); 
  } 
 
  ... 
} 

Figure 4.7: Example Mobile Class that Implements the Select Operator 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  109

4.3.3 Mobile Class for Type Mediation 

Data generated by an autonomous service can be directly used by other autonomous 

services if the services share the same data types, formats, and granularities, etc.  

However, such homogeneity cannot be assumed within a large-scale service composition 

infrastructure.  Data exist in various types and will continue to appear in different types 

that suit different applications.  The output data of one autonomous service needs to be 

converted to conform to the type of the input data of another autonomous service. 

Traditionally, an autonomous service serving as type broker or a distributed network of 

type brokers can be used to mediate the difference among data in various formats [63].  

The type brokers can use data in unknown formats and convert them to known formats 

for the information client.  The type brokers serve as proxies connecting client requests 

with appropriate source services.  A type graph is used to figure out the chain of 

necessary conversions.  An example of automating this process can be seen in [18].  

There are two issues associated with using type brokers: efficiency and availability.  

First, the use of type brokers for type mediation can be inefficient.  Large amount of data 

are forwarded among the brokers, especially when a chain of conversions is involved.  

Figure 4.8(a) presents an example of data-flows in the type-broker architecture.  Data 

from the source service are represented in the type T1, and the destination service 

consumes data in the type T3.  Two type brokers are employed to convert source data 

from the type T1 to the type T3.  Potentially large amount of data are passed among the 

type brokers.  Second, the necessary type brokers may not exist for the desired data type.  

Since there are a large number of data formats, it is impractical to prepare a 

comprehensive set of type brokers covering all existing and future data types.  

Megaprogrammers therefore need to create and maintain new type brokers to conduct 

desired type mediations.  However, the task of owning the autonomous services is in 

conflict with the role and the expertise of the megaprogrammers.  Type brokers ought to 

be maintained independent of the megaservices.  

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  110

M

S1

(a) Type Brokers

T1

T2T1_T2 T2_T3

S2

T3

M

S1

(b) Type Mediation Mobile Classes

T3 S2

mobile class
T1_T2

mobile class
T2_T3

Control-flow

Data-flow

 

Figure 4.8: Type Mediation Using Type Brokers and Mobile Classes 

Alternatively, mobile classes can be used in place of type brokers to handle type 

mediation.  The mobile classes are created by the megaprogrammers as part of the 

specification for the megaservices.  Rather than forwarding data among the type brokers, 

the megaservice loads the mobile classes on the autonomous services to provide the type 

mediation functions.  Multiple mobile classes for type mediation can be utilized together, 

similar to the network of the type brokers.  As shown in Figure 4.8(b), two mobile classes 

are used to convert data from type T1 to type T3.  The type mediation is conducted at the 

source autonomous service, where the source data of type T1 is converted to type T3.  

Data in the consumable format T3 is directly sent to the destination autonomous service.  

Since the mobile classes are invoked on the source autonomous service, the multiple 

interim data transfers are eliminated and the data traffic is limited to essential 

transmissions.  The application of the mobile classes addresses two requirements for type 

mediation: availability of type mediation functionalities and the efficiency in conducting 

type mediation. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  111

4.3.4 Mobile Class for Extraction Model Mediation 

Autonomous services can produce data with a wide variety of extraction models [81].  

Most megaservices have a set of upstream autonomous services generating data that is 

consumed by a set of downstream autonomous services.  When there is a mismatch 

between how the data is produced and later consumed, extraction model mediation plays 

an important role.  For example, an upstream service might produce data progressively, 

while the downstream service requires that the data arrive as a whole relation.  Mobile 

classes can be used to prepare the data for different extraction models.  A taxonomy of 

extraction models for autonomous services that produce outputs based on specific inputs 

is presented in [81].  The taxonomy is based on three binary factors: partial extraction, 

runtime service status, and runtime result status.  The three binary factors combine to 

form eight basic types of data extraction methods, including familiar and obvious 

methods (e.g., SQL cursors and RPC), and some less obvious methods (e.g., semantic 

partial extraction and progressive extraction). 

Mobile classes can help autonomous services extend their support for extraction models.  

For instance, consider an autonomous service that is not implemented to support the 

partial extraction model presented in [81].  The autonomous service produces three 

outputs, A, B, and C, but has to deliver them as a single opaque object X.  Downstream 

autonomous services have to consume the object X in whole.  A mobile class can mimic 

partial extraction by extracting only the components of X desired by downstream 

services.  The behavior of the mobile class is functionally similar to the relational mobile 

class for the projection operation.  This simple process can be further coupled with 

selection and sorting predicates for producing many different types of behaviors.  With 

mobile classes, opaque data can be filtered, sorted, transmission delayed, projected, split, 

and recombined. 

Extraction model mediation is required when the output model of an upstream 

autonomous service is incompatible with the input model of a downstream autonomous 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  112

service.  An example of this incompatibility was mentioned earlier: an upstream 

autonomous service delivers an SQL cursor, but the downstream autonomous service 

expects a relation.  Such a simple mismatch of extraction models will stymie any 

upstream-downstream pair.  This is when mobile classes become valuable.  A mobile 

class is constructed to scroll the SQL cursor to fill a complete relation, and return the 

relation as the output.  The mobile class is loaded onto the upstream autonomous service 

to mediate the output data for the downstream autonomous service.  As the result, a 

megaservice is able to utilize both autonomous services despite the difference in their 

extraction models. 

Autonomous services are invariably built with the expected audience in mind.  However, 

they may not be able to cover all the potential audiences.  Even when there is a type and 

domain match between the upstream and downstream autonomous services, the 

difference in their extraction models can provide a seemingly insurmountable block.  The 

application of mobile classes is a solution to extraction model incompatibilities. 

4.4 Summary 

This chapter reviews the buildtime environment of FICAS that allows the composition of 

the autonomous services to be specified, verified, and converted into executables.  The 

composition represents a megaservice that is defined by the formal specifications.  There 

are two aspects of the megaservice that the specifications define: (1) the compositional 

aspect that specifies the interactions among the autonomous services, and (2) the 

computational aspect that specifies the processing of the data utilized by the autonomous 

services.  The specifications are written in source programs.  The buildtime environment 

provides a set of tools that compile the source programs into executables for the runtime 

environment of FICAS. 

 



CHAPTER 4. FICAS BUILDTIME ENVIRONMENT  113

The CLAS language is introduced as the high-level compositional language to support 

the compositional specification of megaservices.  The CLAS language is based on the 

CLAM language and inherits many traits from CLAM [80].  First, CLAS uses the IWIM 

invocation model. The megaservice is the general contractor, and the autonomous service 

is the subcontractor that is accessed with input parameters and with return values.  

Second, CLAS breaks up the traditional remote procedure call to the autonomous service 

into several statements.  Asynchronicity is obtained to allow parallel invocations of 

remote methods from a sequential client.  Third, CLAS is designed to be purely 

compositional.  It has a limited set of control constructs and supports a restricted set of 

data types.  On the other hand, CLAS improves on CLAM in many areas.  First, CLAS 

eliminates a few primitives from CLAM to make the language even simpler.  

Furthermore, CLAS introduces the input parameter to facilitate the multi-tiered service 

composition.  Finally, CLAS provides the megaservice the ability to perform 

computation using the mobile class.  Overall, CLAS is a compositional language that 

combines simplicity, expressive power, and performance. 

The mobile class is introduced to support computational specification of megaservices.  

Using the mobile class, a megaservice can separate its compositional specification from 

its computational specification.  Implemented in Java, the mobile class supports a wide 

range of computational functionalities.  Examples are shown to demonstrate how the 

mobile class is used to perform data processing, type mediation, and extraction model 

mediation.  There are a couple of key benefits of using the mobile class to conduct 

computational processing.  First, the mobile class is flexible in providing computational 

functionalities.  Since the mobile class is specified along with the megaservice, it can be 

easily modified to satisfy the specific requirement by the megaservice.  Second, the 

mobile class is efficient in execution.  As we have demonstrated in the type mediation 

example (in Figure 4.8), mobile classes can be used to reduce the amount of data traffic 

among the autonomous services.  As the mobile class can be dynamically loaded, a 

megaservice can optimize its performance by placing the mobile class at an appropriate 

location to minimize the communication traffic. 

 



 

Chapter 5  

Runtime Environment of FICAS 

This chapter describes the design of the runtime environment of FICAS, which is 

responsible for the execution of the megaservice executables generated by the buildtime 

environment.  Various features are designed and implemented to support the scalability 

of the service composition infrastructure and to achieve high performance of the 

megaservices.  FICAS can incorporate a large number of autonomous services, which can 

join and leave the service composition infrastructure without affecting other autonomous 

services.  With respect to performance, the execution of the megaservices takes 

advantage of the distribution of the data-flows in FICAS and is supported by various 

features such as the autonomous service metamodel, the ASAP protocol, the CLAS 

language, and the mobile class.  FICAS is particularly suitable for conducting service 

composition where large volume of data exchange is involved among the autonomous 

services.  We demonstrate the use of the FICAS infrastructure with a construction project 

management application. 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  115

5.1 Architecture of the Runtime Environment 

Figure 5.1 illustrates the architecture of the runtime environment of FICAS, which 

consists of a communication network, a set of autonomous services, and a service 

directory.  The communication network loosely interconnects the autonomous services in 

the distributed computing environment.  Each autonomous service is maintained under its 

own administration domain.  The interactions with the autonomous service are conducted 

through the network.  The directory of autonomous services is the central registry that 

records the parameters of the registered services.  It is the only fixed entity in the volatile 

runtime environment.  Autonomous services can update their parameters at any time.  

They may even join or leave the runtime at any time.  Through the centralized directory, 

an autonomous service can be aware of the current configuration of the runtime 

environment. 

Megaservice Controller

Service
Core

Megaservice Controller

Service
Core

Communication
Network

Autonomous
Service

Directory

FICAS
Control

Sequence

Mobile
Classes

Megaservice Controller

Service
Core

Autonomous Service Wrapper

From
 FICAS

 Buildtime

 

Figure 5.1: Architecture of the FICAS Runtime Environment 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  116

The control sequence and the mobile classes generated by the buildtime environment for 

the megaservice are the inputs for the runtime environment of FICAS.  The control 

sequence specifies the control-flow of the megaservice.  It is sent to a megaservice 

controller to be executed.  The megaservice controller is attached to the autonomous 

service wrapper.  This design enables each autonomous service to serve as the 

megaservice controller.  The deployment of the autonomous services implicitly provides 

the availability of the megaservice controllers.  The mobile classes specify the 

computational routines involved in the megaservice.  They reside in the mobile class 

repository.  The mobile classes are dynamically loaded by the autonomous services when 

the mobile classes are invoked within the megaservice. 

The runtime environment of FICAS has a highly scalable architecture.  At its minimum, 

the runtime can consist just one autonomous service, along with the service directory.  On 

the other hand, the runtime environment can be expanded by simply plugging in 

additional autonomous services into the communication network and registering the 

autonomous services with the service directory. 

5.1.1 Autonomous Service Directory 

The autonomous service directory is the central facility for the registration and discovery 

of autonomous services.  The megaservice refers to an autonomous service by its name.  

The directory maps the name of the autonomous service to the information needed by the 

runtime environment, such as the location of the autonomous service on the network and 

the TCP/IP port.  The directory provides a level of indirection that allows autonomous 

services to be easily added, modified, or replaced without making any changes to the 

megaservice. 

Each autonomous service is responsible for informing the centralized directory of its 

parameters.  Figure 5.2 shows a sample autonomous service directory that contains the 

registrations of five autonomous services.  XML is chosen as the representation format 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  117

for the autonomous service directory because the data contained in directory is 

semistructured [20].  Each autonomous service registration is represented by an XML 

element tagged “SERVICE”.  The child elements of the SERVICE element specify the 

parameters of the autonomous service.  There are three mandatory child elements: the 

NAME element contains the name of the autonomous service, the SERVER element 

contains the IP address of the server machine, and the PORT element contains the TCP/IP 

port to which the service listens.  The autonomous service can also register other 

parameters with the directory for look up during the runtime.  The current 

implementation of the runtime does not utilize any of the optional service parameters.  

However, the ability to register these parameters makes the runtime extendable.  Sample 

et al. have demonstrated an example where the service parameters are used for scheduling 

autonomous services under uncertainty [82].  The cost, the expected completion time, and 

other information of the autonomous services are used to help the megaservice determine 

which autonomous services to invoke.  For the example shown in Figure 5.2, the 

autonomous service named ServicePsl has registered two additional parameters: COST 

representing what the autonomous service provider will charge for the service, and TIME 

representing the estimated length of time to complete the service.  These parameters can 

be used in the future to support scheduling of the autonomous services under uncertainty. 

The address of the service directory is known a priori to all the autonomous services.  An 

autonomous service joins the composition infrastructure by registering itself with the 

directory.  The autonomous service is also responsible for maintaining the accuracy of its 

entry within the directory.  Whenever any service parameter is changed, the autonomous 

service needs to notify and update the directory.  The self-maintenance model allows the 

service composition infrastructure to accommodate a large number of independent 

autonomous services. 

The service directory described here can be considered as a strip down version of the 

general directory service, such as the UDDI [5] and the JNDI [45].  It is assumed in 

FICAS that the autonomous service name is used as the index for the directory, i.e., the 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  118

autonomous service name is unique for each autonomous service.  Therefore, a 

megaservice can look up an autonomous service by name.  A future extension of the 

autonomous service directory may allow the registration of multiple instances of 

autonomous services under the same name.  One may choose a service based on other 

criteria such as cost, time, certainty, service load, etc [82].   

<ASDIRECTORY> 
  <SERVICE> 
    <NAME>ServiceDummy</NAME> 
    <SERVER>ficas.Stanford.EDU</SERVER> 
    <PORT>2408</PORT> 
  </SERVICE> 
  <SERVICE> 
    <NAME>ServicePsl</NAME> 
    <SERVER>mediator.Stanford.EDU</SERVER> 
    <PORT>2409</PORT> 
    <COST>100</COST> 
    <TIME>2000</TIME> 
  </SERVICE> 
  <SERVICE> 
    <NAME>ServiceP3</NAME> 
    <SERVER>CE-CIFE556M-PC2.Stanford.EDU</SERVER> 
    <PORT>2410</PORT> 
  </SERVICE> 
  <SERVICE> 
    <NAME>ServiceNotification</NAME> 
    <SERVER>ficas.Stanford.EDU</SERVER> 
    <PORT>2412</PORT> 
  </SERVICE> 
  <SERVICE> 
    <NAME>ServiceExcel</NAME> 
    <SERVER>eil.Stanford.EDU</SERVER> 
    <PORT>4004</PORT> 
  </SERVICE> 
</ASDIRECTORY> 

Figure 5.2: Autonomous Service Directory 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  119

5.1.2 Megaservice Controller 

The megaservice controller is the functional unit that interprets the control sequence 

generated by the buildtime environment and coordinates the execution of the 

megaservice.  One and only one megaservice controller is responsible for each 

megaservice.  As shown in Figure 5.3, the megaservice controller is attached to the 

autonomous service wrapper.  Together, they form a “local” autonomous service.  The 

binding of the wrapper and the megaservice controller allows many components built in 

the wrapper to be reused.  The wrapper and the megaservice controller share the input 

and output event queues for receiving and sending events.  They also share the input and 

output data containers for exchanging data elements with other autonomous services. 

The megaservice controller consists of five components: the Control Manager, the ASAP 

Event Receiver, the Variable Cache, the Flow Dependency Table, and the Outgoing 

Event Pool.  The components work collaboratively to interpret the control elements 

contained in the input control sequence.  The control elements are classified into four 

categories based on the types of CLAS statements they represent: the assignment 

statement, the conditional statement, the autonomous service statement, and the mobile 

class statement.  We describe in the rest of this section how the megaservice controller 

processes each type of the statements. 

5.1.2.1 Processing of the Assignment Statement 

The Control Manager reads in a control sequence and interprets one control element at a 

time.  The control element representing an assignment statement results in an entry in the 

Variable Cache.  In the case where a literal value is assigned to a variable, an entry is 

formed in the Variable Cache that associates the literal value with the variable.  In the 

case where a variable is assigned to another variable, the value of the right-hand side 

variable is looked up from the Variable Cache, and then assigned to the left-hand side 

variable in the Variable Cache. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  120

ASAP Event Receiver

Outgoing Event Pool

FICAS
Control Sequence

Control Manager

Flow
Dependency

Table

Variable
Cache

Megaservice Controller

Autonomous Service Wrapper

From
Autonomous

Services

Input Event Q
ueue

O
utput Event Q

ueue

Input Data Container

Output Data Container

Service Core

Active Mediator

To
Autonomous

Services

 

Figure 5.3: Architecture of the Megaservice Controller 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  121

The value of a variable in the Variable Cache can be represented either as a data element 

or as a reference to a data element.  For instance, a literal value is represented as a data 

element, and a data element on a remote autonomous service is represented as a 

reference.  When the value of a variable is needed by the megaservice (e.g., for 

evaluating the boolean predicate of a branch statement), the reference must be 

materialized.  The data element is loaded into the Variable Cache in the following 

process: (1) the Control Manager generates a MAPDATA event to transmit the data 

element from the remote autonomous service to the local autonomous service; then, (2) 

the remote autonomous service sends the data element to the input data container of the 

autonomous service wrapper; and finally, (3) the data element is forwarded to the 

Variable Cache. 

5.1.2.2 Processing of the Conditional Statement 

The conditional statement (i.e., the branch statements and the while loops) consists of a 

boolean predicate and a subgroup(s) of statements.  When processing the conditional 

statement, the Control Manager first evaluates the boolean predicate.  The values of the 

variables in the predicate are looked up from the Variable Cache.  Based on the result of 

the evaluation, the Control Manager then determines whether or which subsequent group 

of statements is executed. 

5.1.2.3 Processing of the Autonomous Service Statement 

The autonomous service statements (i.e., SETUP, INVOKE, EXTRACT, and 

TERMINATE) are used by the megaservice to interact with the autonomous services.  

When processing an autonomous service statement, the Control Manager generates 

appropriate ASAP events for the statement, which are put into the Outgoing Event Pool.  

At the same time, dependencies among the outgoing ASAP events are formulated into the 

Flow Dependency Table.  The Outgoing Event Pool utilizes its own thread.  An event in 

the Outgoing Event Pool is sent out when all the dependencies on the event are resolved.  

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  122

The Flow Dependency Table is updated when the megaservice controller is notified of 

status changes from the autonomous services.  The ASAP Event Receiver monitors the 

status changes from the autonomous services by listening to the ASAP reply events.  An 

event in the Flow Dependency Table is completed if its corresponding reply event is 

received. 

• SETUP Statement 

<SETUP> 
  <SERVICEHANDLE>service_handle</SERVICEHANDLE> 
  <SERVICENAME>service_name</SERVICENAME> 
</SETUP> 

 
The Control Manager first looks up the identifier for the autonomous service service_name 

from the service directory, then formulates a SETUP event destined at the service.  The 

identifier of the autonomous service is recorded in the service_handle to be used by the 

subsequent autonomous service statements.   

• INVOKE Statement 

<INVOKE> 
  <INVOCATIONHANDLE>invoke_handle</INVOCATIONHANDLE> 
  <SERVICEHANDLE>service_handle</SERVICEHANDLE> 
  <VALUELIST> 
    <VARIABLE>param</VARIABLE> 
  </VALUELIST> 
</INVOKE> 

 
The Control Manager looks up the autonomous service identifier for the service_handle 

and assigns it to the invoke_handle.  Necessary data-flow events are formulated to ensure 

that the service is invoked after the parameters are prepared for the autonomous service.  

We will discuss how this is achieved in Section 5.2.  The Control Manager then 

formulates an INVOKE event destined at the autonomous service.  The dependencies of 

the INVOKE event on the data-flow events are put into the Flow Dependency Table.  The 

flow identifier of the INVOKE event is recorded in the invoke_handle. 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  123

• EXTRACT Statement 

<EXTRACT> 
  <VARIABLE>variable</VARIABLE> 
  <INVOCATIONHANDLE>invoke_handle</INVOCATIONHANDLE> 
</EXTRACT> 

 
No ASAP event is generated for the EXTRACT statement.  The Control Manager merely 

associates the variable with the autonomous service and the flow identifier of the 

autonomous service referred by the invoke_handle.  When the variable is later utilized, 

the Control Manager will be able to form the appropriate data-flow events to obtain the 

data element. 

• TERMINATE 

<TERMINATE> 
  <SERVICEHANDLE>service_handle</SERVICEHANDLE> 
</TERMINATE> 

 
The Control manager looks up the autonomous service identifier and formulates a 

TERMINATE event destined at the autonomous service. 

The scheme used by the Control Manager to generate the ASAP events and their 

dependencies is not unique.  Different schemes produce different control-flow and data-

flow patterns for executing the megaservice.  Section 5.2 will describe a scheme that 

produces distributed data-flows among the autonomous services. 

5.1.2.4 Processing of the Mobile Class Statement 

The FICAS control element that represents the mobile class statement has the following 

form: 

<MCLASS> 
  <VARIABLE>result</VARIABLE> 
  <MCLASSNAME>mobileclass</MCLASSNAME> 
  <VALUELIST> 
    <VARIABLE>param</VARIABLE> 
  </VALUELIST> 
</MCLASS> 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  124

As a mobile class can be dynamically loaded, it can be executed on many potential 

locations.  One scenario is to carry out the execution on the local autonomous service.  In 

this case, the Control Manager notifies the Active Mediator to load the Java class for the 

mobile class.  At the same time, data-flow events are issued by the Control Manager to 

transfer the parameters for the mobile class to the local autonomous service.  The mobile 

class is then executed, and the data element generated by the execution is assigned to the 

result variable. 

Another scenario is to carry out the execution of the mobile class on a remote 

autonomous service.  In this case, the Control Manager first identifies an autonomous 

service that will execute the mobile class.  The Control Manager then formulates 

appropriate data-flow events to transfer the parameters to the autonomous service.  

Finally, the Control Manager issues a mobile class event to instruct the autonomous 

service to load and execute the mobile class.  In addition, the Control Manager associates 

the result variable with the result of the mobile class invocation.  This scenario is only 

possible if the autonomous service supports the execution of the mobile classes.  Section 

5.3 will discuss in further detail how such support is provided by the autonomous 

services in FICAS. 

 

 

 

 

 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  125

5.2 Distribution of Data-flows 

Many aspects of the FICAS infrastructure support the distribution of the data-flows for 

the execution of the megaservices.  The autonomous service metamodel allows the 

separation of the data-flows from the control-flows.  Data elements can be exchanged 

among the data containers of the autonomous services.  The ASAP protocol enables data 

elements to be transmitted directly among the autonomous services.  The CLAS language 

allows data dependencies to be easily extracted from the megaservice.  The runtime 

environment ties everything together to enable the distribution of the data-flows.  

5.2.1 Megaservice Execution Plan 

The megaservice controller executes and coordinates the autonomous services by 

controlling the choice and the timing of ASAP events.  We characterize the coordination 

as an execution plan, which defines the set of outgoing ASAP events and the 

dependencies among the events.  There are three steps in generating an execution plan: 

1. The megaservice is analyzed to discover the data dependencies among the 

autonomous services; 

2. A data dependency graph is constructed to identify the dependencies among the 

autonomous service invocations; and 

3. The data dependency graph is used to guide the generation of the ASAP events and 

their dependencies. 

We illustrate the process using the segment of control sequence shown in Figure 5.4.  The 

segment contains eight FICAS control elements to accomplish the following tasks: (1) 

The autonomous service Service1 is invoked; (2) The autonomous service Service2 is 

invoked; (3) The output of Invocation1 is assigned to the variable A; (4) The output of 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  126

Invocation2 is assigned to the variable B; (5) Autonomous service Service3 is invoked 

with A and B as the input parameters; (6) The output of Invocation3 is assigned to the 

variable C; (7) Autonomous service Service4 is invoked with C as the input parameter; 

and finally (8) The output of Invocation4 is assigned to the variable D. 

<INVOKE> 
  <INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE> 
  <SERVICEHANDLE>Service1</SERVICEHANDLE> 
</INVOKE> 
<INVOKE> 
  <INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE> 
  <SERVICEHANDLE>Service2</SERVICEHANDLE> 
</INVOKE> 
<EXTRACT> 
  <VARIABLE>A</VARIABLE> 
  <INVOCATIONHANDLE>Invocation1</INVOCATIONHANDLE> 
</EXTRACT> 
<EXTRACT> 
  <VARIABLE>B</VARIABLE> 
  <INVOCATIONHANDLE>Invocation2</INVOCATIONHANDLE> 
</EXTRACT> 
<INVOKE> 
  <INVOCATIONHANDLE>Invocation3</INVOCATIONHANDLE> 
  <SERVICEHANDLE>Service3</SERVICEHANDLE> 
  <VALUELIST> 
    <VARIABLE>A</VARIABLE> 
    <VARIABLE>B</VARIABLE> 
  </VALUELIST> 
</INVOKE> 
<EXTRACT> 
  <VARIABLE>C</VARIABLE> 
  <INVOCATIONHANDLE>Invocation3</INVOCATIONHANDLE> 
</EXTRACT> 
<INVOKE> 
  <INVOCATIONHANDLE>Invocation4</INVOCATIONHANDLE> 
  <SERVICEHANDLE>Service4</SERVICEHANDLE> 
  <VALUELIST> 
    <VARIABLE>C</VARIABLE> 
  </VALUELIST> 
</INVOKE> 
<EXTRACT> 
  <VARIABLE>D</VARIABLE> 
  <INVOCATIONHANDLE>Invocation4</INVOCATIONHANDLE> 
</EXTRACT> 

Figure 5.4: Example Segment of FICAS Control Sequence 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  127

Invocation Handle Service Handle

Invocation1 Service1

Invocation2 Service2

Invocation3 Service3

Invocation4 Service4

... ...

Output Variables

A

B

C

D

...

Input Variables

A, B

C

...
 

Figure 5.5: Autonomous Service Invocation Table 

The data dependencies among autonomous services are analyzed when the control 

sequence is interpreted.  The megaservice controller extracts from the statements the 

dependencies among the variables, the service invocation handles and the autonomous 

service handles.  The information is stored in the autonomous service invocation table, as 

shown in Figure 5.5.  For instance, reading the third line, we find that the variable C is 

extracted as the result of the service invocation Invocation3 from the autonomous service 

Service3.  The service invocation takes the variables A and B as the inputs, which are the 

result of the service invocations Invocation1 and Invocation2, respectively.  Hence, 

Invocation3 is data dependent on Invocation1 and Invocation2. 

The data dependencies are mapped into the data dependency graph (DDG) as shown in 

Figure 5.6.  The nodes represent the autonomous service invocations, and the directed 

arcs represent the data dependencies between the autonomous service invocations.  Each 

directed arc points to the dependent autonomous service and is tagged with the data 

elements transmitted between the pair of autonomous services.  For example, the arc 

between Invocation1 and Invocation3 represents that Invocation3 is dependent on 

Invocation1, and the variable A is the data element transmitted from Invocation1 to 

Invocation3. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  128

Invocation1 Invocation2

Invocation3

Invocation4

A B

C

D

 

Figure 5.6: Data Dependency Graph 

The megaservice execution plan is represented by the event dependency graph (EDG).  

The node in the EDG contains an outgoing ASAP event from the megaservice controller.  

The arc establishes a predecessor-successor relationship between a pair of ASAP events.  

The successor ASAP event can be sent only when the action taken by the predecessor 

ASAP event is completed, i.e., the megaservice controller receives the response to the 

predecessor ASAP event.  The megaservice controller uses the EDG to coordinate the 

execution of the megaservice.  The ASAP events contained in the EDG nodes are placed 

into the Outgoing Event Pool, and the dependencies among the ASAP events are placed 

in the Flow Dependency Table. 

Different EDGs can be generated that utilize different data-flow models for the execution 

of the megaservice.  Figure 5.7(a) shows an EDG in which the megaservice controller 

serves as the central hub for the data traffic.  The EDG is generated by directly translating 

the individual statements into the ASAP events.  The INVOKE statement is translated 

into the MAPDATA events, followed by the INVOKE event.  The MAPDATA events 

transfer the input data elements from the megaservice controller (i.e., the local 

autonomous service) to the destination autonomous service, and the INVOKE event 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  129

initiates the invocation of the autonomous service.  The EXTRACT statement is 

translated into a MAPDATA event that transmits the output data element from the 

autonomous service to the megaservice controller. 

The group of events in the shaded boxes corresponds to the sequence of activities 

responsible for a single procedure call to the autonomous service: the top two 

MAPDATA events prepare the input parameters for the autonomous service by sending 

the data elements from the megaservice controller to the autonomous service; the 

INVOKE event then starts the service invocation; and the final MAPDATA event fetches 

the result back to the megaservice.  Since all the events and the transferring of the data 

elements go through the megaservice controller, the EDG results in the centralized 

control-flow centralized data-flow (1C1D) model for the execution of the megaservice. 

While Figure 5.7(a) shows how the EDG supports the 1C1D model, Figure 5.7(b) shows 

how the EDG can also support the centralized control-flow distributed data-flow (1CnD) 

model.  For both EDGs, the megaservice controller serves as the central coordinator for 

all the ASAP events.  Hence, both executions of the megaservice result in centralized 

control-flows.  The key difference is the distribution of the data-flows among the 

autonomous services in the latter EDG that supports the distributed data-flow model.  The 

EDG allows data-flows to be formed directly among dependent autonomous services.  

We use the DDG to guide the generation of the EDG.  An invocation node in the DDG is 

mapped into an INVOKE event node in the EDG.  A directed arc in the DDG is mapped 

into a MAPDATA event node in the EDG.  The directed arc connects two invocation 

nodes that contain the invocation handles of the dependent autonomous services.  The 

service handles of the autonomous services are looked up from the autonomous service 

invocation table using the invocation handles.  The MAPDATA event is formed to 

transmit the data element from the predecessor autonomous service to the successor 

autonomous service.  For instance, the arc tagged with A in the DDG is mapped into the 

MAPDATA event node in the EDG that sends data element A from Service1 to Service3.     

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  130

INVOKE
Dest: Service1

MAPDATA
Data: A
From: Service1
To: Local

MAPDATA
Data: A
From: Local
To: Service3

INVOKE
Dest: Service3

MAPDATA
Data: C
From: Service3
To: Local

MAPDATA
Data: C
From: Local
To: Service4

INVOKE
Dest: Service2

MAPDATA
Data: B
From: Service2
To: Local

MAPDATA
Data: B
From: Local
To: Service3

INVOKE
Dest: Service4

INVOKE
Dest: Service1

MAPDATA
Data: A
From: Service1
To: Service3

INVOKE
Dest: Service3

MAPDATA
Data: C
From: Service3
To: Service4

INVOKE
Dest: Service2

MAPDATA
Data: B
From: Service2
To: Service3

INVOKE
Dest: Service4

Invocation1:

Invocation2:

Extract A:

Extract B:

Invocation3:

Extract C:

Invocation4:

(a) Centralized Data-flows (b) Distributed Data-flows

Extract D:
MAPDATA

Data: D
From: Service4
To: Local

 

Figure 5.7: Event Dependency Graph 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  131

5.2.2 Performance Analysis 

We have shown in Chapter 2 using a simplified mathematical model that the distribution 

of data-flows can improve the performance of the megaservice.  While the mathematical 

model provides the guidance for designing the FICAS infrastructure, it serves as a crude 

approximation for the performance of the megaservice in a real computing environment.  

In this section, we measure the performance of a sample megaservice supported by 

FICAS.  The megaservice is written in the CLAS language, compiled and executed using 

the buildtime and runtime environments of FICAS.  Different configurations of the 

computing environment are used to examine the performance of the megaservice.  For 

comparison, we implement the same megaservice under a 1C1D service composition 

infrastructure. 

SOAP is used as the reference platform for the 1C1D model.  SOAP [15] is a lightweight 

protocol for exchanging information between applications in a distributed computing 

environment.  It has shown great potential for simplifying web service composition and 

the distribution of software using the Internet.  There are several implementations of 

SOAP.  They differ in their support for class binding, ease of use and performance [29].  

As one of the popular choices for the SOAP implementations, Apache SOAP [4] is 

selected to be our reference implementation.  Originally developed by IBM, Apache 

SOAP is currently under the management of the Apache Software Foundation.  Apache 

SOAP is chosen partly because of its popularity, but more importantly because of its 

similarities to FICAS.  The similarities make the performance comparison between 

SOAP and FICAS more relevant: 

• Both Apache SOAP and FICAS are implemented in Java.  This eliminates the 

potential performance discrepancies caused by different implementation languages. 

• Both Apache SOAP and FICAS encode data in XML.  While XML provides 

universality, it comes with a performance penalty.  Since XML represents data in 

textual format, the data encoded in XML is generally larger in size than the data 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  132

encoded in binary.  The decision of using XML as the data representation format is a 

trade-off made between universality and performance.  For performance comparison 

between SOAP and FICAS, it is important to have the infrastructures employ the 

same data representation format. 

• Both Apache SOAP and FICAS use the Apache Xerces XML parser [99] for 

serialization and deserialization of data objects.  Serialization and deserialization are 

the first and final steps of sending a data object between two autonomous services.  

Serialization converts an object into its persistent state, and deserialization converts 

an object from its persistent state to its representation in memory.  A data object is 

transmitted in its serialized form, and deserialized at the destination.  Govindaraju et 

al have shown that XML parsing and formatting can impact the performance of 

SOAP service calls [40].  By using the same XML parser, we eliminate the impact of 

serialization and deserialization when comparing the performance between SOAP and 

FICAS.   

Figure 5.8 illustrates the computing environment for the performance evaluation.  Two 

autonomous services that focus on data communications are involved.  No computational 

processing occurs on autonomous services.  Autonomous service S1 randomly generates 

and returns a string whose size is specified by the input parameter.  Autonomous service 

S2 takes a string as input and immediately returns without doing anything.  Two 

megaservices that utilize the autonomous services are constructed.  The first megaservice, 

MultiService, connects the two autonomous services.  It forwards the string generated by 

the autonomous service S1 to the autonomous service S2.  This megaservice is designed 

to examine the impact of the data-flow distribution.  The second megaservice, 

SingleService, is used to measure the cost of a single service call.  The megaservice 

simply invokes the autonomous service S1.  This megaservice is designed to compare the 

implementation efficiency of SOAP and FICAS. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  133

SwitchMegaService

S1
produces

and returns a
string value

10mbps

S2
consumes a

string

out
10mbps

in

(LAN) in = 10 mbps; out = 10 mbps
(802.11b) in = 2 mbps; out = 0.5 mbps

 MultiService
 {
     a = S1(size)
     S2(a)
 }

SingleService
 {
     a = S1(size)
 }

 

Figure 5.8: Test Environment for Comparing SOAP and FICAS 

The autonomous services and the megaservices are implemented for both SOAP and 

FICAS.  All Java programs are written and compiled with Sun’s JDK 1.3.0 for the 

Microsoft Windows operating system.  For SOAP, the autonomous services are 

implemented as Java methods whose interfaces are registered with the Apache Tomcat 

application server v4.0.  S1 is implemented as a method that takes a number as the input, 

then allocates and returns a string whose size is the input.  S2 is implemented as a method 

that reads in a string as input and returns nothing.  The megaservices are implemented as 

Java applications that invoke the services using the Apache SOAP v2.2 API library. 

For FICAS, the autonomous services are wrapped using the Java library described in 

Section 3.3.  The service cores of the autonomous services are identical in functionality to 

their SOAP counterparts.  The megaservices are specified as CLAS programs, which are 

compiled into FICAS control sequences by the FICAS buildtime.    The executions of the 

megaservices are conducted by sending the FICAS control sequences to a megaservice 

controller. 

The tests are performed in a distributed computing environment.  The machines are each 

configured with a Pentium-III 1 GHz processor and 256 MB RAM, running Windows 
 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  134

2000 Professional.  The autonomous services run on two separate servers connected to a 

switch via a LAN.  The bandwidth is 10 mbps each way.  The megaservices run on the 

client machine.  Two alternative types of network connections are used to connect the 

client machine to the servers.  The first scenario attaches the client machine onto the 

LAN.  The communication bandwidth among all machines is 10 mbps each way.  This 

scenario resembles many corporate computing environments.  The second scenario 

connects the client machine to the switch via an 802.11b wireless access point.  The 

downloading bandwidth is approximately 2 mbps, and the uploading bandwidth is 

approximately 0.5 mbps.  This scenario resembles a computing center environment, 

where servers are connected by high-speed communication links and these servers are 

accessed via relatively slower communication links. 

The execution times of the megaservices are measured with different settings on the data 

volume involved with the megaservices.  The data volume is specified by the input 

parameter to the autonomous service S1.  Figure 5.9 shows the measured performance of 

the megaservices when the client machine is connected to the LAN.  The following 

observations can be made: 

• FICAS performs worse than SOAP when the data volume is low.  This is expected 

and can be explained by two reasons.  First, FICAS has more complicated control-

flows than SOAP.  FICAS breaks down a single service call in SOAP into multiple 

control messages.  FICAS also incurs more overheads in initializing and terminating 

the autonomous services.  Although FICAS achieves performance gains by 

distributing the data-flows, the gains are not enough to offset the extra overheads in 

the control-flows.  Second, it is expected that Apache SOAP, being under 

development for quite some time, is better optimized than FICAS in terms of its Java 

source codes.  

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  135

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n 
Ti

m
e

SOAP (SingleService) SOAP (MultiService) FICAS (MultiService)

 

Figure 5.9: Comparison Between FICAS and SOAP on Local Area Network 

• The performance of the FICAS megaservice MultiService is comparable to that of the 

SOAP megaservice SingleService.  The megaservices are similar in performance 

because two megaservices incur the same amount of data-flows.  For SingleService, 

the string generated by the autonomous service S1 is sent to the megaservice.  For 

MultiService, the same string is sent from the autonomous service S1 to the 

autonomous service S2. The slight difference in the execution times of the 

megaservices can be mainly attributed to the difference in their control-flows.  

Apache SOAP and FICAS allow us to focus the performance comparison on the data-

flows. 

• The execution times of the megaservices increase linearly with respect to the data 

volume.  Since there is no computational processing on either the autonomous 

services or the megaservices, the increase in execution times comes from the 

increased data-flows.  The execution times approximately double each time the data 

volume doubles. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  136

• FICAS outperforms SOAP when the data volume is high.  The larger the data 

volume, the bigger is the difference between the execution time of the FICAS 

megaservice MultiService and that of the SOAP megaservice MultiService.  This is 

because the SOAP megaservice incurs twice as much data-flows as the FICAS 

megaservice.  For the SOAP megaservice, two data messages are used to send the 

string from the autonomous service S1 to the autonomous service S2, via the 

megaservice controller.  For the FICAS megaservice, only one data message is used 

to send the string from the autonomous service S1 to the autonomous service S2. 

To summarize, Apache SOAP and FICAS are similar in many aspects, while their most 

significant difference is in how they deal with data-flows.  Apache SOAP incurs the 

centralized data-flows, and FICAS distributes the data-flows among the autonomous 

services.  When the data volume is low, Apache SOAP outperforms FICAS since Apache 

SOAP has simpler control-flows.  When data volume is high, FICAS outperforms SOAP 

by taking advantage of the data-flow distribution. 

Figure 5.10 compares the performance of the SOAP megaservice MultiService and the 

FICAS megaservice MultiService under various network settings.  Under the LAN 

setting, the megaservices access the autonomous services through the 10 mbps LAN.  

The performance numbers of the megaservices are cited from Figure 5.9.  Under the 

wireless setting, the megaservices access the autonomous services via a slower 802.11b 

access point.  The communications with the megaservice have much lower bandwidth 

than the communications among the autonomous services.  Comparing the megaservice 

performance between the LAN and the wireless 802.11b settings, we observe the 

following: 

• The execution times for the SOAP megaservice increase significantly as the 

bandwidth of the communications with the megaservice decreases.  Since all data-

flows and control-flows go through the megaservice, the communications with the 

megaservice become the bottleneck of the system.  Hence, when deploying a SOAP 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  137

service composition infrastructure, it is important to ensure the high quality of the 

network connections between the megaservice and the autonomous services 

• The execution times for the FICAS megaservice increase only slightly when 

comparing the wireless and the LAN settings.  As the data-flows are distributed 

among the autonomous services, communications with the megaservice are only used 

for the control-flows.  Because the control messages are small and compact in nature, 

the control-flows place little burden on the network.  Thus, the performance of the 

megaservice is barely affected. 

To summarize, FICAS responds better than SOAP when the bandwidth is limited for 

communicating with the megaservice.  All network traffic in SOAP goes through the 

megaservice, and thus places heavy burden on its communication links.  In contrast, 

FICAS distributes the data-flows and takes advantage of the communication network 

among the autonomous services.   

0

10000

20000

30000

40000

50000

60000

70000

80000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n 
Ti

m
e

SOAP (LAN) SOAP (802.11b) FICAS (LAN) FICAS (802.11b)

 

Figure 5.10: Megaservice Performance Under Different Network Configurations 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  138

5.3 Mobile Class and Active Mediation 

The mobile class conducts information processing on autonomous services, and 

effectively augments the capability of the autonomous services by dynamically adding 

functionalities to the services.  The use of the mobile class to conduct dynamic 

information processing is a form of active mediation.  This section describes how active 

mediation is supported by the autonomous services and how active mediation facilitates 

the performance optimization for megaservices. 

5.3.1 Active Mediation for Autonomous Service 

Autonomous services are usually built by leveraging existing software applications and 

information resources.  Mediators are introduced to lower the complexity of software 

design and minimize the cost of software maintenance.  Mediators [90, 94] are intelligent 

middleware that sit between the information sources and the clients of autonomous 

services.  They provide integrated information, without the need to integrate the actual 

information sources.  Specifically, mediators perform functions such as accessing and 

integrating domain-specific data from heterogeneous sources, restructuring the results 

into object-oriented structures, and extracting appropriate information to be transmitted. 

Figure 5.11(a) illustrates the mediation architecture, which conceptually consists of three 

layers.  The information source provides raw data through its source access interface.  

The mediation layer resides between the information source and the information client, 

incorporating value-added processing by applying domain-specific knowledge 

processing.  The information client accesses the integrated information via the client 

access interface.  The architecture of the autonomous service can be mapped to the 

mediation architecture, as shown in Figure 5.11(b).  The software application resides in  

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  139

Information
Source

Information
Client

Application Specific
Code

Domain Specific
Code

Source Specific
Code

Client Access
Interface

Source Access
Interface

Mediator

Software
Application

Megaservice

Autonomous
Service
Wrapper

(a) Mediation (b) Autonomous Service

Application Specific
Interface

Autonomous Service
Access Protocol

 

Figure 5.11: Conceptual Layers in Mediation and Autonomous Service Architecture 

the information source layer, the autonomous service wrapper resides in the mediation 

layer, and the megaservices resides in the information client layer.  The software  

application is accessed through the application specific interface.  The autonomous 

service wrapper integrates the information obtained from the software application and 

exposes the service functionalities through the standardized access protocol. 

In traditional mediators, code is written to handle information processing tasks at the time 

the mediators are built.  We call this type of mediators static mediators.  Static mediators 

are used frequently when their behaviors can be established at construction time.  Once 

constructed, the mediator does not change its behavior during the course of its service. 

As an extension to the static mediators, active mediators are introduced to allow 

information clients to specify client-defined actions for information processing.  Active 

mediation applies the notion of mobile code [35] to facilitate dynamic information 

processing.  Active mediators have the ability to adapt their behaviors to the client 

requests.  For instance, an information client can forward a compression routine to the 

active mediator so that queried information is compressed before returned.  With active 
 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  140

mediation, autonomous services can separate service-specific functionalities from client-

specific functionalities, hence providing services as if they were constructed on a per-

client basis.  In particular, active mediation provides the following benefits: 

• Flexibility of Autonomous Services:  An autonomous service is maintained by a 

service provider.  It is difficult, if not impossible, for the service provider to anticipate 

all current and potential information clients, and to provide the clients with 

information in a ready-to-use form.  Furthermore, there are inevitable delays in 

modifying the functionality and the interface of the autonomous service to satisfy the 

specific requirements from the clients.  The clients therefore need to work around the 

differences between the information they require and the information provided by the 

autonomous service.  The clients usually have to write customized codes (e.g., 

wrappers, filters, etc.) to work around the mismatches.  On the other hand, the service 

provider generally finds it difficult to alter the existing autonomous service.  A 

modification for one class of clients can have unexpected effects on other classes of 

clients.  As the number of clients increases, the service provider becomes more 

reluctant to make significant changes to the autonomous service.  Active mediation 

increases the customizability and flexibility of the autonomous service.  Through 

active mediation, the client can send dynamic routines to the autonomous service to 

expand the functionality of the autonomous service. 

• Preserving the power of a compositional language:  It is important to have a clear 

separation between the compositional specification and the computational 

specification in a megaservice.  FICAS enforces the separation by completely 

removing the computational primitives from its compositional language CLAS.  As a 

solution, the mobile class is used for computational specification of the megaservice.  

Active mediation is supported by the autonomous services in FICAS.  The processing 

routines specified in the form of mobile classes can therefore be dynamically loaded 

and executed on the autonomous services. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  141

• Communication load reduction:  Active mediation allows information processing to 

be distributed among the autonomous services.  The mobile class can be executed on 

any autonomous services that support active mediation.  Since the location to execute 

the mobile class affects how data-flows are formed for a megaservice, performance 

optimization can be conducted to determine the optimal location.  The amount of data 

communication among the autonomous services can be minimized. 

5.3.2 Enabling Active Mediation in FICAS 

In order to support the use of the mobile class in FICAS, two events are added to the 

ASAP protocol: MCLASS and MCLASSREPLY, as shown in Table 5.1.  The MCLASS 

event is sent from the megaservice controller to an autonomous service to invoke a 

mobile class, and the MCLASSREPLY is used by the autonomous service to 

acknowledge the megaservice controller.  These two events are used in combination to 

process the mobile class statement in a megaservice. 

Table 5.1: Mobile Class Events in the ASAP Protocol 

Event Type Event Syntax 

MCLASS 

<EVENT> 
  <NAME> MCLASS </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <CLASS> mclass-name </CLASS> 
</EVENT> 

MCLASSREPLY 

<EVENT> 
  <NAME> MCLASSREPLY </NAME> 
  <ASID> source-service </ASID> 
  <ASID> destination-service </ASID> 
  <FID> flow-id </FID> 
  <REPLY> reply </REPLY> 
</EVENT> 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  142

The MCLASS event initiates the invocation of the mobile class on an autonomous 

service.  The event type is specified in the “NAME” element.  The source-service field 

specifies the autonomous service that initiates the request.  The destination-service field 

specifies the target autonomous service that executes the mobile class.  The flow-id field 

specifies the flow to which the request belongs.  The mclass-name specifies the location 

to load the Java class for the mobile class.  As a result of the execution of the mobile 

class, the target autonomous service generates a MCLASSREPLY event to inform the 

initiator of the MCLASS event the completion of the task.  The source-service and 

destination-service fields of the MCLASS event are swapped to form the corresponding 

MCLASSREPLY event.  The flow-id of the MCLASSREPLY event is identical to that of 

the MCLASS event.  The reply field contains information about the status of the 

execution of the mobile class. 

The invocation of the mobile class involves coordinated efforts from the megaservice 

controller and the autonomous services.  The megaservice controller first determines 

which autonomous service should execute the mobile class.  The necessary MAPDATA 

events are formed to place the input parameters of the mobile class into the input data 

container of the autonomous service.  The megaservice controller then initiates the 

invocation of the mobile class by sending a MCLASS event to the autonomous service. 

Upon receiving the MCLASS event, the autonomous service first loads the mobile class, 

and then executes the mobile class.  To support the execution of the mobile class, an 

active mediator is added to the autonomous service wrapper.  Figure 5.12 illustrates the 

architecture of the active mediator: 

1. The Mobile Class Fetcher is responsible for loading the Java class of the mobile class.  

The source location of the Java class is specified by the mclass-name in the MCLASS 

event.  The loaded Java class is stored into the Mobile Class Cache. 

2. The Mobile Class Cache is a temporary storage for the Java class.  The Mobile Class 

Cache is used to avoid the duplicate loading of the mobile class.  It is looked up every 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  143

time before any Java classes are loaded.  Only when the cache miss occurs, the 

Mobile Class Fetcher is used to load the Java byte codes. 

3. The Mobile Class API Library stores the utility classes that make the construction of 

mobile classes more convenient.  For instance, the Java Development Kit library [7] 

is provided as part of the Mobile Class API Library. 

4. The Mobile Class Runtime is the execution engine for the mobile classes.  To execute 

a mobile class, the Mobile Class Runtime loads the Java class from the Mobile Class 

Cache and invokes the execute() function.  The input parameters of the execute() 

function are looked up from the Input Data Container using the flow-id contained in 

the MCLASS event.  The result of the execute() function is put into the Output Data 

Container. 

5. The Exception Handling module provides error handling for the loading and the 

execution of the mobile class. 

Autonomous
Service
Wrapper

Mobile
Class

Fetcher

Mobile
Class

Runtime

Exception
Handling

Mobile Class
Cache

Mobile Class
Repository

Input Data Container

Output Data Container

Mobile
Class
API

Library

Active Mediator

 

Figure 5.12: Architecture of the Active Mediator 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  144

5.3.3 Placement of Mobile Class 

The choice of which autonomous service executes the mobile class affects how the data-

flows are formed for the megaservice to which the mobile class belongs.  The placement 

of the mobile class therefore has significant impact on the performance of the 

megaservice.  An example megaservice, as shown in Figure 5.13, is used to demonstrate 

such impact.  The megaservice involves two autonomous services and one mobile class.  

The autonomous services, S1 and S2, are the same as the ones in the example illustrated 

in Figure 5.8.  The mobile class FILTER takes a large string as input, filters through the 

content, and returns a string that consists of every 10th character of the input string.  

Effectively, the mobile class compresses the content by ten fold.  Since the mobile class 

can be executed on any one of the autonomous services involved in the megaservice, we 

have three potential placement strategies, as shown in Figure 5.14: 

• Strategy 1:  By placing the mobile class FILTER at the autonomous service that hosts 

the megaservice controller, we can construct the execution plan as shown in Figure 

5.14(a).  S1 generates the data element A and passes it to the megaservice.  The 

mobile class processes the data element A at the megaservice, and the result B is then 

sent to S2 for further processing. 

• Strategy 2:  By placing the mobile class FILTER at S1, we can construct the execution 

plan as shown in Figure 5.14(b).  S1 generates the data element A and processes it 

locally using the mobile class.  The result B is sent from S1 to S2 for further 

processing. 

• Strategy 3:  By placing the mobile class FILTER at S2, we can construct the execution 

plan as shown in Figure 5.14(c).  S1 generates the data element A and passes it to S2.  

S2 processes the data locally using the mobile class and then uses the result B for 

further processing. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  145

SwitchMegaService

S1
produces

and returns a
string value

10mbps

S2
consumes a

string

10mbps

     Invocation1 = S1.INVOKE(size)
     A = Invocation1.EXTRACT()

     B = MCLASS ("FILTER", A)

     Invocation2 = S2.INVOKE(B)

10mbps

Mobile Class
FILTER

 
 

Figure 5.13: Example Megaservice that Utilizes the Mobile Class “FILTER” 

S1

Mega
service

S2

S1

Mega
service

S2

mobile class
FILTER

S1

Mega
service

S2mobile class
FILTER

(a) Placing FILTER at Megaservice (b) Placing FILTER at S1 (c) Placing FILTER at S2

1

2

1

2

1

2

Data-flowService
Invocation

mobile class
FILTER

A

B

B A

 

Figure 5.14: Execution Plans with Different Placements for the Mobile Class 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  146

To compare the strategies, we assume that the performance of loading and executing the 

mobile class is the same on all autonomous services.  Strategy 1 requires both the input 

data element A and the output data element B to be transmitted among the megaservice 

and the autonomous services.  Thus Strategy 1 incurs the most communication traffic 

compared to the other two strategies and has the worst performance.  Strategy 2 and 

Strategy 3 differ in the data content sent between the autonomous services.  For Strategy 

2, the data element B is sent from S1 to S2.  For Strategy 3, the data element A is sent 

from S1 to S2.  Since the data element B is one tenth in size compared to the data element 

A, Strategy 2 incurs the least amount of communication traffic.  Therefore, Strategy 2 is 

the placement strategy that has the best performance. 

Following the analysis of above example, we derive an algorithm to determine the 

optimal placement of the mobile class.  The algorithm seeks to locate the autonomous 

service that minimizes the data-flows among the autonomous services.  Each input data 

element of the mobile class is modeled as a pair, (Si, Vi), where Si is the autonomous 

service that generates the ith input data element, and Vi is the volume of the data element.  

The output data element is modeled as (S0, V0), where S0 is the autonomous service to 

which the result of the mobile class will be sent, and V0 is the size of the output data 

element.  Two observations are made.  First, the sum of Vi remains the same regardless 

where the mobile class is executed.  Second, by placing the mobile class on the 

autonomous service Si, we can eliminate the corresponding data-flow volume Vi, since 

the data element is local to the autonomous service.  Therefore, the optimal placement of 

the mobile class is the autonomous service Si that has the largest aggregated Vi. 

Figure 5.15 shows the Largest Data Set (LDS) algorithm that selects the autonomous 

service that generates and consumes the largest volume of data.  The algorithm first 

computes the total amount of data associated with each autonomous service.  Then, the 

autonomous service with the largest data volume is selected.  The autonomous service is 

returned as the output of the algorithm that represents the optimal placement of the 

mobile class. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  147

INPUT:  input pairs(S1, V1), …, (Sn,Vn) 
        output pair (S0, V0) 
OUTPUT: Smax 
METHOD: 
        Vmax=0 
        for every unique S in input and output pairs 
              V=0 
              for i=0,…,n 
                    if Si==S 
                  V=V+Vi 
              if V>Vmax 
                    Smax=S 
                    Vmax=V 

Figure 5.15: LDS Algorithm for Optimal Placement of Mobile Class 

5.3.4 Enabling Optimization for Mobile Classes 

The LDS algorithm is applicable when the sizes of the input and output data elements are 

known for the mobile class.   However, in many cases, the size of the output data element 

is only known after the execution of the mobile class.  A mechanism to predict the size of 

the output data element is needed.  This is handled by the sizing function of the mobile 

class.  The sizing function is defined as SO = f (SA, SB, …), where SO is the size of the 

output data element, and SA, SB, and etc. are the sizes of the input data elements.  The 

sizing function may be stored along with the Java class for the mobile class.  The 

megaservice controller uses the sizing function to calculate the size of the output data 

element based on the sizes of the input data elements.  

Two special types of mobile classes have the simplified sizing functions.  The first type 

of mobile class is called the expansion mobile class, whose output data element is at least 

as large as the sum of the input data elements.  Based on the LDS algorithm, the optimal 

mobile class placement would be the autonomous service that utilizes the result of the 

mobile class.  In this case, the sizing function can be set to return infinity.  The other 

special type of mobile class is called the compression mobile class, whose output data 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  148

element is smaller than at least one of the input data elements.  The optimal mobile class 

placement is one of the autonomous services that generate the input data elements.  In 

this case, the sizing function can be set to return zero. 

The effectiveness of the LDS algorithm depends on the accuracy of the sizing function.  

We demonstrate through examples how the sizing function may be obtained.  The 

relational mobile classes (as defined in Section 4.3.2) are used, because the relationships 

between the sizes of their input and output data elements are well defined [49].  The 

sizing functions, as shown in Table 5.2, can be formulated in the following manner: 

• The unary operators select and project return portions of the input relations.  The 

mobile classes implementing the operators are by definition the compression mobile 

class.  Hence, their sizing functions return zero. 

• The union operator combines the two input relations.  The mobile class is an 

expansion mobile class.  Hence, the sizing function returns infinity. 

• The intersect and difference operators return portions of the input relations.  Their 

mobile classes are therefore compression mobile classes, and the sizing functions 

return zero. 

• The result set of cartesian product operator contains all possible combinations of one 

tuple from each input relations.  The result relation is much larger than the input 

relations.  Hence, the sizing function returns infinity. 

• The sizing function for the join operator is more complex.  The sizing function 

depends on the characteristics of the input data and the predicate condition.  For 

instance, if the join is an equality join with uniformly distributed values in input 

relations, the sizing function may be set to S0=c×SA×SB, where c is the selection 

factor of the join.  If the result relation is expected to be rather small, the sizing 

function can be set to zero to let the LDS algorithm choose one of the autonomous 

services that generate the input data elements.  If the result relation is expected to be 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  149

large, the sizing function can be set to infinity to force the LDS algorithm to choose 

the autonomous service that utilizes the output data element. 

We have shown that the sizing function does not need to be precise for the LDS 

algorithm to be effective.  In many cases, the sizing function is simplified to a constant.  

As the mobile class becomes more complex, the relationship between the sizes of the 

output data element and the input data elements becomes harder to be represented by a 

mathematical formula.  In some cases, the size of the output data element cannot be 

determined based on the size of the input data elements.  As a future research direction, 

statistical methods may be used to adaptively estimate the correlations between the sizes 

of the output data element and the input data elements. 

Table 5.2: Sizing Functions for the Relational Mobile Classes 

Mobile Class Sizing Function 

O = MCLASS(“select”, A) So = 0 

O = MCLASS(“project”, A) So = 0 

O = MCLASS(“union”, A, B) So = ∞ 

O = MCLASS(“intersect”, A, B) So = 0 

O = MCLASS(“difference”, A, B) So = 0 

O = MCLASS(“cartesian”, A, B) So = ∞ 

O = MCLASS(“join”, A, B) So = f (SA, SB) 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  150

5.3.5 Performance Analysis 

We analyze the performance of the megaservice previously defined in Figure 5.13.  The 

megaservice is executed using different placements of the mobile class FILTER.  We 

intend to measure the impact of the placement of the mobile class on the performance of 

the megaservice.  In addition, we replace the mobile class FILTER with an autonomous 

service that implements the same functionality.  The performance of the megaservice 

utilizing the autonomous service is measured and compared with the megaservice 

utilizing the mobile class.  Overall, three scenarios are considered: 

1. Strategy 1:  The megaservice conducts active mediation on S1 by executing the 

mobile class FILTER on S1.  The placement of the mobile class is generated by the 

LDS algorithm. 

2. Strategy 2:  The megaservice conducts active mediation on S2 by executing the 

mobile class FILTER on S2. 

3. Strategy 3:  We implement a utility autonomous service that replaces the mobile class 

FILTER.  The string generated by S1 is fed into the autonomous service, and the 

result is forwarded onto S2 for further processing. 

Figure 5.16 shows the execution times of the megaservice.  Different settings on the size 

of the string generated by S1 are used.  The following observations are made: 

• The execution times of the megaservices increase with the size of the string.  Three 

factors contribute to the increased execution times.  First, longer time is taken to 

measure the size of the string.  It results in the longer execution time for the LDS 

algorithm.  Second, it takes longer to execute the mobile class or the utility 

autonomous service.  Third, the larger string results in longer transmission time for 

the data elements. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  151

0

2000

4000

6000

8000

10000

12000

100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n 
Ti

m
e

Mobile Class on S1 Mobile Class on S2 Utility Autonomous Service

 

Figure 5.16: Comparison Between Mobile Class and Autonomous Service 

• The placement of the mobile class significantly impacts the performance of the 

megaservice.  Strategy 1 performs significantly better than Strategy 2.  Strategy 1 

utilizes the LDS algorithm to minimize the amount of data-flows incurred by the 

megaservice.  In Strategy 2, S1 transmits the original string to S2. Whereas in 

Strategy 1, S1 only transmits the filtered string to S2.  Strategy 1 causes significantly 

less amount of data traffic than Strategy 2. 

• Both strategies involving the mobile class perform better than Strategy 3, which uses 

the utility autonomous service.  Strategy 3 incurs the most amount of data-flows, as 

both the original string and the filtered string are transmitted among the autonomous 

services.  In addition, the invocation of the autonomous service is more costly than 

the invocation of the mobile class. 

In summary, active mediation enabled by the mobile class is an effective approach in 

improving the performance of the megaservice.  The mobile class can be placed onto the 

appropriate autonomous service to minimize the amount of data communications. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  152

5.4 Example Infrastructure for Engineering 
Services 

We have shown through simple examples that FICAS is well suited for composing the 

autonomous services that exchange large volumes of data.  The distribution of the data-

flows and the use of the mobile class facilitate service composition and improve the 

performance of the megaservice.  To demonstrate the effectiveness of FICAS, we 

implement an engineering service infrastructure for construction project management 

applications.  We illustrate the process of building the service infrastructure: (1) 

wrapping software applications into autonomous services, (2) implementing mobile 

classes, and (3) constructing megaservices to accomplish the engineering tasks. 

The first step in building the engineering service infrastructure is to wrap each software 

application into an autonomous service.  We create the service core of the autonomous 

service by defining the ServiceCore interface based on the software application.  The 

service core is then linked to an autonomous service wrapper (ASW), as described in 

Section 3.3.  Figure 5.17 shows an example of wrapping the Primavera P3 application 

into an autonomous service that supports project scheduling.  The P3Service class 

implements the ServiceCore interface and defines the three methods that connect the 

application to the autonomous service wrapper.  The setup() method and the terminate() 

method specify that no action is performed for the initialization and the termination of the 

autonomous service.  The execute() method defines the actions for the invocation of the 

autonomous service.  The method starts by fetching the input parameters from the input 

data container.  The first parameter specifies the service request, and the second 

parameter contains the input data for a schedule, based on which the Primavera P3™ 

application is utilized to conduct scheduling.  The result of the scheduling is encapsulated 

into a data element and put into the output data container.  Data encapsulation utilizes the 

Process Specification Language (PSL) format [83] as the common data exchange model 

so that multiple services can interoperate.  The P3Service class is provided as an input to 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  153

the constructor of the ASW class to connect the Primavera P3 application with the 

autonomous service wrapper.  After the autonomous service is built, it is registered with 

the autonomous service directory.  The registration entry specifies the name, the IP 

address, and the TCP/IP port of the autonomous service.  Once registered, the 

autonomous service is ready to be used for composition. 

Lightweight information processing routines are specified as mobile classes.  Figure 5.18 

shows the mobile class that converts data from the PSL format into the Microsoft Excel 

format.  The psltoexcel class implements the MobileClass interface, as described in 

Section 4.3.1.  The execute() function takes the first argument for the mobile class as the 

input data, converts the data into the Excel format, and returns the converted data as the 

output data element.  The psltoexcel class is compiled into a Java class, which is put into 

the mobile class repository, http://ficas.stanford.edu/mcrepo, as shown on the first line in 

Figure 5.19. 

Figure 5.19 shows an example megaservice that utilizes multiple autonomous services 

and mobile classes to perform rescheduling of project plans.  The megaservice is 

specified in the CLAS language, as described in Section 4.1.  Three autonomous services 

are utilized by the megaservice: (1) the PSLService that handles the access of the project 

models, (2) the P3Service that conducts the scheduling of a project plan, and (3) the 

ExcelService that displays the project plan.  The invocation of the megaservice causes the 

PSLService to fetch the project model, which is then rescheduled by the P3Service.  The 

updated schedule is stored back to the database using the PSLService and shown to the 

project personnel using the ExcelService.  The mobile class psltoexcel is used to perform 

data conversion between PSLService and ExcelService.  The CLAS program is compiled 

into a control sequence by the CLAS compiler, as described in Section 4.2.  The control 

sequence is then placed in a repository that is accessible to the runtime environment of 

FICAS.  For instance, the control sequence may be accessed on the web at 

“http://ficas.stanford.edu/Megaprogram/SchedulingDemo.xml”. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  154

public class P3Service implements ServiceCore 
{ 
  public boolean setup(Container inc, Container outc, FlowId inf) { 
    return true; 
  } 
 
  public boolean terminate(Container inc, Container outc, FlowId inf) 
  { 
    return true; 
  } 
 
  public boolean execute(Container inc, Container outc, FlowId inf) { 
    /* Fetch the desired operation from the input data container */ 
    String operation = inc.fetch(inf, 0).getStringValue(); 
 
    if (operation.equals("reschedule")) { 
      /* Fetch the input schedule from the input data container */ 
      String input = inc.fetch(inf, 1).getStringValue(); 
 
      /* Invoke P3 to conduct rescheduling */ 
      String output = P3Schedule(input); 
 
      /* Put regenerated schedule on the output container */ 
      outc.put(inf, 0, new DataElement().setValue(output)); 
    } 
 
    return true; 
  } 
 
  private String P3Schedule(String schedule) { 
    /* Invokes the Primavera P3 software to process the input, 
       the result of the rescheduling is returned */ 
    ... 
  } 
 
  public static void main(String argv[]) throws Exception { 
    if (argv.length != 1) { 
      System.err.println("Usage: java P3Service port"); 
      return; 
 } 
 
    /* Creating the autonomous service */ 
      new ASM(Integer.parseInt(argv[0]), new P3Service()); 
  } 
} 

Figure 5.17: Example Autonomous Service that Utilizes Primavera P3 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  155

public class psltoexcel implements MobileClass 
{ 
  public DataElement execute(Vector params) { 
    /* Fetch the input data, in PSL format */ 
    String p3 = 
      ((DataElement) params.firstElement()).getStringValue(); 
 
    /* Convert the input data to excel format */ 
    String excel = Convert_PSL_To_Excel(p3); 
 
    /* Return the converted data, in Excel format */ 
    return new DataElement().setValue(excel); 
  } 
 
  private String Convert_PSL_To_Excel(String p3) { 
    ... 
  } 
} 

Figure 5.18: Example Mobile Class that Converts Data from PSL to Excel 

SchedulingDemo "http://ficas.stanford.edu/mcrepo" 
{ 
  psl_svc = SETUP("PSLService") 
  p3_svc = SETUP("P3Service") 
  excel_svc = SETUP("ExcelService") 
 
  /* Fetch project data from database */ 
  psl = psl_svc.INVOKE("to-psl", "%%") 
  original_schedule = psl.EXTRACT() 
 
  /* Reschedule project */ 
  p3 = p3_svc.INVOKE("reschedule", original_schedule) 
  updated_schedule = p3.EXTRACT() 
 
  /* Store the updated project data into database */ 
  oracle = psl_svc.INVOKE("to-oracle", updated_schedule) 
  status1 = oracle.EXTRACT() 
 
  /* Populate Excel Service with updated project data */ 
  excel_data = MCLASS("psltoexcel", updated_schedule) 
  excel = excel_svc.INVOKE("populate", excel_data) 
 
  psl_svc.TERMINATE() 
  p3_svc.TERMINATE() 
  excel_svc.TERMINATE() 
} 

Figure 5.19: Example Megaservice that Conducts Project Scheduling 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  156

Let’s now look at a sample scenario to demonstrate how the engineering service 

infrastructure helps facilitate personnel from different functional groups conduct 

collaborations.  We use the model of the Mortenson Ceiling project (part of the 

construction of the Disney Concert Hall) as the test case1.  Figure 5.20 shows the view of 

the scheduling information using Primavera P3.  The project data is stored in a 

relational database.  The data is shared between the relational data model and the 

proprietary Primavera data model using the PSLService.  The project schedule can also be 

reviewed using a handheld Palm device to directly access the relational database.  This 

capability is particularly important for the on-site personnel of the construction project.  

Suppose that the duration for the activity 18T1-33201, for erecting a roof element, is 

changed from 1 day to 40 days, as shown in Figure 5.21.  The change can be made 

remotely using the Palm device.  The update will trigger the SchedulingDemo 

megaservice, and the control sequence is sent to a megaservice controller.  As part of the 

SchedulingDemo megaservice, the project schedule is automatically updated in Excel 

to notify the project personnel, as shown in Figure 5.22.  The updated schedule can also 

be retrieved from the relational database using Microsoft Project.  Figure 5.23 shows 

that not only the activity 18T1-33201 is updated, but the dependent activities are also 

updated as well. 

The example infrastructure involves software applications that exchange large amount of 

data.  The applications are conveniently wrapped into autonomous services.  

Computational tasks are easily specified using mobile classes.  Engineering processes are 

systematically defined as megaservices.  Our example demonstrates the utilization of 

FICAS for the composition of large-scale autonomous services. 

 

                                                 
1 The model of the Mortenson Ceiling Project is provided by Professor Martin Fischer and his research 

group at Stanford University.   

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  157

 

Figure 5.20: Reviewing the Project Schedule in Primavera P3 

http://med...!!                 History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
40…………………….. Update

18T1-33241
02-01-2001 

http://med...!! History
SCHEDULE

Review the schedule and make 
appropriate updates by changing the
value in duration: 

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001 
40…………………….. Update

18T1-33241
02-01-2001 

Change duration of activity
18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days

 

Figure 5.21: Revising the Project Schedule via a Palm Device 

 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  158

 

Figure 5.22: Reviewing the Updated Project Schedule in Microsoft Excel 
 

 

Figure 5.23: Reviewing the Updated Schedule in Microsoft Project 
 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  159

5.5 Summary 

This chapter describes the runtime environment of FICAS that handles the execution of 

megaservices.  The runtime environment ties together autonomous services with a 

communication network.  A directory is used to keep track of the autonomous services.  

The directory is kept up to date where an autonomous service can join and leave the 

runtime environment by simply updating its status with the directory.  A large number of 

autonomous services can be incorporated into the runtime environment using this self-

maintenance model. 

The megaservice controller is the part of the autonomous service that handles the 

execution of the megaservice.  It shares with the autonomous service wrapper the data 

containers and the event queues for exchanging data and events with other autonomous 

services.  The megaservice controller interprets the control sequence generated by the 

buildtime environment of FICAS to form an execution plan.  The execution plan defines 

the set of ASAP events and the dependencies among the events that are used to 

coordinate the autonomous services that make up the megaservice. 

The runtime environment of FICAS supports the distribution of the data-flows for the 

execution of the megaservice.  The autonomous services are coordinated by the 

centralized controller, while the services can exchange data directly among themselves.  

To measure the impact of the distribution of the data-flows on the performance of the 

megaservice, we compare FICAS with Apache SOAP.  The megaservice implemented in 

SOAP incurs the centralized data-flows among the autonomous services.  We observe 

that FICAS outperforms SOAP significantly when the volume of the data communication 

among the autonomous services is high.  In addition, FICAS is less affected than SOAP 

when the quality of the access links between the megaservice and the autonomous 

services degrades. 

 



CHAPTER 5. FICAS RUNTIME ENVIRONMENT  160

The ability to conduct dynamic information processing on the autonomous service is 

called active mediation.  The active mediator is incorporated into the autonomous service 

that would allow mobile classes to be executed on the autonomous service.  Active 

mediation provides three benefits to the service composition infrastructure.  First, active 

mediation increases the customizability of an autonomous service.  A client can send a 

mobile class to an autonomous service to expand the functionality of the autonomous 

service.  Second, the computational specification can be separated from the 

compositional specification of the megaservice.  The compositional specification is 

handled by the megaservice controller, while the computational specification is executed 

by the active mediator.  Third, since the mobile class can be executed on any autonomous 

service that supports active mediation, performance optimization can be performed.  In 

many situations, we have shown that using the mobile class is more efficient than using 

the autonomous service to conducting computational processing.  The mobile class can 

be utilized to minimize the data-flows involved in the megaservice. 

Based on FICAS, an example service infrastructure is constructed for project 

management applications in the construction industry.  The applications are conveniently 

wrapped into autonomous services.  An integrated work process that conducts project 

scheduling is specified as a megaservice using the CLAS language.  To perform the 

scheduling of a construction project, large volumes of data are exchanged among the 

autonomous service.  The example infrastructure demonstrates that the distributed data-

flow model is suitable for composing large-scale software services. 

 

 



 

Chapter 6  
 

Summary and Future Directions 

6.1 Summary 

This thesis studies in details the software engineering technology for distributed service 

composition.  First, a distributed data-flow model for composing software services has 

been introduced.  The model allows data to be interchanged among the services, 

bypassing a central hub for data communications.  The model has been compared with 

the centralized data-flow model, and the pros and cons of the models are analyzed.  

Second, we have implemented a prototype infrastructure for service composition based 

on the distributed data-flow model.  The infrastructure includes a service wrapper, a 

composition language, a buildtime environment and a runtime environment.  Various 

phases of service composition are examined to understand how the distributed data-flow 

model can be supported.  Third, we have demonstrated the effectiveness of the distributed 

data-flow model by applying the infrastructure for the integration of distributed 

engineering services.  This section offers a brief discussion on the contributions. 



CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS  162

This thesis has developed a distributed data-flow model for composing autonomous 

software services.  Under our software composition paradigm, such services are managed 

by independent providers, and are linked to form a data processing system controlled by a 

megaservice.  The development of the distributed data-flow model is motivated by the 

need to integrate large-scale services on the web.  We can find a motivating example in 

an Internet environment where services are connected by a fast and high bandwidth 

network, and a mobile client accesses the services via slow wireless connections.  By 

using the distributed data-flow model, a megaservice can be executed on the mobile 

client.  The distributed data-flow model uses the mobile client as the central controller, 

while allowing data to be directly exchanged among the services. 

The distributed data-flow model differs from the traditional centralized data-flow model, 

where a megaservice acts as the central node for interactions with autonomous services.  

In the distributed data-flow model, the megaservice no longer serves as the central hub 

for data exchanges among the services.  Theoretical analysis is conducted to compare the 

performance of the centralized and the distributed data-flow models.  Performance 

metrics are defined for the various components within a service integration environment.  

The analysis concludes that the distributed data-flow model in most situations performs 

better than the centralized data-flow model.  Furthermore, the analysis identifies system 

bottlenecks for both models.  For the centralized data-flow model, the access links 

connecting the megaservice to the autonomous service are critical resources and should 

be optimized for better performance.  For the distributed data-flow model, the network 

among the services should be the focus when building a service integration environment. 

A service composition infrastructure, FICAS, is developed as a prototype implementation 

based on the distributed data-flow model.  FICAS is a collection of software modules that 

support the construction of autonomous services, facilitate the specification of the 

megaservice, and enable the efficient execution of the megaservice.  FICAS is used to 

verify the findings from the theoretical analysis, and to serve as a test bed to investigate 

how the distributed data-flow model can be supported for service composition. 

 



CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS  163

For constructing autonomous services, a metamodel is defined to describe the 

hierarchical composition of the services, the data model for exchanging information 

among the services, the internal structure of the services, and the external interface for 

interacting with the services.  The metamodel allows the services to be constructed 

independently in a homogeneous manner, hence enabling the integration of the services 

in a heterogeneous computing environment.  The key feature of the metamodel is the 

explicit separation of the data-flows from the control-flows for an autonomous service.  

Services conforming to the metamodel can be coordinated by a centralized controller, 

while data exchange can be distributed among the services.  The metamodel is 

implemented in the form of the ASAP protocol and an autonomous service wrapper.  The 

ASAP protocol defines the standard interface for interacting with the autonomous 

services as a set of XML messages.  The autonomous service wrapper incorporates the 

common components of the service, such as the data containers, the event queues, the 

support for the ASAP protocol, etc.  The wrapper for an autonomous service requires 

only three functions, which define the actions taken by the encapsulated software 

application for the initialization, invocation, and termination of the service.  Together, the 

metamodel, the ASAP protocol, and the autonomous service wrapper provide a scalable 

framework for constructing autonomous services that supports the distributed data-flow 

model. 

For specifying megaservices, the CLAS language is introduced as the high-level 

compositional language in FICAS.  CLAS is designed to be a purely compositional 

language whose users possess little programming expertise.  It has a limited set of control 

constructs and supports a restricted set of data types.  CLAS breaks up the traditional 

remote procedure call into several statements, so that asynchronicity can be obtained at 

the runtime to allow parallel invocations of a service.  Using CLAS, a megaprogrammer 

can focus on the composition of functionalities, and leaves performance optimization to 

the runtime environments of FICAS. 

 



CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS  164

Data transformations and similar computational tasks are often needed to interface 

autonomous services.  Since in the distributed data-flow model the data communications 

bypass the megaservice, such transformations have to be carried out externally.  To 

achieve that we define mobile classes, dynamic processing routines that can be loaded 

onto an autonomous service to prepare data local to the service.  The mobile class 

supports a wide range of computational functionalities.  The use of a general 

programming language, i.e., Java, provides a megaprogrammer the flexibility in 

specifying computational functionalities.  Furthermore, the mobile class gives the runtime 

environment the opportunity to conduct performance optimization. The mobile class 

allows computation to be relocated to where data is, rather than transferring the data to 

where the computation is defined. 

The execution of a megaservice is coordinated by a central controller.  An execution plan 

is generated for a megaservice to select, schedule and sequence the control messages sent 

by the controller.  Two approaches are explored.  First, data dependencies are extracted 

from a megaservice, and direct data exchanges among the autonomous services are 

formed.   Performance tests are conducted to show that the distribution of data 

communications improves megaservice performance, especially when large volumes of 

data are exchanged among the services.  The distributed data-flow model also eliminates 

the bottleneck on the communication links of the megaservice by taking advantage of the 

communication network among the services.  Second, the mobile class and the 

distribution of data allow client specific computations to occur remotely on the 

autonomous services.  By moving computations to where data is located, a megaservice 

can significantly reduce the amount of data communication traffic.  Performance 

optimization is conducted by selecting the most appropriate location to execute the 

mobile class.  Tests have shown that the mobile class is an effective approach in 

improving megaservice performance.  In many situations, mobile classes are more 

efficient than autonomous services to perform computations. 

 



CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS  165

To demonstrate the effectiveness of FICAS, an example engineering service 

infrastructure was built for construction project management applications, which 

exchange large volumes of data.  The software applications are conveniently wrapped 

into autonomous services.  Computational tasks are easily specified using mobile classes.  

Engineering processes are systematically defined as megaservices.  The example 

demonstrates that FICAS, utilizing a distributed data-flow model, is suitable for the 

composition of large-scale autonomous services. 

6.2 Future Directions 

This research has focused on the performance issues encountered in composed services.  

The principal objective of FICAS has been to serve as a test vehicle for developing and 

investigating the distributed data-flow model.  FICAS is not a product ready for 

widespread use.  All of the components in FICAS are implemented in Java, and little 

effort has been devoted to computational efficiency.  Additional research and 

development are needed to further enhance the robustness and efficiency of FICAS.  To 

make a production version of FICAS, C or C++ can be used as the implementation 

language.  Furthermore, mobile classes are currently represented as Java byte codes.  

Being interpretive in nature, Java is less efficient than assembly or machine codes.  The 

active mediator can be improved to support dynamic loading of other object codes to 

improve the performance of mobile classes. 

Besides performance, a number of other important issues need to be considered for 

service composition.  First, failure management of autonomous services and 

megaservices needs to be addressed.  FICAS is designed under the assumption that 

services are unlikely to fail.  Minimal support for failure handling is built into FICAS.  

Although the modularity of the services provides good isolation and tractability for 

failures, FICAS does not provide any systematic mechanism for failure recovery.  When 

 



CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS  166

a megaservice fails, the involved services are restarted or rolled back in an ad hoc 

fashion.  This approach becomes infeasible when the number of services scales up.  For 

FICAS to be widely adopted, a new approach to quickly identify and recover from 

failures is needed.  A starting point would be to investigate the failure management 

technologies for business transactions and computer systems [3, 52, 72].  These 

technologies can be enhanced for service composition.  For FICAS, new techniques will 

be required since data and computations are distributed among services. 

Another area of improvement can be achieved in further reducing the complexity of 

composing services.  FICAS provides a framework that allows people with minimal 

programming expertise to compose software services.  Under the current implementation, 

megaservices are specified as text-based programs in FICAS.  As an extension, a 

graphical user interface (GUI) can be created to integrate the specification, compilation, 

and execution of megaservices.  Megaservices can still be stored as text-based programs, 

and the GUI would serve as a proxy that invokes the current set of tools designed for the 

text-based programs.   

Furthermore, it is important for decision makers to build applications that incorporate the 

results of simulations as well as other software components.  As a future extension, 

SimQL can be integrated with FICAS to provide megaprogrammers an interface for 

accessing information about future events [93, 95].  As a result, the megaprogrammers 

can plan and schedule actions beyond the current point in time. 

Finally, service composition is only possible when services can exchange information 

despite the differences in how their data is represented.  Evolving technologies, such as 

the Semantic Web [11, 44], can be used to improve communications and interoperability 

among entities using differing terminologies.  Continued advances in the data integration 

technology are essential for the wide adoption of the service composition paradigm. 

 

 



 

Bibliography 

[1] R. M. Adler. "Distributed Coordination Models for Client-Server Computing," 

IEEE Computer, vol. 28(4), pp. 14-22, April 1995. 

[2] S. Ahuja, N. Carriero, and D. Gelernter. "Linda and Friends," IEEE Computer, vol. 

19(8), pp. 26-34, August 1986. 

[3] G. Alonso, M. Kamath, D. Agrawal, A. El-Abbadi, R. Gunthor, and C. Mohan. 

Failure Handling in Large Scale Workflow Management Systems, IBM Almaden 

Research Center, San Jose, CA, Report # RJ 9913, November 1994. 

[4] Apache SOAP, Apache Software Foundation, http://xml.apache.org/soap/, 2002. 

[5] N. Apte and T. Mehta. UDDI: Building Registry-based Web Services Solutions, 

Pearson Education, 2003. 

[6] F. Arbab, I. Herman, and P. Spilling. "An Overview of Manifold and its 

Implementation," Concurrency: Practice and Experience, vol. 5(1), pp. 23-70, Feb 

1993. 

[7] K. Arnold, J. Gosling, and D. Holmes. The Java Programming Language, Java 

Series, Boston, MA, Addison-Wesley, 2000. 

[8] H. Bal and M. Haines. "Approaches for Integrating Task and Data Parallelism," 

IEEE Concurrency, vol. 6(3), pp. 74-84, July 1998. 



BIBLIOGRAPHY   168

[9] D. Beringer, C. Tornabene, P. Jain, and G. Wiederhold. "A Language and System 

for Composing Autonomous, Heterogeneous and Distributed Megamodules," 

Proceedings of DEXA International Workshop on Large-Scale Software 

Composition, Vienna Austria, August 1998. 

[10] F. Berman. "High-performance schedulers," in The Grid: Blueprint for a New 

Computing Infrastructure, I. Foster and C. Kesselman (eds.), Morgan Kaufmann 

Publishers, 1998. 

[11] T. Berners-Lee, J. Hendler, and O. Lassila. "The Semantic Web," Scientific 

American, vol. 284(5), pp. 34-43, May 2001. 

[12] A. D. Birrell and B. J. Nelson. "Implementing remote procedure calls," ACM 

Transactions on Computer Systems, vol. 2(1), pp. 39-59, February 1984. 

[13] S. Bodoff, D. Green, K. Haase, E. Jendrock, M. Pawlan, and B. Stearns. The J2EE 

Tutorial, Addison Wesley Professional, 2002. 

[14] B. Boehm and B. Scherlis. "Megaprogramming," Proceedings of DARPA Software 

Technology Conference, Los Angeles, pp. 68-82, April 1992. 

[15] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S. 

Thatte, and D. Winer. Simple Object Access Protocol (SOAP), W3C Note, 

http://www.w3.org/TR/SOAP, 2000. 

[16] N. Carriero and D. Gelernter. "The S/Net Linda Kernel," ACM Transactions on 

Computer Systems, vol. 4(2), pp. 110-129, May 1986. 

[17] N. Carriero and D. Gelernter. "Linda in Context," ACM Communications, vol. 

32(4), pp. 444-458, April 1989. 

 



BIBLIOGRAPHY   169

[18] S. Chandrasekaran, S. Madden, and M. Ionescu. Ninja Paths: An Architecture for 

Composing Services over Wide Area Networks, UC Berkeley, Technical Report, 

http://ninja.cs.berkeley.edu/dist/papers/path.ps.gz, 2000. 

[19] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. 

Ullman, and J. Widom. "The TSIMMIS Project: Integration of Heterogeneous 

Information Sources," Proceedings of 10th Meeting of the Information Processing 

Soc. of Japan, pp. 7-18, 1994. 

[20] S. S. Chawathe. "Describing and Manipulating XML Data," Bulletin of the IEEE 

Technical Committee on Data Engineering, vol. 22(3), pp. 3-9, 1999. 

[21] J. Cheng and K. H. Law. "Using Process Specification Language for Project 

Information Exchange," Proceedings of 3rd International Conference on 

Concurrent Engineering in Construction, Berkeley, CA, pp. 63-74, 2002. 

[22] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik. "Itinerant 

Agents for Mobile Computing," IEEE Personal Communications, vol. 2(5), pp. 

34-49, October 1995. 

[23] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL. Web 

Services Description Language, W3C Note, http://www.w3.org/TR/wsdl, 2000. 

[24] S. Cluet, C. Delobel, J. Simeon, and K. Smaga. "Your Mediators Need Data 

Conversion!," Proceedings of ACM SIGMOD International Conference on 

Management of Data, Seattle, Washington, pp. 177-188, June 1998. 

[25] G. F. Colouris and J. Dollimore. Distributed Systems: Concepts and Design, 

Addison Wesley, 1988. 

[26] D. E. Comer. Internetworking with TCP/IP, Volume I, Principles, Protocols, and 

Architecture, 4th ed, Prentice Hall, 2000. 

 



BIBLIOGRAPHY   170

[27] F. Cristian. "A Rigorous Approach to Fault-tolerant Programming," IEEE 

Transaction on Software Engineering, vol. 11(1), 1985. 

[28] F. Cristian. "Understanding Fault-tolerant Distributed Systems," Communications 

of the ACM, vol. 34(2), pp. 56-78, 1991. 

[29] D. Davis and M. Parashar. "Latency Performance of SOAP Implementations," 

Proceedings of 2nd IEEE/ACM International Symposium on Cluster Computing 

and the Grid (CCGrid2002), Berlin, Germany, pp. 407-412, May 2002. 

[30] J. B. Dennis and G. R. Gao. "An Efficient Pipelined Dataflow Processor 

Architecture," Proceedings of Supercomputing '88, IEEE Computer Society Press, 

pp. 368-373, November 1988. 

[31] J. B. Dennis and D. P. Misunas. "A Preliminary Architecture for a Basic Data 

Flow Processor," Proceedings of 2nd Annual Symposium on Computer 

Architecture, New York, 1975. 

[32] D. G. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems, 

IBM T. J. Watson Research Center, Yorktown Heights, NY, Report # RC 19970, 

1997. 

[33] D. G. Feitelson and L. Rudolph. Job Scheduling Strategies for Parallel 

Processing, vol. 1459, Lecture Notes in Computer Science, Springer-Verlag, 1998. 

[34] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd. "Integrating Information 

Appliances into an Interactive Workspace," IEEE Computer Graphics & 

Applications, May 2000. 

[35] A. Fuggetta, G. P. Picco, and G. Vigna. "Understanding Code Mobility," IEEE 

Transactions on Software Engineering, vol. 24(5), pp. 342-361, 1998. 

 



BIBLIOGRAPHY   171

[36] J.-L. Gaudiot and L. Bic (eds.). Advanced Topics in Data-Flow Computing, 

Prentice-Hall, 1991. 

[37] D. Gelernter. "Generative Communication in Linda," ACM Transaction on 

Programming Language and Systems, vol. 7(1), pp. 80-112, January 1985. 

[38] D. Gelernter and A. J. Bernstein. "Distributed Communication via Global Buffer," 

Proceedings of ACM Principles of Distributed Computing Conference, pp. 10-18, 

1982. 

[39] D. Georgakopoulos, M. Hornick, and A. Sheth. "An Overview of Workflow 

Management: From Process Modeling to Workflow Automation Infrastructure," 

International Journal on Distributed and Parallel Databases, pp. 119-153, April 

1995. 

[40] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley, and D. Gannon. 

"Requirements for and Evaluation of RMI Protocols for Scientific Computing," 

Proceedings of 2000 ACM/IEEE Conference on Supercomputing, Dallas, Texas, 

2000. 

[41] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques, San 

Mateo, CA, Morgan Kaufmann, 1993. 

[42] S. Hadjiefthymiades, D. Martakos, and C. Petrou. "Stateful Relational Database 

Gateways for the World Wide Web," Journal of Systems and Software (JSS), vol. 

48(3), pp. 177-187, 1999. 

[43] J. Hammer, H. Garcia-Molina, W. Labio, J. Widom, and Y. Zhuge. "The Stanford 

Data Warehousing Project," Data Engineering Bulletin, Special Issue on 

Materialized Views and Data Warehousing, vol. 18(2), pp. 41-48, June 1995. 

[44] J. Hendler, T. Berners-Lee, and E. Miller. "Integrating Applications on the 

Semantic Web," Journal IEE Japan, vol. 122(10), pp. 676-680, 2002. 

 



BIBLIOGRAPHY   172

[45] JAVA Naming and Directory Interface (JNDI), Sun Microsystems, 

http://java.sun.com/products/jndi, 2003. 

[46] Java Remote Method Invocation, Sun Microsystems, 

http://java.sun.com/products/jdk/rmi, 2003. 

[47] M. Kirtland. "The Programmable Web: Web Services Provides Building Blocks for 

the Microsoft .NET Framework," MSDN Magazine, September 2000. 

[48] J. T. Kohl, B. C. Neuman, and T. Y. Ts'o. "The Evolution of the Kerberos 

Authentication Service," in Distributed Open Systems, F. Brazier and D. Johansen 

(eds.), IEEE Computer Society Press, pp. 78-94, 1994. 

[49] H. F. Korth and A. Silberschatz. Database System Concepts, 2nd ed, McGraw-

Hill, 1991. 

[50] D. Kristol and L. Montulli. HTTP state management mechanism, Internet 

Engineering Task Force, Report # RFC 2109, February 1997. 

[51] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. "Authentication in 

Distributed Systems: Theory and Practice," ACM Transactions on Computer 

Systems, vol. 10(4), pp. 265-310, November 1992. 

[52] F. Leymann. "Supporting Business Transactions via Partial Backward Recovery in 

Workflow Management Systems," Proceedings of Datenbanksysteme in Buro, 

Technik und Wissenschaft (BTW'95), Dresden, Germany, pp. 51-70, 1995. 

[53] F. Leymann. Web Services Flow Language (WSFL 1.0), IBM Corporation, Report, 

2001. 

[54] D. Liu, J. Cheng, K. H. Law, G. Wiederhold, and R. D. Sriram. "An Engineering 

Information Service Infrastructure for Ubiquitous Computing," Journal of 

Computing in Civil Engineering, Accepted for publication, 2003. 

 



BIBLIOGRAPHY   173

[55] D. Liu, K. H. Law, and G. Wiederhold. "CHAOS: An Active Security Mediation 

System," Proceedings of International Conference on Advanced Information 

Systems Engineering, LNCS, vol.1789, B. Wangler and L. Bergman (eds.), 

Springer-Verlag, pp. 232-246, 2000. 

[56] J. Magott. "Performance Evalucation of Concurrent Systems Using Petri Nets," 

Information Processing Letter, vol. 18(1), pp. 7-13, 1984. 

[57] M. Marcotty and H. Ledgard. The World of Programming Languages, Springer 

Books On Professional Computing, New York, NY, Springer-Verlag, 1987. 

[58] M. D. McIlroy. "Mass Produced Software Components," Software Engineering, 

NATO Science Committee, pp. 138-150, January 1969. 

[59] L. Melloul, D. Beringer, N. Sample, and G. Wiederhold. "CPAM, a Protocol for 

Software Composition," Proceedings of Conference on Advanced Information 

Systems Engineering '99, Heidelberg, Germany, June 1999. 

[60] S. Mullender. Distributed Systems, 2nd ed, Addison Wesley, 1993. 

[61] T. Murata. "Petri Nets: Properties, Analysis and Applications," Proceedings of the 

IEEE, vol. 77(4), pp. 541-580, April 1989. 

[62] P. Naur and J. Backus. "Report on the Algorithmic Language ALGOL 60," 

Communications of the ACM, vol. 3(5), pp. 299--314, May 1960. 

[63] J. Ockerbloom. Mediating Among Diverse Data Formats, Ph.D. Thesis, Computer 

Science Department, Carnegie Mellon University, Pittsburgh, PA, 1998. 

[64] OMG. The Common Object Request Broker: Architecture and Specification 

Version 2.0, Object Management Group, Report # 95-3-10, July 1995. 

[65] OSF. OSF DCE Application Development Guide, Revision 1.0, Prentice Hall, 

1993. 

 



BIBLIOGRAPHY   174

[66] OSF. Introduction to OSF DCE, The Open Software Foundation, Prentice Hall, 

1995. 

[67] R. Otte, P. Patrick, and M. Roy. Understanding CORBA, Upper Saddle River, 

New Jersey, Prentice Hall, 1996. 

[68] G. A. Papadopoulos and F. Arbab. "Coordination of Distributed Activities in the 

IWIM Model," International Journal of High Speed Computing, vol. 9(2), pp. 127-

160, 1997. 

[69] Y. Papakonstantinou. Query processing in heterogeneous information sources, 

PhD thesis, Computer Science Department, Stanford University, Stanford, CA, 

1996. 

[70] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina. "Object Fusion in 

Mediator Systems," Proceedings of VLDB Conference, 1996. 

[71] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. "Object Exchange Across 

Heterogeneous Information Sources," Proceedings of Eleventh International 

Conference on Data Engineering, Taipei, Taiwan, pp. 251-260, March 1995. 

[72] D. A. Patterson, A. Brown, P. Broadwell, G. Candea, M. Chen, J. Cutler, P. 

Enriquez, A. Fox, E. Kiciman, M. Merzbacher, D. Oppenheimer, N. Sastry, W. 

Tetzlaff, J. Traupman, and N. Treuhaft. Recovery-Oriented Computing (ROC): 

Motivation, Definition, Techniques, and Case Studies, Computer Science 

Department, University of California at Berkeley, Report # CSD-02-1175, March 

2002. 

[73] J. Peng, D. Liu, and K. H. Law. "An Engineering Data Access System for a Finite 

Element Program," Journal of Advances in Engineering Software, vol. 34(3), pp. 

163-181, 2003. 

 



BIBLIOGRAPHY   175

[74] L. Perrochon, G. Wiederhold, and R. Burback. "A Compiler for Composition: 

CHAIMS," Proceedings of Fifth International Symposium on Assessment of 

Software Tools and Technologies, Pittsburgh, June 1997. 

[75] C. Petri. Kommunikation mit Automaten, Ph.D. dissertation, University of Bonn, 

1962. 

[76] G.-C. Roman and H. Cunningham. "Mixed Programming Metaphors in a Shared 

Dataspace Model of Concurrency," IEEE Transaction on Software Engineering, 

vol. 16(12), pp. 1361-1373, 1990. 

[77] W. Rosenberry, D. Kenney, and G. Fisher. Understanding DCE, Lecture Notes in 

Computer Science 731, O'Reilly & Associates, 1992. 

[78] J. Roy and A. Ramanujan. "Understanding Web Services," IT Professional, vol. 

3(6), pp. 69-73, 2001. 

[79] N. Sample. MARS: Multidisciplinary Application Runtime System, Master's Thesis, 

Department of Computer Science, Stanford University, Stanford, 1998. 

[80] N. Sample, D. Beringer, L. Melloul, and G. Wiederhold. "CLAM: Composition 

Language for Autonomous Megamodules," Proceedings of Third International 

Conference on Coordination Models and Languages, Amsterdam, April 1999. 

[81] N. Sample, D. Beringer, and G. Wiederhold. "A Comprehensive Model for 

Arbitrary Result Extraction," Proceedings of ACM Symposium on Applied 

Computing, Madrid, Spain, March 2002. 

[82] N. Sample, P. Keyani, and G. Wiederhold. "Scheduling Under Uncertainty: 

Planning for the Ubiquitous Grid," Proceedings of Fifth International Conference 

on Coordination Models and Languages, 2002. 

 



BIBLIOGRAPHY   176

[83] C. Schlenoff, M. Gruninger, F. Tissot, J. Valois, J. Lubell, and J. Lee. The Process 

Specification Language (PSL): Overview and Version 1.0 Specification, National 

Institute of Standards and Technology, Gaithersburg, MD, Report # 6459, 2000. 

[84] B. Stroustrup. The C++ programming language, Boston, MA, Addison-Wesley 

Longman Publishing Co., Inc., 1986. 

[85] UDDI: Universal Description, Discovery and Integration (UDDI) Version 2.0 

Specification, http://www.uddi.org, 2001. 

[86] J. Ullman. Principles of Database and Knowledge-Base Systems, Rockville, 

Maryland, Computer Science Press, 1988. 

[87] A. H. Veen. "Data Flow Machine Architecture," ACM Computing Surveys, 

December 1986. 

[88] W3C. Extensible Markup Language (XML), vol. 2003, World Wide Web 

Consortium, http://www.w3.org/xml, 1996. 

[89] WebGain. Java Compiler Compiler (JavaCC) - The Java Parser Generator, 

http://www.webgain.com/products/java_cc/, 2001. 

[90] G. Wiederhold. "Mediators in the Architecture of Future Information Systems," 

IEEE Computer, pp. 38-49, March 1992. 

[91] G. Wiederhold. Strategic Uses of Information Technologies, Presentation at 

Stanford Graduate School of Business, Stanford, CA, 1996. 

[92] G. Wiederhold, D. Beringer, N. Sample, and L. Melloul. "Composition of Multi-

site Services," Proceedings of IDPT'99, Kusadasi, Turkey, June 1999. 

[93] G. Wiederhold and H. Garcia-Molina. "SimQL: an Interface for Integrating Access 

to Simulations into Information Systems," Proceedings of DARPA-JFACC 

Symposium, San Diego, pp. 259-262, November 1999. 

 



BIBLIOGRAPHY   

 

177

[94] G. Wiederhold and M. Genesereth. "The Conceptual Basis for Mediation 

Services," IEEE Expert, Intelligent Systems and Their Applications, vol. 12(5), pp. 

38-47, October 1997. 

[95] G. Wiederhold and R. Jiang. "Information Systems that Really Support Decision-

Making," Journal of Intelligent Information Systems, vol. 14, pp. 85-94, March 

2000. 

[96] G. Wiederhold, P. Wegner, and S. Ceri. "Towards Megaprogramming," Comm. 

ACM, vol. 35(11), pp. 89-99, Nov 1992. 

[97] Workflow Management Coalition Terminology and Glossary, Workflow 

Management Coalition, Report # Document Number WFMC-TC-1011, Feb 1999. 

[98] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. "TSpaces," IBM 

Systems Journal, vol. 37(3), pp. 454-474, August 1998. 

[99] Xerces Java Parser, Apache Software Foundation, http://xml.apache.org/xerces-

j/index.html, 2003. 


	Overview
	Composition of Autonomous Services
	Distributed Data-flow Model

	Related Research
	Distributed Computing Environment
	Common Object Request Broker Architecture
	CHAIMS
	Shared Dataspace
	Web Services

	Organization of the Thesis
	Service Integration Models
	Model Classification
	Centralized Control-flow and Centralized Data-flow Model
	Distributed Control-flow Models
	Centralized Control-flow and Distributed Data-flow Model

	System Modeling
	Aggregated Cost of a Megaservice
	Aggregated Cost Definition
	Centralized Data-flow Model
	Distributed Data-flow Model
	Comparison of Centralized and Distributed Data-Flow Models

	Response Time For Megaservices
	Serialized Invocation of Megaservices

	Network Bandwidth Among Servers
	
	Parallel Invocation of Megaservices

	Performance Impact of Control-flows
	Summary
	Autonomous Service Metamodel
	Hierarchical Model
	Data Model
	Service Interaction Model
	Identification for Autonomous Services
	Control-flows and Data-flows
	Events in FICAS
	Data Container and Data Map

	Structural Model

	Autonomous Service Access Protocol
	Initialization and Termination Events
	Invocation Events
	Data-flow Events
	Auxiliary Events

	Autonomous Service Wrapper
	Summary
	Compositional Specification
	Data Types and Operations
	Autonomous Service Statement
	Conditional Statements
	Comparison Between CLAS and CLAM

	CLAS Compiler and FICAS Control Sequence
	Lexical Analysis
	Syntax Analysis
	Code Generation
	Example Demonstration

	Computational Specification
	Constructing Mobile Class
	Mobile Class for Data Processing
	Mobile Class for Type Mediation
	Mobile Class for Extraction Model Mediation

	Summary
	Architecture of the Runtime Environment
	Autonomous Service Directory
	Megaservice Controller


	Processing of the Assignment Statement
	
	
	Processing of the Conditional Statement
	Processing of the Autonomous Service Statement
	Processing of the Mobile Class Statement


	Distribution of Data-flows
	Megaservice Execution Plan
	Performance Analysis

	Mobile Class and Active Mediation
	Active Mediation for Autonomous Service
	Enabling Active Mediation in FICAS
	Placement of Mobile Class
	Enabling Optimization for Mobile Classes
	Performance Analysis

	Example Infrastructure for Engineering Services
	Summary
	Summary
	Future Directions


