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Abstract

There have been increased economic and societal demands to periodically monitor

the safety of structures against long-term deterioration, and to ensure their safety

and adequate performance during the life span of the structures.

In this work, a Bayesian probabilistic framework for damage detection is pro-

posed for the continuous monitoring of structures. The idea is to search for the most

probable damage event by comparing the relative probabilities for di�erent damage

scenarios. The formulation of the relative posterior probability is based on an output

error, which is de�ned as the di�erence between the estimated vibration parameters

and the theoretical ones from the analytical model. The Bayesian approach is shown

(1) to take into account the uncertainties in the measurement and the analytical

modeling, (2) to perform damage diagnosis with a relatively small number of mea-

surement points and a few modes, and (3) to systematically extract information from

continuously obtained test data. A branch-and-bound search scheme is devised to

expedite the search for the most likely damage event without exhaustively examining

all possible damage cases.

As an alternative to modal vectors, load-dependent Ritz vectors are incorporated

into the Bayesian framework. The following advantages of Ritz vectors over modal

vectors are shown: (1) in general, load-dependent Ritz vectors are more sensitive to

damage than the corresponding modal vectors, and (2) by a careful selection of load

patterns, substructures of interest can be made more observable. Furthermore, a

procedure to extract Ritz vectors from vibration test is proposed, and the procedure

is successfully demonstrated using experimental test data.
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Data from vibration tests of civil structures indicate that the environmental ef-

fects such as temperature, tra�c loading, humidity can often mask subtle structural

changes caused by damage. A linear adaptive �lter is presented to discriminate the

changes of modal parameters due to temperature changes from those caused by struc-

tural damage or other environmental e�ects. Results based on the �eld vibration test

of a bridge indicate that the �lter can reproduce the temporal variability of the fre-

quencies so that the thermal e�ects on the vibration parameters can be di�erentiated

from other environmental e�ects or potential structural damage.
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Chapter 1

INTRODUCTION

1.1 Motivation

The monitoring of civil structures has received increasing interest in the research

community. Also, there have been increased economic and societal demands to pe-

riodically monitor the safety of structures against long term deterioration, and to

immediately assess the condition after extreme events such as earthquakes. The con-

dition assessment of civil structures after extreme events is of great importance for

emergency management o�cials to properly allocate resources for prompt emergency

response. An equally important task is the continuous/periodic monitoring of civil

structures to ensure their safety and adequate performance during the life span of the

structures. Damage assessment can be categorized into the following four levels [129]:

Level 1. Determine the presence of damage within the structure.

Level 2. Locate the regions of damage.

Level 3. Quantify the severity of damage.

Level 4. Predict the remaining service life of the structure.

One common approach is to employ the vibration characteristics of a structure

to assess the damage locations and to estimate the amount of damage [43]. These

vibration-based methods typically determine the dynamic characteristics through

forced or ambient vibration test. Damage detection is, then, based on the premise

that damage in the structure will cause changes in the measured vibration test data.

1



Chapter 1 INTRODUCTION

Since modal parameters such as frequencies, modal vectors, and modal damping are

functions of the physical properties of the structure, changes of the modal parameters

will indicate changes in the physical properties such as sti�ness, mass and damping.

However, it has been shown that changes in the modal parameters might not be

apparent at an early stage of damage [48,88].

The vibration-based methods can be further divided into model-based and non-

model-based methods [75]. Model-based damage detection methods locate and quan-

tify damage by correlating an analytical model with test data of the damaged struc-

ture. Non-model-based methods assess damage by comparing the measurements from

the undamaged and damaged structures. Model-based methods can provide quantita-

tive information of damage as well as damage locations (level 3 assessment). However,

these methods are computationally intensive and require a �nite element model, which

should be carefully re�ned with test data of the undamaged structure. While non-

model-based methods are simple and straightforward, these methods generally do not

provide quantitative information about structural damage (level 2 assessment).

In this study, our discussions are mainly focused on the model-based methods

since our �nal goal of damage assessment is to estimate the severity of damages (i.e.

level 3 assessment). Many of the existing damage detection and monitoring algorithms

have been originally developed in the �eld of aerospace industry for the monitoring

of space-station-like structures such as truss structures [85,69,133]. These algorithms

do not fully address the issues that arise in the monitoring of civil structures. The

main challenges for the development of a robust damage detection and monitoring

system for civil structures are as follows:

1. Civil structures typically display more complicated geometry; consist of vari-

ety of materials such as steel, concrete, cable and asphalt; and involve more

redundancy in the design than space structures. In addition, the uncertainty

involved in the estimation of the strength and sti�ness of structural components

are signi�cantly higher than that of truss members commonly used for space

structures. These issues make the accurate modeling of civil structures very

di�cult. Model updating and re�nement techniques [8,83,80,137] can be em-

ployed prior to damage detection. However, the practical applications of these

2
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techniques remain primarily to research activities. Model updating and re�ne-

ment techniques assume that the degrees of freedom (DOFs) of the measured

modal vectors match identically to the DOFs of the analytical model. This

assumption can be met when measurements are conducted at all DOFs of the

analytical model or when mode shape expansion or model reduction techniques

are employed. However, damage generally smears into the undamaged DOFs

when the mode shape expansion or model reduction techniques are applied. Fur-

thermore, many model updating techniques utilize the connectivity information

of the structural members to obtain a baseline model. On the other hand, the

connectivity information is lost when a model reduction technique is applied.

Model reduction techniques are commonly employed for the dynamic analysis

of civil structures since the modeling of civil structures produce large system

matrices and the rotational DOFs are typically condensed out from dynamic

analyses. (Note that truss members do not contain any rotational DOFs.)

2. The size of civil structures does not permit the instrumentation of a large num-

ber of sensors and actuators, and the excitation of higher modes. Furthermore,

the application of forced vibration tests, which are commonly used for system

identi�cation, is di�cult for civil structures in service because of the economic

and social rami�cation caused by service interruption due to road closure and

evacuation of buildings. Ambient vibration tests are more suitable for civil

structures since the tests can be conducted under normal operation of struc-

tures and can be easily repeated to collect additional modal data sets. One

problem with ambient tests is the di�culty of exciting higher modes. There-

fore, most of damage detection for civil structures would su�er from lack of data

that may not be available in practical testing of a structure: only a small number

of measurement points and a few fundamental modes would be available.

3. Civil structures involve a signi�cant amount of uncertainties caused by environ-

mental e�ects such as temperature, tra�c loading, humidity and so on. These

environmental e�ects can impede the reliable identi�cation of damage [49,42].

For example, an experimental study shows that several concrete bridges in
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the United Kingdom absorbed considerable amount of moisture during damp

weather, and consequently increased the mass of the bridges [151]. Experimen-

tal modal analyses conducted on the Alamosa Canyon Bridge demonstrate that

the ambient temperature caused more that 5% variation in the estimated funda-

mental frequency within a 24-hour vibration test [49,139]. The environmental

e�ects are shown to possibly cause changes of modal properties several times

larger than expected from damage. Therefore, for reliable damage detection, the

damage would need to cause signi�cant changes in the dynamic characteristics

that are beyond the natural variability caused by non-damage e�ects.

The aforementioned problems, that would arise for the monitoring of civil structures,

formed the motivation for this study, which is intended to cope with some of the

problems.

1.2 Objectives

This study is intended to develop a global damage diagnosis framework for continuous

monitoring of civil structures. Particularly, a Bayesian probabilistic damage detec-

tion method is proposed aiming at the global localization of damage regions (level 2

assessment) [141,140]. The proposed method is a probability-based and model-based

approach that does not necessarily require an accurate analytical model. Bayesian

probabilistic approaches have been applied to damage detection problems by previ-

ous researchers [16,15,56]. While most previous studies focused on the use of modal

parameters (i.e. natural frequencies and modal vectors), this study introduces load-

dependent Ritz vectors to damage detection problems. Furthermore, an attempt

is made to discriminate environmental e�ects on the dynamic characteristics of the

structure from potential damage in order to reliably determine the presence of damage

within the structure (level 1 assessment). The objectives of this dissertation are:

1. To develop a systematic Bayesian framework for the damage detection and

monitoring of civil structures, considering (1) uncertainties in the measurement

noise and the analytical modeling and (2) the cases when only a small number
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of degrees of freedom are measured and a few modes are estimated.

2. To develop and demonstrate procedures to extract load-dependent Ritz vectors

from vibration tests, and to incorporate load-dependent Ritz vectors into the

proposed Bayesian probabilistic approach for damage detection problems.

3. To address the environmental e�ects on the modal parameters of civil struc-

tures and to propose a linear adaptive model which discriminates the e�ects of

environment from potential structural damage.

1.3 Overview

Figure 1.1 shows the schematic diagram of the proposed framework for damage de-

tection. The damage detection procedure can be outlined as follows:

1. Model Construction: The objective is to construct an analytical model and to

identify structural parameters which closely represent the actual structure.

2. Modal Testing: Based on the experimental data accumulated through either

forced or ambient vibration tests, the modal parameters (i.e. the natural fre-

quencies and the modal vectors) or load-dependent Ritz vectors are estimated.

3. Model Updating and Re�nement: Utilizing the dynamic characteristics of the

undamaged structure estimated from modal tests, the corresponding analytical

model is re�ned to match as close as possible the measured vibration data.

4. Damage Diagnosis: A Bayesian approach is proposed to search for the most

probable damage event by comparing the relative probabilities for di�erent dam-

age scenarios. The formulation of the relative posterior probability is based on

the output error, which is de�ned as the di�erence between the estimated modal

parameters (or experimental Ritz vectors) and the theoretical modal parameters

(or analytical Ritz vectors) from the analytical model. Using an output error ap-

proach, we avoid the aforementioned problem introduced by either mode shape

expansion or model reduction techniques. To reduce the potentially intensive
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computational cost of the Bayesian approach, this study employs a branch-and-

bound search scheme and a simpli�ed approach for the modeling of multi-story

frame structures.

5. Diagnosis Report and Continuous Updating: The proposed method reports the

relative damage possibilities of di�erent damage scenarios as well as the most

likely damaged locations. The damage probabilities are continuously updated

when new test data are obtained from the structure. The Bayesian approach

provides a heuristic means to combine previous experimental data with newly

available test data.

The organization of this thesis follows closely the procedure described in Fig-

ure 1.1. Chapter 2 describes the theoretical framework for the Bayesian probabilistic

damage detection. Chapter 3 introduces the use of load-dependent Ritz vectors for

damage detection in the Bayesian framework. The existing model updating tech-

niques and the related issues are discussed in Chapter 4. Chapter 5 describes the

application of the proposed Bayesian damage detection to the simulated data of two

frame structures and the experimental data of a reinforced concrete bridge column

tested at the University of California, Irvine. Chapter 5 also focuses on the issue of

damage detection using simpli�ed analytical models.

Chapter 6 presents the results of an experimental test for a grid-type bridge struc-

ture tested at Hyundai Engineering & Construction Co., Seoul, Korea. In this chap-

ter, the procedure for the extraction of Ritz vectors is demonstrated and the damage

diagnoses using modal properties and Ritz vectors are compared.

Chapter 7 addresses the thermal e�ects on the modal properties estimated from

the Alamosa Canyon Bridge in New Mexico. A linear adaptive �ltering technique is

applied to reproduce the temporal variation of modal parameters and to discriminate

the changes of modal parameters due to temperature changes from those caused by

structural damage or other environmental e�ects. Finally, Chapter 8 summarizes the

results and contributions of this study and presents the conclusions and suggestions

for future work in this research area.
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Estimate modal properties &
Ritz vectors

4. Rank the relative possibilities of different
    damage scenarios.

1. Assume damage locations.

3. Repeat steps 1&2 for other damage scenarios.

2. Update the corresponding damage probability.

Damaged Structure

Baseline Structure

Damage Occurrence &
Long-Term Deterioration

(1) Analytical Modeling

(2) Modal Testing

(2) Modal Testing

(3) Model Updating & Refinement

 (4) Bayesian Probabilistic Damage Detection

(5) Report the most probable damage locations

Figure 1.1: A framework of damage detection
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Chapter 2

A Bayesian Probabilistic Approach

for Damage Detection

This chapter presents a damage detection method based on a Bayesian probabilistic

approach using the modal parameters (i.e., the natural frequencies and modal vec-

tors). We �rst derive a general formulation of the Bayesian probabilistic approach to

determine the most probable damage event by comparing the relative damage prob-

abilities of di�erent damage events. The relative probability of a damage event is

de�ned as the di�erence between the estimated modal parameters and the theoretical

modal parameters from the analytical model. The proposed Bayesian approach (1)

explicitly considers both modeling and noise errors, (2) is able to detect multiple dam-

age locations, and (3) updates the damage probabilities whenever new data become

available. A branch-and-bound search scheme is employed to identify the most prob-

able damage event without searching through all possible damage events. Finally, a

six-story shear frame structure is employed to illustrate the Bayesian approach.

2.1 Theoretical Formulation
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Chapter 2 A Bayesian Probabilistic Approach for Damage Detection

2.1.1 Notation and Assumption

For an analytical model of a structure, we represent the system sti�ness matrix K as

an assembly of substructure sti�ness matrices. For a model with Nsub substructures,

the overall sti�ness matrix can be expressed as:

K(�) =

NsubX
i=1

�iKsi (2.1)

where Ksi is the sti�ness matrix of the ith substructure and �i (0 � �i � 1) is a

non-dimensional parameter which represents the contribution of the ith substructure

sti�ness to the system sti�ness matrix. The non-dimensional parameter �i is a damage

indicator and is introduced to allow the modeling of damage in the ith substructure.

A substructure is said to have been damaged when the � value is less than a speci�ed

threshold. As damage locations and amount are determined according to the � values,

the system sti�ness matrix in Equation (2.1) is expressed as a function of � =
�
�i; i =

1; :::; Nsub

	
.

Modal data sets are assumed to be collected and estimated from repeated or

continuous vibration tests. When vibration tests are repeated Ns times, the total

collection of Ns modal data sets is denoted as:

	̂Ns =
�
 ̂(n);n = 1; :::; Ns

	
(2.2)

A modal data set  ̂(n) in Equation (2.2) consists of both the frequencies and the

modal vectors estimated from the nth vibration test, i.e.,

 ̂(n) =
�
!̂n1 ; :::; !̂

n
Nm
; v̂nT1 ; :::; v̂nTNm

�T 2 RNt (2.3)

where !̂ni and v̂ni respectively denote the ith estimated frequency and modal vector

in the nth data set. The modal vector v̂ni (2 RNd) has components corresponding to

the instrumented DOFs. The variables Nt; Nd and Nm represent the total number of

components in a data set  ̂(n), the number of the measured DOFs and the number

of the measured modes, respectively.
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Let Hj denote a hypothesis for a damage event which can contain any number of

substructures as damaged, and the initial degree of belief about the hypothesis Hj

is represented with a prior probability P (Hj). Using Bayes Theorem, the posterior

probability P (Hjj	̂Ns), after observing a set of estimated modal parameters 	̂Ns, can

be represented as:

P (Hjj	̂Ns) =
P (	̂NsjHj)

P (	̂Ns)
P (Hj) (2.4)

The most likely damaged substructures are the ones included in the hypothesis Hmax

which has the largest posterior probability, i.e.

P (Hmaxj	̂Ns) = max
8Hj

P (Hjj	̂Ns) (2.5)

Since the objective is to determine the most probable damage hypothesis, the

relative posterior probabilities of alternative hypotheses are of interest. We attempt

to avoid the explicit expression of a posterior probability P (Hjj	̂Ns) and the exam-

ination of all hypotheses. The precise calculation of P (	̂NsjHj) is a di�cult task.

Furthermore, the calculation of the denominator P (	̂Ns) in Equation (2.4) involves

summing P (	̂NsjHj) � P (Hj) over every possible hypothesis. The number of all pos-

sible damage events (the size of hypothesis space) for a structure with Nsub substruc-

tures is equal to 2Nsub. For a large structure, the size of the hypothesis space easily

becomes intractable and the computational cost is prohibitive.

2.1.2 Determination of the Most Probable Damage Event

When applying Equation (2.4) to calculate the posterior probability P (Hjj	̂Ns), the

only unde�ned term is P (	̂NsjHj). The prior probability of a hypothesis P (Hj) is the

prior information given by users and the probability of estimated modal data P (	̂Ns)

is simply a normalizing constant.

As shown in Equation (2.1), less than a unity value for �i re
ects the sti�ness

decrease in the ith substructure. As noted earlier, when �i is less than a speci�ed

threshold ��i (< 1), the ith substructure is de�ned as damaged. If we de�ne �1
Hj

as the
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set of �i's corresponding to the damaged substructures in a hypothesis Hj and �2
Hj

as the rest of �i's, the conditional probability P (	̂NsjHj) can be interpreted as the

probability of obtaining 	̂Ns, when �i's in �
1
Hj

are less than or equal to their threshold

��i 's and the remaining �i's stay within ��i < �i � 1. Denoting 
�
Hj

as the range of

�Hj
such that 0 � �1

Hj
� �1;�

Hj
and �2;�

Hj
< �2

Hj
� 1, the conditional probability

P (	̂Hj
jHj) becomes:

P (	̂NsjHj) = P (	̂Nsj�Hj
< 
�

Hj
) =

P (	̂Ns;�Hj
< 
�

Hj
)

P (�Hj
< 
�

Hj
)

=
P (�Hj

< 
�
Hj
j	̂Ns) P (	̂Ns)

P (�Hj
< 
�

Hj
)

=
P (	̂Ns)

P (�Hj
< 
�

Hj
)

Z
�Hj

<
�

Hj

f(�Hj
j	̂Ns)d�Hj

(2.6)

where �1;�
Hj

and �2;�
Hj

are the sets of damage thresholds for �1
Hj

and �2
Hj
, respectively,

and f(�Hj
j	̂Ns) is a conditional probability density function (PDF) of �Hj

given

	̂Ns. Furthermore, �Hj
< 
�

Hj
indicates that �Hj

are within the range of 
�
Hj

such

that 0 � �1
Hj
� �1;�

Hj
and �2;�

Hj
< �2

Hj
� 1.

If we de�ne the most probable parameter values �max
Hj

, given a hypothesis Hj,

such that:

f(�max
Hj

j	̂Ns) = max
�Hj

<
�

Hj

f(�Hj
j	̂Ns) (2.7)

Then, the upper bound of P (	̂NsjHj) in Equation (2.6) becomes:

PU(	̂Ns jHj) =
P (	̂Ns)

P (�Hj
< 
�

Hj
)

Z
�Hj

<
�

Hj

f(�max
Hj

j	̂Ns)d�Hj

=
P (	̂Ns)

P (�Hj
< 
�

Hj
)
f(�max

Hj
j	̂Ns)

Z
�Hj

<
�

Hj

1 d�Hj
(2.8)
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For simpli�cation, we assume if damage occurs, it could have any arbitrary amount

with equal probability. That is, we assign a uniform probability density function to

�i such that:

f(�i) =

(
1 if 0 � �i � 1

0 otherwise
(2.9)

Furthermore, if �i's are assumed to be independent, the following two equations hold:

f(�Hj
) =

Y
8 �i2�Hj

f(�i) = 1 (2.10)

1

P (�Hj
< 
�

Hj
)
=

1R
�Hj

<
�

Hj

f(�Hj
)d�Hj

=
1R

�Hj
<
�

Hj

1 d�Hj

(2.11)

Substituting Equation (2.11) into Equation (2.8), PU(	̂NsjHj) can be simpli�ed as:

PU(	̂NsjHj) = f(�max
Hj

j	̂Ns) P (	̂Ns) (2.12)

The computation of f(�max
Hj

j	̂Ns) will be explained later in the following subsection.

2.1.3 Consideration of Measurement Noise and Modeling Er-

ror

The next step is to compute the conditional PDF, f(�max
Hj

j	̂Ns). Here, f(�
max
Hj

j	̂Ns)

is de�ned considering both measurement noise and modeling error. First, let's de�ne

a modal error e(n;�Hj
) as:

e(n;�Hj
) =  ̂(n)�  (�Hj

); n = 1; :::; Ns (2.13)

where  ̂(n) is de�ned in Equation (2.3). Given �Hj
, an analytical modal data set

 (�Hj
) is de�ned similar to Equation (2.3) and is obtained by solving an eigenvalue
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problem, K(�Hj
)vi(�Hj

) = !2
i (�Hj

)Mvi(�Hj
):

 (�Hj
) =

�
!1(�Hj

); :::; !Nm(�Hj
);vT1 (�Hj

); :::;vTNm
(�Hj

)
�T 2 RNt (2.14)

It should be noted that, for a modal vector vi(�Hj
) in Equation (2.14), only the

components associated with the measured DOFs are included.

The modal error re
ects the discrepancy between the measured response of the

structure and the response of the associated analytical model. Two types of uncer-

tainties account for this discrepancy. The �rst type of uncertainty is the measurement

uncertainty caused by the presence of noise during vibration tests. The noise speci�-

cally accounts for the di�erence between the unknown true response and the measured

response of the structure. The second type of uncertainty arises from the assump-

tions and simpli�cations introduced in the modeling process. Thus, the modal error

de�ned in Equation (2.13) can be divided into two parts:

e(n;�Hj
) = eN(n) + eM (�Hj

) (2.15)

where eN(n) is the modal error caused by the measurement noise in the nth vibration

data set and eM(�Hj
) is the modal error caused by the modeling error. Assuming

that each entry or component of eN (n) is a normal distribution with zero mean, the

expectation on both sides of Equation (2.15) with respect to Ns data sets becomes:

E[e(n;�Hj
)] = E[eN(n)] +E[eM(�Hj

)] = eM(�Hj
) (2.16)

where eM(�Hj
) is assumed to be constant for all Ns data sets. That is, the modeling

error is caused only by the inherent di�erence between the analytical model and the

structure regardless of the noise existence.

It appears that eM (�Hj
) changes according to the damage locations and amount.

However, when damage is not severe, the modeling error can be assumed not to

change signi�cantly. In other words, the modal error caused by the modeling error

eM(�Hj
) can be assumed to be constant and be approximated by eM(�Ho), which is

the modal error caused by the modeling error in the healthy (undamaged) state of

13



Chapter 2 A Bayesian Probabilistic Approach for Damage Detection

the structure:

eM (�Hj
) �= eM(�Ho); 8�Hj

(2.17)

where Ho is a null hypothesis that there is no damage in the structure and the �

values of the healthy structure are calibrated to have unity values before any damage

occurs. From the de�nition of the modal error and Equation (2.16), eM(�Ho) can be

evaluated from the estimated and the analytical modal parameter sets:

eM(�Ho) = E[e(n;�Ho)] = E[ ̂h(n)]� E[ (�Ho)]
�=  ̂hm �  (�Ho) (2.18)

where the superscript h denotes the properties of the healthy structure. Since  (�Hj
)

is constant with respect to the Ns data sets, E[ (�Ho)] =  (�Ho). Furthermore,

the sample mean  ̂hm is used to approximate the expectation, E[ ̂h(n)]. The ith

component of  ̂hm is calculated such that:

E[ ̂hi (n)]
�=  ̂hm;i =

1

Nh
s

Nh
sX

n=1

 ̂hi (n) (2.19)

where i = 1; :::; Nt andN
h
s is the number of modal data sets before damage occurrence.

As a result, eM (�Hj
) can be evaluated from the measured modal parameter set  ̂h(n)

of the healthy structure and the modal parameter set  (�Ho) of the initial analytical

model:

eM(�Hj
) �= eM(�Ho) =  ̂hm �  (�Ho) ; 8�Hj

(2.20)

From the results of Equations (2.16) and (2.17), the ith compoments ei(n;�Hj
)

(n = 1; :::; Ns) of the error vector e(n;�Hj
) become a multivariate normal distribu-

tion with mean eM;i(�Ho) and variance �2i . The variance �2i can be evaluated from

the observation of the estimated modal parameter sets. When a large number of

experimental data sets are available, sample standard deviations (or variances) can

be extracted from the data set. When modal data sets available are not su�cient
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to estimate the variances, we assign uniform coe�cient of variation (COV) to all

modal parameters. Assuming that the components of the modal error e(n;�Hj
) are

independent, the conditional joint PDF of �Hj
becomes:

f(�Hj
j	̂Ns) = f(e(n;�Hj

)j	̂Ns) = k � exp�� J(	̂Ns ;�Hj
)
	

(2.21)

where k = 1

[2�]
Ns
2

1

kC
	̂
k
1
2

and kC	̂k = detjdiag[�21; :::; �2Nt
]j = QNt

i=1 �
2
i . Furthermore,

the error function J(	̂Ns;�Hj
) is:

J(	̂Ns ;�Hj
) = (2.22)

1

2

NsX
n=1

[ ̂(n)�  (�Hj
)� eM(�Ho)]

TC�1

	̂
[ ̂(n)�  (�Hj

)� eM(�Ho)]

From Equations (2.4), (2.12) and (2.21), the upper bound of P (Hjj	̂Ns) becomes:

PU(Hjj	̂Ns) = f(�max
Hj

j	̂Ns)P (Hj) = exp
�� J(	̂Ns;�

max
Hj

)
	 � P (Hj) � k (2.23)

From Equation (2.23) and the fact that the relative comparison of PU(Hjj	̂Ns) is

independent of the constant k, the following relationships hold:

max
�
PU(Hij	̂Ns); PU(Hjj	̂Ns)

�
= max

�
ln PU(Hij	̂Ns); ln PU(Hjj	̂Ns)

�
= min

�
J(	̂Ns ;�

max
Hi

)� lnP (Hi); J(	̂Ns;�
max
Hj

)� lnP (Hj)
�

(2.24)

where ln denotes a natural logarithm. Therefore, the most probable hypothesis Hmax

in Equation (2.5) satis�es:

J(	̂Ns;�
max
Hmax

)� lnP (Hmax) = min
8Hj

�
J(	̂Ns;�

max
Hj

)� lnP (Hj)
�

(2.25)

Now, the search of the most probable damage event in Equation (2.5) can be con-

ducted by examining only the error function J(	̂Ns;�
max
Hj

) and the prior probability

P (Hj). It should be noted that PU(Hjj	̂Ns) is employed rather than P (Hjj	̂Ns) in

Equation (2.24). The use of PU(Hjj	̂Ns) can be justi�ed as follows: First, assume
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that Hd and �max
Hd

correspond to the actual damage locations and amount. Then, we

can expect an inequality f(�max
Hd

j	̂Ns) � f(�Hj
j	̂Ns) for any Hj and �Hj

. That is,

the conditional PDF of observing Hd and �
max
Hd

is expected to be higher than or equal

to any other damage cases (the equality holds when Hj = Hd and �Hj
= �max

Hd
).

From this observation and the fact that PU(Hjj	̂Ns) =
R
�Hj

<
�

Hj

f(�max
Hj

j	̂Ns)d�Hj
,

PU(Hdj	̂Ns) � PU(Hjj	̂Ns) holds for all Hj. However, if �Hd
di�ers from �max

Hd
, the

conditional PDF f(�Hd
j	̂Ns) can be less than other conditional PDFs even though

Hd corresponds to the actual damage locations. In other words, the PDF of cor-

rect damage locations and incorrect damage amount can be lower than the PDFs of

some other damage cases (f(�Hd
j	̂Ns) < f(�Hj

j	̂Ns) for some Hj and �Hj
). Conse-

quently, P (Hdj	̂Ns) can be less than P (Hjj	̂Ns) for some Hj. In this case, we may

fail to identify the actual damage event. Therefore, the use of PU(Hjj	̂Ns) appears

to increase the chance of identifying the actual damage locations and amount.

2.1.4 Computational Issues

For given modal data, while we are interested in the probability PU(Hjj	̂Ns) of the

assumed damage locations, the approach in Reference 16 calculates the conditional

PDF f(�j	̂Ns) where � = f�1; :::; �Nsub
g, and �i is de�ned as a continuous variable

with states ranging from 0 to 1. To obtain the probability for some parameter set �, a

multi-dimensional integration for a desired � space is required. Here, the total num-

ber of substructures becomes the dimension of integration. This multi-dimensional

integral may not be feasible for a large scale model. This problem can be simpli�ed by

assuming that damage is localized in only a single substructure [16]. As an alterna-

tive, an asymptotic approach is proposed in Reference 15. However, the asymptotic

approach requires the calculation of all the maxima of f(�j	̂Ns), which is also a

computationally expensive task.

In this study, the computational e�ort to �nd the most likely non-dimensional

parameter value �max
Hj

in Equation (2.7) increases with the number of potentially

damaged substructures included in the hypothesis Hj. The dimension of search space

�Hj
< 
�

hj
depends mainly on the number of damaged substructure �1

Hj
(the set
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of �'s corresponding to the damaged substructures in a hypothesis Hj) rather than

the total number of substructures. The search space is evaluated at the intersections

of the grid lines which discretize the search domain with an incremental step ��.

Figure 2.1 shows a typical search space of f(�Hj
j	̂Ns) when �1 and �2 correspond to

�1
Hj

and an incremental step is 0.1. Since the Bayesian approach is developed for a

continuous monitoring of a structure, we intend to detect damage at its early stage.

Therefore, for a continuous monitoring, we can assume that damage is localized in

small regions and the search space of Equation (2.7) remains small. However, the

computation could become prohibitive when �max
Hj

is calculated for a hypothesis Hj

which assumes a large number of substructures as damaged. Further e�ort is required

to develop an e�cient method to evaluate �max
Hj

.
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Figure 2.1: A typical search space of f(�Hj
j	̂Ns

)

The approach described here is analogous to pattern recognition using a Bayes

classi�er [55]. The goal of the pattern recognition approach is to make a decision,

when a new measurement is observed, whether the measurement comes from a normal

(healthy) or abnormal (damaged) state of a system. To make this decision, the Bayes

classi�er assumes a probabilistic distribution of each class, and estimates the charac-

teristic parameters of each distribution from observations. However, the di�culty of

obtaining the sample observations hampers the application of the Bayes classi�er to
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damage detection problems; the collection of sample observations corresponding to

the damaged state of the speci�c location is practically infeasible unless the structure

is intentionally damaged. To overcome this di�culty, Garcia and Stubbs [56] esti-

mate the properties of the undamaged and damaged classes from a �nite element (FE)

model of the structure with simulated damages. The performance of this approach

depends on the selection of the simulated data sets used to estimate the class prop-

erties. Theoretically, for a structure with n number of substructures, 2(n�1) di�erent

damage scenarios need to be simulated to correctly estimate the properties of a single

class. This process needs to be repeated for the damaged/undamaged classes for all

the substructures. Furthermore, if di�erent damage amount for each substructure is

considered, the computation becomes practically prohibitive.

The proposed approach eliminates the parameter estimation process by de�ning

each damage scenario as a separate class, and the state of a substructure as damaged

or undamaged. The binary states make it possible to construct a tree representation

of all possible damage scenarios. The damage tree starts with a null hypothesis

(scenario) Ho that no damage is present. From the root, the �rst level branches are

extended by adding a substructure as damaged one at a time. For a system with Nsub

substructures, the number of the �rst level branches becomes Nsub
C1. Here, we de�ne

NCK(=
N !

K!(N�K)!
) as the number of combinations of K items out of a population N .

From each �rst level branch, the second level branches are extended by adding another

substructure as damaged. The total number of the second level branches becomes

Nsub
C2. For a system with Nsub substructures, the damage tree has a total Nsub levels

of branches and the total number of branches is 2Nsub =Nsub
C0+Nsub

C1+:::+Nsub
CNsub

.

Clearly, the number of alternatives remains large. The complexity can be signi�cantly

reduced by a branch-and-bound search scheme, which is originally proposed for the

diagnosis of multiple diseases [70].

2.2 A Branch-and-Bound Search Scheme

A branch-and-bound search scheme is proposed to expedite the search for the most

likely damage case without exhaustively examining all the possible combinations of
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damaged substructures. Starting from the null hypothesis Ho that no damage is

present, one substructure is added as a possible damage location at a time to generate

extended hypotheses. The posterior probabilities of hypotheses are examined in terms

of their error functions and the prior probabilities as de�ned in Equation (2.25).

Each hypothesis keeps extending by adding a new substructure as damaged until the

further addition of substructures does not lead to a more probable hypothesis. The

key requirement is a bounding heuristic which allows us to rule out further extensions

of a hypothesis. In this study, the following two pruning heuristics are adopted: 1

1. Let Hj +Di denote an extension of hypothesis Hj by adding the ith substruc-

ture as damaged. (Note that, in the extended hypothesis Hj + Di, the other

substructures, except the damaged substructures in Hj and the ith substruc-

ture, are assumed undamaged.) If a posterior probability of Hj+Di is less than

that of Hj, then further extension of Hj +Di is ruled out; i.e.

if P (Hj +Dij	̂Ns) < P (Hjj	̂Ns); stop extending Hj +Di: (2.26)

2. If a posterior probability of Hj is less than Pmax, which is the largest posterior

probability among all the hypotheses examined so far, then further extension

of Hj is ruled out; i.e.

if P (Hjj	̂Ns) < Pmax; stop extending Hj: (2.27)

Using Equation (2.26), we can exclude the extension of Hj +Di when the addition of

the ith substructure as damaged is found not to lead to a more probable hypothesis.

In addition, when the �rst Hj is found such that P (Hjj	̂Ns) > P (Hj+Dij	̂Ns) for all

substructures not included in Hj (8Di 62 Hj), P (Hjj	̂Ns) is the �rst local maximum

posterior probability in the current branching direction of damage events. That is,

the criterion in Equation (2.26) guarantees that the �rst local maximum posterior

probability in every branching direction is found. Unfortunately this pruning heuristic

1In Chapter 3, an additional heuristic based on the sensitivity analysis of modal parameters to
sti�ness changes is also presented.
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is not a strong criterion for the system with a large number of substructures since

all branches are subject to further extensions until the �rst local maximum point is

found.

As a complementary criterion, Equation (2.27) excludes the further branching of

the newly extended hypotheses which have posterior probabilities less than the largest

posterior probability among the hypotheses examined so far. The second criterion

can be easily modi�ed to include n number of the newly extended hypotheses for the

further branching by replacing Pmax in Equation (2.27) with the nth largest posterior

probability P n
max.

Damage detection techniques, which rely only on the modal parameter information

such as the one described in this study, might have the drawback that the damage

locations and amount may not be uniquely determined from the estimated modal

data [147]. Models with di�erently assumed damage locations and amount can pro-

duce identical modal parameters. These models are referred to as output equivalent

models [89]. The exhaustive search of all possible models (hypotheses) is infeasible,

and a branch-and-bound search scheme may identify only some models (hypotheses

with assumed damage locations and amount), which locally maximize the posterior

probability P (Hjj	̂Ns) in Equation (2.5), and may not detect the global maximum

points.

In real applications, multiple hypotheses need to be examined for the following

reasons:

1. Since the modal testing measures the dynamic responses at limited points and

estimates only a few fundamental modes, the number of output equivalent mod-

els can increase.

2. In the presence of the modeling error and the measurement noise, some er-

roneous models could have modal parameters closer to the estimated modal

parameters than the model with the correct damage locations and amount.

Therefore, in practice, multiple hypotheses should be examined to �nd local maximum

posterior probabilities and potentially to identify the correct damage event.
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In the proposed method, a larger subspace of the hypothesis space can be exam-

ined by replacing Pmax in Equation (2.27) with P n
max, where P

n
max is the nth largest

posterior probability among the hypotheses examined so far. This approach allows us

to make an explicit trade-o� between the computational cost and the better diagnosis.

However further research is required to provide a systematic guideline for choosing

\n" in P n
max . Using the two pruning heuristics, Figure 2.2 depicts an example of the

branch-and-bound search for the most likely damage events of a structure which is

divided into �ve substructures.

2.3 Application to a Six-Story Shear Structure

This section illustrates the Bayesian probabilistic approach using a six-story shear

frame structure shown in Figure 2.3. The system sti�ness matrix is represented as

an assembly of the substructure sti�ness matrices and a non-dimensional parame-

ter �i is introduced to model the sti�ness contribution of the ith substructure [see

Equation (2.1)]. The mass matrix is assumed to be known and invariant. For all

examples, a uniform prior probability is assigned to all hypotheses. Therefore, the

determination of the most probable hypothesis in Equation (2.25) depends only on

the error function J(	̂Ns;�
max
Hj

). The search space �Hj
< 
�

Hj
in Equation (2.7) is

evaluated at the intersections of grid lines which discretize the search domain with an

incremental step ��. For the presented numerical examples, we use an incremental

step �� = 0.1. In addition, a value of 0.9 is used for the damage threshold �� for

every substructure, that is, decreases in the sti�ness over 10% are de�ned as damage.

Instead of the largest posterior probability Pmax, we use the third largest posterior

probability P 3
max (< P 2

max < P 1
max = Pmax) in Equation (2.27) to investigate a larger

subspace of the hypothesis space. The branch-and-bound search in the presented

examples follows a depth-�rst/best-�rst search strategy. Each modal vector is nor-

malized with respect to the absolute maximum component in the modal vector. Since

one component is used for normalization, only Nd � 1 pieces of information exist for

each mode.
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oH

NsΨ NsΨ 

denotes that further extension is :

excluded by either pruning heuristic 1 or 2.
*

NsΨ 

NsΨ 
probability among all the hypotheses so far.

max

max

2

2where P     is the second largest posterior

* Pruning Heuristic 2:
3 3if P(H  |      ) < P     , stop extending H  

max

2
2At this stage, P    = P(H  |     ).

maxinstead of P    .
max
2* In this example, P     is employed 
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search strategy.
* The example follows a depth-first/best-first

Figure 2.2: An example of branch-and-bound search for a structure with �ve substructures
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For the examples shown below, Ldam and Ddam denote the actual damage loca-

tions and the associated damage amount, respectively. L̂dam and D̂dam denote the

most probable damage locations and the associated damage amount estimated by the

proposed method. In addition, the measured DOFs and the estimated modes are

denoted by DOFm and MODEm, respectively.
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Figure 2.3: A six-story shear frame model

The frame structure consists of six DOFs and six substructures corresponding to

each 
oor story. To simulate measurement uncertainties in the estimated modal

parameters, the exact modal parameters, obtained from the analytical model with

the assumed damage, are perturbed with noise. More explicitly, the estimated modal

parameter set  ̂(n) in Equation (2.3) is constructed such that:

 ̂(n) =  (1 +
N
100

R) (2.28)

where  is the exact modal parameter set obtained from the analytical model, N is a

speci�ed noise level in terms of percentage, and R is a normally distributed random

number with zero mean and a variance of 1.0. This process is repeated Ns times to

simulate the Ns modal data sets.

Since the estimated modal parameters are simulated by adding noise to the ex-

act modal parameters, the modal error de�ned in Equation (2.15) arises only from

noise error, i.e. e(n;�Hj
) = eN(n;�Hj

). Therefore the error function shown in Equa-

tion (2.22) is simpli�ed as:
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J(	̂Ns;�Hj
) =

1

2

NsX
n=1

[ ̂(n)�  (�Hj
)]TC�1

	̂
[ ̂(n)�  (�Hj

)] (2.29)

This example investigates the applicability of the proposed method subject to the

e�ects of (1) the noise level in the estimated modal data, (2) the number and the

selection of estimated modes and measured DOFs, (3) the locations and the amount

of damage, and (4) the number of modal data sets.

2.3.1 E�ect of Noise Level in the Estimated Modal Data

The proposed method is �rst tested to show that it does not give a false-positive

indication of damage (the case of indicating damage when in fact damage does not

exist). Three cases are conducted assuming 3%, 5% and 10% noise levels. For each

case, 10 sets of modal parameters are simulated from the undamaged structure, the

DOFs corresponding to the second and fourth stories are measured, and the �rst and

second modes are identi�ed. For all cases, the proposed method does not provide a

false-positive indication.

Next, the e�ect of noise in the measured data is investigated. Four cases are

conducted by varying the noise levels from 0.5% to 10%. For all cases, the sti�nesses

of the second and sixth stories are decreased by 30% and 10%, respectively, i.e.

Ldam = f2; 6g and Ddam = f30%; 10%g. The measurements are made at the second
and fourth stories, and the �rst and second modes are identi�ed, i.e. DOFm=f2,
4g and MODEm=f1, 2g. Three sets of modal parameters are collected (Ns=3).

Table 2.1 summarizes the results. The rank in the table indicates the rank of the

actual damage event when the posterior probabilities of all examined hypotheses are

sorted in descending order. As the noise level increases from case 1 to cases 2, 3 and

4, the rank of the actual damage event decreases.
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Table 2.1: E�ect of noise level
Case Noise level Rank

1 0.5% 1
2 1.0% 5
3 5.0% 8
4 10.0% 10

Ldam=f2,6g, Ddam=f30%,10%g, Ns=3

Measured DOFs=f2,4g, Estimated Modes=f1,2g

2.3.2 E�ect of Measured DOFs

The e�ect of measured DOFs is examined by changing the number and locations of

the measured DOFs. Five cases are conducted by assuming Ldam = f2; 6g; Ddam =

f30%; 10%g; Ns = 5 and a 10% noise level for the estimated modal parameters.

Table 2.2 shows the results. When the modal vectors are obtained from the measure-

ments on all DOFs (case 1) or on alternative 
oors (case 2), the proposed method

correctly identi�es the damage locations even in the presence of a 10% noise. As the

number of measured DOFs decreases to two or one (cases 3, 4 and 5), the proposed

method fails to rank the actual damage event as the most likely one. In case 5 of

Table 2.2 (where only one DOF is measured), the proposed method uses only the

estimated frequency information. No information is provided from modal vectors

since the normalization of modal vectors requires the measurements of more than two

DOFs. If a larger number of modal data sets were available, the diagnosis result could

be improved. This is true even for the cases where only a limited number of locations

are measured, and the data have relatively high noise level. The e�ect of the number

of modal data sets is investigated in Section 2.3.6.

2.3.3 E�ect of Multiple Damage Locations

One salient feature of this work is that multiple damage locations in a structure can

be detected. As noted earlier, a branch-and-bound search scheme is employed to

facilitate the search of multiple damage locations. Figure 2.4 presents a typical result

of the branch-and-bound search. In this �gure, 10%, 20% and 30% damages are
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Table 2.2: E�ect of measured DOFs
Case DOFm Rank

1 all 1
2 1,3,5 1
3 3,5 15
4 2,4 14
5 3 13

Ldam=f2,6g, Ddam=f30%,10%g, Ns=5

Estimated Modes=f1,2g, Noise=10%

assumed in the �rst, the third and the �fth stories, respectively (Ldam=f1, 3, 5g and
Ddam = f10%; 20%; 30%g). The �rst two modes are estimated by the measurements
on the second and fourth stories (DOFm=[2, 4] and MODEm=[1, 2]). In addition, 10

modal data sets are simulated by assuming a 5% noise level (Ns=10 and Noise=5%).

Figure 2.4 shows that the proposed method �nds the actual damage locations

after searching 39 hypotheses out of the 64 possible hypotheses. The �rst story is

detected as damaged immediately in the �rst step of branching. Since the decrease

of the �rst story sti�ness has a signi�cant e�ect on all modal parameters, the �rst

story is easily detected as a damaged substructure. In the next step, the �fth story,

which has the largest damage amount, is detected. Finally, the third story is added

as one of the possible damage locations. The correct damage hypothesis is extended

one more step and bounded for further branching because the posterior probabilities

of the extended hypotheses are lower than that of the correct hypothesis.

The branch-and-bound search scheme shown in Figure 2.4 follows a depth-�rst/

best-�rst search strategy. After the �rst extension of H[0] to H[1], H[4], H[6], H[5], H[2]

and H[3], P (H[6]j	̂Ns) is assigned to P 3
max. Since the posterior probabilities of H[1],

H[4] and H[6] are larger or equal to the current P 3
max, only these three branches remain

for further extensions. Next, H[1] is extended since H[1] has the highest posterior

probability among H[1], H[4] and H[6] (best-�rst search). After this extension, P 3
max

is changed to P (H[1,4]j	̂Ns). Among the subtrees of H[1], only H[1,6], H[1,5] and

H[1,4] remain for further extensions. In the next step, since we employ a depth-

�rst search scheme, H[1,6] is �rst extended rather than H[4]. When we extend H[4]

to H[4,6], H[4,5], H[2,4] and H[3,4], all branches below H[1] are already extended.
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That is, at this stage, P 3
max has been changed to P (H[1,2,5,6]j	̂Ns) which is the

third largest posterior probability among the hypotheses examined so far. Since the

posterior probabilities of H[4,6], H[4,5], H[2,4] and H[3,4] are less than the current

P 3
max, further extensions are excluded.

In place of the largest posterior probability in Equation (2.27), the search scheme

shown in Figure 2.4 uses the third largest posterior probability among the hypotheses

examined so far as the pruning criterion. If the largest posterior probability were

used as the pruning criterion, the branching from hypothesis H(1) to H(1,5) would

have been excluded. For the detection of multiple damage locations, the pruning

heuristic in the branch-and-bound search scheme should be loosened to include a

larger subspace of the hypothesis space. Examining more hypotheses increases the

chance of capturing the actual damage event. In real situations, the proposed method

may not �nd all the damaged substructures, but, very likely it can �nd the damage

locations which have signi�cant e�ect on the modal parameters.

2.3.4 E�ect of Damage Amount

For all three cases in Table 2.3, we assume a 5% noise level, �ve sets of modal data,

and the estimation of the �rst and second modes with the measurement on the second

and fourth stories. The proposed method identi�es the actual damage event for case 1,

where 30% and 10% decreases in the sti�ness are simulated in the second and sixth

stories, respectively. As damage in the second and sixth stories respectively increases

to 60% and 20% (case 2), the rank of the actual damage event decreases. When more

severe damage is assumed for case 3 (L̂dam=f2,6g and D̂dam=f90%, 30%g), the rank
of the actual damage event becomes lower. In spite of the absolute increase of damage

in both the stories from case 1 to cases 2 and 3, the diagnosis result worsens. This

phenomenon can be explained as follows: Since, in the current example structure, the

second story sti�ness has more signi�cant e�ect on the modal parameters and larger

damage than the sixth story sti�ness, the second story becomes more detectable than

the sixth story (for all cases, the branch-and-bound search identi�es the second story

�rst). On the other hand, the sixth story becomes less detectable as the di�erence
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of damage between the second and sixth stories increases. This implies that, for the

detection of multiple damage locations, the proposed method depends on the relative

damage amount among the damaged substructures as well as the absolute damage

amount of each substructure. The cases shown in Table 2.3 use a value of 0.9 as the

Table 2.3: E�ect of damage amount

Damage Amount
Case 2nd story 6th story Rank

1 30% 10% 1
2 60% 20% 21
3 90% 30% 28

Measured DOFs=f2,4g, Ns=5

Estimated Modes=f1,2g, Noise=5%

damage threshold value �� for all substructures. That is, damaged substructures with

less than 10% sti�ness decrease may not be detected. If a higher damage threshold

value (> 0:9) and a smaller ��, which is an incremental value implemented to search

the non-dimensional parameter space �Hj
< ��

Hj
in Equation (2.7), are used, the

proposed method can identify smaller damage. For the cases shown in Table 2.4, we

Table 2.4: Detection of small damage

Case Ldam Ddam Noise Ns Rank

1 f3g f3%g 2% 20 1
2 f1,3g f5%,5%g 2% 100 1
3 f2,6g f5%,3%g 5% 100 1
4 f2,3g f5%,3%g 5% 50 1

Measured DOFs=f2,4g, Estimated Modes=f1,2g

set the damage threshold value �� to 0.99 and the incremental value �� to 0.01. Four

cases are conducted by changing the damage locations and amount. For all cases, less

than 10% sti�ness decrease is assumed. In spite of a small damage amount, all cases

converge to the actual damage event. The problem is that the smaller the incremental

value ��, the more the computation time is required. Also the measured data with

lower noise level is necessary for the detection of small damage.
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2.3.5 E�ect of Mode Selection

To study the e�ect of mode selection, the estimated modes are changed for each case.

For all cases, the damage amount of the second and sixth stories is assumed to be

30% and 10% respectively. Three modal data sets are collected and a 5% noise level

is assumed. Measurements are assumed to be made on the second and fourth stories.

Table 2.5: E�ect of mode selection
Case Estimated Modes Rank

1 all 1
2 1, 2 8
3 3, 4 1
4 5, 6 7

Ldam=f2,6g, Ddam=f30%,10%g, Ns=3

Measured DOFs=f2,4g, Noise=5%

Table 2.5 presents the diagnosis results obtained by using four di�erent mode

selection strategies. When all six modes are estimated in case 1, the proposed method

ranks the actual damage event as the most probable one. From the results of cases 2,

3 and 4, where two di�erent modes are estimated for each case, it appears that the

selection of the third and fourth modes yields better assessment than the other two

selection strategies for the detection of the assumed damage locations Ldam=f2, 6g.
What modes should be selected depends on the speci�ed damage locations. Un-

fortunately, for the damage detection of civil structures, selecting speci�c modes may

not be practical because (1) usually only a few fundamental modes can be estimated

from the vibration test of a structure, and (2) the contribution of a mode for the

damage detection depends on the actual damage locations which are unknown when

modes are selected. 2

2This issue motivates the use of load-dependent Ritz vectors for damage detection problems as
described in Chapter 3.
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2.3.6 E�ect of the Number of Modal Data Sets

Better damage assessment can be achieved by accumulating modal data sets from vi-

bration tests. To investigate the e�ect of the number of modal data sets Ns, four cases

are conducted by increasing Ns from 1 to 10. For all cases, Ldam = f2; 6g; Ddam =

f30%; 10%g and a 5% noise level are assumed. The �rst and second modes are esti-

mated by the measurements on the second and fourth stories. The diagnosis results

presented in Table 2.6 show that the proposed method identi�es the actual damage

locations when Ns � 5. For case 1, since the branch-and-bound search does not �nd

the actual damage event, the rank of the actual damage event is denoted as not found

in Table 2.6.

Table 2.6: E�ect of data set number
Case Ns Rank

1 1 not found
2 3 8
3 5 1
4 10 1

Ldam=f2,6g, Ddam=f30%,10%g, Noise=5%

Measured DOFs=f2,4g, Estimated Modes=f1,2g

Table 2.7 shows the results of the re-diagnosis of the previous cases, which failed

to rank the actual damage event as the most probable one, by increasing the number

of data sets. For the previous case 3 of Table 2.1, the rank of the actual damage event

changes from eighth to �rst after increasing the number of data sets Ns from 3 to 5.

Table 2.7 also shows the other cases in which the actual damage locations are properly

detected after increasing Ns. However, for the previous case 5 of Table 2.2, where

only one DOF is measured, the proposed method fails to identify the actual damage

locations even after increasing Ns to 20. This illustrates that su�cient measured

DOFs and number of data sets are required for damage detection.
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Table 2.7: Improvement of diagnosis results by increasing data set number

Case Ddam Noise MODEm DOFm Ns Rank

case 2 of table 2.1 f30%,10%g 1% f1,2g f2,4g 3!5 5!1
case 3 of table 2.1 f30%,10%g 5% f1,2g f2,4g 3!5 8!1
case 4 of table 2.1 f30%,10%g 10% f1,2g f2,4g 3!20 10!1
case 2 of table 2.3 f60%,20%g 5% f1,2g f2,4g 5!10 21!1
case 3 of table 2.3 f90%,30%g 5% f1,2g f2,4g 5!10 28!1
case 4 of table 2.5 f30%,10%g 5% f5,6g f2,4g 3!20 7!1
case 3 of table 2.2 f30%,10%g 10% f1,2g f3,5g 5!20 15!1
case 4 of table 2.2 f30%,10%g 10% f1,2g f2,4g 5!20 14!1
case 5 of table 2.2 f30%,10%g 10% f1,2g f3g 5!20 13!9
For all cases, Ldam=f2, 6g

2.4 Summary and Discussions

In this chapter, a Bayesian probabilistic approach has been formulated to detect

the most likely locations and amount of damage in a structure using the estimated

modal parameters. The system sti�ness matrix is represented as an assembly of the

substructure sti�ness matrices and a non-dimensional parameter �i is introduced to

model the sti�ness contribution of the ith substructure. The mass matrix is assumed

to be known and invariant. Assuming a uniform probability density function for

the non-dimensional parameter �i (0 � �i � 1), we formulate the relative posterior

probability of an assumed damage event and apply a branch-and-bound search scheme

to identify the most likely damage event. The measurement noise and modeling error

between the structure and the analytical model are explicitly considered within the

Bayesian probabilistic framework.

A shear frame structure is employed to assess the potential applicability of the

proposed method. As long as su�cient modal data sets are available, the proposed

method is able to identify the actual damage locations and amount in most cases

when (1) low noise levels are achieved in the estimated modal parameters, (2) a small

number of degrees of freedom are measured, and (3) only several fundamental modes

are estimated. The computational cost of the method is also signi�cantly reduced by

using a branch-and-bound search scheme.
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Chapter 3

Load-Dependent Ritz Vectors for

Damage Detection

In this chapter, the Bayesian-based damage detection framework is extended to in-

corporate load-dependent Ritz vectors as a possible alternative to modal parameters.

Recent research has shown that it is possible to extract Ritz vectors from vibra-

tion tests [28]. The �rst Ritz vector is the static deformation of a structure due

to a particular load applied to the structure. The subsequent vectors account for

the inertial e�ects of the loading and are generated by iterative matrix multiplica-

tion and orthogonalization. Ritz vectors (or Lanczos vectors) have been shown very

e�ective for eigenvalue problems, dynamic and earthquake analyses, and model re-

ductions [150,94,111]. However, very few studies have applied Ritz vectors to damage

detection or system identi�cation problems [27,91].

The incorporation of Ritz vectors for damage detection problems is motivated by

the following potential advantages of Ritz vectors over modal vectors: (1) Ritz vectors

can be made more sensitive to damage than the corresponding modal vectors, (2) sub-

structures of interest can be made more observable using the Ritz vectors generated

from particular load patterns, (3) the computation of Ritz vectors is less expensive

than that of modal vectors (eigenvectors) and (4) while the practical di�culties of

modal testing impede the extraction of a large number of meaningful modes, mul-

tiple sets of Ritz vectors can be extracted by imposing di�erent load patterns on a
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structure.

This chapter is organized as follows: First, the basic formulation to incorporate the

Ritz vectors into the Bayesian framework is described in Section 3.1. In Section 3.2, a

weighting scheme is introduced into the Bayesian framework to measure the relative

signi�cance of Ritz or modal vectors to damage [44]. Sensitivity analysis of modal

vectors [127,88,17,39,64,52] reveals that only members (or substructures) which cause

signi�cant changes in the estimated modal parameters can be detected and the iden-

ti�cation of higher modes is necessary for damage detection of complex structures.

Similarly, we measure the relative signi�cance of Ritz vectors to the assumed damage

locations for the computation of the posterior probability. The sensitivity analysis of

the modal parameters and Ritz vectors are described in Sections 3.3 and 3.4, respec-

tively. Finally, in Section 3.5, the potential applicability of Ritz vectors to damage

detection of structures is demonstrated using a three-dimensional truss structure.

3.1 Basic Formulation

In this section, the Bayesian framework presented in Chapter 2 is extended to in-

corporate load-dependent Ritz vectors as a possible alternative to modal parameters.

Again, test data sets are assumed to be collected from repeated vibration tests. When

vibration tests are repeated Ns times, the total collection of Ns data sets is denoted

as:

	̂Ns =
�
 ̂(n) : n = 1; :::; Ns

	
(3.1)

A data set  ̂(n) in Equation (3.1) is composed of Ritz vectors estimated from the nth

vibration test:

 ̂(n) =
�
r̂nT1 ; :::; r̂nTNr

�T 2 RNt (3.2)

where r̂ni denotes the ith estimated Ritz vector in the nth data set. The Ritz vector

r̂ni (2 RNd) has components corresponding to the instrumented DOFs. The vari-

ables Nt; Nd and Nr represent the total number of components in a data set  ̂(n),
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the number of the measured DOFs and the number of the estimated Ritz vectors,

respectively.

Given �Hj
, an analytical data set  (�Hj

) is de�ned similar to Equation (3.2):

 (�Hj
) =

�
rT1 (�Hj

); :::; rTNr
(�Hj

)
�T 2 RNt (3.3)

It should be noted that a Ritz vector ri(�Hj
) in Equation (3.3) has only the compo-

nents associated with the measured DOFs. The rest of derivation is identical to the

discussion in Section 2.1. The most probable hypothesis Hmax has the identical form

given in Equation (2.25) as:

J(	̂Ns ;�
max
Hmax

)� lnP (Hmax) = min
8Hj

�
J(	̂Ns;�

max
Hj

)� lnP (Hj)
�

(3.4)

where the error function J(	̂Ns ;�Hj
) is:

J(	̂Ns ;�Hj
) = (3.5)

1

2

NsX
n=1

[ ̂(n)�  (�Hj
)� eM(�Ho)]

TC�1

	̂
[ ̂(n)�  (�Hj

)� eM(�Ho)]

and

eM(�Hj
) �= eM(�Ho) =  ̂hm �  (�Ho) ; 8�Hj

(3.6)

The incorporation of Ritz vectors to the Bayesian framework is completed by

simply replacing the modal parameters with the Ritz vectors. Therefore, the branch-

and-bound search scheme in Section 2.2 can be also applied without any modi�cation.

3.2 A Weighting Scheme Based on Sensitivity

Previous works have suggested the importance in selecting the appropriate modes

which are sensitive to the critical members [44,88] for damage detection. However,

the ignorance of the actual damage locations hinders the selection process. Since the
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posterior probabilities of the assumed damage events are of interest in the Bayesian

approach, the Ritz vectors, which are more sensitive to the sti�ness changes of sub-

structures in each assumed damage event, can be weighted for each case. In other

words, the Ritz vectors, which are sensitive not to the unknown actual damage but

to the assumed damage, can be weighted for the computation of the error function.

In this section, a weighting scheme is introduced into the Bayesian framework to

measure the relative signi�cance of Ritz or modal vectors to damage.

Realizing thatC�1

	̂
in Equation (2.22) is one form of a weighting matrix, we modify

the error function J(	̂Ns;�Hj
) such that each term of the error function is weighted

to take into account the sensitivities of Ritz vectors to the assumed damage as well

as the measurement uncertainties:

J(	̂Ns ;�Hj
) = (3.7)

1

2

NsX
n=1

�
 ̂(n)�  (�Hj

)� eM (�Ho)
�T
Wr

�
 ̂(n)�  (�Hj

)� eM(�Ho)
�

where a diagonal weighting matrix Wr replaces the inverse of the covariance matrix

C�1

	̂
in Equation (3.5). Wr is a diagonal matrix given as:

Wr = diag
�
Wr11 Wr12 ::: Wr1Nd

;Wr21 ; :::;Wr2Nd
; :::;WrNrNd

�
(3.8)

where rpk denotes the kth component of the pth analytical Ritz vector and each

diagonal entry Wrpk is de�ned as follows:

Wrpk(�Hj
) =

wrpk(�Hj
)

�2r̂pk
(3.9)

wrpk(�Hj
) weights the corresponding error term in Equation (3.7) considering the

sensitivity of rpk to the assumed damage. �r̂pk is the standard deviation of the kth

component of the pth estimated Ritz vector and considers the measurement noise.

The de�nition of wrpk �rst requires the computation of the Ritz vector derivative,
@rpk
@�i

. A closed form solution of
@rpk
@�i

is derived in Section 3.4.2. It should be noted that

�Hj
contains all the information regarding the current damage state. The damaged
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substructures are the ones included in Hj as damaged and the damage amount of

the ith substructure, ��i, is 1 � �i. Since it is di�cult to �nd the sensitivities of

the Ritz vectors for multiple damage locations, we de�ne the sensitivity of rpk with

respect to the current damage state as the rate of �rpk (the change of rpk from the

undamaged state) to the average change of �i (2 �1
Hj
). For simplicity, rpk is assumed

to change linearly with the change of �i. Thus, �rpk at the current damage state can

be approximated as:

�rpk �=
X

�i2�1

Hj

@rpk
@�i

��i (3.10)

The sensitivity of rpk at the current damage state, S(rpkj�Hj
), is de�ned as:

S(rpkj�Hj
) =

�rpk
���

�=
X

�i2�1

Hj

@rpk
@�i

��i
���

=
X

�i2�1

Hj

@rpk
@�i

�i (3.11)

where ��� = 1
N
�1

P
�i2�1

Hj

��i, �i =
��i
���

and N�1 is the number of damaged substruc-

tures in a hypothesis Hj. The sensitivity of a Ritz vector is de�ned as:

S(rpj�Hj
) =

[
PN

k=1 S
2(rpkj�Hj

) ]
1

2

[
PN

k=1 r
2
pk(�Hj

) ]
1

2

(3.12)

where N is the total number of DOFs in the analytical model. Finally, the weighting

wrpk(�Hj
) is related to S(rpj�Hj

) as:

wrpk(�Hj
) =

S(rpj�Hj
)PNr

i=1 S(rij�Hj
)
for all k (3.13)

As mentioned earlier, the weighting scheme described in this section can also be

applied for modal parameters. In this case, the diagonal weighting matrix in Equa-

tion (3.7) is computed based on the derivatives of the natural frequencies and modal

vectors, which are derived in the next section.
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3.3 Sensitivity of Modal Parameters

The partial derivatives of modal parameters are de�ned as sensitivity coe�cients.

Statistical-based system identi�cation methods [29,39,59,127,146] generally involve

the minimization of the errors employing the generalized least squares methods to

update/modify a structural model using modal test data. The covariance matrix

required by the generalized least squares is based on the sensitivity of modal param-

eters. Di�erent formulations of the sensitivity are employed in these statistical-based

methods [107,65,40,52]. The method described in Reference 40 requires a full modal

matrix and is computationally expensive for a large system. When the derivative of

one modal vector is computed, the method described in Reference 52 requires only the

knowledge of the corresponding eigenvalue and modal vector. However, the second

method requires the solution of a set of simultaneous equations equal to the size of the

mass and sti�ness matrices. In this study, the procedure described in References 107

and 65 is employed because of its simplicity.

Once the mass and sti�ness matrices of the structure are formulated, the eigen-

values and eigenvectors of a N degree-of-freedom system are obtained by solving the

following eigenvalue problem:

Kvr � !2
rMvr = 0 for r = 1; :::; N (3.14)

We start by taking the derivative of Equation (3.14) with respect to the non-dimensional

damage parameter �i:

@K

@�i
vr +K

@vr
@�i

=
@!2

r

@�i
Mvr + !2

rM
@vr
@�i

(3.15)

Then, pre-multiplying Equation (3.15) by vTs gives:

vTs
@K

@�i
vr + vTsK

@vr
@�i

=
@!2

r

@�i
vTsMvr + !2

r v
T
sM

@vr
@�i

= 0

;

@!2
r

@�i
vTsMvr = vTs

@K

@�i
vr + (!2

s � !2
r)v

T
sM

@vr
@�i

(3.16)
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where, the transpose of Equation (3.14), vTsK = !2
sv

T
sM, is used to obtain the second

equality from the �rst one (i.e. K and M are assumed to be symmetric).

Equation (3.16) can be divided into the following two cases.

@!2
r

@�i
=

�
1

vTrMvr

�
vTr
@K

@�i
vr for s = r; (3.17)

and

vTs
@K

@�i
vr + (!2

s � !2
r)v

T
sM

@vr
@�i

= 0 for s 6= r (3.18)

Now @!r
@�i

is computed from Equation (3.17) such that:

@!r
@�i

=

�
1

2!r

��
1

vTrMvr

��
vTr
@K

@�i
vr

�
(3.19)

where @K
@�i

is computed by di�erentiating Equation (2.1) with respect to �i and is

equal to the ith substructure sti�ness Ksi. Note that the rth frequency derivative

only requires the rth modal vector. However, the derivative of the rth modal vector

requires the knowledge of other modal vectors. Assume that @vr
@�i

can be expressed in

a series of eigenvectors [107]:

@vr
@�i

=
NX
j=1

Crijvj (3.20)

Substituting Equation (3.20) into Equation (3.18), we obtain the following equations:

vTs
@K

@�i
vr + (!2

s � !2
r)v

T
sM

 
NX
j=1

Crijvj

!
= 0

vTs
@K

@�i
vr + (!2

s � !2
r)v

T
sMvsCris = 0

; Cris =

�
1

!2
r � !2

s

��
1

vTsMvs

��
vTs
@K

@�i
vr

�
where s 6= r (3.21)
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Substituting Equation (3.21) into Equation (3.20), we have

@vr
@�i

=
NX
j=1

�
1

!2
r � !2

j

��
1

vTjMvj

��
vTj
@K

@�i
vr

�
vj(1� �rj) (3.22)

where

�rj =

(
1 if r = j

0 if r 6= j
(3.23)

It has been shown that only a small number of terms are necessary in the summation

of Equation (3.22) to obtain a reasonable accuracy [66].

3.4 Generation and Sensitivity of Ritz Vectors

3.4.1 Analytical Generation of Ritz Vectors

This subsection introduces a generation procedure of Ritz vectors [94,28]. Assume

that the dynamic loading F(t) can be separated into a spatial vector f and a time

function u(t):

F(t) = f u(t) (3.24)

Then, the �rst Ritz vector is a static deformation caused by the spatial distribution

of the dynamic load vector f :

K�r1 = f : solve for �r1 (= ~r1) (3.25)

the �rst Ritz vector is then mass-normalized as:

r1 =
~r1

[~rT1M~r1]
1

2

(3.26)
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The following Ritz vectors are recursively generated. Assuming the mass matrix times

the previous Ritz vector Mrp�1 as a load, the recurrence relationship computes the

next Ritz vector �rp:

K�rp =Mrp�1 : solve for �rp (3.27)

The linear independence of Ritz vectors is achieved using the Gram-Schmidt orthog-

onalization. That is, the current Ritz vector is mass-orthogonalized with respect to

all the previous Ritz vectors:

~rp = �rp �
p�1X
q=1

(rTqM�rp)rq (3.28)

Finally, the current Ritz vector is mass-normalized:

rp =
~rp

[~rTpM~rp]
1

2

(3.29)

3.4.2 Sensitivity of Ritz Vectors

A procedure to compute the sensitivity of the pth Ritz vector with respect to the

ith substructure sti�ness @rp
@�i

is now presented. The sensitivity of a Ritz vector is

also formulated as a recurrence relationship. To compute the sensitivity of Ritz

vectors, each Ritz vector is di�erentiated with respect to the non-dimensional damage

parameter �i. Taking the derivative on both sides of Equation (3.25) with respect to

�i yields:

@�r1
@�i

= �K�1@K

@�i
�r1 (3.30)

where @K
@�i

is computed by di�erentiating Equation (2.1) with respect to �i and is

equal to the ith substructure sti�ness Ksi. Equation (3.26) is di�erentiated in a
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similar manner to produce the sensitivity of the �rst Ritz vector:

@r1
@�i

=
1

[~rT1M~r1]
1

2

@~r1
@�i

� [~rT1M
@~r1
@�i

]

[~rT1M~r1]
r1 (3.31)

where, @~r1
@�i

is computed in Equation (3.30).

The sensitivities of the additional Ritz vectors (rp : p6= 1) are computed in a

similar manner by di�erentiating Equations (3.27), (3.28) and (3.29) with respect to

�i:

@�rp
@�i

= K�1

�
�@K
@�i

�rp +M
@rp�1
@�i

�
(3.32)

@~rp
@�i

=
@�rp
@�i

�
p�1X
q=1

" 
@rTq
@�i

M�rp + rTqM
@�rp
@�i

!
rq +

�
rTqM�rp

� @rq
@�i

#
(3.33)

@rp
@�i

=
1

[~rTpM~rp]
1

2

@~rp
@�i

� [~rTpM
@�rp
@�i

]

[~rTpM~rp]
rp (3.34)

The derived sensitivity reveals how the sensitivity of a Ritz vector is related to that

of the previous Ritz vectors. The validity of the derived sensitivities of Ritz vectors

is demonstrated in Section 3.5.1.

3.5 Application to an Eight-Bay Truss Structure

This section demonstrates the potential applicability of Ritz vectors to damage de-

tection of structures and the better sensitivity of Ritz vectors over modal vectors.

The example structure is an eight-bay truss structure from the NASA dynamic scale

model technology (DSMT) program of Langley Research Center [87]. As shown in

Figure 3.1, the structure is �xed at one end. The structure is modeled using 104 truss

elements, and consists of 36 nodes and 96 DOFs. Five truss members at the �xed
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end are not included in the model. Furthermore, each truss member is assigned as a

substructure. The numbering of substructures are shown in Figure 3.2.
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Figure 3.1: An eight-bay truss structure

Table 3.1 classi�es the truss members into four di�erent lacing patterns: longeron,

batten, face diagonal and side diagonal. The truss members which belong to each

lacing pattern are shown in Figure 3.3. A detailed description of the example structure

can be found in Reference 87. This section is organized as follows: First, sensitivity

analysis of Ritz vectors is conducted and the sensitivities of Ritz vectors are compared

to those of modal vectors. Second, the damage detection of the eight-bay truss

structure is conducted by changing damage locations and load patterns. Furthermore,

the damage detection using Ritz vectors is compared to the damage detection using

modal parameters.

Table 3.1: Classi�cation of truss members into four lacing patterns

Longeron Batten Face Diag Side Diag
Bay # X Y Top Bottom Right Left

1 3,4,5,7 1,2 49,50 65 74 76 73 75
2 9,10,11,13 6,8 51,52 66 77 80 79 78
3 15,16,17,19 12,14 53,54 67 81 84 82 83
4 21,22,23,25 18,20 55,56 68 85 88 87 86
5 27,28,29,31 24,26 57,58 69 89 92 90 91
6 33,34,35,37 30,32 59,60 70 93 96 95 94
7 39,40,41,43 36,38 61,62 71 97 100 98 99
8 45,46,47,48 42,44 63,64 72 103 102 101 104
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Figure 3.2: Substructures of an eight-bay truss structure

44



Chapter 3 Load-Dependent Ritz Vectors for Damage Detection

�
�
�
�
��
��
��
����

��
��
��

Z
X

Y

Side diagonal

Longeron X-batten

Y-battenFace diagonal

Figure 3.3: Lacing patterns of an eight-bay truss structure

3.5.1 Sensitivity Comparison of Ritz & Modal Vectors

In this subsection, a sensitivity analysis of Ritz vectors for the truss structure shown

in Figure 3.1 is conducted. First, the validity of the Ritz vector sensitivity derived

in Section 3.4 is evaluated. Then, the sensitivities of Ritz vectors are compared

with those of modal vectors. In the sensitivity analysis, load pattern 1 shown in

Figure 3.4 (a) is employed for the generation of Ritz vectors.
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Figure 3.4: Load patterns applied to an eight-bay truss structure

The derived sensitivity is validated by comparing the analytical changes of Ritz

vectors, which are computed using the derived sensitivity, with the actual changes of

Ritz vectors. Figures 3.5 and 3.6 present selected results for comparison. In these

�gures, rhj and r
d
j represent the jth Ritz vector before and after the sti�ness changes,

respectively. Imposing load pattern 1 on the healthy structure, the �rst �ve successive

Ritz vectors are generated from the procedures described in Equations (3.25)� (3.29).

After decreasing the sti�ness of each member by 1%, the actual changes of the Ritz

vectors from the healthy state are computed to arrive at rhj � rdj . The corresponding

analytical changes of the Ritz vectors are computed as (
@rj
@�i

)��i. Here (
@rj
@�i

) is the

derived sensitivity from Equations (3.31) � (3.34) and ��i is set to 0.01. As shown in
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Figures 3.5 and 3.6, the analytical changes of the Ritz vectors are in good agreement

with the actual changes of the Ritz vectors.
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Figure 3.5: Change of the fourth Ritz vector caused by 1% decrease of the 94th member sti�ness
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Figure 3.6: Change of the �fth Ritz vector caused by 1% decrease of the 35th member sti�ness

Next, the sensitivities of Ritz vectors are compared to the sensitivities of modal

vectors. The comparison of the �rst �ve Ritz and modal vectors as shown in Fig-

ure 3.7 reveals that the Ritz vectors, particularly the higher Ritz vectors, produce

more complicated deformed shapes. This implies intuitively that Ritz vectors might

be more sensitive to the sti�ness changes of substructures. This observation can be

justi�ed by a detailed sensitivity analysis. The sensitivity analysis is conducted by
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comparing the changes of the Ritz and modal vectors as the sti�ness of each substruc-

ture (member) deteriorates. Selected results from the comparisons are presented in

Figures 3.8, 3.9 and 3.10. Figure 3.8 (a) shows how the �rst �ve Ritz vectors change

as the sti�ness loss of the 33rd member (a longeron in bay six) varies from 0% to

100%. For a simple graphical representation, the ratio of krhr�rdrk to krhrk is computed
to indicate the change of a Ritz vector as damage progresses in the 33th member.

Here, k � k denotes the Euclidean norm and rh and rd denote the Ritz vectors before

and after damage occurs, respectively. Figure 3.8 (b) shows similar quantities for the

�rst �ve modal vectors, where vh and vd present the modal vectors before and after

sti�ness changes, respectively. The shaded portion of the plot indicates that if each

component of a modal vector has a 5% uncertainty, no measurable change in any

modal vector are apparent unless the sti�ness loss exceeds 75%. On the other hand,

10% change of sti�ness results in perceivable changes in the second and third Ritz

vectors in the presence of a 5% uncertainty.

As a second example, Figure 3.9 presents the sensitivity comparison for the sti�-

ness change of the 94th member (a side diagonal in bay six). While the fourth and

�fth Ritz vectors are very sensitive to the sti�ness change of the 94th member, the

change of modal vectors is not apparent until the sti�ness loss reaches about 40%.

Figure 3.10 shows that the sti�ness change of the face diagonal member 71 does not

change the �rst �ve modal vectors at all and causes very little change in the Ritz vec-

tors. Similar insensitivity is observed for all face diagonal members. This insensitivity

of face diagonal members to Ritz/modal vectors is largely due to the redundancy of

the example truss structure.

Based on the sensitivity analysis conducted here, several observations can be made:

(1) In many cases, sti�ness changes in the model lead to larger changes in the Ritz

vectors than in the modal vectors, (2) face diagonals do not cause signi�cant changes

to either the Ritz or modal vectors, and (3) in many cases, Ritz and modal vectors

are more sensitive to the sti�ness losses of side diagonals and longerons than those of

battens. The sensitivity analysis presented here allows one to determine detectable

damage amount for each substructure before the actual damage detection. Detectable

damage should cause signi�cant changes of Ritz vectors greater than what can be
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First Ritz Vector First Modal Vector

Second Ritz Vector Second Modal Vector

Third Ritz Vector Third Modal Vector

Fourth Ritz Vector Fourth Modal Vector

Fifth Ritz Vector Fifth Modal Vector

Figure 3.7: Comparison of Ritz vectors and modal vectors of an eight-bay truss structure
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Figure 3.8: Sensitivity comparison of Ritz and modal vectors for progressive damage in Member 33
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Figure 3.9: Sensitivity comparison of Ritz and modal vectors for progressive damage in Member 94
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Figure 3.10: Sensitivity comparison of Ritz and modal vectors for progressive damage in Member 71
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attributed to measurement uncertainties, modeling error or environmental e�ects.

3.5.2 Comparison of Ritz & Modal Vectors for Damage Di-

agnosis

This subsection presents the diagnostic results of an eight-bay truss structure con-

ducted under di�erent damage scenarios. For all examples, a uniform prior proba-

bility is assigned to all hypotheses. Therefore, the determination of the most proba-

ble hypothesis in Equation (2.25) depends only on the error function J(	̂Ns ;�
max
Hj

).

The search space �Hj
< 
�

Hj
in Equation (2.7) is evaluated at the intersection of

grid lines which discretize the search domain with an increment of ��. For all nu-

merical examples, we use an incremental step �� = 0.1. The branch-and-bound

search in the presented examples follows a depth-�rst/best-�rst search strategy. In-

stead of the largest posterior probability Pmax, the third largest posterior probability

P 3
max (< P 2

max < P 1
max = Pmax) is employed in Equation (2.27) for the branch-and-

bound search to investigate a larger subspace of the hypothesis space. Furthermore,

the extension of the branch-and-bound search is limited such that a maximum of

three substructures can be examined.

Each Ritz vector is normalized with respect to a reference point. The DOF which

has the absolute maximum magnitude in each Ritz vector of the healthy structure, is

assigned as a reference point. All the other DOFs are normalized with respect to this

reference point. Since one component is used for normalization, only Nr � 1 pieces

of information exist for each Ritz vector. To simulate measurement uncertainties in

the estimated Ritz vectors, the exact Ritz vectors obtained from Equations (3.25) to

(3.29) are perturbed with noise. More explicitly, the estimated Ritz vector set  ̂(n)

in Equation (2.3) is constructed such that:

 ̂(n) =  (1 +
N
100

R) (3.35)

where  is the exact Ritz vector set obtained from the analytical model, N is a

speci�ed percentage of noise level, and R is a normally distributed random number
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with zero mean and a variance of 1.0. This process is repeated Ns times to simulate

the Ns data sets.

Excitation is assumed to be a swept sine excitation generated from electrodynam-

ics or hydraulic shakers [45]. All actuators are assumed to generate forces with the

same magnitude and phase. According to Equation (3.24), the spatial distribution of

forces is de�ned by a vector f and an identical input excitation is given to all actuators

by a scalar function u(t). The spatial vector f is assumed not to vary with time. Load

patterns are selected to maximize the sensitivities of the �rst �ve Ritz vectors over all

substructures. However, a systematic scheme for the selection of load patterns is not

provided in this study. For all examples, Ldam and Ddam denote the actual damage

locations and the associated damage amount, respectively. L̂dam and D̂dam denote the

most probable damage locations and the associated damage amount estimated by the

proposed method. In addition, the measured DOFs and the estimated modes are de-

noted by DOFm and MODEm, respectively. First, twelve damage cases with a single

damage location are investigated using a uniform damage threshold for every sub-

structure. Then, fourteen damage cases, including the previous twelve damage cases,

are re-diagnosed using di�erent damage threshold values for substructures. Finally,

six damage cases with either two or three damaged substructures are examined.

Diagnosis Using Uniform Damage Thresholds

Twelve di�erent damage cases are investigated employing Ritz vectors and the pro-

posed weighting scheme. For the purpose of comparison, the same damage cases are

re-diagnosed using Ritz vectors but without the weighting scheme. Furthermore, the

diagnosis results using modal vectors are presented. Sensitivity analysis which is sim-

ilar to Figures 3.8, 3.9 and 3.10, are conducted for load patterns 1 and 2 to compute a

minimum detectable damage. The minimum detectable damage of each substructure

is de�ned as the minimum damage amount for which the estimated Ritz vectors from

a given load pattern can detect when each component of a Ritz vector is contaminated

by a certain level of noise. The minimum detectable damage of each substructure is

presented in Table 3.2 assuming that, because of noise, each component of a Ritz

vector is perturbed by 5% of its magnitude.
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Table 3.2: Minimum detectable damage amount of each substructure for a given load pattern
Bay # Sub. # Load Pattern Modal Sub. # Load Pattern Modal

(1) (2) (3) Vector (1) (2) (3) Vector

1 3 50% 10% 90% 80% 5 70% - 40% 100%

4 50% 20% 70% 80% 7 70% - 90% 100%

2 9 10% 20% 60% 60% 11 40% 10% 90% 80%

10 10% 20% 60% 60% 13 40% 20% 70% 80%

3 15 30% 10% 40% 50% 17 10% 20% 60% 60%

16 30% 10% 30% 50% 19 10% 20% 50% 60%

4 21 10% 10% 20% 60% 23 20% 10% 40% 50%

22 20% 10% 20% 60% 25 20% 10% 30% 50%

L
o
n
g
er
o
n

5 27 10% 10% 10% 60% 29 10% 10% 20% 50%

28 10% 10% 10% 50% 31 20% 10% 20% 50%

6 33 10% 10% 10% 80% 35 10% 10% 10% 50%

34 10% 10% 10% 80% 37 10% 10% 10% 50%

7 39 10% 10% 10% 80% 41 10% 10% 10% 80%

40 10% 10% 10% 70% 43 10% 10% 10% 80%

8 45 10% 10% 10% 70% 47 10% 10% 10% 60%

46 10% 10% 10% 70% 48 10% 10% 10% 60%

1 1 40% 20% 90% 100% 49 40% 10% 90% 100%

2 10% 10% 80% 100% 50 40% 10% 60% 100%

2 6 30% 60% - - 51 40% 50% 90% -

8 40% 60% - - 52 60% 50% - -

3 12 30% 100% 100% - 53 80% 90% 100% -

14 30% 100% 100% - 54 70% 90% 90% -

4 18 30% 70% 100% - 55 70% 60% - -

20 40% 70% 100% - 56 60% 70% 100% -

B
a
tt
en

5 24 50% 30% - - 57 10% 20% 100% -

26 40% 30% - - 58 40% 30% 100% -

6 30 50% 80% 10% 100% 59 60% 70% - 100%

32 60% 80% 90% 100% 60 60% 70% 10% 100%

7 36 70% 80% 10% - 61 80% 90% 10% -

38 70% 80% 90% - 62 80% 90% 10% -

8 42 90% 100% 70% - 63 90% 90% 80% -

44 90% 100% 60% - 64 90% 90% 70% -

1 73 10% 10% 40% 70% 75 10% 10% 90% 70%

74 10% 10% 80% 70% 76 10% 10% 70% 70%

2 77 10% 10% 80% 60% 79 10% 10% 60% 60%

78 10% 10% 70% 60% 80 10% 10% 70% 60%

3 81 10% 10% 70% 60% 83 10% 10% 70% 60%

82 10% 10% 70% 60% 84 10% 10% 60% 60%

4 85 10% 10% 70% 60% 87 10% 10% 70% 60%

86 10% 10% 60% 60% 88 10% 10% 60% 60%

5 89 10% 10% 60% 60% 91 10% 10% 60% 60%

90 10% 10% 60% 60% 92 10% 10% 60% 60%

S
id
e
D
ia
g
o
n
a
l

6 93 10% 10% 50% 40% 95 10% 10% 50% 40%

94 10% 10% 60% 40% 96 10% 10% 50% 40%

7 97 10% 10% 40% 20% 99 10% 10% 50% 20%

98 10% 10% 40% 20% 100 10% 10% 40% 20%

8 101 10% 10% 30% 20% 103 10% 10% 40% 20%

102 10% 10% 20% 20% 104 10% 10% 30% 20%

1,2 65 80% 20% 30% - 66 - 90% 30% -

3,4 67 - - 30% - 68 - 100% 30% -

5,6 69 80% 30% 30% - 70 - 100% 30% -

F
a
ce
D
ia
g

7,8 71 - - 30% - 72 - - 40% -

\-" denotes that damage is undetectable.
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Table 3.2 shows that a sti�ness loss larger than 10% is detectable from load pat-

terns 1 and 2 for most side diagonals and longerons. Battens undergo a 10%�100%
loss of sti�ness before the changes of Ritz vectors become observable. However, the

sti�ness changes of most face diagonals are undetectable from both load patterns.

Based on this preliminary sensitivity analysis, the detection of 10% sti�ness loss

in most face diagonals and battens seems di�cult from the assumed load patterns.

Therefore, the face diagonals and battens are precluded from the branch-and-bound

search in the examples presented here.1 That is, only longerons and side diagonals are

investigated for potential damage. For comparison, the minimum detectable damage

amount from modal vectors is also presented in Table 3.2. Again, the better sensi-

tivity of Ritz vectors is clearly shown in Table 3.2. For load pattern 3, 16 actuators

are assumed to be placed at both ends of all face diagonals to produce tensile forces

in the face diagonals. This load pattern is presented here just to show that this load

pattern can make the face diagonals more detectable (larger than 30% sti�ness loss

is detectable from the Ritz vectors generated from load pattern 3). However, since

this loading is not realistic, only the �rst two load patterns are employed for damage

detection.

Twelve damage cases with a single damaged substructure are simulated by as-

suming a 10% sti�ness loss, a 5% noise level and one data set (Ns=1). The damaged

substructures used in the examples are shown in Figure 3.1 by solid lines. Further-

more, all DOFs are assumed to be measured and a value of 0.9 is used for the damage

threshold �� of each substructure. The damage locations are identical to some of the

damage cases which are experimentally tested in Reference 87. It should be noted

that while the damage cases in Reference 87 refer to the total removal of a truss

member, only a 10% sti�ness loss is considered in this study. Table 3.3 shows the

diagnosis results of the twelve damage cases using load pattern 2. For all damage

cases, the most probable damage event computed by the proposed method includes

the actually damaged substructure. In some cases, however, undamaged substruc-

tures are also included in the most probable damage event. For example, the 7th

1The pruning heuristics of the branch-and-bound search scheme are presented in Section 2.2.
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Table 3.3: Damage diagnoses of an eight-bay truss structure using a uniform threshold

Actual Damage Most Probable Damage

Case1 Ldam Ddam Rank2 L̂dam D̂dam

A f46g f10%g 3/313 f7,46g f80%,10%g
B f102g f10%g 1/251 f102g f10%g
C f39g f10%g 3/313 f7,39g f80%,10%g
D f97g f10%g 3/313 f5,97g f80%,10%g
G f33g f10%g 2/313 f5,33g f30%,10%g
H f35g f10%g 3/313 f5,35g f80%,10%g
I f94g f10%g 3/313 f5,94g f70%,10%g
J f28g f10%g 3/313 f5,28g f80%,10%g
K f87g f10%g 1/251 f87g f10%g
L f22g f10%g 3/313 f5,22g f80%,10%g
M f17g f10%g 3/313 f5,17g f70%,10%g
N f3g f10%g 3/313 f3,5g f10%,70%g
1. Damage locations are de�ned identical to ones presented in Reference 87.
2. The �rst number is the rank of the actual damage event and the second is the total

number of the examined hypotheses.
3. The �rst �ve Ritz vectors are estimated from load pattern 2.
4. Ns=1, Noise=5%, and all DOFs are measured.
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substructure is included as a potentially damaged substructure in case A. Table 3.2

shows that the Ritz vectors employed in this diagnosis set (the Ritz vectors generated

from load pattern 2) are insensitive to the sti�ness changes of the 7th substructure.

Therefore, a small sti�ness change of the 7th substructure may not result in a notice-

able change of the error function value in Equation (2.22) or actually can reduce the

error function value when Ritz vectors are noise contaminated. For similar reasons,

the 5th substructure is also included in the most probable damage event for other

damage cases.

Table 3.4: Comparison of diagnosis results using Ritz or modal vectors

Actual Damage Rank4

Case Ldam Ddam Scheme 11 Scheme 22 Scheme 33

A f46g f10%g 3/313 3/313 350/434
B f102g f10%g 1/251 4/374 30/434
C f39g f10%g 3/313 6/313 350/434
D f97g f10%g 3/313 3/313 55/434
G f33g f10%g 2/313 3/313 372/434
H f35g f10%g 3/313 3/313 219/434
I f94g f10%g 3/313 3/313 356/434
J f28g f10%g 3/313 7/374 382/434
K f87g f10%g 1/251 3/313 405/434
L f22g f10%g 3/313 4/374 320/434
M f17g f10%g 3/313 3/252 428/494
N f3g f10%g 3/313 3/313 213/494

1. The �rst �ve Ritz vectors are estimated from load pattern 2 and the proposed
weighting scheme is employed.

2. Same as Scheme 1 except that the weighting scheme is not used.
3. The �rst �ve modal vectors are employed instead of Ritz vectors.
4. The �rst number is the rank of the actual damage event and the second is the total

number of the examined hypotheses.
5. Ns=1, Noise=5%, and all DOFs are measured.
6. Only longeron and side diagonal members are examined for damage.

To validate the use of Ritz vectors and the proposed weighting scheme, the twelve

damage cases are re-diagnosed using modal vectors or without the weighting scheme

in Table 3.4. All other conditions remain the same as for the previous example. The

rank of the actual damage event is shown in columns 4 � 6 of Table 3.4. Scheme 1
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uses the �rst �ve Ritz vectors and the proposed weighting, scheme 2 uses the same

Ritz vectors without the weighting scheme. The �rst �ve modal vectors are employed

in scheme 3 instead of the Ritz vectors. Table 3.4 shows that scheme 1 provides the

best diagnoses among the three schemes. Comparing schemes 1 and 2, we observe

that the weighting in scheme 1 slightly improves the diagnoses. Scheme 3 using modal

vectors fails to detect most damage cases. These results show the superiority of Ritz

vectors to modal vectors for damage detection.

Diagnosis Using Di�erent Damage Thresholds

In this example, fourteen damage cases (including the previous twelve cases) are di-

agnosed using a di�erent threshold value for each substructure. The other conditions

are unchanged (Noise=5%, Ns=1 and all DOFs are measured). We prevent unnec-

essary extensions of the proposed branch-and-bound search by employing prelimi-

nary sensitivity analysis. The branch-and-bound search is conducted including only

substructures with damage larger or equal to the pre-assigned minimum detectable

damage.

Table 3.2 and the previous diagnoses show that Ritz vectors have di�erent sensi-

tivities for di�erent substructures. This observation motivates the use of a di�erent

threshold for each substructure. The damage thresholds in this subsection are as-

signed based on the minimum detectable damage computed in Table 3.2. For exam-

ple, since the minimum detectable damage amount assigned to the �rst substructure

is 20% (when load pattern 2 is employed), the corresponding damage threshold is set

to 0.8 (1 � 0:2). The damage thresholds for other substructures are determined in

the same fashion. It should be noted that when the total removal of a substructure

does not cause a perceivable change in Ritz vectors, the substructure is de�ned as

undetectable and excluded from the diagnosis. For example, the 67th member is de-

�ned as undetectable since the total removal of the member (100% sti�ness loss) does

not yield signi�cant changes in Ritz vectors beyond the assumed variation caused by

uncertainties. Therefore, the 67th member is excluded from the diagnosis.

Table 3.5 shows that the rede�ned damage threshold improves the diagnoses.

Comparing the most probable events (hypothesis) of case A in Tables 3.3 and 3.5, one
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Table 3.5: Damage diagnoses of an eight-bay truss structure using di�erent threshold values

Actual Damage Most Prob. Damage

Case Ldam Ddam Rank1 L̂dam D̂dam

A f46g f10%g 1/371 f46g f10%g
B f102g f10%g 1/552 f102g f10%g
C f39g f10%g 1/371 f39g f10%g
D f97g f10%g 1/461 f97g f10%g
E f36g f10%g 17/95 no damage
F f71g f10%g -/95 no namage
G f33g f10%g 1/371 f33g f10%g
H f35g f10%g 1/461 f35g f10%g
I f94g f10%g 1/462 f94g f10%g
J f28g f10%g 1/371 f28g f10%g
K f87g f10%g 1/371 f87g f10%g
L f22g f10%g 1/461 f22g f10%g
M f17g f10%g 9/95 no damage
N f3g f10%g 1/461 f3g f10%g
1. The �rst number is the rank of the actual damage event and the second is the total number of

the examined hypotheses. \-" denotes that actual damage is not detected.
2. The �rst �ve Ritz vectors are estimated from load pattern 2 and the proposed weighting

scheme is employed.
3. Ns=1, Noise=5%, and all DOFs are measured.
4. Di�erent damage threshold value is assigned to each substructure.
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can observe that the undamaged 7th substructure is removed from the most probable

hypothesis, making the actual damage case the most probable one. In case E, the

proposed method indicates that most likely there is no damage. Considering the fact

that the damage threshold of the 36th substructure is set to 0.2, the 10% sti�ness

loss in the 36th substructure is not detectable. The proposed method ranks the 36th

substructure as the 17th most probable damage location with 80% damage. Similar

results are observed for cases F and M. Sensitivity analysis in Table 3.2 shows that the

sti�ness deterioration of the 71st substructure, which is a face diagonal in the 7th bay,

does not yield any noticeable changes to the estimated Ritz vectors. Therefore the

71st substructure is precluded from the diagnosis and the proposed method provides

a false-negative indication of damage. For case M, the damage threshold of the 17th

substructure is set to 0.8. Again the proposed method indicates that most likely there

is no damage and ranks the event of 20% damage in the 17th substructure as the 9th

most probable damage case.

Diagnosis of Damage in Multiple Locations

In this example, we focus on the detection of damage in multiple locations. Table 3.6

presents diagnosis results of six di�erent damage cases. In cases O � R, 10% sti�ness

decrease is simulated in two substructures. Cases S and T present damage cases with

three damaged substructures. The six damage cases are repeatedly diagnosed under

di�erent conditions. In the fourth column of Table 3.6, the �rst �ve Ritz vectors

are generated from load pattern 1 and employed for damage detection along with

the proposed weighting scheme. In the �fth column, load pattern 2 is employed

instead of load pattern 1. In the last column of the table, a total of ten Ritz vectors

are generated from load patterns 1 and 2 (the �rst �ve Ritz vectors are generated

from each load pattern). For all cases in Table 3.6, all DOFs are measured and one

set of Ritz vectors is simulated assuming a 5% noise level (Ns=1 and Noise=5%).

Furthermore, the proposed weighting scheme is employed.

When the �rst �ve Ritz vectors are generated from load pattern 1, the proposed

method identi�es the actual damage event of cases O, P, Q and T. However, the

actual damage locations are not detected for cases R and S. While the use of load
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pattern 2 yields the detection of actual damage locations in cases P, Q and R, load

pattern 2 fails to identify damage of cases O, S and T. Finally, when a total of ten

Ritz vectors are generated from load patterns 1 and 2, the proposed method identi�es

the actual damage locations for all cases (cases O � T). It is shown that each damage

case has di�erent sensitivity to di�erent load patterns and by including more Ritz

vectors from di�erent load patterns, diagnosis results can be improved.

Table 3.6: Damage diagnoses of an eight-bay truss structure with multiple damage locations

Actual Damage Rank4

Case Ldam Ddam F11 F22 F1, F23

O f35,94g f10%,10%g 1/672 -/371 1/686
P f39,46g f10%,10%g 1/483 1/644 1/686
Q f28,102g f10%,10%g 1/861 2/914 1/974
R f39,87g f10%,10%g -/672 1/644 1/679
S f22,35,97g f10%,10%,10%g -/672 -/644 1/686
T f17,35,97g f10%,10%,10%g 1/577 -/554 1/986

1. The �rst �ve Ritz vectors are estimated from load pattern 1.
2. The �rst �ve Ritz vectors are estimated from load pattern 2.
3. Load Patterns 1 and 2 are employed and the �rst �ve Ritz vectors are estimated from each

load pattern (i.e. a total of ten Ritz vectors).
4. The �rst number is the rank of the actual damage event and the second is the total number of

the examined hypotheses. \-" denotes that actual damage is not detected.
5. Ns=1, Noise=5%, all DOFs are measured and the proposed weighting scheme is employed.
6. Di�erent damage threshold value is assigned to each substructure.

3.6 Summary and Discussions

In this chapter, load-dependent Ritz vectors are employed in the Bayesian probabilis-

tic framework to detect the locations and amount of damage. Several damage scenar-

ios using an eight-bay truss structure illustrate the potential use of load-dependent

Ritz vectors for damage detection. Sensitivity analyses show that the derived deriva-

tive of a load-dependent Ritz vector with respect to a substructure sti�ness is a good

approximation of the actual sensitivity and the sensitivity analyses allow us to iden-

tify detectable substructures before actual diagnoses. It is shown that most face
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diagonals and battens of the eight-bay truss structure are secondary members, mak-

ing the truss structure a highly redundant system. Diagnosis examples of the truss

and frame structures show that, (1) load-dependent Ritz vectors are able to identify

the actual damage locations for most damage cases when the estimated Ritz vectors

are contaminated by low level noise, only one set of Ritz vectors are estimated, and

a small amount of sti�ness deterioration is assumed, (2) by a careful selection of load

patterns, substructures of interest can be made more observable using the Ritz vec-

tors generated from the particular load patterns, (3) the proposed weighting scheme,

which weights Ritz vectors according to their sensitivity to the assumed damage lo-

cations, improves the diagnosis results, and (4) if load patterns are selected carefully

and a large number of data set are available, the proposed method can identify most

of the damage locations, even in the presence of modeling error and measurement

noise.

Derivatives of load-dependent Ritz vectors with respect to substructure sti�nesses

are derived and employed to weight the load-dependent Ritz vectors which are more

sensitive to the assumed damage locations. A minimum detectable damage of each

substructure is de�ned as the minimum damage amount which the estimated Ritz

vectors from a given load pattern can detect when each component of a Ritz vector

is contaminated by a certain level of noise. Furthermore, the damage threshold is

assigned according to the minimum detectable damage. By assigning a di�erent

damage threshold to each substructure, a substructure which causes small changes to

the estimated Ritz vectors needs to undergo large sti�ness deterioration before the

substructure can be detected as damaged and the very insensitive substructures are

precluded from a branch-and-bound search. The computational cost of the proposed

method is signi�cantly reduced by using a branch-and-bound search scheme and the

modeling simpli�cation technique.

While this chapter has illustrated the potential applicability of load-dependent

Ritz vectors to damage detection, many interesting research issues remain. First,

even though a procedure to experimentally extract load-dependent Ritz vectors is

proposed [28] and the e�ect of noise on the estimated load- dependent Ritz vectors is

studied [154], real testing should be conducted to validate the experimental procedure.
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This issue will be examined in Section 6.2, where experimental results are employed

to validate the possibility of extracting Ritz vectors. Second, the physical issue of the

actuator placement should be addressed to make the extraction of load-dependent

Ritz vectors practical. In this chapter, we assume that the amplitudes and phases

among actuators can be fully controlled and the power requirement to generate the

desired excitation forces is not addressed. Third, it is worth while to develop a

systematic scheme to �nd load patterns, which yield better detection of damage in

substructures of interest. While it is shown that a careful selection of load patterns

can make the substructures of interest more observable, a systematic selection scheme

for the load patterns has not been addressed in this study.

Note that while normal modal vectors are characterized only by a system itself

(the sti�ness and mass matrices of a structure), load-dependent Ritz vectors are a

function of the spatial distribution of loading as well as the system. Therefore, it

appears that by imposing an excitation in a particular way, substructures of interest

or vulnerable to damage might be made more observable using the load-dependent

Ritz vectors from the speci�c loading. While the �rst load-dependent Ritz vector is

simply a static deformation of a structure cause by a particular load, a higher load-

dependent Ritz vector is orthogonalized with respect to the previous Ritz vectors

during the generation procedure, and the relationship between a load pattern and a

higher Ritz vector may become obscure. This fact makes the load pattern selection

scheme di�cult.
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Chapter 4

Model Updating and Re�nement

This chapter addresses the issues of updating an analytical model by employing data

from a vibration test of a structure. Model re�nement or updating is required to

validate an analytical model of structures, to accurately predict dynamic responses

and to diagnose damages within a structure. For these purposes, highly accurate

analytical models of structures are necessary. The system property matrices can be

adjusted to produce more reliable system matrices using experimental test data. The

purpose of model re�nement in this study is to obtain a modi�ed baseline model which

improves the correlation of such model to the structure. Then, the updated model

is employed as a baseline model for damage detection. This chapter is organized as

follows: Section 4.1 reviews the existing updating methods. Section 4.2 describes

the modi�cation of an existing updating scheme for the cases when multiple sets

of vibration test data are available. Section 4.3 addresses the issues of the model

reduction and mode shape expansion that arise when limited number of transducers

are employed to measure the response of a structure. Finally, Section 4.4 discusses

di�erent matrix updating schemes that are used to obtain a baseline model for the

damage detection.

4.1 Previous Work

Based on their mathematical frameworks, most model updating methods can be cat-

egorized into three basic approaches: (1) optimal matrix update (direct method), (2)
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sensitivity-based update, and (3) statistical parameter identi�cation. There are many

di�erent techniques that have been proposed for the model updating problem. An

literature review on model updating methods and the related issues can be found in

References 105 and 54, respectively. A detailed review of all the existing methods is

beyond the scope of this study. Instead, emphasis is placed on the methods relevant

to the �rst two approaches since they represent the main approaches employed in this

study.

4.1.1 Optimal Matrix Update Method

In optimal update methods, the entire sti�ness matrix (and/or mass matrix) is up-

dated in a single step. The objective of the optimal matrix update is to assess the

perturbation matrices �K and �M such that a given error function J(�K;�M) is

minimized:

min
�K;�M

J(�K;�M) (4.1)

The most common criterion is to minimize the di�erence between the measured and

analytical modal parameters:

J(�K;�M) = k ̂ �  (�K;�M)k (4.2)

where  ̂ is the measured modal parameters,  (�K;�M) is the corresponding modal

parameters from the analytical model, and k � k denotes an Euclidean or Frobenius

norm. Berman and Nagy [24] and Kammer [83] observe that the criterion shown in

Equation (4.2) has a tendency to produce an updated model far di�erent from the

original model. This di�culty is resolved by adding the following minimum change

criterion:

J(�K;�M) = k�Kk+ k�Mk (4.3)

The equation of motion allows a direct comparison between the measured modal
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parameters and the analytical model:

J(�K;�M) =
NmX
i=1

k(K+�K)v̂i � !̂2
i (M+�M)v̂ik (4.4)

where Nm is the number of measured modes and, v̂i and !̂i denote the ith measured

modal vector and natural frequency, respectively. Physically, Equation (4.4) repre-

sents a set of unbalanced forces resulted from the comparison of the measured modal

parameters and the analytical model.

The models updated using Equations (4.2) to (4.4) are observed to loose some of its

fundamental properties such as symmetry, positivity or sparsity pattern. To enforce

these conditions to the updated model, constraints are added to Equation (4.1) using

Lagrange multipliers or penalty techniques [81,24,137]:

min
�K;�M

J(�K;�M) + �C(�K;�M) (4.5)

where C(�K;�M) denotes the additional constraint and � is either a Lagrange

multiplier or a given constant when a penalty technique is used. There are three

commonly used constraints:

1. The symmetry of the perturbation matrices:

�KT = �K and �MT = �M (4.6)

2. The positivity:

xT�Kx � 0 and xT�Mx � 0 8x (4.7)

3. The preservation of the sparsity pattern (connectivity) of the original matrices:

sparsity(K+�K) = sparsity(K) (4.8)

sparsity(M +�M) = sparsity(M)

Table 4.1 summarizes di�erent optimal updating methods. These methods involve

only simple matrix computation, have the advantage of computational e�ciency, and
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Table 4.1: Comparison of optimal updating methods reported by Hemez [69]
Method Criterion1 Constraint1 Test data2 Scheme3

Baruch [8,10,12,9] M S, EOM D D
Berman [23,22,25] M S, EOM D D
Berman and Nagy [24] M S, EOM D D
Chou and O'Callahan [36,114] EOM S, P D D
Kabe [80,81] M S, EOM, C D D
Kammer [83] M S, EOM, C D D
Lin [98] M S, EOM D D
Smith and Beattie [137,136] M, EOM S, C D I
Hajela and Soeiro [64,63] TAC S, P, D, S, H I
Zhang and Zhang [152] M S, EOM D D
Zimmerman and Kaouk [158,156,155] EOM S, P, C D I

1. C=connectivity, EOM=equation of motion, M=minimum change, P=positivity, S=symmetry,
TAC=comparison between test and analysis quantities

2. D=dynamic, S=static, H=hybrid
3. D=direct, I=iterative

are able to reproduce the modal parameters employed for the model updating. How-

ever, it is often di�cult to interpret the physical meaning on the resulting changes to

the mass and sti�ness coe�cients. In addition, the methods require that the DOFs of

the measured modal vectors need to agree with those of the analytical model in terms

of the size and locations. The main disadvantage with these methods is the lack of

control over the parameters that are subject to updating. Considering the limited

amount of information contained in the measured data, a model updating method

should keep the number of updating parameters small in order to achieve a physically

meaningful re�nement.

In this study, we focus on optimal sti�ness matrix updating methods. A brief com-

parison of the sti�ness updating methods [137,80,83,11] is summarized in Table 4.2

and brie
y reviewed here.

Baruch and Bar Itzhack [11] developed an procedure to orthogonalize the mea-

sured modes and to update an initial sti�ness matrix using the measured frequencies

and the orthogonalized modal vectors. The updated sti�ness matrix is found such

that the matrix represents as closely as possible the initial model and is consistent

with the observed modal data. A constrained optimization problem is solved to �nd
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Table 4.2: Comparison of di�erent optimal sti�ness matrix updating methods
Method cost function & constraint(s) PD SP EC

Baruch [11] kM�
1

2 (K�Ko)M�
1

2 k s.t. K� =M�
 � � �
Kabe [80] k(K�Ko)�W1k s.t. K� =M�
 � � �
Kammer [83] kK��M�
k s.t. other conditions � � �
Smith [137] kD�1(K�Ko)D�1k s.t. K� =M�
 � � �
Smith2 [137] kD�1(K�Ko)D�1k + k(K��M�
)��1k � � �

Smith3 [134] kM�
1

2 (K�Ko)M�
1

2 k s.t. iteratively enforce sparsity � � �

* PD: maintenance of positive de�niteness, SP: preservation of the sparsity pattern of the original
matrix and EC: consideration of error compensation

* � denotes an element-by-element matrix multiplication operator
* The (i; j) component ofW1 = (Ko

ij)
�1 and D = diag(

p
Ko

ii)

the updated sti�ness matrix that is closest to an initial sti�ness matrix and that ex-

actly satis�es the dynamic constraints imposed by the test data. This method adjusts

a sti�ness matrix such that the updated matrix contains more non-zero coe�cients

than the initial sti�ness matrix. The new non-zero coe�cients created in the updated

sti�ness matrix are interpreted as the �ctitious load paths that do not exist in the real

structure. Berman and Nagy [24] extended the same approach to optimally update

a mass matrix.

Kabe [80] presented an updating procedure which preserves the physical connec-

tivity of the original model in the updated sti�ness. The con�dence or reliability of

the adjusted model is increased by preserving the actual load paths of a structure. An

optimally updated sti�ness matrix is closest to the original matrix, and satis�es the

constraints imposed by the estimated modal parameters and the symmetricity. The

closeness to the original sti�ness matrix is measured by summing the relative change

of non-zero coe�cients in the updated sti�ness matrix. However, Kabe's method re-

quires solution of an auxiliary linear system of equations, demanding a large amount

of computational e�ort. Kammer [83] reformulated Kabe's method by minimizing

the residual forces obtained from the measured modal data, and imposing the matrix

sparsity and the symmetricity as constraints. The method by Kammer is reported to

produce equivalent results as that by Kabe in many circumstances.

Smith and Beattie [137] addressed the analogy of the optimal sti�ness matrix up-

date with optimal secant update used in nonlinear optimization. They also presented
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a generalized secant method to produce an updated sti�ness matrix which preserves

the structural connectivity and requires minimal storage. However, it is reported that

these sparsity-preserving methods could result in a non-positive de�nite matrix when

test data contains noises. It appears that the preservation of sparsity and the con-

straints imposed by the noise-contaminated modal parameters provide inconsistent

information for the sti�ness updating. In practice, there may not exist an update

which satis�es both the desired sparsity pattern and the hard constraint imposed

by the test data. Smith proposed an error compensation version to circumvent this

problem [14]. Imposing test data as a hard constraint yields an adjusted model which

exactly reproduces the noise-contaminated test data. In this error compensation ap-

proach, the dynamic constraint imposed by modal parameters is included in the cost

function permitting deviation of the updated modal parameters from the measured

ones.

As an alternative, an iterative approach to force the sparsity pattern was pro-

posed [134]. First, the sti�ness matrix is updated using any of the previous updating

methods. Then, the sparsity is imposed by discarding the generated non-zero values.

These two-steps are repeated until the model converges to a solution. This two step

iteration alternates between the optimal solution which matches the test data and

the other solution which satis�es the sparsity pattern. However, it appears that this

approach does not guarantee the positive de�niteness of the updated sti�ness matrix

nor the convergence to an unique solution.

4.1.2 Sensitivity-Based Methods

Similar to the optimal matrix updating, sensitivity-based methods seek to minimize

an objective function which is usually based on Equations (4.2) to (4.4) and con-

straints (4.6) to (4.8). The main di�erence between sensitivity-based methods and

the optimal matrix updating methods is that the objective function is expressed as a

function of a set of parameters p instead of the direct matrix perturbations, �K and

�M:

min
p
J(p) + �C(p) (4.9)
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where the updating parameter set p may represent mass and sti�ness entries, bound-

ary conditions, or design parameters. Since the objective function in Equation 4.9 is

generally a nonlinear function of updating parameters, the updated model is sought in

an iterative manner. The iterative scheme requires the computation of the sensitivity

matrix @J
@p
. A broad range of methods are available with di�erent formulations of error

functions and sensitivity derivatives. Table 4.3 summarizes several sensitivity-based

methods identi�ed in Reference 69.

Table 4.3: Comparison of sensitivity-based methods reported by Hemez [69]
Method Criterion1 Constraint1 Test data2 Scheme3

Chen and Garba [32,31] M EOM D I
Soeiro and Hajela [138] TAC EOM, S, P, C D, S I
Haug and Choi [67] EOM S D, S D
Norris and Meirovitch [110] EOM S, C D I
Ojalvo [116] EOM S D D
Ricles and Kosmatka [127] EOM S D I
Sanayei and Onipede [130,131] EOM S, P, C S I
Berger and Ohayon [21,20] EOM S, P, C D I
Bernitsas and Tawekal [26] TAC EOM, S, P, C D I
Chen and Garba [33] EOM S, P, C D, S I
Chou and Wu [37] and Baruh [13] EOM S, C D D
Dupuis, Roy and Girard [128,58] EOM S, P, C D I
Ladeveze, Reynier and Nedjar [93,126] EOM, TAC S, P, C D, S, H I
Piranda, Lallement and Cogan [124] EOM S, P, C D, S I
Lim [97,96] EOM S, P, C D I
Olho� and Rasmussen [117] EOM S, C S D

1. C=connectivity, EOM=equation of motion, M=minimum change, P=positivity, S=symmetry,
TAC=comparison between test and analysis quantities

2. D=dynamic, S=static, H=hybrid
3. D=direct, I=iterative

Note that, the choice of updating parameters is a crucial step in the sensitivity-

based updating methods. For example, when the updating parameters represent a

set of design parameters, the adjusted matrices are automatically symmetric and

positive-de�nite since the update is carried out at the structural element level. These

parameterization methods are reviewed and summarized in Reference 53.
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4.1.3 Statistical Parameter Identi�cation

Statistical parameter identi�cation derives from the �rst order Taylor's expansion of

the modal output error � =  ̂ �  (p):

� = S �p + " (4.10)

where S, �p and " represents the generalized sensitivity matrix, the unknown change

of the updating parameters and the measurement noise, respectively. The sensitivity

matrix S is estimated similar to those of the sensitivity-based methods. The unknown

changes in the parameters are sought by an iterative nonlinear generalized least-

squares (NGLS) scheme [59]:

�p = [STW�1S]�1[STW�1]� (4.11)

whereW is the covariance matrix of the measurement noise ". Obtaining an accurate

estimation of the covariance matrix W is a critical step in the statistical parameter

identi�cation methods. Assuming a Gaussian normal distribution for ", the exper-

imental identi�cation of the covariance matrix W is estimated in References 39,40.

A performance comparison of three di�erent covariance matrices has been conducted

and reported in Reference 59. Reference 59 concludes that a diagonal covariance

matrix obtained by assuming uncorrelated Gaussian distributions achieves a satis-

factory updating for small measurement noise. For larger measurement noises, other

estimates of the covariance matrix are proposed. The statistical treatment requires

large amount of data and assumptions for the probability density function of noise

or the covariance matrix. However, the statistical methods provide a measure of the

updating's quality as well as the adjustment itself.

4.2 Model Updating with Multiple Test Data Sets

In general, the measured test data is not su�cient to obtain an unique updated model.

The incomplete measurement produces a smaller number of modes from modal anal-

yses of a structure than that of the analytical model, and the modal vectors are
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estimated only at limited measurement points. One way to address the problem is

to test a structure in di�erent con�gurations by adding masses or sti�nesses to the

structure or by changing boundary conditions [106,157]. In this section, the error

compensation model of Reference 137 is extended for the cases where multiple test

data sets are available. The use of multiple test data sets can be one possible way of

overcoming the lack of measurement and circumventing the uncertainty in measure-

ments. Multiple test data sets can be collected by testing a structure under di�erent

con�gurations. Di�erent con�gurations can be achieved by changing boundary con-

ditions, and the redistribution of mass and sti�ness throughout the structure. The

proposed method extracts only meaningful information from the multiple test data

sets and results in the update of the sti�ness matrix which is physically plausible.

That is, this method is relatively insensitive to noises in the test data and results in

an updated sti�ness such that the physical load paths, the positive de�nitiveness and

the sparsity of the initial sti�ness matrix are maintained.

First, the Multiple-Secant Marwil-Toint (MSMT) method with error compensa-

tion is presented and then extended for the cases where dynamic tests are repeated

in several con�gurations. The procedure closely follows the development reported in

Reference 137. The analytical mass matrix is assumed to be accurate. In the original

MSMT method, an updated sti�ness matrix is found such that the following objective

function with constraints is minimized:

minkS�1(K�Ko)S�1k+ k(K��M�
)��1k (4.12)

subject to K = KT and sparse(K) = sparse(Ko)

where K and Ko are, respectively, the updated and the initial sti�ness matrix, M is

the mass matrix, k � k denotes the Frobenius norm, and S=diag(Si)=diag(
p
Ko
ii). �

and 
 are the modal vector matrix and the diagonal eigenvalue matrix obtained from

experimental modal analysis, respectively. A diagonal matrix � can be assigned to

weigh the con�dence levels on each modal vector. The optimization of this objective

function yields an updated sti�ness matrix which is as close as possible to the original

matrix, and as consistent as possible with the test data preserving the structural
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connectivity and symmetricity.

If �K is de�ned as the di�erence between K and Ko (�K = K � Ko), Equa-

tion (4.12) can be rewritten for �K as follows:

minkS�1�KS�1k+ k(�K��R)��1k (4.13)

subject to �K = �KT and sparse(�K) = sparse(Ko)

where R is a collection of dynamic residual force vectors and is de�ned as follows:

R =M�
�Ko� (4.14)

By minimizing the Lagrangian function with respect to �K (in the Lagrangian func-

tion the constraints are incorporated into the objective function by employing La-

grange multipliers), the sti�ness coe�cients of the updated sti�ness matrix are related

to those of the original sti�ness matrix and the estimated modal parameters:

Kij = Ko
ij + SiSj[(JiS��i)j + (JjS��j)i] for i, j=1, 2, .., N (4.15)

where Kij and Ko
ij are the (i; j) component of the updated and original sti�ness

matrices, respectively. N is the number of degrees of freedom (DOFs) in the sti�ness

matrix. The projection matrix J has the same sparsity of the original sti�ness matrix

Ko and contains only ones and zeros:

Jij =

(
1 if Ko

ij 6= 0

0 if Ko
ij = 0

(4.16)

�i in Equation (4.15) is a subvector of � (= [�T1 �T2 ::: �
T
N ]

T ), which is a collection

of the Lagrange multipliers and the solution of the following auxiliary equation. An

auxiliary equation is established by taking the partial derivative of the Lagrangian

function with respect to each Lagrange multiplier and setting the equation equal to

zero. This auxiliary equation is solved for the Lagrange multipliers which are needed

for the sti�ness matrix update in Equation (4.15):

HT (I+ II)H� = D (4.17)
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where I (2 RN2�N2

) is an identity matrix and II(2 RN2�N2

) is a permutation matrix

which transforms a columnwise listing of an N �N matrix to a columnwise listing of

its transpose, that is

II[x11x12:::x1Nx21:::x2N :::xNN ]
T = [x11x21:::xN1x12:::xN2:::xNN ]

T (4.18)

In Equation (4.17), H is a block diagonal matrix and has the dimension of N2�NNm

(where Nm is the number of the estimated modal vectors):

H =

2
666664
J1S�

J2S�
.. .

JNS�

3
777775 (4.19)

Ji is the ith column vector of J. A subvector Di of D (= [DT
1 D

T
2 ::: DT

N ]
T ) corre-

sponds to the ith row of the dynamic residual forces, R = M�� � Ko�, weighted

with S�1i :

Di = S�1i [Ri1 Ri2 ::: RiNm ]
T (4.20)

The solution of Equation (4.17) requires storing a large sparse matrix HT (I + II)H

(2 RN2�NNm). Taking advantage of the repetitive pattern of the right-hand side

matrix of Equation (4.17), an iterative procedure for computing � is presented in

Reference 137. This iteration procedure requires no more than the storage size of the

system sti�ness matrix.

In practice, due to the limited installation of sensors and di�culties of exciting a

structure above a certain frequency, the number of identi�able modes is limited. One

possible way to provide additional information about the structure is to conduct a

series of vibration tests under di�erent conditions. When t number of such tests are

conducted, the dynamics residual force matrix R can be written as:

R = [R1R2:::Rt] = �K[�1�2:::�t] (4.21)

where �i are modal vectors from the ith vibration test and Ri are the associated
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dynamic residual forces:

Ri = [M+�Mi]�i
i � [K+�Ki]�i (4.22)

where �Mi and �Ki are the mass and sti�ness perturbations made to the original

structure for the ith test. The mass and sti�ness matrices of the structure can be al-

tered by placing additional masses and members on the structure, changing boundary

conditions and so on. It should be noted that in most cases the rank of R is smaller

than the column size of R. The rank of R can be smaller than the column size of R

when (1) the actual rank of the sti�ness perturbation (modeling error) matrix �K is

less than the column size and (2) some of the column vectors in R are linearly depen-

dent. Since modeling errors tend to spread throughout the structure, the rank of the

sti�ness perturbation is generally large (that is, the rank of �K is normally larger

than the column size of R). Therefore, the rank de�ciency of R is most likely caused

by the linear dependence among the residual vectors (column vectors ofR). Since the

mass and sti�ness perturbations (�Ki and �Mi in Equation (4.22)) are likely to be

small from one test con�guration to another, all residual vectors (or modal vectors)

from di�erent con�gurations will not be linearly independent. Some of the residual

vectors will not provide signi�cantly new information or only introduce measurement

noises. Therefore, a decision should be made on selecting appropriate residual vectors

to be used for model updating.

To extract meaningful information from the residual vectors, a subspace selection

scheme in Reference 157 is adopted in this study. When a series of tests are conducted,

Equation (4.13) is modi�ed such that k(�K�Z �RZ)��1k is minimized instead of

k(�K��R)��1k:

min kS�1�KS�1k+ k(�K�Z�RZ)��1k (4.23)

subject to �K = �KT and sparse(�K) = sparse(Ko)

where Z (2 RNm�N �m) is a selection matrix to extract useful information from the

residual force matrix R and N �m is a reduced rank of R. N �m is determined from the
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singular value decomposition of R:

R = [U1jU2]

"
�1 0

0 0

#
[V1 j V2]

T (4.24)

where the diagonal matrix �1(2 RN �m�N �m) contains �m number of the singular values

which are larger than a user-speci�ed threshold, and the left and right singular vectors

U and V are partitioned according to the partitions of the singular values. Since the

range of R is mainly spanned by U1, Z is found such that:

RZ = U1 (4.25)

Taking a pseudo-inverse of R, Z becomes

Z = R+U1 = (V1�
�1UT

1 )U1 = V1�
�1 (4.26)

where R+ is the pseudo-inverse ofR. From Equation (4.26), one can retain signi�cant

information and reduce the e�ect of measurement noises by spanning the range of R

with U1. Physically feasible update is enforced in Equation (4.23) to minimize the

generalized residual forces, �K�Z�RZ.

In Section 4.4, the performance of the proposed method is compared to other

optimal update methods employing a numerical example and an experimental test

data from an eight-bay truss structure.

4.3 Model Reduction and Mode Shape Expansion

For most model updating techniques presented in the previous section, the DOFs in

the analytical model should coincide with those in the estimated modal vectors. When

only a small number of sensors are installed, one can use either system condensation

techniques or mode shape expansion techniques. System condensation techniques

reduce the DOFs de�ned in the analytical model to the measured DOFs. Reduction

techniques often produce a condensed matrix that does not resemble the member

connectivity of the original model. As a result, locating damaged members from the

residual force vectors of the reduced system becomes very di�cult [24,68].
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Model reduction techniques include the static reduction, dynamic reduction, Im-

proved Reduced System (IRS) and System Equivalent Reduction Expansion Process

(SEREP) [53]. Static or Guyan reduction [61] is the simplest method. This method

divides the mass and sti�ness matrices into submatrices relating to the master DOFs

and the slave DOFs. Here, the master DOFs are related to the measured DOFs and

retained. The slave DOFs are eliminated to produce a reduced model assuming that

no force is applied to the slave DOFs and neglecting the inertial forces relating to

the slave DOFs. Since the inertia forces neglected in the slave DOFs become more

signi�cant for higher frequency, the accuracy of higher modes drastically deteriorates

in the static reduction method.

The dynamic reduction method [120] modi�es the static reduction method to

include the inertia forces, which are neglected in the static reduction method, at

a speci�ed frequency. The choice of the frequency is, however, not obvious. The

IRS [112] improves the static reduction method by including the inertial terms into

the transformation matrix as pseudo static forces. The transformation matrix here

relates the full DOFs to the master DOFs. The SEREP [112] uses the analytical

eigenvectors to produce the transformation matrix. This method reproduces the lower

natural frequencies of the full model. References 6 and 7 compare these reduction

methods and Reference 60 considers the e�ect of model reduction in model updating.

An alternative is to expand the modal vectors, based on the measurements at

the instrumented DOFs, to the size of the analytical model [54]. The mode shape

expansion techniques can be categorized into three approaches [74]. First, geometri-

cal expansion [149] involves the interpolation/extrapolation of the measured degrees

of freedom to those of the full model. This approach is rarely applied to structural

dynamic problems since this approach is highly sensitive to the distribution of mea-

surement points, the changes of boundary conditions and the energy localization.

Second, the subspace rotation algorithm (SRA) or the modal coordinate expansion

(MCE) [82,113,115,135] assume that the measured modal vectors can be expressed as

a linear combination of the analytical modal vectors. Usually, the analytical modal

vectors that correlate well with the measured modal vectors are considered although,
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in theory, any number of modal vectors could be included. Third, the dynamic expan-

sion or the physical expansion (PE) [90,24,21] is inverse to the Guyan reduction where

the slave DOFs are reconstructed from the master DOFs. This approach directly uses

the analytical mass and sti�ness matrices to compute the unmeasured DOFs in the

measured modal vectors. This method avoids the direct comparison of the measured

and analytical modal vectors. However, this method may require large storage space

for all the system matrices.

Mode shape expansion invariably requires a �nite element model to �ll the unmea-

sured part of the modal vectors, and works only when the analytical model is already

a good representation of the structure. Mode shape expansion methods generally

do not produce the results that are accurate enough to provide reliable information

about the damaged DOFs or the damaged structural members. Comparison of mode

shape expansion methods is presented in References 62, 74, and 95.

The mode shape expansion methods are often employed with optimal model

updating methods [137,80,83,11,24], damage detection methods [69,86] as well as

test/analysis correlation. Many model re�nement and damage detection methods

require the orthogonality of modal vectors with respect to the structure mass ma-

trix. References 11 and 144 present the subsequent orthogonalization process of the

expanded modal vectors. The orthogonal Procrustes expansion method [135] simul-

taneously expands and orthogonalizes the modal vectors.

4.4 Application to an Eight-Bay Truss Structure

An example structure is presented to demonstrate and compare the proposed method

to the previously published optimal update methods. The structure employed in this

section is an eight-bay truss structure from the NASA dynamic scale model technology

(DSMT) program of Langley Research Center described in Section 3.5. As shown

in Figure 4.1, the structure is �xed at one end and ninety-six accelerometers are

instrumented to all thirty-two unconstrained nodes to measure all three translational

DOFs of each node (note that the measurements at the DOFs 43, 44 and 45 are

reported to be defective [84]). Experimental modal analysis was conducted under
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the undamaged condition of the structure and several damage cases. For each test,

the �rst �ve modes were estimated. For fourteen damage cases, one strut in di�erent

locations is completely removed from the structure, respectively, and for one case, two

struts are removed simultaneously. In the last case, one strut is buckled to simulate

a partial damage. Throughout the whole example, the mass matrix of the analytical

model is assumed to be an accurate representation of the true mass matrix. The

structure is modeled using 104 truss elements, 36 nodes and 96 DOFs. Five truss

members at the �xed end are not included in the model. Furthermore, each truss

member is de�ned as a substructure. In the analytical model, a lumped mass matrix

is used and an additional concentrated mass is added to each node to take into account

the joint and instrumentation masses. A detailed description of the example structure

can be found in Reference 87.

This section is organized as follows: First, a comparison of sti�ness matrix up-

dating methods (Baruch's [11], Kabe's [80], Smith's [137] and MRPT [84] methods)

is conducted using simulated modal parameter data. The MRPT method is not an

optimal updating method but investigated here since the MRPT method was used

for the model updating of the eight-bay truss reported in Reference 84. Second,

the updating of an initial �nite element model of the eight-bay truss structure is

conducted using the experimental test data from the undamaged state of the truss

structure. Three previously published methods (Baruch's, MRPT methods and the

error compensation version described in Reference 137) and the modi�ed version of
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Figure 4.1: An eight-bay truss structure
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the multiple-secant Marwil-Toint (MSMT) method presented in Section 4.2 are em-

ployed for the updating. Finally, the Bayesian probabilistic approach is employed to

diagnose ten actual damage cases. In the Bayesian approach, the previously adjusted

sti�ness matrix from each updating method is used as an initial analytical model for

damage detection of ten di�erent damage cases, and the performance of diagnoses

is compared to investigate which model produces a better representation of the real

structure.

4.4.1 Model Re�nement using Simulated Test Data

The �nite element model obtained from the NASA Langley Research Center is as-

sumed to be an exact model in this simulation. An initial sti�ness matrix is generated

by perturbing the exact sti�ness matrix. The initial sti�ness matrix is obtained by

assembling the following perturbed element sti�ness matrix K̂si:

K̂si = Ksi (1 +
N
100

R) (4.27)

where K̂si andKsi are the element sti�ness matrices after and before the perturbation,

respectively, N is a speci�ed noise level in terms of percentage, and R is a normally

distributed random number with zero mean and a variance of 1.0. Here, the value

of 10% noise level is used for N . The initial model, however, preserves the sparsity

pattern of the exact model. Four previously published methods (Baruch's, Kabe's,

MRPT, and Smith's methods) are employed for the model re�nement. Each method

updates the initial sti�ness matrix using the �rst �ve natural frequencies and modal

vectors of the exact model.

Table 4.4 presents the �rst ten natural frequencies from each updated sti�ness

matrix. In addition, the modal assurance criterion (MAC) of the corresponding modal

vectors are computed as [45]:

MAC(i; j) =
(�Ti ��j)

2

(�Ti �i)(
��Tj

��j)
(4.28)

where �i is the ith modal vector of the exact model and ��j is the jth modal vector

of an updated model. If two modal vectors used in the calculation of the MAC are

78



Chapter 4 Model Updating and Re�nement

Table 4.4: Comparison of di�erent updating methods using simulated data: without noise

Exact Initial Baruch Kabe Smith MPRT

(a) Natural Frequencies (Hz)
1� 13.9245 14.1893 13.9245 13.9245 13.9245 13.9245
2� 14.4407 14.3048 14.4407 14.4407 14.4407 14.4407
3� 46.7445 47.0348 46.7445 46.7445 46.7445 46.7445
4� 66.0067 67.3592 66.0067 66.0067 66.0067 66.0067
5� 71.1420 70.7437 71.1420 71.1420 71.1420 71.1420
6 117.3227 117.3367 117.3300 126.2192 113.6756 118.9687
7 137.3942 136.1062 136.0681 137.3942 137.3942 134.5062
8 144.4354 145.2038 145.1855 144.4354 144.4354 143.7498
9 154.8468 155.3103 155.3010 154.8468 154.8468 154.6907
10 216.2318 215.4142 215.4027 216.2318 216.2318 215.2313

(b) Modal Assurance Criterion
1 0.9965 1.0000 1.0000 1.0000 1.0000
2 0.9965 1.0000 1.0000 1.0000 1.0000
3 0.9974 1.0000 1.0000 1.0000 1.0000
4 0.9988 1.0000 1.0000 1.0000 1.0000
5 0.9973 1.0000 1.0000 1.0000 1.0000
6 0.9985 0.9987 0.9985 0.9984 0.9887
7 0.8841 0.8865 1.0000 1.0000 0.9287
8 0.8860 0.8872 1.0000 1.0000 0.9354
9 0.9881 0.9881 1.0000 1.0000 0.9958
10 0.6546 0.6548 1.0000 1.0000 0.4506
* These modes used for updating
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identical, the value of the MAC becomes a unity. If they correspond to two di�erent

modes (if two modal vectors are orthogonal to each other), the MAC value becomes

zero.

The �rst column of Table 4.4 shows the natural frequencies of the exact model and

the second column presents the natural frequencies obtained from the initial model

and the corresponding MAC values. The remaining columns show the frequencies

and the MAC values obtained from the models updated by four di�erent methods.

The �rst �ve natural frequencies and modal vectors, which are used for updating,

are exactly reproduced by all updating methods. Baruch's method shows a slight

improvement in the sixth, eighth and ninth natural frequencies and in all modal

vectors. Kabe's and Smith's methods also signi�cantly improve the remaining modal

parameters which are not used for the updating. In Kabe's method, the number of

independent coe�cients of the sti�ness matrix (the number of diagonal terms in the

sti�ness matrix and non-zero coe�cients on one side of the diagonal) should be less

than the number of constraints (the number of modal vectors times the number of

DOFs in one modal vector) to obtain the exact sti�ness matrix. However, because

of the redundancy of a structure, more constraints are required in most cases [81].

Kabe's method is found to need a minimum of six modal vectors to exactly reproduce

the sti�ness matrix of the eight-bay truss structure. In Kabe's and Smith's methods,

the preservation of the zero and non-zero patterns of the sti�ness matrix enables the

better updating with the same number of modal parameters. The eighth, ninth and

tenth natural frequencies, and all modal vectors (except the tenth modal vectors) are

improved in the MRPT method. In theory, the MRPT method should be employed

only when the rank of the sti�ness perturbation is equal or less than that of the used

modal vectors.

Next, the same procedure is repeated considering measurement noises. To simulate

measurement uncertainties in the estimated modal vectors, the exact modal vectors

obtained from the exact sti�ness matrix are perturbed with noise. More explicitly,

the estimated modal vector is constructed such that

�̂i = �i (1 +
N
100

R) (4.29)
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where �̂ is the ith measured modal vector simulated from the exact model. N is a

speci�ed noise level in terms of percentage, and R is a normally distributed random

number with zero mean and a variance of 1.0. Similarly, the natural frequencies are

also constructed assuming that they are noise-contaminated. Since the modal param-

eters are noise-contaminated, the modal vectors do not satisfy a mass-orthogonality

condition (�tiM�i = 1). Therefore, it is necessary to adjust the modal vectors such

that the orthogonality condition is satis�ed. In this study, the weighted orthogonal-

ization procedure by Baruch is employed [11] . Note that Baruch's method is based on

the assumption that the measured modal parameters are orthogonalized with respect

to the mass matrix of the structure. Furthermore, the MRPT method guarantees the

symmetricity of the updated model only when the measured modal parameters are

mass-orthogonalized.

The �rst ten natural frequencies of the exact model are shown in the �rst column

of Table 4.5 and the frequencies in parenthesis are the noise-contaminated ones. The

noise-contaminated frequencies and the associated noise-corrupted modal vectors (the

measured modal parameters) are employed for model re�nement. The rest of columns

shows the frequencies from each updated sti�ness matrix as well as the MAC values.

The updated natural frequencies of Baruch's method exactly match the noise con-

taminated frequencies, which are used for the updating. The remaining modes are also

slightly improved. Kabe's, Smith's and MRPT methods fail to update the sti�ness

matrix. It appears that there is no physically feasible update of the sti�ness matrix

satisfying all the constraints provided by the noise-contaminated modal parameters

and the sparsity pattern. Furthermore, Kabe's or Smith's methods do not guarantee

the positive de�niteness of the updated matrix and several imaginary eigenvalues are

produced by both methods (this possibility of a non-positive de�nite update is also

reported in References 137 and 81).

This di�culty is overcome by the error compensation version described in Ref-

erence 137 where the sti�ness matrix is updated as consistent as possible (but not

exactly match) with the measured test data while preserving the connectivity of the

structure. This method improves both the natural frequencies and the MAC values.

However, the improved modal parameters do not exactly match the measured modal
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Table 4.5: Comparison of di�erent updating methods using simulated data: with 10% noise

Exact Baruch Kabe Smith MPRT Smith2

(a) Natural Frequencies (Hz)
1 13.9245(13:8973�) 13.8973 9.6388 11.0311 13.8973 14.0283
2 14.4407(14:3405�) 14.3405 16.8531 21.3090 14.3405 14.2897
3 46.7445(46:9954�) 46.9954 26.7688 26.6711 45.8764 47.0479
4 66.0067(66:4243�) 66.4243 28.5706 28.7817 46.9954 67.3375
5 71.1420(71:3151�) 71.3151 34.5585 31.8033 66.4243 70.7341
6 117.3227 117.3314 40.0831 40.4220 71.3151 117.3361
7 137.3942 136.0066 43.3671 43.6058 87.9210 136.1078
8 144.4354 145.1335 44.5334 44.2145 117.3834 145.2017
9 154.8468 155.2229 49.5919 48.9827 129.3925 155.3070
10 216.2318 215.2845 52.9519 51.7119 147.4479 215.4127

(b) Modal Assurance Criterion
1 0.9929 0.0070 0.0004 0.9929 0.9435
2 0.9881 0.0047 0.0378 0.9881 0.9438
3 0.9888 0.0019 0.0000 0.0001 0.9974
4 0.9907 0.0014 0.0007 0.0000 0.9988
5 0.9932 0.0004 0.0045 0.0001 0.9973
6 0.9986 0.0001 0.0000 0.0000 0.9985
7 0.8880 0.0818 0.0620 0.0475 0.8839
8 0.8879 0.0051 0.0563 0.0011 0.8858
9 0.9865 0.0356 0.0210 0.1189 0.9881
10 0.6590 0.0000 0.0017 0.0099 0.6550
* These are noise-contaminated frequencies and used for updating
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parameters employed for the updating. The weighting matrix in this method (�

in Equation (4.13)) is determined such that the updated sti�ness matrix is positive

de�nite and close to the initial model. The values of the weighting matrix is some-

how determined by a trial-and-error process. The selection of appropriate weighting

matrix for the best performance requires further study.

It is observed that the natural frequencies and the MAC values updated by

Baruch's method are slightly closer to the exact values than those from the error

compensation version. However, it is not clear whether the updated sti�ness matrix

from Baruch's method is a better representation of the exact sti�ness matrix than

one from the compensation method. While the updated sti�ness matrix by the er-

ror compensation method preserves the sparsity pattern, the sti�ness adjustment in

Baruch's method is spread throughout the sti�ness matrix.

4.4.2 Model Re�nement using Experimental Test Data

The same update methods are applied to the experimental test data obtained from

the NASA Langley Research Center [87]. Same as the previous simulation, the �rst

�ve natural frequencies and modal vectors are estimated from the experimental test.

Again, the modal vectors are mass-orthogonalized using the method in Reference 11.

The original �nite element (FE) model provided by the NASA Langley Research

Center is employed as an initial analytical model of the eight-bay truss. Since Kabe's

and Smith's methods yield unrealistically updated sti�ness matrices (both methods

produce more than ten negative eigenvalues), the results from Kabe's and Smith's

methods are not presented here.

Table 4.6 summarizes the results of di�erent updating methods. In the �rst column

of Table 4.6, the measured natural frequencies from the NASA Langley Research

Center are presented. The second column shows the natural frequencies of the initial

analytical model and the MAC values between the measured modal vectors and the

analytical modal vectors. The measured frequencies and modal vectors are again

matched exactly by using Baruch's method (see the third columns of Table 4.6).

The �rst column under the heading \MRPT" in Table 4.6 is obtained using the

extended MRPT method described in Reference 157. The extended MRPT updates
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Table 4.6: Comparison of di�erent updating methods using experimental data

Test Initial Baruch MPRT� Smith2 Proposed

(a) Natural Frequencies (Hz)
1 13.8760 13.9245 13.8760 13.6721(13.8760) 13.0166 13.7120
2 14.4780 14.4407 14.4780 14.2918(14.4780) 14.1974 14.5932
3 48.4120 46.7445 48.4120 46.6641(48.4120) 46.9382 46.7528
4 64.0330 66.0067 64.0330 63.9088(64.0330) 65.1356 65.9931
5 67.4630 71.1420 67.4630 69.8608(67.4630) 72.2335 71.1495

(b) Modal Assurance Criterion
1 0.8774 1.0000 0.9964(1.0000) 0.9178 0.9906
2 0.8816 1.0000 0.9965(1.0000) 0.9229 0.9905
3 0.9945 1.0000 0.9920(1.0000) 0.9945 0.9888
4 0.9622 1.0000 0.9679(1.0000) 0.9628 0.9763
5 0.9647 1.0000 0.9641(1.0000) 0.9652 0.9768

* The �rst one is the extended MRPT method in Reference 157 and the second one in parenthesis

is the original MRPT method in Reference 84. The second method produces three imaginary

natural frequencies 204.49i, 126,01i and 16.54i, respectively. However these values are not

presented in this table.
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the sti�ness matrix when tests with di�erent con�gurations are available. Di�erent

con�gurations can be achieved by changing boundary conditions, the redistribution

of mass and sti�ness throughout the structure. Here, test data from the undamaged

state and from damage cases E and F (damage cases E and F are resulted from the

removal of struts 36 and 71 in Figure 4.1, respectively) are considered di�erent con-

�gurations of testing. Since �ve modes are estimated from each con�guration, a total

of �fteen modes are employed for the extended MRPT method. The second column

under the heading \MRPT" (the one in parenthesis) is obtained using the original

MPRT method in Reference 84. While the extended MRPT method does not ex-

actly match the measured modal parameters, the original MRPT method reproduces

the test data exactly. However, it should be noted that the updated sti�ness matrix

from the original MRPT method contains three negative eigenvalues (-16.51�106,
-6.27�106 and -0.108�106). Therefore, it appears that the updated sti�ness matrix

is not realistic although the sti�ness matrix exactly reproduces the measured modal

parameters.

The original MRPT method forces the rank of the sti�ness change to be less than

or equal to the number of measured modal vectors. For model correction (not for

damage detection), modeling error might be spread throughout all members making

the rank of the sti�ness perturbation large. However, the use of the MRPT method

for the eight-bay truss is justi�ed in Reference 84 presuming that modeling errors are

mainly localized (1) near the actuators, whose dynamic e�ects were not modeled in

the FE model, and (2) at the cantilever ends. The extended MRPT method requires

estimating the rank of residual force matrix in Equation (4.24). The rank estimation

schemes in Reference 76 are adopted here. The �rst scheme keeps only �m singular

values (�(1); �(2); :::; �( �m)) when �( �m+ 1)=�(1) becomes less than a tolerance. The

second scheme sets the rank of the residual force to be �m where the decrease of

�( �m + 1)=�( �m) is smallest. In the third scheme, �m is selected at the point where

the accumulation of �(i) reaches a certain value. Finally, the estimated rank is taken

to be the minimum rank from the three schemes. When �fteen modal vectors (�ve

modal vectors are obtained from three cases: undamaged case and damage cases E

and F) are employed for the extended MRPT method, the rank of the residual force
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matrix is approximately close to �ve. It implies that only some of the modal vectors

provide reliable information or the actual rank of perturbation is close to �ve.

In the �fth column of Table 4.6, the error compensation version described in Ref-

erence 137 is employed for the updating (In the table, this method is labelled as

\Smith2"). This method improves the MAC values signi�cantly but natural frequen-

cies obtained are far away from the measured ones. The results from the extended

MSMT method is presented in the last column of Table 4.6. Similar to the extended

MRPT method, the data sets from undamaged case and damage cases E and F are

employed for the extended MSMT method. The proposed method clearly provides

better agreement with the test data (both frequencies and MAC values) by employ-

ing multiple test data sets. The proposed method appears to extract only meaningful

information from the noise-contaminated test data and conduct updating that is

physically possible.

Since the testing of the truss structure is well controlled in the laboratory, the

element sti�ness of each truss member (EA/L) is believed to be reasonably accurate.

It seems that errors mainly come from (1) the mismodeling of the boundary conditions

and member joints, (2) neglecting the mass and dynamic e�ects of actuators (two

electro-magnetic shakers are placed near the free end to vibrate the structure), and (3)

the unreliable responses obtained from defective sensors at DOFs 43, 44 and 45 (note

that the measurements at the DOFs 43, 44 and 45 are reported to be defective [84]). It

is di�cult to judge which updated sti�ness matrix is closer to the real sti�ness matrix

of the eight-bay truss. It should be noted that the updated model which matches the

measured modal parameters more closely is not necessary the better representation of

the real structure. For examples, although the updated sti�ness matrix by the original

MRPT method exactly reproduces the measured modal parameters, it also contains

three negative eigenvalues. It is di�cult to justify that the updated sti�ness matrix

is an appropriate representation of the real sti�ness matrix of the eight-bay truss.

To answer this question, we employ each updated sti�ness matrix for the damage

detection presented in Section 6.1.3. We presume that the updated sti�ness matrix

which is closer to the actual sti�ness of the structure would provide better indication

of damage for most damage cases.
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4.4.3 Application to Damage Detection

To determine which updated model is closer to the actual sti�ness, each updated

sti�ness matrix from the previous subsection is employed as an initial analytical

sti�ness matrix for the Bayesian damage detection. In this study, ten damage cases

out of fourteen damage cases, that have a single removed strut, are investigated

(damage cases E and F are used for model updating and we did not receive data sets

for damage cases B and G). For each damage case, damage is caused by completely

removing a strut. The Bayesian probabilistic approach employed here examines all

possible damage cases with a single damaged location.

Table 4.7: Damage detection of an eight-bay truss structure using the Bayesian approach

Actual Damage Rank
Case Ldam Ddam Baruch MRPT� Smith2 Proposed

A f46g f100%g 3 2(1) 2 1
C f39g f100%g 41 45(70) 1 1
D f97g f100%g 1 1(1) 1 1
H f35g f100%g 2 5(3) 4 2
I f94g f100%g 4 23(9) 1 1
J f28g f100%g 15 27(38) 1 1
K f87g f100%g 3 13(5) 1 1
L f22g f100%g 23 65(22) 16 3
M f17g f100%g 13 30(11) 32 2
N f3g f100%g 42 13(57) 24 11

* The �rst one is the extended MRPT method in Reference 157 and the second one in parenthesis

is the original MRPT method in Reference 84.

Table 4.7 summarizes the diagnosis results of the ten damage cases. Baruch's

and MRPT methods fail to identify the actual damage location for most damage

cases. The error compensation method improves the diagnoses signi�cantly. Employ-

ing the updated sti�ness matrix from the error compensation method, the Bayesian

probabilistic approach identi�es the actual locations for �ve damage cases out of ten.

Finally, the Bayesian probabilistic approach provides the best diagnosis result

when the extended MSMT method is employed. In six out of the ten damage cases,

the Bayesian approach ranks the actual damage location as the most probable damage
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location. For cases H, L and M, the actual damage locations are ranked at the second

or third most probable locations. Only for case H, the proposed method does not

detect the actual damage location.

4.5 Summary and Discussions

Several optimal sti�ness update methods are investigated and compared using sim-

ulated and experimental test data from an eight-bay truss structure. Furthermore,

a model updating method is proposed extending the Multiple-Secant Marwil-Toint

(MSMT) method with error compensation [135] for the cases where dynamic tests are

repeated in several con�gurations. The proposed method is applicable when multiple

test data are obtained from di�erent con�gurations of a structure. The proposed

method extracts meaningful information from noise-contaminated test data and up-

dates the sti�ness matrix such that the adjusted sti�ness matrix is as close as possible

to the original sti�ness matrix and as consistent as possible with the vibration test

data. In addition, the symmetricity, the structural connectivity information and the

positive de�nitiveness of the original sti�ness matrix are preserved in the proposed

method.

A numerical example without errors in simulated modal parameters indicates that

Kabe's and Smith's methods provide signi�cantly better updated sti�ness matrices

than Baruch's and MRPT methods. The preservation of zero and non-zero pattern

provides additional constraints for Kabe's and Smith's methods and enables the bet-

ter update of a sti�ness matrix using a small number of modal vectors. However,

when the experimental test data or simulated data contaminated with noise are em-

ployed, Kabe's and Smith's method produce non-positive de�nite sti�ness matrices.

It appears that the test data provide inconsistent constraints with the structural

connectivity information of the structure. Although Baruch's and MRPT methods

exactly reproduce the modal parameters used in the sti�ness updating, the adjust-

ment is spread throughout all the coe�cients of the sti�ness matrix. The physical

load paths are not reserved in Baruch's and MRPT methods. On the other hand,

the MSMT method with error compensation and the proposed method preserves the
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sparsity pattern of the sti�ness matrix and minimize the residual forces. The up-

dated sti�ness matrix from the proposed method provides the best diagnosis results

for the ten damage cases examined. Damage detection using a Bayesian probabilistic

approach implies that the updated model from the proposed method is a better rep-

resentation of the unknown system sti�ness of the eight-bay truss structure. Finally,

model re�nement requires the application of considerable physical insight to select

parameters subject to updating and the arrangement of constraints.

89



Chapter 5

Damage Detection with Simpli�ed

Models

As a model-based method, the proposed Bayesian approach requires an analytical

model for damage diagnosis. The construction of an analytical model introduces

modeling error (the discrepancy between the analytical model and the actual struc-

ture). The modeling error is inevitable even when the model is updated with test

data using the methods presented in the previous chapter. The computational cost

involved for using a detailed FE model of a large scale structure in damage diagnosis is

signi�cant. Furthermore, the proposed probabilistic based approach and the branch-

and-bound search scheme require repetitive computation of modal parameters/Ritz

vectors. Therefore, the size of the analytical model and the number of updating pa-

rameters, which re
ect damage changes in a structure, should be kept to a minimum.

If there are too many updating parameters compared to the amount of test data

available, most damage detection methods will su�er from ill-conditioning problems,

divergence of updating parameters and the existence of too many output equivalent

models. (The output equivalent models are those that have di�erent physical param-

eter values but produce identical vibration data.) Therefore, the construction of an

appropriate analytical model is a crucial step for damage diagnosis. The purpose of

this chapter is to study the modeling issues where simpli�ed models are employed,

and modeling error and measurement noise are considered.

This chapter is organized as follows: Section 5.1 reviews an approach that is

commonly employed to simplify the modeling of multi-story frame structures [35].
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In Sections 5.2 and 5.3, damage diagnoses are conducted explicitly considering the

modeling error as well as the noise error. Section 5.4 presents the detection of plastic

hinge deformation for a reinforced-concrete bridge column using the modal parameters

experimentally obtained from vibration tests.

5.1 Simpli�ed Modeling Technique for Multi-Story

Frame Structures

The modeling of a multi-story frame structure can be simpli�ed by assuming that

(1) the 
oor diaphragm is rigid in its own plane and only 
exible in the vertical direc-

tion, (2) the rotational and vertical DOFs of the lateral frames can be condensed out

of the dynamic analysis, and (3) the axial deformations of beams and columns are

negligible [35]. The system sti�ness matrix of a multi-story frame structure is deter-

mined from the lateral sti�ness matrices of individual planar frames. The modeling

process can be summarized as follows:

1. Using the same notation as in Equation (2.1), the sti�ness matrix of a frame j

can be written as:

K(�)j =
X
8i2j

�iKsi (5.1)

where the assembly is performed for each substructure i in the jth planar frame

(8i 2 j). Neglecting the axial deformations in the columns and beams, the

model of a planar frame has one in-plane rotational DOF at each node and one

lateral DOF at each 
oor level [see Figure 5.1 (a)].

2. The sti�ness matrix of the planar frame can be partitioned according to the

lateral (l) and rotational (r) DOFs, respectively:

K(�)j =

"
Kll;j Klr;j

Krl;j Krr;j

#
(5.2)

Since the inertial e�ects associated with the rotational DOFs are usually small,

the rotational DOFs can be statically condensed and removed from the dynamic
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Figure 5.1: Calculation of lateral sti�ness by condensing out rotational DOFs

analysis [see Figure 5.1 (b)]. Using static condensation, the lateral sti�ness of

the planar frame �K(�)j becomes:

�K(�)j = P(�)Tj K(�)jP(�)j (5.3)

where

P(�)j =

"
I

�K�1
rr;jKrl;j

#
(5.4)

and I is an identity matrix. It should be noted that the transformation matrix

P(�)j is expressed as a function of �.

3. Using compatibility conditions, the displacement transformation matrixGj can

be de�ned to relate the lateral displacements of the jth frame to the global DOFs

of the system:

uj = Gju; j = 1; :::; Nf (5.5)

where Nf is the number of planar frames, u is the global displacement vector

and uj is the displacement vector for lateral DOFs of the jth planar frame.

Figure 5.2 (a) shows the global DOFs of the system and the lateral DOFs of

planar frames in the ith 
oor of a multi-story building. An example of the

displacement transformation matrix is shown in Figure 5.2 (b).
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Figure 5.2: Global DOFs of a system and lateral DOFs of planar frames

4. Finally, the system sti�ness matrix of the simpli�ed model is obtained by as-

sembling the transformed sti�ness matrices of all the planar frames:

K(�) =

NfX
j=1

GT
j
�KjGj =

NfX
j=1

GT
j P(�)

T
jK(�)jP(�)jGj

=

NfX
j=1

T(�)TjK(�)jT(�)j (5.6)

where T(�)j=P(�)jGj. After substituting Equation (5.1) into Equation (5.6)

and some manipulations, the sti�ness matrix of the simpli�ed model can be

represented in a similar form as in Equation (2.1):

K(�) =

NfX
j=1

X
8i2j

�iT(�)
T
jKsiT(�)j =

NsubX
i=1

�i �K(�)si (5.7)

where the e�ective sti�ness contribution of the ith substructure is:

�K(�)si =
X
8j3i

T(�)TjKsiT(�)j (5.8)

To obtain the e�ective sti�ness contribution of the ith substructure, the as-

sembly is performed for all planar frames which include the ith substructure

(8j 3 i). For example, when the ith substructure is common to planar frames 1

and 2, the sti�ness contribution of the ith substructure to the system sti�ness
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matrix is �i(T(�)
T
1KsiT(�)1 + T(�)T2KsiT(�)2).

This approach neglects compatibility of deformations in columns which are com-

mon to more than one frame. The assumption is acceptable except for tall slender

buildings or tube type structures [1]. The system mass matrix is diagonalized by

lumping the 
oor mass and the half masses of columns connected to the 
oor. The

mass moment of inertia of the 
oor diaphragm is calculated about the vertical axis

through the center of mass. Since the proposed Bayesian approach requires repeated

solutions of the eigenvalue problem, the computational cost is signi�cantly reduced

by using the simpli�ed model.

5.2 A Two-Story Three-Dimensional Frame Struc-

ture

A two-story frame structure, shown in Figure 5.3, is employed to validate the proposed

Bayesian approach for three-dimensional problems. The analytical model is assumed

to be identical to the actual structure, and has 48 DOFs (24 rotational DOFs and

24 translational DOFs). Each beam and column is modeled as a substructure. Alto-

gether, the system consists of 16 substructures. For all the cases considered in this

example, �ve fundamental modes are estimated. The modal parameters are measured

at 5 DOFs out of the total 48 DOFs. Two con�gurations of the measured DOFs are

shown in Figure 5.4. In addition, three sets of the estimated modal parameters are

simulated by perturbing the exact modal parameters with a 5% noise level.

As shown in Table 5.1, the four cases are conducted by changing the damage

locations and amount. The modal parameters are measured at the DOFs shown in

Figure 5.4 (a). For case 1, the �rst substructure is subject to a 20% decrease in

the sti�ness. Case 2 assumes 20% and 40% sti�ness decreases in the 10th and 11th

substructures, respectively. Case 3 assumes 20% and 40% sti�ness decreases in the

1st and 14th substructures, respectively. All the damaged substructures are shown

as circled numbers in Figure 5.3.

For cases 1 and 2, the Bayesian method �nds the exact damage locations as well as

the exact damage amount. Case 3 ranks the actual damage event as the second most
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Figure 5.4: Two di�erent con�gurations of measured DOFs
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probable event; the most probable event corresponds to the actual damage locations

(the 1st and 14th substructures) with one extra location (the 11th substructure).

After increasing the number of modal data sets from 5 to 10, the actual damage

event is properly identi�ed as the most likely one as shown in case 4.

Table 5.1: Diagnosis results of a two-story frame structure

Actual Damage Estimated Damage

Case Ldam Ddam L̂dam D̂dam Ns Rank

1 f1g f20%g f1g f20%g 5 1
2 f10,11g f20%,40%g f10,11g f20%,40%g 5 1
3 f1,14g f20%,40%g f1,11,14g f20%,20%,40%g 5 1

f1,14g f20%,40%g 2
4 f1,14g f20%,40%g f1,14g f20%,40%g 10 1

Measured DOFs=f3,16,28,32,48g, Estimated Modes=f1,2,3,4,5g, Noise=2%, Ns=5

Table 5.2: Comparison of two measurement strategies

Case DOFm Rank

5 f3,16,28,32,48g not found
6 f8,13,20,25,32g 1

Estimated Modes=f1,2,3,4,5g, Noise=2%, Ns=5

Ldam=f1,5g, Ddam=f20%,40%g

Table 5.2 investigates the e�ect of measured DOFs on damage detection by com-

paring two di�erent con�gurations of measured DOFs as shown in Figure 5.4. For

both cases, 20% and 40% damages are assumed in the �rst and �fth substructures.

Since the actual damage event is not found by the branch-and-bound search for case 5,

the rank of the actual damage event is represented as not found in Table 5.2. In

dynamic analysis, the inertial e�ects associated with rotational DOFs are usually

small. In addition, the axial deformations of beams and columns can be ignored in

many cases. As a result, lateral DOFs provide more information than rotational and

vertical DOFs. For case 5, three rotational, one vertical and one horizontal DOFs

(DOFm=f3, 16, 28, 32, 48g) are measured, and for case 6 the measured DOFs f8,
13, 20, 25, 32g are all lateral DOFs. The results of Table 5.2 show that the measured
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DOFs in case 6 are more appropriate for the detection of damage in the �rst and �fth

substructures.

5.3 A Five-Story Three-Dimensional Frame Struc-

ture
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Figure 5.5: The baseline structure and the simpli�ed model of a �ve-story frame structure

The applicability of the Bayesian probabilistic approach is illustrated when di�er-

ences exist between the baseline structure and the simpli�ed model. In this example,

a �nite element (FE) model of a �ve-story frame structure serves as the baseline

structure. The term baseline structure is used to represent a structure from which

the experimental modal parameters are simulated. The simpli�ed model, which the

proposed method works with, is constructed as described in Section 5.1. The system

mass matrix is diagonalized by lumping the 
oor mass and the half masses of columns

connected to the 
oor. The moment of inertia of the 
oor diaphragm is calculated

about the vertical axis through the center of mass. Figure 5.5 (a) and (b) show the

baseline structure and the simpli�ed model, respectively. While the baseline struc-

ture has 6 DOFs at each node (three translational and three rotational DOFs), the
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simpli�ed model has only 3 DOFs at the mass center of each 
oor. For the current

�ve-story example, the baseline structure has 120 DOFs and the simpli�ed model has

15 DOFs.

5.3.1 Damage Detection using Modal Parameters

First, the damage diagnoses are conducted using the modal parameters. The �rst

example neglects the measurement noise to highlight the e�ect of modeling error,

and the second example considers both modeling and noise errors. Furthermore, for

the calculation of eM(�Ho) in Equation (2.18),  ̂hm is simulated by perturbing the

modal parameters of the initial FE model with noise.  (�Ho) is obtained by solving

an eigenvalue problem of the simpli�ed model. That is, eM(�Ho) is de�ned as the

modal error caused by the di�erence between the baseline structure and the simpli�ed

model.

To simulate the estimated modal vectors of a structure, the modal vector of the

FE model is reconstructed at the mass center of every 
oor. (In many vibration

tests of building structures, modal vectors are evaluated at the mass center of the


oor diaphragm.) That is, the components of the estimated modal vector correspond

directly with those of the simpli�ed model. The �rst six fundamental modes are

assumed to be estimated. The �rst and fourth modes are the �rst and second bending

modes, respectively, in the X-direction. The second and �fth modes are the �rst and

second bending modes, respectively, in the Y-direction. Furthermore, the third and

sixth modes correspond to the �rst and second torsional modes, respectively.

Consideration of Modeling Error

Table 5.3 shows the diagnosis results of three di�erent damage scenarios, considering

the di�erence between the baseline structure and the simpli�ed model. Case 1 assumes

a 50% sti�ness decrease in the 5th and the 9th substructures. For case 2, 40%

and 60% decreases in the sti�ness are imposed on the 9th and 11th substructures,

respectively. Case 3 assumes 20% and 10% sti�ness decreases in the 18th and 20th

substructures, respectively. Figure 5.5 (a) shows the damaged substructures as circled

numbers. Beams and columns in the baseline structure are de�ned as substructures.
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Since the sti�ness matrix of the simpli�ed system is represented as an assembly of

the e�ective sti�ness contribution of each substructure [see Equation (5.7)], damage

locations can be tracked at the substructure level of the baseline structure. That is,

damage locations are identi�ed in the baseline structure, not in the simpli�ed model.

For all cases, the Bayesian approach properly identi�es the actual damage loca-

tions. The estimated damage amount is, however, slightly di�erent from the actual

damage amount for cases 1 and 2. This result can be explained as follows: We

search for the most likely hypothesis Hmax and the corresponding non-dimensional

parameter value �max
Hmax

which minimize the approximated error function J(	̂Ns ;�Hj
)

de�ned in Equation (2.22). For the exact de�nition of J(	̂Ns;�Hj
), the modal error

caused by the modeling error after damage occurrence eM(�Hd
) should be evaluated.

However, the actual damage locations and amount, which are required to evaluate

eM(�Hd
), are unknown. Therefore, eM(�Hd

) is approximated by eM(�Ho), which

is the modal error caused by the modeling error before damage occurrence, assum-

ing that the modeling error is constant for arbitrary damage locations and amount

(eM(�Hj
) �= eM (�Ho); 8�Hj

).

Table 5.3: E�ect of modeling error in a �ve-story frame structure

Actual Damage Estimated Damage

case Ldam Ddam L̂dam D̂dam Ns

1 f5,9g f50%,50%g f5,9g f60%,50%g 1
2 f9,11g f40%,60%g f9,11g f50%,70%g 1
3 f18,20g f20%,10%g f18,20g f20%,10%g 1

Noise=0%, Measured DOFs=f1,2,...,15g, Estimated Modes=f1,2,...,6g

For comparison of eM (�Ho) and eM(�Hj
), the selected components of eM(�Ho)

and eM (�Hj
) are listed in Table 5.4. The error components corresponding to the

�rst six frequencies are shown in part (a) of Table 5.4. Next the error components

corresponding to the measured modal vectors are presented in part (b) of the table.

For simplicity, only the components corresponding to the DOFs 1 - 5 are tabulated

for the �rst and fourth modal vectors (the �rst two bending modes along the X-

direction). Similarly, the components corresponding to the DOFs 6 - 10 are presented
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Table 5.4: Comparison of eM (�Ho
) and eM (�Hj

)

 i(�Ho) eM;i(�Ho) eM;i(�Hj
)

Case 1 Case 2 Case 3

(a) Components corresponding to the frequencies

Mode !i
1 1.7313 0.0030 0.0053 (0.13%) 0.0035 (0.02%) 0.0030 (0.00%)

2 2.4566 0.0281 0.0282 (0.00%) 0.0282 (0.00%) 0.0281 (0.00%)

3 2.9106 0.0070 0.0079 (0.03%) 0.0082 (0.04%) 0.0076 (0.02%)

4 5.7511 0.0157 0.0014 (0.30%) 0.0078 (0.14%) 0.0157 (0.00%)

5 7.6658 0.0935 0.0943 (0.01%) 0.0948 (0.02%) 0.0948 (0.02%)

6 9.1053 0.0956 0.0557 (0.44%) 0.0415 (0.59%) 0.0981 (0.03%)

(b) Components corresponding to the modal vectors

DOF v1

1 0.1559 0.0003 0.0002 (0.06%) 0.0002 (0.05%) 0.0003 (0.00%)

2 0.4274 0.0009 0.0004 (0.12%) 0.0006 (0.05%) 0.0009 (0.00%)

3 0.6865 0.0013 0.0001 (0.17%) 0.0011 (0.03%) 0.0013 (0.00%)

4 0.8822 0.0012 0.0007 (0.06%) 0.0011 (0.02%) 0.0012 (0.00%)

5 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v2

6 0.1998 0.0014 0.0014 (0.00%) 0.0014 (0.00%) 0.0015 (0.03%)

7 0.4834 0.0029 0.0029 (0.00%) 0.0029 (0.00%) 0.0031 (0.02%)

8 0.7312 0.0032 0.0032 (0.00%) 0.0032 (0.00%) 0.0033 (0.01%)

9 0.9077 0.0018 0.0018 (0.00%) 0.0018 (0.00%) 0.0019 (0.01%)

10 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v3

11 0.1987 0.0001 0.0002 (0.03%) 0.0002 (0.02%) 0.0002 (0.05%)

12 0.4849 0.0022 0.0019 (0.07%) 0.0018 (0.08%) 0.0020 (0.04%)

13 0.7345 0.0029 0.0027 (0.02%) 0.0031 (0.04%) 0.0029 (0.01%)

14 0.9102 0.0013 0.0016 (0.03%) 0.0019 (0.06%) 0.0014 (0.01%)

15 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v4

1 0.4996 0.0005 0.0006 (0.04%) 0.0005 (0.01%) 0.0005 (0.00%)

2 0.9619 0.0022 0.0011 (0.11%) 0.0002 (0.21%) 0.0022 (0.00%)

3 0.6984 0.0084 0.0059 (0.36%) 0.0071 (0.19%) 0.0084 (0.00%)

4 -0.1532 0.0119 0.0103 (1.05%) 0.0119 (0.01%) 0.0119 (0.00%)

5 -1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

DOF v5

6 0.5963 0.0004 0.0003 (0.01%) 0.0003 (0.01%) 0.0013 (0.15%)

7 1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

8 0.6238 0.0017 0.0016 (0.02%) 0.0016 (0.02%) 0.0024 (0.11%)

9 -0.2603 0.0020 0.0022 (0.06%) 0.0025 (0.18%) 0.0025 (0.17%)

10 -0.9869 0.0071 0.0069 (0.03%) 0.0062 (0.10%) 0.0070 (0.09%)

DOF v6

11 0.5824 0.0021 0.0180 (2.73%) 0.0319 (5.12%) 0.0038 (0.29%)

12 0.9756 0.0053 0.0447 (4.04%) 0.0748 (7.12%) 0.0015 (0.39%)

13 0.5881 0.0125 0.0529 (6.86%) 0.0855 (12.4%) 0.0095 (0.51%)

14 -0.2931 0.0164 0.0348 (6.30%) 0.0466 (10.3%) 0.0148 (0.54%)

15 -1.0000 0.0000 0.0000 (0.00%) 0.0000 (0.00%) 0.0000 (0.00%)

*The value in ( ) represents the normalized error, 100� jeM;i(�Ho
)� eM;i(�Hj

)j= i(�Ho
), in percentage
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Table 5.5: E�ect of modeling and noise errors in a �ve-story frame structure

Actual Damage Estimated Damage

case Ldam Ddam L̂dam D̂dam Ns

1 f5,9g f50%,50%g f5,9g f60%,50%g 5
2 f9,11g f40%,60%g f9,11g f50%,70%g 10
3 f18,20g f20%,10%g f18,20g f20%,10%g 10

Noise=5%, Measured DOFs=f1,2,...,15g, Estimated Modes=f1,2,...,6g

for the second and �fth modal vectors (the �rst two bending modes along the Y-

direction), and the components corresponding to the DOFs 11 - 15 are presented

for the third and sixth modal vectors (the �rst two torsional modes). eM(�Hj
) is

computed for the three damage cases in Table 5.3. To provide a relative measure

on the magnitude of eM(�Ho), the components of  (�Ho) corresponding to those of

eM(�Ho) are presented in the �rst column of each table. Furthermore, a normalized

error de�ned as 100� jeM;i(�Ho)� eM;i(�Hj
)j= i(�Ho) is parenthesized next to each

eM;i(�Hj
) value.

For cases 1 and 2 of Table 5.4, larger di�erences between eM(�Hj
) and eM(�Ho)

than those of case 3 are observed especially in the components corresponding to

mode 6. This explains why the estimated damage amount is slightly di�erent from

the actual damage amount for cases 1 and 2. It appears that jeM;i(�Ho)� eM;i(�Hj
)j

increases for higher modes. However, the magnitude of jeM;i(�Ho) � eM;i(�Hj
)j re-

mains less than 1 % of the corresponding  i(�Ho) for most components. Since the

damage amount is small in case 3, the change of the modeling error is negligible,

and the Bayesian approach identi�es the exact damage amount as well as the correct

damage locations. This example illustrates that it is possible to simplify a model and

to reduce the size of the system without losing signi�cant accuracy.

Consideration of Modeling and Noise Errors

In the following example, the measurement noise and the modeling error are taken

into account together to validate the robustness of the Bayesian approach. The

same damage scenarios in Table 5.3 are re-investigated. The only di�erence from

the previous cases is that the modal parameters of the FE model are corrupted with
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5% noise. Table 5.5 summarizes the diagnosis results. After increasing the number

of modal data sets to a certain number, the Bayesian approach identi�es the actual

damage locations even in the presence of the measurement noise and the discrepancy

between the baseline structure and the simpli�ed model.

5.3.2 Damage Detection using Ritz Vectors

The �ve-story three-dimensional frame structure shown in Figure 5.5 is employed

again to illustrate the applicability of Ritz vectors to damage detection when dif-

ferences exist between the baseline structure and the simpli�ed model. Similar to

modal vectors, the components of the estimated Ritz vector coincide with those of

the simpli�ed model. Loads applied to the baseline structure are also converted to

equivalent forces in the simpli�ed model using the displacement transformation ma-

trix which relates the DOFs of the baseline structure to the mass center DOFs of the

simpli�ed model. Furthermore, for the calculation of the modeling errror eM(�Ho) in

Equation (2.20), the sample mean  ̂hm is computed from the Ritz vectors of the initial

FE model without damage. The analytical data set  (�Ho) is obtained from the

simpli�ed model following Equations (3.25) to (3.29). Six Ritz vectors are estimated

from the load patterns shown in Figure 5.6. Compared to the previous eight-bay

truss example, in which the estimated Ritz vectors are insensitive to most face diag-

onals and battens, the frame example in this subsection has less redundancy and the

estimated Ritz vectors are reasonably sensitive to all substructures. Therefore, the

damage threshold is set to 0.9 for every substructure.

The �rst example neglects the measurement noise to highlight the e�ect of mod-

eling error. In the second example, both modeling error and measurement noise are

considered.

Diagnosis of Damage Cases with Modeling Error

To highlight the e�ect of modeling error, the e�ect of measurement noise is neglected

in this example. Table 5.6 summarizes the diagnoses of eight di�erent damage cases

using the �rst six Ritz vectors generated from load pattern 1 shown in Figure 5.6 (a).

The damaged substructures in Table 5.6 are shown as circled numbers in Figure 5.5.
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(d) Load Pattern 4

Figure 5.6: Load patterns applied to a �ve-story frame structure

For cases C, D, E and G of Table 5.6, the Bayesian approach ranks the actual damage

Table 5.6: Damage diagnoses of a �ve-story frame structure considering modeling error

Actual Damage Most Prob. Damage

Case Ldam Ddam Rank1 L̂dam D̂dam

A f5g f10%,10%g 51/266 f5,25g f10%,10%g
B f5,9g f10%,10%g 8/266 f5,9,25g f10%,10%,10%g
C f13,20g f10%,10%g 1/303 f13,20g f10%,10%g
D f25,28g f10%,10%g 1/193 f25,28g f10%,10%g
E f25,30g f10%,10%g 1/266 f25,30g f20%,10%g
F f9,25g f10%,10%g 2/266 f9,25,28g f10%,10%,10%g
G f34,38g f10%,10%g 1/266 f34,38g f10%,10%g
H f26,29g f10%,10%g 7/230 f25,26,29g f10%,10%,10%g
1. The �rst number is the rank of the actual damage event and the second is the total number of

the examined hypotheses.
2. The �rst six Ritz vectors are estimated from load pattern 1 in Figure 5.6.
3. Ns=1 and Noise=5%.
4. Damage threshold is set to 0.9 for all substructures.

event as the most likely damage event. In each of cases A, B, F and H, the actual

damage locations are included in the most probable damage event, which the proposed

method identi�es. However, undamaged substructures are also mistakenly included

in the most probable damage events. For example, in case B, the proposed Bayesian

approach diagnoses that damage is most likely located in the 5th, 9th and 25th

substructures. While the 5th and 9th substructures are actually damaged, the 25th

substructure is mistakenly included. This result can be explained as follows: We
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search for the most likely hypothesis Hmax and the corresponding nondimensional

parameter value �max
Hmax

which minimizes the approximated error function J(	̂Ns ;�Hj
)

de�ned in Equation (2.22). For the exact de�nition of J(	̂Ns;�Hj
), eM (�Hd

), which

is the output error caused by the modeling error after damage occurrence, should

be evaluated instead of eM(�Ho). Since the actual damage locations and amount,

which are required to evaluate eM(�Hd
), are unknown, eM (�Hd

) is approximated

by eM(�Ho). Here, eM(�Ho) is the output error caused by the modeling error before

damage occurrence, assuming that the modeling error is constant for arbitrary damage

locations and damage amount. Since the Ritz vectors are very sensitive to the sti�ness

change, it appears that a relatively large di�erence between eM (�Hd
) and eM(�Ho)

may exist even for the small damage amount like the 10% sti�ness loss presented

in the example here. This di�erence explains why the undamaged substructures are

mistakenly included in the most probable damage event in cases A, B, F and H. This

also explains why the estimated damage amount is slightly di�erent from the actual

damage amount in case E. However, using the simpli�ed model, we are able to reduce

the size of the system from 120 DOFs to 15 DOFs without sacri�cing signi�cant

accuracy.

The eight damage cases are re-diagnosed in Table 5.7 employing four di�erent

load patterns and a combination of the load patterns. For comparison, the results

of diagnoses using modal vectors are also presented in the 6th column of Table 5.7

(denoted as MV in the table). Except for changing the load patterns, all the other

conditions remain the same as the cases shown in Table 5.6. Table 5.7 shows that a

careful selection of load patterns can improve diagnoses of damage and, in general,

Ritz vectors provide better diagnoses than modal vectors. For example, by imposing

load pattern 1 on the frame structure, the Bayesian approach identi�es the actual

damage locations in four out of eight cases (cases C, D, E and G). Even for the other

four cases (cases A, B, F and H), all the actual damage locations are included in

the most probable damage event. Load pattern 2 fails to detect the actual damage

event in case H, load pattern 3 does not �nd the actual damage event of case E,

and load pattern 4 ranks the actual damage event as the most probable one only for

case G. When all four load patterns are employed simultaneously (the last column of
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Table 5.7: Damage diagnoses of a �ve-story frame structure using di�erent load patterns

The rank of the actual damage event2

Case1 F13 F2 F3 F4 MV4 All F's5

A 51/266 3/230 3/230 18/255 32/266 1/155
B 8/266 3/266 7/266 15/266 20/266 6/266
C 1/303 2/266 1/375 5/155 100/193 1/230
D 1/193 1/230 1/193 14/230 -/155 2/155
E 1/266 4/266 -/41 2/337 -/41 1/266
F 2/266 2/266 1/266 2/266 -/80 1/302
G 1/266 1/267 2/303 1/303 5/266 1/267
H 7/230 -/41 3/266 2/338 -/41 1/302

1. The damage cases here are identical to the damage cases in Table 5.6.
2. The �rst number is the rank of the actual damage event and the second is the total number of

the examined hypotheses. \-" denotes that actual damage event is not detected.
3. In F1, F2, F3 and F4, the �rst six Ritz vectors are estimated from load patterns 1, 2, 3 and 4,

respectively.
4. In MV, the �rst six modal vectors are estimated.
5. Load patterns 1 to 4 are employed and the �rst six Ritz vectors are generated from each load

pattern.

Table 5.7), the rank of the actual damage event is improved for most damage cases.

Diagnosis of Damage Cases with Modeling Error and Measurement Noise

In this example, both modeling error and measuring noise are included. To simu-

late the measurement noise, the analytical Ritz vectors generated from the baseline

structure are perturbed with a 5% noise level using Equation (3.35). In addition, the

number of data sets (Ns) is increased from 1 to 20. Since the use of all the four load

patterns provides the best diagnosis in the previous examples, all of the load patterns

are again employed in this example. Table 5.8 summarized the results for the eight

cases, which have been diagnosed in the previous example. The results indicate that

(1) the diagnoses provided by the proposed method improve as the number of data

sets increases, and (2) if load patterns are selected carefully and a large number of

data sets are available, the proposed method can identify the actual locations and

amount of damage even in the presence of measurement noise and modeling error.
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Table 5.8: Damage diagnoses of a frame structure considering modeling error and measurement noise

The Rank of The Actual Damage Event2 Most Prob. Damage3

Case1 Ns = 1 Ns = 5 Ns = 10 Ns = 20 L̂dam D̂dam

A 12/230 5/230 2/195 1/155 f5g f10%g
B 65/303 4/266 2/266 2/266 f4,5,9g f10%,10%,10%g
C 10/213 4/155 2/193 3/193 f9,20g f10%,10%g
D 6/155 5/155 3/155 2/155 f28g f20%g
E 1/303 1/299 1/266 1/303 f25,30g f10%,10%g
F 2/303 1/266 1/374 1/303 f9,25g f10%,10%g
G 1/230 1/267 1/267 1/267 f35,38g f10%,10%g
H 1/337 1/337 1/337 1/266 f25,26g f10%,10%g
1. The damage cases here are identical to the previous damage cases in Table 5.6.
2. The �rst number is the rank of the actual damage case and the second is the total number of

the examined hypotheses.
3. L̂dam and D̂dam are identi�ed using all the four load patterns and Ns = 20

5.4 A Reinforced-Concrete Bridge Column

In this section, the proposed Bayesian approach is applied to locate the plastic hinge

of a concrete bridge column based on the data obtained from the vibration tests

coducted at the University of California, Irvine (UCI).

A series of bridge column tests were conducted at the University of California,

Irvine as a research project with the California Department of Transportation (CAL-

TRANS). The main purpose of the tests was to study the relative strength and ductil-

ity provided by two seismic-retro�t procedures for reinforced-concrete bridge columns.

The �rst procedure increased the diameter of an original column with cast-in-place

concrete. The second procedure increased the diameter of the column using shotcrete

sprayed onto the exterior of the original column. Incremental cyclic load tests were

performed on the bridge columns with and without the retro�t procedures. Static

lateral loads were incrementally applied to the top of a column until the ultimate

load capacity of the column was reached. The column was cycled three times after

each load increment and modal analysis was conducted after each cyclic load testing.

The experimental modal analysis of the columns was performed by the Engineering
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Analysis Group of the Los Alamos National Laboratory (LANL). 1

5.4.1 Description of Experimental Setup

Figure 5.7: UC Irvine test con�guration (Courtesy of the Los Alamos National Laboratory)

Two concrete bridge columns were employed in the test. The diameter of each col-

umn was retro�tted from 24 in (61.0 cm) to 36 in (91.4 cm). The �rst column was

retro�tted by placing forms around the existing column and placing additional con-

crete within the form. The diameter of the second column was extended by spraying

concrete in a process referred to as shotcreting. The shotcreted column was then

polished with a trowel to obtain a circular cross section. The vibration test data ob-

tained from the �rst column were employed for modal analysis and damage detection

in this study.

Figure 5.7 shows the con�guration of the test column. The column employed in

this study was cast on top of a 56 in2 (361.3 cm) concrete foundation with a height

1A detailed description of the columns and the data obtained from the tests are provided on the
web site \http://esaea-www.esa.lanl.gov/damage id".
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of 25 in (63.5 cm). A 25 in2 (161.3 cm) concrete block was placed on the top of

the column, and a hydraulic actuator for the static cyclic testing and an electro-

magnetic shaker for the modal analysis were attached to this block. As is typical

of actual retro�t in the �eld, a 1.5 in (3.8 cm) gap was left between the top of the

foundation and the bottom of the column part. Therefore, the vertical reinforcement

in the retro�tted portion of the column did not extend into the foundation. Since the

concrete foundation was bolted to the laboratory 
oor, the bottom of the foundation

was not moved once testing started. An inner circle of 10 #6 vertical rebars with a

yield strength of 74.9 ksi (516.4 MPa) were embedded within the initial 24 in (61.0

cm) column. These rebars were enclosed by a spiral cage of #2 rebars with a yield

strength 30 ksi (206.9 MPa) and spaced at 7 in (17.8 cm) pitch. The retro�t jacket

had 16 #8 vertical rebars with a yield strength of 60 ksi (414.0 MPa). These rebars

were enclosed by a spiral cage of #6 rebars spaced at 6 in (15.2 cm) pitch.

Cyclic lateral loads were applied to the top of the column using an hydraulic

actuator. The loads were �rst applied in a force-controlled manner to produce lateral

deformations at the top of the column, corresponding to 0.25�yT , 0.5�yT , 0.75�yT ,

and �yT , respectively. Here �yT is the lateral deformation corresponding to the

theoretical �rst yield of the longitudinal reinforcement. The structure was cycled

three times at each load level. Based on the observation of these responses under

force-controlled loadings, a lateral deformation corresponding to the actual �rst yield,

�y, was calculated. 2 Next, the loading was increased in a displacement-controlled

manner corresponding to �y, 1.5�y, 2.5�y, 4.0�y and 7.0�y, respectively. The

incremental loadings caused continuous deterioration of the column sti�ness. The

formation of a plastic hinge was observed between the top of the foundation and the

bottom of the retro�t jacket.

For the modal analysis, the column was excited by an APS electro-magnetic shaker

mounted at the top of the column. As shown in Figure 5.8, the shaker rested on a

steel plate attached to the concrete top, and the shaker was mounted o� the axis to

excite torsional modes. Note that the actuator was operated in an open-loop mode

2A detailed summary of the calculation of the actual �rst yielding deformation can be found in
\http://www.ics.uci.edu/�athomas/caltrans".
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and there was a signi�cant feedback to the actuator through the steel plate. This

feedback resulted in a poor band-limited white noise excitation to the column and

rendered the identi�cation of modal parameters di�cult.

The exciting force was measured with an accelerometer mounted to the sliding

mass of the shaker 0.18 lb-s2=in (31.5 kg). The same magnitude of excitation was

used in all tests. Figure 5.9 shows the locations of the forty accelerometers mounted.

Locations 2, 39 and 40 had PCB 302A accelerometers with a nominal sensitivity

10mV/g. Since these accelerometers were found not to be sensitive enough to mea-

sure the desired vibration quantities, the acceleration data from these sensors were

excluded for modal analysis. Wilcoxon 736t accelerometers with a nominal sensitivity

of 100mV/g were placed in locations 33, 34, 35, 36 and 37. All other locations had

PCB 336C accelerometers with a nominal sensitivity of 1V/g. Accelerometers 36 and

37 were located 8 in (20.3 cm) o� the axis in the y direction.

Data were sampled and processed with an HP 3566A dynamic data acquisition

system. Frequency response functions (FRFs), auto and cross power spectra, and

coherence functions were measured in the range of 0 to 400 Hz. Each spectrum was

calculated from 30 averages of 2 second duration time histories with 2048 sampling

points. This sampling rate produced a frequency resolution of 0.5 Hz. Time his-

tory measurements and FRF analysis were conducted after each cyclic load test was

done at the deformation levels, �y, 1.5�y, 2.5�y, 4.0�y, and 7.0�y, respectively.

For simplicity, the tests corresponding to the deformation level, �y, 1.5�y, 2.5�y,

4.0�y, and 7.0�y, are labeled hereafter as Test 1, Test 2, Test 3, Test 4, and Test 5,

respectively. Furthermore, the vibration test prior to any cyclic loading is referred to

as Test 0.

5.4.2 Analytical Modeling

Two analytical models are constructed for damage detection. The �rst model (Model

1) consists of 9 beam elements and the second model (Model 2) has 27 beam elements

(see Figure 5.10 and Figure 5.11). Each node of a beam element has three translational

DOFs and three rotational DOFs. Therefore, Models 1 and 2 have a total of 54 and

162 DOFs, respectively. An elastic modulus of 3.6�106 psi (2.48�104 MPa), a mass
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Figure 5.8: A shaker and accelerometers for UC Irvine test (Courtesy of the Los Alamos National
Laboratory)

110



Chapter 5 Damage Detection with Simpli�ed Models

25.0" (63.5 cm)
24’’ (61 cm)

56’’ (142 cm)

36’’ (91 cm)

136" (345 cm)

24" (61 cm)
18" (45.7 cm)

4
6

5

7

8

9

10

11

12

13

14

15

61

17

18

19

20

21
40

1.5" (3.8 cm)

Z

X
3 22

23
24

25

1
26

27

2
28

29

30

31

38

32

33

39

34

35

36, 37

Figure 5.9: Dimensions and accelerometer locations of UC Irvine column test
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density of 2.17�10�4 lb-s2=in4 (2.32�10�3 kg=cm3, and a Poission's ratio of 0.2 are

speci�ed in the models. The DOFs at the base of the foundation were constrained

for translation and rotation.

To construct the system mass matrix, the lumped mass m and the mass moments

of inertia IM are computed as: m = 
��r2�h, IMx , IMy = 1
12
m(3r2+h2) and IMZ =1

2
mr2.

Here, 
 is a mass density of 2:17�10�4 lb-s2=in4 (2.32�10�3 kg=cm3), r is the radius

of the column, and h is the height of the tributary area. Furthermore, the masses of

the actuator and the steel plate are added to the top node of the column (Node 10

in Figure 5.10 and Node 28 in Figure 5.11, respectively). Next, the analytical models

are slightly re�ned based on engineering judgment to match the measured model

parameters. The re�nement mainly focuses on the consideration of the reinforcement

steel, the estimation of the mass moments of inertia of the steel plate and the actuator,

and the connection modeling between the foundation and the column.

Table 5.9: Natural frequencies (Hz) from the test and the analytical models

Test 0 Model 1� Model 2� Model 3y Model 4y

1st Bending 27.82 26.55 25.38 19.10 25.60
1st Torsion 110.42 115.87 116.04 114.00 131.00
2nd Bending 147.51 150.62 146.37 124.00 136.00
1st Axial - 206.36 201.35 181.00 204.00

2nd Torsion 272.83 276.04 276.63 351.00 389.00
3rd Bending 340.71 374.03 362.36 306.00 319.00

* Models 1 and 2 are shown in Figures 5.10 and 5.11, respectively. y Models 3 and 4 are

constructed at the Los Alamos National Laboratory.

The natural frequencies from the test data and two analytical models are summa-

rized in Table 5.9. Table 5.9 shows the �rst three bending modes in the X direction,

the �rst two torsional modes, and �rst axial mode. The second column of Table 5.9

shows the estimated natural frequencies from the experimental modal analysis of the

undamaged column (Test 0). The experimental modal analysis fails to identify the

�rst axial mode. The natural frequencies obtained from Models 1 and 2 are also tabu-

lated. In addition, the natural frequencies of two additional models (Models 3 and 4)

constructed at the LANL using a �nite element analysis software, ABAQUS are also
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presented in the table. Model 3 is constructed using 8-node continuum elements and

has 20,979 DOFs. While Model 4 is constructed using 3-node beam elements and has

114 DOFs. Reinforcement is not incorporated into the LANL models. Because of the

symmetry of the column, identical bending modes occur in both X and Y directions

at the same natural frequencies. Only the bending modes in the X direction are

presented here.

Note that the orders of the second torsion and third bending modes in Models 1

and 2 are switched for Models 3 and 4. It appears that the di�erences between

the models in this study (Models 1 and 2) and the LANL models (Models 3 and 4)

arise mainly from the di�erences in the consideration of reinforcement, the addition

of actuator and steel plate masses, and the computation of the mass moment of

inertia. We can observe that since the reinforcement is included in Models 1 and 2,

the bending mode frequencies of these models are higher than those of the LANL

models. In contrast, the torsional mode frequencies in the LANL models are higher

than those of Models 1 and 2. The inclusion of the actuator and steel plate masses,

and the mass moment of inertia computed for Models 1 and 2 seem to have lowered

the frequencies of corresponding torsional modes.

Since the measurement points on the test column do not coincide with the DOFs

of the analytical model, the displacements at the measurement points are recon-

structed at the DOFs of the analytical model. Figure 5.12 shows the displacement

transformation matrix that relates the acceleration measurement points (Xl, Yl, Zl,

Xr, Yr and Zr) to the DOFs of the analytical model (Xc, Yc, Zc, Rx, Ry and Rz).

All measured modal vectors are reconstructed at the analytical DOFs after the dis-

placement transformation. However, it should be noted that there are not su�cient

accelerometers installed to reconstruct the estimated modal vectors at all the DOFs

in the analytical model. That is, the components of the estimated modal vectors cor-

responding to the nodes 2, 3 and 10 in the analytical model of Figure 5.10 could not

be obtained from the measurement points. For a graphical display of the measured

modal vectors, the uninstrumented DOFs corresponding to the nodes 2, 3 and 10 in

Figure 5.10 are simply assumed to be identical to adjacent nodes. For example, the

displacements at nodes 2, 3 and 10 are set identical to the displacements at nodes 1,
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Figure 5.10: Analytical Model 1 of UC Irvine column test
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Figure 5.11: Analytical Model 2 of UC Irvine column test
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4 and 9, respectively. Figures 5.13 to 5.16 show the analytical and measured modal

vectors corresponding to the �rst bending and the �rst torsional modes in Table 5.9.

The analytical modal vectors in Figures 5.13 and 5.15 are computed from Model 1

in Figure 5.10. The measured modal vectors in Figures 5.14 and 5.16 are computed

from Test 0.
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(a) the acceleration measurement points and the DOFs of the analytical model
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Figure 5.12: Relating the acceleration measurement points to the DOFs of analytical model
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(a) X-Z plane view (b) 3D view (c) X-Y plane view

Figure 5.13: The �rst bending mode from Model 1 : 26.55 Hz

(a) X-Z plane view (b) 3D view (c) X-Y plane view

Figure 5.14: The �rst bending mode from test data: 27.82 Hz
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(a) X-Z plane view (b) 3D view (c) X-Y plane view

Figure 5.15: The �rst torsion mode from Model 1: 115.87 Hz

(a) X-Z plane view (b) 3D view (c) X-Y plane view

Figure 5.16: The �rst torsion mode from test data: 110.42 Hz
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5.4.3 Application to Damage Detection

This subsection illustrates the Bayesian probabilistic approach for the detection of the

plastic hinge location in the column tested. The natural frequencies and modal vectors

estimated after each cyclic load test corresponding to �y, 1:5�y, 2:5�y, 4:0�y and

7:0�y (Tests 1, 2, 3, 4 and 5, respectively) are employed. This incremental loading

caused continuous sti�ness deterioration of the column structure and simulated the

condition for continuous monitoring. Table 5.10 shows the natural frequencies of the

�rst bending and the �rst torsional modes at each displacement level. Note that only

the �rst two modes are employed for damage detection since only the �rst two modes

are reliably estimated from the experimental FRFs, and the discrepancies between the

analytical modal vectors and the measured modal vectors become larger for higher

modes. Deformation of plastic hinge was observed near the connection part between

the foundation and the retro�tted portion of the column. It appears that this plastic

hinge deformation was mainly responsible for the signi�cant decreases in the �rst

bending and torsional modes. This damage region approximately corresponds to

elements 2 and 3 of the analytical models in Figures 5.10 and 5.11.

Table 5.10: Natural frequencies (Hz) estimated at di�erent displacement levels

Mode initial �y 1:5�y 2:5�y 4:0�y 7:0�y

1st Bending 27.82 12.80 7.31 6.15 5.61 5.21
1st Torsion 110.42 109.97 50.20 36.90 20.32 19.04

In this study, only the simple models (Models 1 and 2) are employed. The mea-

sured and analytical modal vectors are normalized with respect to the analytical

mass matrix. Each beam element is de�ned as a substructure. The main purpose

is to demonstrate the continuous updating feature of the Bayesian approach. Start-

ing from a uniform prior probability, P (Hj), for every element (substructure), the

posterior damage probability, P (Hjj	̂Ns), is updated using Equation (2.4) when new

modal parameters, 	̂Ns, are estimated after each cyclic load test. Also, damage is

assumed to lie within a single element (substructure). For the examples presented

here, we use an incremental step �� = 0.05. In addition, a value of 0.9 is used for

the damage threshold �� for every substructure. That is, an over 10% decrease in the
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sti�ness is de�ned as damage.

Damage detection using the Bayesian Probabilistic Approach

First, damage diagnosis is conducted using the �rst analytical model (Model 1). Sub-

structures near the actual damage locations are shaded with darker color in Fig-

ures 5.17 and 5.18, respectively. The diagnosis results shown in Figures 5.17 and 5.18

are obtained by updating the damage probabilities either continuously or separately

using the modal parameters measured at di�erent deformation levels.

1. Figure 5.17 shows the continuous update of the damage probabilities using

Model 1. Subtitles \Update i" (i = 1; 2; ::; 5) in Figure 5.17 indicates that the

corresponding damage probabilities are updated using modal parameters from

Tests 1, 2,.., i. Figure 5.17 shows that the diagnosis result improves as more

data sets are employed for damage detection.

2. For comparison, Figure 5.18 presents the diagnosis results obtained by using

each individual data set separately. Subtitles \Test i" (i = 1; 2; ::; 5) in Fig-

ure 5.18 indicate that the the corresponding damage probabilities are computed

solely by using the modal parameters from Test i. When modal parameters from

Tests 2 and 3 are employed separately (the counterparts to the �gures with sub-

titles Update 2 and Update 3 in Figure 5.18), the Bayesian approach missed the

actual damage locations. While the �gures with subtitles Update 2 and Update

3 in Figure 5.17 identify the third substructure as the most probable damage

location.

In both cases, the third substructure is diagnosed as the most likely damage

location at the end. However, more strictly speaking, the actual plastic hinge was

observed near the region where Elements 2 and 3 adjoin each other. To investigate

if the proposed Bayesian approach approaches the hinge location, a re�ned model

(Model 2) is employed next. All other conditions except the model remain the same

as the previous diagnosis. While Model 1 has 9 elements, Model 2 consists of 27

elements to represent the test column. Figures 5.19 and 5.20 again illustrate that
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the diagnosis using the proposed Bayesian approach converges to the actual damage

locations (the actual damaged elements are distinguished by darker color in �gures).

At the end of the updating, the diagnosis result clearly shows that the column was

very likely damaged between the top of the foundation and the bottom of the retro�t

jacket.

The comparison of individual and continuous updating shows that the proposed

Bayesian framework systematically combines the existing data with newly obtained

data and the continuous updating is more stable in a sense that it is less sensitive

to a single data set, and extracts consistent trends among the accumulated data.

Furthermore, to provide information regarding the degree of damage for di�erent

damage stage, the values of the substructure sti�ness reduction (1 � �i) at each

damage stage are estimated from continuous updating and are reported in Table 5.11

for the actual damage locations (the second and third substructures). Continuous

sti�ness deterioration is observed in the actual damage locations (the second and

third substructures).

Table 5.11: Estimated damage amount (1� �i) at di�erent damage stage

Test 1 Test 2 Test 3 Test 4 Test 5

Model 1
1� �2 38% 83% 87% 83% 89%
1� �3 60% 69% 90% 80% 88%
Model 2
1� �2 59% 88% 92% 87% 92%
1� �3 72% 78% 94% 91% 93%

Damage detection using deterministic approaches

Two deterministic model updating or damage detection schemes are applied to the

same test data of the column structure in order to compare the proposed proba-

bilistic approach with some existing deterministic approaches. A Sensitivity-Based

Element-By-Element (SB-EBE) method proposed by Hemez [69] and a Minimum

Rank Perturbation Theory (MRPT) proposed by Kaouk and Zimmerman [85] are

employed in this study as examples of the deterministic approaches. Both methods
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Figure 5.17: The damage probabilities after continuous updating (using Model 1)
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Figure 5.18: The damage probabilities computed from individual data set (using Model 1)
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Figure 5.19: The damage probabilities after continuous updating (using Model 2)
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Figure 5.20: The damage probabilities computed from individual data set (using Model 2)
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can be categorized as model-based methods that utilize estimated modal properties

for damage diagnosis. The detailed development of these methods are described in

References 69 and 85.

The SB-EBE method searches for the locations of potential errors between the

�nite element model and the measured modal data, and then updates the analyti-

cal model at the element-level by adjusting the elements' material properties. This

method minimizes the squared norms of the modal dynamic residuals via a two-step

iteration: At each iteration, the estimated modal vectors are �rst expanded, and,

the parameters of the elements are corrected using the expanded modal vectors and

natural frequencies. This approach has demonstrated the potential applicability to

the damage detection of truss structures [46]. The SB-EBE method is employed here

since the mode shape expansion scheme is built within the updating process and

damage can be identi�ed at each structural element level.

The MRPT proposed by Kaouk and Zimmerman decouples the localization and

the quanti�cation of damage [85]. First, dynamic residual forces (also known as dam-

age vectors or residual force vectors) is employed to locate the most likely damaged

regions which are mathematically expressed in terms of degrees of freedom (DOFs)

in the analytical model [33,127,156]. Second, damage is quanti�ed such that the rank

of updating is minimized. The performance of this algorithm has been demonstrated

using the NASA eight-bay truss structure [84]. This method is computationally e�-

cient and does not require any iterations. However, the components of the estimated

modal vectors should coincide with those of the analytical model, and the dimension

of the modal vectors should be the same as the dimension of the analytical model.

To satisfy these conditions, a mode shape expansion algorithm is applied prior to the

application of the MRPT.

First, a numerical example is diagnosed by the SB-EBE method. For the numer-

ical example, the sti�ness of Element 2 in Figure 5.10 is decreased by 90% from the

original analytical models (Models 1 or 2) and, then, the modal parameters are gener-

ated from the damaged model to simulate the measured modal parameters. Similar to

the experimental test data in the previous example, only the modal parameters corre-

sponding to the �rst bending and �rst torsional modes are used for damage detection,

126



Chapter 5 Damage Detection with Simpli�ed Models

and the DOFs corresponding to Nodes 4�9 are assumed to be measured. Figure 5.21
shows the percent change of each element sti�ness estimated by the SB-EBE method.

Figures 5.21 (a) and (b) employ the �rst and second analytical models, respectively.

Again, the actual damaged elements are distinguished by darker color in Figure 5.21.

In theory, only the sti�ness corresponding to Element 2 should be decreased by 90%.

However, it is shown that the sti�ness changes are spread throughout other elements.

When Model 1 is employed, the sti�nesses of Elements 1, 2 and 3 are almost equally

decreased by 70%. On the other hand, the sti�ness deterioration is spread out to

larger number of members when Model 2 is employed. The drop in the ratio of the

measured DOFs to the unmeasured DOFs appears to aggravate the diagnosis results.

Note that the SB-EBE method could not locate the actual damage location although

no measurement noise is assumed in this numerical example and the analytical model

is used to simulate the measured modal parameters. Then, the SB-EBE method is

applied to the experimental test data (Test 1�Test 5). This method was not success-
ful in locating damage regions for all 5 test cases. Therefore, the diagnosis results are

not presented in this study.

Next, the MRPT is applied to the simulated and experimental data. The MRPT

does not directly identify damage at the element levels. The MRPT method estimates

only the \damaged" DOFs that correspond to large dynamic residuals. Then, an an-

alyst should infer the damaged elements based on the connectivity information of the

structure. When the same numerical example as the SB-EBE method is employed,

the damaged DOFs corresponding to Element 2 are easily determined. When the

experimental data (Test 1�Test 5) are employed, the damaged DOFs are not clearly

noticeable until the last data set (Test 5) is used. Figure 5.22 shows the diagnosis

result when Test 5 data are employed. The DOFs 1�18 corresponding to Elements

2 and 3 are assumed to be damaged. Again, the actual damaged DOFs are distin-

guished by darker color in Figure 5.22. Figures 5.22 (a) and (b) show the normalized

dynamic residual from the �rst bending and torsional modes, respectively. The Or-

thogonal Procrustes Expansion [135], Component Mode Synthesis [21] and Modal

Coordinate Expansion [74] techniques are employed for mode shape expansion. Note
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that when the mode shape expansion techniques other than the Orthogonal Pro-

crustes Expansion are employed, the damaged DOFs are not clearly indicated. The

selection of mode shape expansion techniques seems to be an essential factor for the

success of damage diagnosis.

The poor performance of the two deterministic approaches can be attributed to

the following:

1. Most mode shape expansion techniques including the ones used in this paper

expand the measured modal vectors to the size of the analytical model based on

the measurements at the instrumented DOFs and the corresponding analytical

sti�ness and mass matrices. These techniques work only when the analytical

model is already a good representation of the structure. Mode shape expan-

sion techniques generally do not produce the expanded modal vectors that are

accurate enough to provide reliable information about damage. As previously

mentioned, the discrepancy between the analytical model and the test data was

large enve in the initial stage. This discrepancy produced additional errors into

the two deterministic approaches presented. (Note that, the proposed Bayesian

approach does not require any mode shape expansion or model reduction pro-

cedures.)

2. Both deterministic approaches basically update the system sti�ness matrix so

as to minimize the dynamic force residuals. However, for the frame structures

as the one presented here, the order of magnitudes for the residual forces in

rotational DOFs is signi�cantly larger than that of translational DOFs. There-

fore, the residual forces in the rotational DOFs are generally weighted more

than those corresponding to the translational DOFs. The di�erence in magni-

tude of residual force for each DOF contributed to the poor performance of the

deterministic approaches.

Alvin [4] addresses some of the aforementioned problems by employing dynamic

displacement residuals, rather than force residuals. Furthermore, the Bayesian es-

timate is introduced to the SB-EBE method to incorporate the relative con�dence

measures for the parameters being updated and the test data used for updating. It
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Figure 5.21: Damage diagnosis using the SB-EBE method: numerical example
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Figure 5.22: Damage diagnosis using the MRPT method: experimental example
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would be an interesting research task to compare this approach with the one proposed

in this study.

5.5 Summary and Discussions

This chapter illustrates the proposed Bayesian probabilistic approach for the cases

when the analytical model di�ers from the test structure. The diagnosis results of the

two-story and �ve-story frame structures show that, the proposed method identi�es

most of the damage locations, even in the presence of measurement noise and/or

modeling error if a large number of data sets are available and load patterns are

selected carefully when Ritz vectors are used. For the reinforced-concrete bridge

column, the Bayesian damage detection method is able to locate the damaged region

using a simpli�ed analytical model and the modal parameters estimated from the

vibration tests, although (1) only the �rst bending and �rst torsional modes were

estimated from the experimental test data, (2) the locations where the accelerations

were measured did not coincide with the degrees of freedom of the analytical model,

and (3) there existed discrepancies between the undamaged test structure and the

analytical model. The damage probabilities are systematically updated when new test

data become available and better diagnosis is obtained by employing multiple data

sets than just by using each test data set separately. Furthermore, the computational

time required by the branch-and-bound search scheme is also signi�cantly reduced by

employing the simpli�ed model.
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Experimental Applications

This chapter provides a comprehensive discussion on the veri�cation of the damage

detection process in an experimental study. The discussion is based on the author's ex-

perience participating in the design and experimental modal analysis at the Hyundai

Engineering & Construction Co., Seoul, Korea. First, the experimental modal anal-

ysis procedure is described in detail. Then, numerical procedures that extract modal

parameters and Ritz vectors are also described. An experiment for a grid-type bridge

model is presented to illustrate the modal analysis procedure and the use of the

experimentally measured modal and Ritz vectors for damage detection applications.

6.1 Experimental Modal Analysis

The purpose of experimental modal analysis is to determine the modal properties

of a structure such as resonant frequencies, modal vectors and damping ratios from

the response of the structure to a particular excitation. This section describes the

experimental modal analysis procedure with special emphasis on practical issues. The

theoretical and engineering developments of modal analysis can be found in many

references. Ewins [45] gives a practical engineering perspective of modal analysis and

its applications, Newland [108] and Bendat and Piersol [19] provide a good discussion

on spectral analysis and measurement, and Bendat and Piersol 18 discuss some issues

that are particularly relevant for practicing engineers and scientists. Finally, actual

implementation issues are documented in Reference 118.
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The quality of the identi�ed modal properties is important for the success of

vibration-based damage detection methods. Commonly used system identi�cation

techniques include the extended Kalman �lters [79,72], the Polyrefence time domain

method [153,34], the multivariate Auto-Regressive and Moving-Average (ARMA)

model [123], the Q-Markov COVER algorithm [122,99] and the Eigensystem Real-

ization Algorithm (ERA) [77,119,103]. This study employs the ERA because (1)

the ERA is a robust procedure that is particularly appropriate to handle measure-

ment data corrupted by noise, and (2) the indicators, which are used to qualify the

estimated modal parameters, can be incorporated in the ERA. Since the ERA con-

structs a state-space model, the procedure can be extended for the extraction of

load-dependent Ritz vectors.

A modal analysis procedure using the ERA method can be summarized as follows:

1. Determine the necessary parameters for the spectral analyzer such as sampling

rate, frequency bandwidth of an excitation, and the total sampling time.

2. Apply excitations and measure responses of the structure.

3. Compute Frequency Response Functions (FRFs) and Coherence Functions.

4. Construct impulse response time history (Markov Parameters) from the FRFs.

5. Obtain a state-space model using the ERA.

6. Extract physical modal parameters and load-dependent Ritz vectors from the

estimated state-space model.

In the following subsections, each step of the modal analysis procedure is discussed

in detail.

6.1.1 State-Space Representation of Second-Order Di�eren-

tial Equations of Motion

We start with the state-space representation of second-order di�erential equations of

motion. Let M, C� and K denote the mass, damping and sti�ness matrices of a
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N -DOFs system, respectively, the equations of motion can be expressed as

M�z(t) +C� _z(t) +Kz(t) = Buu(t) (6.1)

where z, _z and �z are vectors of displacement, velocity and acceleration, respectively.

u is a r � 1 vector of input excitations and Bu is an N � r input in
uence matrix

specifying the locations of inputs. Here, r is the number of inputs. The second order

di�erential equations can be recast into the �rst order di�erential equations in a

number of ways. In classical control theory, the following representation is commonly

used:

_x = Acx+Bcu (6.2)

where

Ac =

"
0 I

M�1K M�1C�

#
; Bc =

"
0

M�1Bu

#
and x =

"
z

_z

#
(6.3)

When the response of a system is measured by the m output quantities y(t)

(2 Rm�1) using sensors such as accelerometer, the measurement vector y(t) is related

to the vectors z, _z and �z as follows:

y = Ca�z+Cv _z+Cdz (6.4)

where Ca, Cv and Cd are output in
uence matrices for acceleration, velocity and

displacement, respectively. These output in
uence matrices convert the physical units

in acceleration, velocity and displacement to the electrical units in the measurements.

Solving for �z from Equation (6.1) and substituting the result into Equation (6.4)

produce

y = Cx+Du (6.5)

where

C = [Cd �CaM
�1K Cv �CaM

�1C�] and D = CaM
�1Bu (6.6)
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Here, C is an m � n output in
uence matrix for the state vector x which includes

velocity and displacement. D is an m� r gain matrix and appears in Equation (6.6)

only when accelerometers are used for the output measurements. Note that there exist

an in�nite number of state-space models that result in the same input and output

relationship from u(t) to y(t).

In modal testing, an input signal, generated from a digital computer, is converted

to an analog signal using a Digital-to-Analog (DA) converter. Conversely, the Analog-

to-Digital (AD) converter receives the analog signal from a sensor and then converts

the analog signal to the digital signal for use in computers. Typically, a zero-order

hold, in which the signal remains constant in each of the sampling period, is assumed.

Because experimental data are typically recorded in digital computers, a discretized

linear-dynamic system with a sampling interval �t can be represented by the following

discrete-time state-space model:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
for k = 0; 1; 2; ::: (6.7)

where x(k + 1) denotes the state-space variable x at time (k + 1)�t. That is, x(k +

1)=x[(k + 1)�t], x(k)=x[k�t], and u(k)=u[k�t]. Furthermore,

A = eAc�t =
1X
i=0

(�t)i

i!
Ac and B =

Z �t

0

eAc�Bc d� = [A� I]A�1
c Bc (6.8)

The second equalities in Equation (6.8) hold only if the state matrix Ac is asymptoti-

cally stable, in other words, if the real parts of all eigenvalues are negative. Note that

matrices C and D are identical in both discrete and continuous state-space models.

6.1.2 Preparation of Modal Testing

The basic procedure for the digital spectral analysis is outlined below. With the recent

development in spectral signal analyzers, most processes presented in this subsection

have been automated using personal computers. Nevertheless, some parameters such

as sampling rate, total length of sampling and the number of averaging for the modal

testing still need to be tailored for a speci�c structure of interest. This subsection
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aims to discuss the selection of these parameters and to facilitate the understanding

of the subsequent sections.

Step 1: Estimate the frequency bandwidth of interest and the maximum frequency

fmax to be analyzed. The maximum frequency should exceed the natural frequency

of the highest mode to be estimated. An approximate estimate of the natural (reso-

nance) frequencies of the test structure can be obtained from a companion analytical

model.

Step 2: Determine a sampling rate fs or sampling interval �t. The sampling fre-

quency fs is controlled mainly by the Nyquist criterion to avoid aliasing. Aliasing

above the Nyquist frequency occurs due to the periodicity assumption in the Discrete

Fourier Transformation (DFT). Theoretically, the Nyquist frequency fnyq should be

higher than the maximum frequency to be analyzed:

fnyq(=
1

2�t
) � fmax (6.9)

However, in real applications, the sampling frequency should be made much higher

than fmax. A good \rule of thumb" is to sample at least ten points per period for the

smallest period Tmin (1/fmax):

�t � 1

10
Tmin or fs � 10� fmax (6.10)

If the measurement quantity is a sinusoidal function, ten sampling points per the

period are su�cient to capture the characteristic of the wave.

Step 3: Determine the total length of sampling TT and the number of data points

l (= TT =�t). The desired frequency resolution �! determines TT since �!=1=TT .

(Note that the actual frequency resolution might change because of the zero padding

of a time history.)

Step 4: Remove trends. Situations sometimes occur where the sample data include

spurious trends or low frequency components with a wavelength longer than the record
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length TT . If such trends are not correctly removed from the original data, distortions

may occur in the later FRF computations. The most common and easiest technique

for trend removal is to subtract the mean value from the original data. For example,

a discrete time series �(k), k=0, 1,..., l, can be adjusted as:

�(k) = �(k)� �� where �� =
1

l

lX
r=1

�(r) (6.11)

Now the modi�ed sequences are employed for the subsequent frequency domain anal-

ysis. Instead of a mean value, higher-order polynomial �ts may be employed [19].

However, the trends removal using an order of greater than 3 is not generally rec-

ommended. Note that higher-order trend removal should be conducted only when

complex trends are clearly apparent.

Step 5: Extend the record length by zero padding. The Fast Fourier Transform (FFT)

computes the DFT very e�ciently when the length of a record is a power of 2. That

is l=2p, where p is a positive integer. In many applications, the length of available

records may not satisfy the condition, l=2p. In this case, the length of the record

can be increased to the next higher power of 2 by augmenting zeros at the end of the

record. Note that this zero padding also brings other advantages such as improving

the accuracy of correlation functions, frequency resolution and so on. Therefore, zero

padding is recommended even when the original record has a length of 2p. Note that

the zero padding should be conducted after trend removal.

Step 6: Select the amount of averaging. The accuracy and statistical reliability of

spectral analysis can be improved by an averaging process, which averages the FRFs

obtained from several individual time histories or di�erent segments of a long time

history. Detailed guidance for the selection of the averaging number can be found in

References 19 and 45. However, in most applications, averaging of 30 time histories

produces statistically reliable and smooth spectra.
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6.1.3 Digital Signal Processing

The raw data obtained directly from instrumentation are rarely used for frequency

domain analyses. The DFT of the raw data can yield erroneous results if the raw

data are not properly treated. These errors are generally the result of discretization

and of the limited length of the time history record. The discretization error causes

aliasing, and the �nite length of the time history yields leakage problem.

Discretization of the analog signals from sensors creates the aliasing problem. The

discretization process with a given sampling rate fs cannot distinguish a signal with

frequency f(> fs) and one with frequency (fs � f). Therefore, the actual spectrum

above the Nyquist frequency fnyq (=fs=2) is re
ected over the Nyquist frequency

and the spectrum in the range of [ 0; fs=2 ] is distorted. As mentioned earlier, the

Nyquist frequency can be raised by increasing the sampling rate. However, this does

not eliminate the frequency distortion caused by the aliasing of high frequencies.

An anti-aliasing �lter is commonly used to solve this problem. The anti-aliasing

�lter subjects the original continuous time history to a low- pass sharp cut-o� �lter

and the �lter results in a modi�ed time history where the frequency content above

a cut-o� frequency fc is removed (or at least attenuated). Since the anti-aliasing is

imperfect, frequencies near the Nyquist frequency are still susceptible to distortion.

Therefore, in real applications, modal parameters are estimated only in the range of

[ 0; 0:5 or 0:8fnyq]. Some of the available �lters include the Butterworth �lters (best


at response at low frequency), the Bessel �lters (best 
at delay at low frequency)

and the Chebyschev �lters (best uniformly bounded response at low frequency) [118].

Issues in choosing a �lter are essentially its attenuation factor (ideally, large), the

magnitude of its pass-band ripples (ideally, zero) and of its reject-band ripples (ideally,

bounded), its phase shift (ideally, uniform) and the capability of the �lter to minimize

the energy spreading in the time domain [19]. The most common Butterworth �lter

is used in this study.

Sampling with a �nite length of time history causes a leakage problem. The

periodicity assumption y(t) = y(t + TT ) in the sampled time history y(t) causes a

discontinuity at the beginning and the end of the sampling period. (Note that, this is

also true for a periodic function yp(t) = yp(t+ T ) unless TT = T .) This discontinuity
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causes a leakage of the energy content over several frequencies. For example, if the

sampling period is identical to the inherent period of the function (TT=T ), the DFT

of a periodic function yp(t) produces a single peak at the frequency 1=T . However, if

the sampling period is not identical to the inherent period of the function (T 6=TT ),
the energy at the frequency 1=T leaks into the frequencies near the true frequency.

The application of windowing provides a practical solution to the leakage prob-

lem. Windowing modi�es the original signal y(t) by imposing a predetermined time

function w(t) on the original signal such that ~y(t) = y(t)w(t). The selection of win-

dowing depends on the energy content of the data, clustered or distant resonant peaks

and so on. Rectangular (w(t)=�(�T � t � T )), Bartleft (w(t)=j1� t=T j), Hanning
(w(t)=cos2(� � t=T )) or exponential (w(t)=e�jtj=T ) are typical windows [118]. The

same window is applied to both the input and response signals to corrupt them with

the same distortion and to minimize noise in the FRF estimation.

6.1.4 Excitation of a Structure

There are essentially two types of vibration test. The �rst one is an ambient vibra-

tion test where responses are measured under normal operation of the structure and

the structure is subject to ambient excitations such as wind, tra�c excitation and

wave. The second is a force vibration test where the structure is excited with a known

input. Note that although the excitation is unknown for an ambient test, the ambi-

ent vibration test is becoming more attractive for the continuous monitoring of civil

structure [51,43]. Recent development of many algorithms to extract modal param-

eters from ambient tests paves the way for more common application of this type of

test. However, the force vibration test is still widely used for laboratory testing since

the force vibration test is conducted under more closely controlled conditions and

consequently yields more accurate information. Various types of excitation mecha-

nism such as sinusoidal wave, random excitation and impulse excitation are available

for force vibration test. Here, the impulse excitation by hammer impactor is mainly

discussed since that is used in our experiment.

An excitation method using an impact hammer is simple in terms of testing.

However, this is achieved at the price of greater data analysis later on. The sampling
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of impulse responses should be continued until all transient response of a structure

dies out. A lightly-damped structure may require a long sampling period and result in

increased computation in the subsequent spectral analysis. A typical impact hammer

consists of head, tip and force transducer. The magnitude of the impact is mainly

controlled by the mass of the head and the initial velocity of the hammer when it hits

the structure surface. In general, the change in the impact magnitude is not a critical

problem since we are often interested in only the ratio of the output magnitude to the

input magnitude. One main di�culty is to ensure that the position and the orientation

of impact are essentially the same for repeated excitations. Otherwise, the frequency

content of the excitation and the energy transformed to the structure drastically vary

from one test to anther. Therefore, a single operator is recommended to repeat the

impact excitation. The frequency content of the exciting force is controlled by the

sti�ness of the contact surface (the hammer tip) and the mass of the hammer head.

A cut-o� frequency fc is computed as (contact sti�ness/the hammer mass)2, above

which the kinetic energy of the hammer is not delivered into the structure. Therefore,

the sti�er the tip, the higher will be the frequency range covered by the impact. For

civil structures, a very soft tip is typically used to focus all the energy input to a

low-frequency range. The frequency content of a typical hammer excitation has a


at magnitude up to the cut-o� frequency and then drastically diminishes after the

cut-o� frequency.

6.1.5 Frequency Response Function

A Frequency Response Function (FRF) is de�ned as the Fourier Transform of impulse

or pulse response sequence (Markov Parameters):

G(z) =
l�1X
k=0

Yke
�j( 2�z

l
)k (6.12)

where G(z) (2 Rm�r) is a FRF at frequency z, Yk (2 Rm�r) is a sampled pulse

response (Markov Parameters) at time k, and l is the total number of sampled points.

The dynamic characteristic of a linear time-invariant stable system can be su�ciently

described by the FRF or Markov Parameters.
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In the majority of modal testing, FRFs are computed prior to any system iden-

ti�cation. Although many recent identi�cation algorithms can directly analyze time

histories, the construction of FRFs is still common in practice since (1) the FRF de-

duces the amount of data from a time history with no loss of useful information, (2)

the computation in frequency domain is easier than in time domain, and (3) many

traditional criteria and tools are available for the frequency domain analysis.

The computation of a FRF can be summarized in the following steps:

1. Compute the DFT of the input and output time histories.

2. The Auto-Spectral Density (ASD) of inputs, and Cross-Spectral Densities (CSD)

of input and output signals are computed from the DFTs of the inputs and out-

puts.

3. From Na data records, which are obtained either from Na di�erent experiments

or from Na segments of a long record, the averaged auto- and cross-spectral

densities are computed.

4. The FRF is computed from the averaged auto- and cross-spectral densities up

to the Nyquist frequency.

Here, multiple inputs and multiple outputs (MIMO) case is considered for the con-

struction of the FRF. First, the DFT of the input u(t) and output y(t) are computed

as follows: 1

u(z) =
1

l

l�1X
k=0

u(k)e�j(
2�z
l
)k (6.13)

y(z) =
1

l

l�1X
k=0

y(k)e�j(
2�z
l
)k

Note that this equation is based on the assumption that u(t) and y(t) are periodic.

That is, u(k)=u(k + l) and y(k)=y(k + l). Furthermore, it can be shown that

1When the length of a data record is power of 2, the FFT can be employed to speed up the
computation. The FFT requires approximately p� log(p)� 2p FLOPs for a record of length 2p.
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u(�z)=u�(z) and u(z) (z = l=2; l=2 + 1; :::; l) are the complex conjugates of u(z)

(z = l=2; l=2 � 1; :::; 0). Here, the superscript * denotes a complex conjugate of a

complex number. Therefore, u(z) is uniquely determined from the value of k over

the interval 0 � k � l=2. The same is true for y(z). Note that only u(z) and

y(z) in the range of 0 � z � l=2 need to be stored for the subsequent computation.

Filtering is applied to u(z) and y(z) to eliminate spectral components above the

Nyquist frequency.

Next, the ASD and CSD are computed from the DFT of the individual sequence

in Equation (6.1.5):

Suu(z) = u(z)u�(z) (6.14)

Syu(z) = y(z)u�(z)

This computation is again based on the periodicity assumption of the data sequence.

There is another way of computing spectral densities. One can �rst compute the auto-

and cross-correlation and use the DFT to estimate the spectral densities. However,

for a large number of Na and l, the latter procedure becomes computationally more

expensive than the �rst one.

Assume that Na number of time histories are available, each record has a length

of l, and possesses the ergodic property. The expected spectral densities E[Suu] and

E[Syu] are approximated by the following averaged spectral densities.

�Suu(z) =
1

Na

NaX
i=0

S(i)uu =
1

Na

NaX
i=0

u(i)(z)u�(i)(z) 2 Rr�r (6.15)

�Syu(z) =
1

Na

NaX
i=0

S(i)yu =
1

Na

NaX
i=0

y(i)(z)u�(i)(z) 2 Rm�r

where S
(i)
uu and S

(i)
yu are the spectral densities from the ith time history data. Then,

the frequency response function with a dimension of m� r can be estimated as:

G(z) = �Syu(z)�S
�1
uu (z) (6.16)

However, in real practice, errors are introduced during the computation of G(z) in
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Equation (6.16) due to the lack of periodicity of time sequences, and input and output

noises. Therefore, it is necessary to qualify the estimated FRF.

The coherence function de�ned below is widely used to check the quality of the

estimated FRF. Let u�(k) and y�(k) (k = 0; 1; :::; l � 1) be time histories generated

from the �th exciting point and the �th measurement point, respectively. Then, the

coherence function between the input u� and y� is de�ned as:


2��(z) =
�Sy�u� (z) �S

�
y�u�(z)

�Sy�y�(z) �Su�u�(z)
(6.17)

where �Sy�u�(z) is the averaged cross-spectral density between the �th input and the

�th output and �Su�u�(z) is the averaged auto-spectral density of the �th input. Both

�Sy�u� (z) and �Su�u� (z) are de�ned in Equation (6.1.5). The coherence function esti-

mates the signal to noise ratio achieved in the estimated frequency response function

G(z). It can be shown that the coherence function satis�es:

0 � 
2��(z) � 1 (6.18)

Note that this inequality is useful only when a su�cient number of data are available.

If only a single data set is available, the coherence function equals one for all z values.

When there are enough records to approximate the expected spectral density function

by the averaged one, the coherence function approaches one if (1) the output signal

y(k) becomes stronger than the noise levels, (2) the signals display more periodicity,

or (3) the system has small nonlinearities. In general, the modes with above 0.9 value

of the coherence function are considered reliable.

6.1.6 Markov Parameters

Once the FRF is estimated in the previous step, the Markov parameters in time

domain are computed by a discrete Inverse Fourier Transform (IFT) of the FRF:

Yk =
l�1X
z=0

G(z)ej(
2�k
l
)z (6.19)
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whereY0=D,Y1=CB,Y2=CAB,...,Yk=CA
k�1B form a sequence of system Markov

parameters. Physically, the system Markov parameters are nothing but the pulse re-

sponse excited by a pulse input at the initial time period. However, in practice, the

FRF is computed �rst and then the FRFs are converted to the Markov parameters on

which many time-domain system identi�cation methods are based. Note that the IFT

imposes a periodicity on the converted time signal and cause a \leakage" of its energy

content if a window is not applied prior to the IFT. Given the Markov parameters, a

time-domain system identi�cation is applied to construct minimum order state-space

matrices A, B, C, and D. In this study, the ERA is employed and discussed next.

6.1.7 Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm (ERA) is brie
y presented here. First, the

physical interpretation of the minimum order realization and the Hankel matrix is

discussed. The order of the Hankel matrix is determined by the Singular Value

Decomposition (SVD) of the Hankel matrix. The state matrices A, B, C, and D are

then related to the decomposed Hankel matrix. In addition, several indicators that

assess the overall quality of the identi�cation are presented.

The objective of a minimum order realization is to �nd a realization of A, B, C,

and D with minimum order that reproduces the measured input u(t) and output u(t)

relationship:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
for k = 0; 1; 2; ::: (6.20)

The estimation of the minimum order realization is based on the following theorem,

established by Ho and Kalman [71]:

Theorem: Yk (k = 0; 1; 2; :::) has a �nite dimensional realization of order n if and

only if there exists n nonzero constants f�1, �2,..., �ng such that:

Yk+n =
nX
i=1

�i Yn�i+k for all k � 0

That is, the minimum order n is identical to the dimension of basis [Y0, Y1,...,Yn�1]
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which spans the space de�ned by sequence Yk (k=0, 1, 2, ...). The minimum order n

is estimated by �nding the minimum column rank of the left hand rectangular matrix

in the following equation:2
666664
Yk � � � Yk+d�1

Yk+1 � � � Yk+d

...
. . .

...

Yk+q�1 � � � Yk+q+d�2

3
777775

8>>>>><
>>>>>:

�1

�2
...

�d

9>>>>>=
>>>>>;

=

8>>>>><
>>>>>:

Yk+d

Yk+d+1

...

Yk+q+d�1

9>>>>>=
>>>>>;

(6.21)

The rectangular matrix in the left hand side of Equation (6.21) is de�ned as a

Hankel matrix:

Hqd(k � 1) =

2
666664
Yk � � � Yk+d�1

Yk+1 � � � Yk+d

...
. . .

...

Yk+q�1 � � � Yk+q+d�2

3
777775 (6.22)

where q and d denote the number of block rows and columns, respectively. The Hankel

matrix Hqd had a dimension of (q �m) rows by (d� r) columns. Since the order of

the system is unknown, a very large size of Hankel matrix should be formed to extract

the minimum order realization. The minimum column rank n is also asymptotically

equal to the rank of the Hankel matrix Hqd(0) as both q and d approach in�nity:

n = lim
d!1

lim
q!1

Rank[Hqd(0)] (6.23)

Note that the minimum order of the system (Rank[A]) is identical to the minimum

column rank n. It can be shown that the Hankel matrix in Equation (6.22) is related

to the state-space matrices A, B and C:

Hqd(k � 1) = PqA
k�1Qd for k � 1 (6.24)
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where matrices Pq and Qd are the observability and controllability matrices, respec-

tively, de�ned as:

Pq =

2
666664
C

CA
...

CAq�1

3
777775 and Qd =

�
B AB A2B � � � Ad�1B

�
(6.25)

If the system is completely controllable and observable, the block matrices Pq and Qd

are of rank n. Therefore, the Hankel matrix and state matrix A has identical rank n.

The ERA �rst decomposes the Hankel matrix at time step k=0 using a SVD

procedure. Then the decomposed matrices are manipulated together with the Hankel

matrix at time step k=1 to estimate A, B and C. The following steps summarize

the minimum rank realization using the ERA.

Step 1: Construct the Hankel matrix Hqd(k � 1) at k=1 and k=2.

Hqd(0) =

2
666664
Y1 Y2 � � � Yd

Y2 Y3 � � � Yd+1

...
...

. . .
...

Yq Yq+1 � � � Yq+d�1

3
777775 (6.26)

Hqd(1) =

2
666664
Y2 Y3 � � � Yd+1

Y3 Y4 � � � Yd+2

...
...

. . .
...

Yq+1 Yq+2 � � � Yq+d

3
777775 (6.27)

Note that the row dimension of the Hankel matrix should be larger than the column

dimension, that is m� q � r� d, to ensure that Equation (6.21) is over-determined.
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Step 2: Decompose Hqd(0) using the SVD algorithm.

Hqd(0) = R�ST (6.28)

where the column of matrices R and S are orthogonal and � is give as

� =

"
�n 0

0 0

#
(6.29)

with �n=diag[�1 �2 : : : �n]. In theory, the number of nonzero singular values should

be equal to the dimension of the system n. However, the selection of the right order

becomes di�cult when the data are corrupted by noise. A conservative solution is

to include as many non-zero singular values as possible even if some noise modes are

included in the identi�cation. Since noise in data tends to increase the apparent rank

of the Hankel matrix, it is recommended to run the ERA by increasing q and d until

the number of non-zero singular values converges. Then, with the help of various

indications, the quality of the identi�ed modes is assessed in a later step.

Step 3: let Rn and Sn be the �rst n columns of R and S, respectively. Once the

minimum order n is estimated, A, B, C and D are estimated as follows:

Â = ��1=2
n RT

nH(1)Sn�
�1=2
n ; B̂ = �1=2

n STnEr; Ĉ = ET
mRn�

1=2
n ; D̂ = Y0 (6.30)

where Et
m = [ I 0 � � �0 ] 2 Rm�(m�d) and Et

r = [ I 0 � � �0 ] 2 Rr�(q�r). The block

matrices I and 0 in Em and Er have the dimension of m�m and r� r, respectively.

The notation ^ (\hat") denotes the estimated quantities to distinguish them from

the true quantities. Note that the computation of the ERA becomes very storage

intensive as the size of the Hankel matrix increases. A recursive version of the ERA

is available when the construction of a large Hankel matrix is necessary [100]. Another

implementation, which uses a partial eigensolver to extract the singular values, has

also been proposed [121].

Step 4: The overall quality of the identi�cation is investigated in this step. There are

three indicators developed speci�cally for use with the ERA [119]: Extended Mode
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Amplitude Coherence (EMAC), Modal Phase Collinearity (MPC) and Consistent

Mode Indicator (CMI), which is the product of EMAC and MPC. EMAC is a measure

of how accurately a particular mode projects forward onto the impulse response data.

MPC is a measure of how collinear the phases of the components of a particular

complex mode are. If the phases are perfectly in phase or out of phase with each

other, this mode exactly has proportional damping and can be completely represented

by the corresponding real mode shape. That is, EMAC is a temporal quality measure

and MPC is a spatial quality measure. The �nal step is a visual inspection of the

mode shapes. Typically, the values of EMAC=0.7, MPC=0.7 and CMI=0.5 are

employed [47].

6.1.8 Extraction Procedure of Modal Parameters

From the estimated system matrices, Â, B̂ and Ĉ, physical modal properties such

as natural frequencies, damping ratios and modal vectors are computed. First, the

discrete time system matrices Â and B̂ are converted to the continuous time system

matrices Âc and B̂c using Equation (6.8) where the exponential matrices are com-

puted using a scaling and squaring algorithm with a Pade approximation. De�ne

� as the diagonal matrix of eigenvalues of the matrix Âc and � as the matrix of

eigenvectors, then Âc can be expressed as follows:

Âc = ����1 (6.31)

where

� = diag[�1; �2; :::; �n] 2 Rn�n; � = [�1; �2; :::; �n] 2 Rn�n

Note that �i and �i are complex eigenvalues and eigenvectors, respectively. Complex

conjugate pairs appear in �. The real eigenvalues in � are rejected since they cor-

respond to noise modes. Similar process is applied for complex modal vectors. The

physical natural frequency !i and the corresponding damping ratio �i are related to �i

such that �i = �i!i+ j!i
p
1� �2i , where j =

p�1. Note that if a complex conjugate
of �i is �i+1(= ��i ), the plus sign in the previous equation changes to minus sign, that
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is �i+1 = �i+1!i+1 + j!i+1
p
1� �2i+1. Also !i = !i+1 and �i = �i+1. Therefore, only

N (=n=2) separate eigenvalues and damping ratios exist.

If we denote �i=�
R
i +j�

I
i where �

R
i and �Ii represent the real and imaginary parts,

respectively, the physical natural frequency !i and the corresponding damping ratio

�i are computed as:

!i =
q
�R2i + �I2i and �i =

�Rip
�R2i + �I2i

(6.32)

Next, modal vectors in physical coordinate V is computed as:

V = Ĉ� 2 Rm�n (6.33)

Again only N (=n=2) number of modal vectors are unique. Note that the experi-

mental modal vectors in Equation (6.33) are complex modal vectors. If the struc-

ture exhibits nonlinearity and non-proportional damping, the modal vectors in Equa-

tion (6.33) are corrupted by out-of-phase components corresponding to the imaginary

part of the modal vectors [78]. Since we need normal modal vectors, which are the

modal vectors of the undamped system, the estimated complex modal vectors must

be approximated by equivalent normal modal vectors.

References 30 and 101 describe the concept of complex modes. References 73 and

109 present techniques to isolate normal modal vectors from complex modal vectors.

The errors introduced by these methods are addressed in Reference 132. The easiest

way is to retain only the real parts of the complex modal vectors. More detailed

discussion on this issue can be found in Reference 3.

6.1.9 State-Space Based Extraction of Ritz Vectors

The state-space based extraction procedure of experimental Ritz vectors are similar

to the generation procedure of analytical Ritz vectors discussed in Section 3.4.1 [28].

The main di�erence is that the triple set state-space matrices Âc, B̂c and Ĉ are used

instead of the system matrices K, M and the spatial load vector f . Note that the

diagonal eigen matrix of Âc (denoted by � in Equation (6.31)) often contains noise

modes as well as true modes in vibration tests. Therefore, the modes corresponding
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to the actual response of the test structure should be �rst distinguished before the

Ritz vector extraction. This process requires some engineering judgment and two

useful approaches are described in Reference 77.

The static deformation �x1 subject to a load at the excitation point is computed

by solving the following equation for �x1:

Âc�x1 = �B̂c solve for �x1(= ~x1) (6.34)

where the input in
uence matrix B̂c contains the information regarding the excitation

point. Then, the �rst Ritz vector is normalized as:

x1 =
�x1

[�xT1 �x1]
1

2

(6.35)

The subsequent Ritz vectors are recursively generated from the following equation:

�Ac�xs = xs�1 solve for �xs (6.36)

The linear independence of Ritz vectors is achieved using the Gram-Schmidt orthog-

onalization. That is, the current Ritz vector is orthogonalized with respect to all the

previous Ritz vectors:

~xs = �xs �
s�1X
t=1

(xTt �xs) xt (6.37)

Finally, the current Ritz vector is normalized:

xs =
~xs

[~xTs ~xs]
1

2

(6.38)

The Ritz vectors in the physical coordinates rs are computed at the measurement

points as:

rs = Ĉxs (6.39)

It should be noted that the normalization and orthogonalization procedures in this

state-space method are not identical to those of the analytical generation procedure
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in Section 3.4.1. Therefore, the physical Ritz vectors obtained from Equation (6.39)

should be again normalized and orthogonalized with the analytical mass matrix M

in order to compare the experimental Ritz vectors with the analytical ones.

6.1.10 Flexibility Based Extraction of Ritz Vectors

A close look at the analytical generation procedure in Section 3.4.1 reveals that the

generation of Ritz vectors requires the 
exibility matrix F (de�ned here as the inverse

of the sti�ness matrix) rather than the sti�ness matrix itself. Assuming that the

modal vectors are mass-normalized such that

VTKV = 
 (6.40)

VTMV = I

the 
exibility matrix can be represented with the modal parameters [44]:

F = K�1 = V
�1VT (6.41)

where 
 is the diagonal eigenvalue matrix and V is the corresponding eigenvector

(modal vector) matrix. In most experimental modal analyses, only a few lower modal

frequencies and modal vectors are identi�ed. For this case, the 
exibility matrix is

divided into the modal 
exibility, which is formed from the estimated frequencies and

modal vectors, and the residual 
exibility formed from the residual modes:

F = Fm + Fr = Vm

�1
m VT

m +Vr

�1
r VT

r (6.42)

where the subscript m and r denote the estimated and residual quantities, respec-

tively. Here, the modal 
exibility matrix is constructed only from the measured

natural frequencies and modal vectors (Fm = Vm

�1
m Vt

m). The residual 
exibility is

the contribution of the unmeasured dynamic modes to the full 
exibility matrix. Note

that the contribution of lower modes, which are normally estimated in experimental

modal analyses, are more signi�cant than those of higher modes because the contri-

bution of each mode is inversely proportional to the magnitude of the corresponding

natural frequencies.
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From the modal 
exibility matrix Fm and the analytical mass matrixM, the �rst

Ritz vector can be computed as:

�r1 = Fmf (6.43)

where f is the spatial load distribution vector de�ned in Equation (3.24). The �rst

Ritz vector is, then, mass-normalized as:

r1 =
~r1

[~rT1M~r1]
1

2

(6.44)

The following Ritz vectors are recursively generated. Assuming the mass matrix times

the previous Ritz vector Mrs�1 as a load, the recurrence relationship computes the

next Ritz vector �rs:

�rs = FmMrs�1 (6.45)

The linear independence of Ritz vectors is achieved using the Gram-Schmidt orthog-

onalization:

~rs = �rs �
s�1X
t=1

(rTt M�rs)rt (6.46)

Finally, the current Ritz vector is mass-normalized:

rs =
~rs

[~rTsM~rs]
1

2

(6.47)

It's worthwhile to compare the 
exibility-based extraction procedure with the

state-space procedure. While the 
exibility-based method is able to generate Ritz

vectors with arbitrary load patterns, the state-space method only identi�es the Ritz

vectors corresponding to the speci�c excitation pattern used in the actual modal test-

ing. That is, the spatial load distribution vector f in Equation (6.43) can be assigned

arbitrarily to generate di�erent sets of Ritz vectors. On the other hand, the input

in
uence matrix B̂c in Equation (6.34), which retains the loading information, is

experimentally estimated. Note that both methods require an appropriate approxi-

mation for the mass matrix. However, since sti�ness changes are the main concern of
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damage detection, the exact estimation of the mass matrix is not necessary.

6.2 A Grid-Type Bridge Model

This section presents the experiment results of a grid-type bridge model constructed

and tested at the Hyundai Institute of Construction Technology (HICT), Korea. The

steel bridge model consists of two parallel girders and six evenly spaced cross beams

connecting the two girders as shown in Figure 6.2. The girders are steel rectangular

tubes and the cross beams are C-shape members. A detailed dimension of the test

structure is shown in Figure 6.2. Using impact excitations, we extract Ritz/modal

vectors from the vibration response of the test structure, demonstrate the proposed

Bayesian framework, and investigate the relationship between the locations of exciting

forces and the observability of damages in various parts. Furthermore, damage diag-

nosis comparisons using Ritz/modal vectors and other damage detection techniques

are conducted.

Figure 6.1: An overview of a grid-type bridge structure

6.2.1 Experimental Setup

A SA-390 signal analyzer with four channels is used for the analog to digital conversion

of accelerometer signals and the Fast Fourier Transform (FFT) calculation. Data
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Figure 6.2: Con�guration of a grid-type bridge model

acquisition parameters are speci�ed such that a frequency response function (FRF)

in the range of 0 to 100 Hz could be estimated. Each spectrum is computed by

averaging three 8 seconds long time histories. A total of 2048 points are sampled

for a 8 second time period and this sampling rate produces a frequency resolution of

0.125 Hz. An exponential window is applied to all measured time histories prior to

the FFT calculation.

For measurements, a Dytran 5801A4 impact hammer and three Dytran 3100B

accelerometers with a normal sensitivity of 100mV/g are used. The excitation is

applied to nodes 3, 4 and 5 as shown in Figure 6.3. The sensors measure the vertical

accelerations at the twelve nodes as indicated in Figure 6.3. Note that since the SA-

390 data acquisition system has only four channels and there are three accelerometers,

the �rst channel is always connected to the input hammer and the remaining three

channels are connected to three accelerometers. To complete one set of modal test, the

hammer excitation is repeated twelve times at one point and the three accelerometers

are moved from one set of three nodes to another set of three nodes after every three

excitations (note that each FRF is computed by averaging the three response time

histories, and there are twelve measurement points and three accelerometers).
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Figure 6.3: Impact, accelerometer and damage locations of the grid-type bridge structure

The DIAMOND 2 software developed by the Los Alamos National Laboratory is

employed for the extraction of modal parameters. The ERA and rational polynomial

techniques are employed to extract the �rst six natural frequencies and the corre-

sponding modal vectors from the recorded FRFs. Figure 6.4(a) shows a typical FRF

and coherence function of the test structure. Figure 6.4(a) is a FRF obtained at node

5 when the structure is excited at node 4. Figure 6.4(b) presents the corresponding

coherence function de�ned in Equation (6.17). Figure 6.4(b) shows that the value of

the coherence function is close to unity at the resonance frequencies. This implies

that the output signals from the sensors are reasonably strong compared to the noise

levels.

To validate the linearity assumption of the structure response, a reciprocity check

is conducted. Figure 6.5 compares the FRFs obtained at node 3 with input at node 14

and at node 14 with excitation at node 3. For an ideal linear structure, these two

FRFs should be identical. For the grid structure, the linearity assumption seems valid

up to the fourth mode but the di�erence of the functions becomes noticeable after

40Hz.

2The program is available for download from http://esaea-www.esa.lanl.gov/damage id.
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Figure 6.4: A typical FRF & coherence function of the grid-type bridge model
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Figure 6.5: A reciprocity check of the grid-type bridge model

6.2.2 Analytical Modeling

A FE model is constructed using twenty three-dimensional beam elements. As shown

in Figure 6.2, a girder or cross beam is modeled as a single member. An elastic mod-

ulus of 2.0�105 MPa, a mass density of 7850 kg/m3, and a Poission's ratio of 0.2 are

speci�ed in this model. Since the accelerometers measure only the vertical movement

of the structure, the lateral DOFs are not included in the analytical model. There-

fore, each node of an element has two translational DOFs and three rotational DOFs.

The model has a total of 64 DOFs including four rotational DOFs at the bound-

ary. Both ends of the beam are modeled as simple pinned connections. A pinned

connection is modeled by a ball bearing with a 35mm diameter in the experimental

setup. Based on a preliminary vibration test, the boundary conditions appear to be

less accurately modeled. The boundary conditions are then modi�ed by introducing

rotational springs at the rotational DOFs of the boundaries. Furthermore, additional

springs are added to the rotational DOFs at both end of the cross beams to simulate

the bolted connection between the girders and the cross beams. After these modi�-

cations, the relative errors of the �rst six natural frequencies between the analytical

model and the test structure fall within 4%.
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Table 6.1: Comparison of the analytical and experimental natural frequencies

Mode Frequency (Hz) Relative
Analytical (!) Experimental (!̂) Error� (%)

1st Bending 5.4488 5.5635 2.06
1st Torsion 10.1494 10.0406 1.08
2nd Bending 19.1841 18.6410 2.91
2nd Torsion 30.6216 29.4388 4.02
3rd Bending 41.6086 42.5910 2.31
3rd Torsion 54.9704 57.1864 3.88
* error=j!� !̂j=!̂

Table 6.1 compares the values of the analytical and experimental natural frequen-

cies. Here, the experimental frequency (!̂) is a mean value of the three frequencies

estimated with impacts on nodes 3, 4 and 5, respectively. Figure 6.6 displays the

analytical and experimental modal vectors of the �rst six modes. The �rst six Ritz

vectors are also computed following the extraction procedure in Section 6.1.10. Fig-

ure 6.7 shows the analytical Ritz vectors and the experimental Ritz vectors with an

impulse excitation at node 3. The analytical Ritz vectors in Figure 6.7 are computed

from the analytical model following the procedure in Section 3.4.1. It should be noted

that the �rst Ritz vector is equivalent to a de
ection pattern observed when a unit

load is applied to node 3.

As for the scaling of the Ritz or modal vectors, a mass-normalization is conducted.

However, since the DOFs of the analytical model do not coincide with the DOFs of

the experimental Ritz or modal vectors, a reduced analytical mass matrix is �rst

computed using the Guyan (static) condensation procedure [61]. Then, both the an-

alytical and experimental vectors are normalized with respect to the reduced mass

matrix. Errors arise from the model reduction are found to be minimum since the in-

ertial forces associated with the omitted rotational DOFs (slave DOFs) are negligible

in this example.

6.2.3 Application to Damage Detection

Continuous deterioration of sti�ness is simulated at three di�erent regions of the

grid structure and the vibration tests are conducted at six di�erent damage stages
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Figure 6.6: Comparison of analytical and experimental modal vectors
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Figure 6.6: Comparison of analytical and experimental modal vectors (continued)
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Figure 6.7: Comparison of analytical and experimental modal vectors
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Figure 6.7: Comparison of analytical and experimental modal vectors (continued)
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Figure 6.8: Actual damage introduced to the grid-type bridge structure

Table 6.2: Description for six damage cases of a grid-type bridge structure

Case Location 1� Location 2� Location 3�

1 2.0 cm (40%) - -
2 3.0 cm (60%) - -
3 3.0 cm (60%) 1.5 cm (30%) -
4 3.0 cm (60%) 2.6 cm (52%) -
5 3.0 cm (60%) 3.2 cm (64%) -
6 3.0 cm (60%) 3.2 cm (64%) 2.5 cm (50%)

* Damage locations 1, 2 & 3 are shown in Figure 6.3. The �rst number is the depth of cut

and the second number is the ratio of the cut depth to the height of the beam (5 cm).

Table 6.3: Natural frequencies (Hz) estimated at di�erent damage levels

Damage case Natural Frequency (Hz)
1st 2nd 3rd 4th 5th 6th

Case 0 5.5635 10.0406 18.6410 29.4388 42.5910 57.1864
Case 1 5.5325 9.8055 18.0557 29.0354 42.0302 56.6170
Case 2 5.4834 9.6725 17.2749 28.5032 41.1840 56.1848
Case 3 5.3699 9.5971 17.2364 27.6911 40.6107 55.3881
Case 4 5.2398 9.5249 17.2193 27.3410 39.7738 52.3992
Case 5 5.0254 9.3938 17.1694 27.1571 38.5939 51.6392
Case 6 4.9622 9.0075 16.1835 26.6957 37.2933 49.9543
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as shown in Table 6.2. Figure 6.3 shows the three damage locations. First, a single

damage is introduced at damage location 1 (for cases 1 and 2) and the second damage

is formed between nodes 12 and 13 (for cases 3, 4 and 5). Finally, damage case 6 is

simulated by adding the third damage at location 3.

For each damage location, a crack is introduced by a saw cutting at a distance of

30cm from the left node. A typical saw cutting is shown in Figure 6.8. For example,

the damage location 1 in Figure 6.3 is formed at 30cm left of the node 3. The severity

of saw cutting in terms of depth (cm) and the ratio of the cut depth to the height of

the beam (%) are tabulated as shown in Table 6.2. In addition, Table 6.3 summarizes

the change of frequencies at each damage stage.

Table 6.4: Damage diagnosis results for the grid-type structure using Ritz & modal vectors
Damage Ritz Vectors Modal Vectors

Case Location L̂dam Rank1 L̂dam Rank1

1 f2g f2, 3g 1(2) f2, 8, 9g 1(29)

2 f2g f2, 3g 1(12) f2, 8, 12g 1(46)

3 f2, 11g f2, 3g 3(9) f2, 3, 8g 13(41)

4 f2, 11g f2g 3(3) f2, 8, 12g 4(12)

5 f2, 11g f2, 11g 1(1) f2, 11, 12g 1(9)

6 f2, 6, 11g f2, 6, 11g 1(1) f2, 6, 11g 1(1)

1. The �rst number is the highest rank of a damage event which includes all actual damage
locations and the second number is the rank of the actual damage event.

2. L̂dam is a set of the most probable damage locations identi�ed by the branch-and- bound
search.

First, damage diagnosis is conducted using the six estimated modes. For each

damage stage, three sets of modal data, which are obtained from the impulse exci-

tation at nodes 3, 4 and 5, are employed for the proposed Bayesian approach. The

diagnosis results are summarized in Table 6.4. The �fth column of the table (the

column under L̂dam) shows the most likely damage locations identi�ed by the branch-

and-bound search scheme. The �rst number under the title \Rank" denotes the rank

of the actual damage event, and the second number presents the highest rank among

the damage events that include all the actual damage locations. The diagnosis results

reveal that as we approach the �nal damage stage, the diagnosis employing the modal

parameters converges to the actual damage locations.

Second, the same six cases are re-diagnosed using the Ritz vectors generated from
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di�erent load patterns. A point load is assumed to be applied to the vertical direction

of each node (the global Y direction in Figure 6.2) and the �rst six Ritz vectors

are generated from the load pattern. Then, this process is repeated for all twelve

vertical DOFs. From these load patterns, a total of 48 (4 Ritz vectors/load � 12 load

patterns) Ritz vectors are generated. Note that, following the extraction procedure

in Section 6.1.10, Ritz vectors corresponding to any load pattern can be theoretically

extracted with the same amount of test data used to estimate the modal parameters.

That is, more information is gained by applying multiple loads.

The diagnosis results using the Ritz vectors are also summarized in Table 6.4. For

cases 1 and 2, the actual damage event is ranked as the second and twelfth most likely

damage event, respectively. In the �rst two cases, damage location 1 is included in

the most likely damage event estimated by the branch-and-bound search. That is,

although the branch-and-bound search fails to pinpoint the actual damage location,

the search �nds the actual damage location as one of the most likely damage locations.

For case 3, the actual damage event is ranked as the ninth most likely event. For

case 4, the actual damage case is ranked as the third most likely event, for cases 5

and 6, the branch-and-bound search exactly �nds the actual damage events.

Table 6.5: Diagnosis result for damage case 3 of the girder structure

Rank L̂dam Rank L̂dam Rank L̂dam

1 f2, 3 g 4 f2, 3, 12g 7 f1, 2, 3g
2 f2, 3, 4g 5 f2 g 8 f2, 12 g
3 f2, 3, 11g 6 f2, 4 g 9 f2, 11 g

Table 6.5 shows the �rst nine most probable damage events identi�ed by the

branch-and-bound search for damage case 3. The �rst two most probable events

only include damage location 1 and miss damage location 2. However, the third

most probable event includes the two damage locations and one extra member 3.

That is, although the proposed approach ranks the actual damage event as the ninth

most probable event, the third most likely event conservatively includes all the actual

damage locations.
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Using the test data obtained from case 5, Figure 6.9 illustrates the branch-and-

bound search scheme proposed in Section 2.2. The search presented here follows a

depth-�rst/best-�rst search strategy and the third highest posterior probability, P 3
max,

among all the hypotheses examined so far is employed in Equation 2.27 instead of

Pmax. The branch-and-bound search �nds the actual damage event as the most likely

one after examining 63 di�erent damage scenarios out of 4096 (=212) possible ones.

The results shown in Table 6.4 shows that the Ritz vectors provide better diag-

nosis results than the modal vectors for all the six damage cases investigated. The

sensitivity comparison shown in Figure 6.10 supports the diagnosis results. In Fig-

ure 6.10, the sensitivity comparison using the experimental Ritz/modal vectors at

di�erent damage stages is conducted. The Ritz vectors are extracted from a point

load applied at node 4. From Figure 6.10, we conclude that a careful selection of load

patterns can make damage more observable. The better sensitivity of Ritz vectors to

damage locations and the increased amount of information employing multiple load

patterns seem to improve the damage diagnosis.

6.2.4 Application of Other Detection Methods

For comparison, the Minimum Rank Perturbation Theory (MRPT) [85], damage

index method [92,143,145], and Sensitivity-Based Element-By-Element (SB-EBE)

method [69] are applied to the test data.

The MRPT proposed by Kaouk and Zimmerman consists of two basic steps [85].

First, dynamic residual forces (also know as damage vectors or residual force vectors)

are employed to locate the damaged regions which are mathematically expressed

in terms of DOFs in the analytical model. Physically, the dynamic residual force

in each DOF represents the unbalanced force caused by the discrepancy between

the analytical model and the estimated modal parameters. Second, the lowest rank

perturbation is introduced to the analytical sti�ness matrix such that the residual

forces are minimized. This method is computationally e�cient and does not require

any iteration. However, the measurement points of the experimental modal vectors

should coincide with those of the analytical model, and the dimension of the modal

vectors should be the same as the dimension of the analytical model. To satisfy these
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Figure 6.10: Sensitivity comparison of Ritz and modal vectors at di�erent damage stages

conditions, the Guyan condensation is applied to the analytical model. Furthermore,

in Reference 157, the MRPT is extended for the case where multiple data sets are

available from several static and vibration tests. Since three modal data sets are

obtained at each damage stage of the grid structure, this extended MRPT is employed

here. The extended MRPT �rst computes the residual forces similar to the original

MRPT. Next, singular value decomposition of the residual force is performed Here,

only the singular values above the user-speci�ed threshold value are kept for the

sti�ness updating. The performance of the MRPT depends greatly on the number of

the singular values remained for the updating.

In Figure 6.11, the MPRT is applied to the test data obtained from the grid struc-

ture. In this �gure, the abscissa shows the node numbers de�ned in Figure 6.3, and

the ordinate displays the diagonal components of the sti�ness changes at each damage

stage. Kh and Kd denote the sti�ness matrix before and after damage occurrence,

respectively. Note that the sti�ness change is normalized such that the maximum

component becomes one. The damaged nodes are distinguished by darker color in

the �gure. In cases 1 and 2, the MPRT locates member 3 ( with end nodes 3 and 4)

as potential damage region and the sti�ness changes at nodes 2 and 3 (or the residual

forces) seem small. In cases 3 and 4, the sti�ness changes near the actual damage

regions (nodes 2, 3 12 and 13) become larger than the previous two cases, but the

sti�ness changes are also smeared to the adjacent components. This phenomenon

particularly attributes to the error induced by the model condensation. For cases 5

167



Chapter 6 Experimental Applications

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 1

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 2

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 3

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 4

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 5

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

2 3 4 5 6 7 10 11 12 13 14 15
−0.2

0

0.2

0.4

0.6

0.8

1

Case 6

Node Number

N
or

m
al

iz
ed

 C
ha

ng
e 

of
 Kh ii−

K
d ii

Figure 6.11: Damage diagnosis of a grid-type bridge model using the MRPT method
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and 6, the sti�ness changes at the actual damage locations becomes more obvious.

However, damage location 3 (between nodes 6 and 7) is not successfully identi�ed in

case 6.

The SB-EBE method searches for the locations of potential errors between the

�nite element model and the measured modal data, and then update the analyti-

cal model at the element level by adjusting the elements' material properties. This

method minimizes the squared norms of the modal dynamic residuals via a two-step

iteration: At each iteration, the estimated modal vectors are �rst expanded, and the

parameters of the elements are corrected using the expanded modal vectors and nat-

ural frequencies. This approach has demonstrated the potential applicability to the

damage detection of truss structures [46]. The SB-EBE method is employed here since

the mode shape expansion scheme is built within the updating process and damage

can be identi�ed at each structural element level. However, since this method can not

employ mutiple data sets for updating (note that, in the experiment presented here,

three sets of modal parameters are obtained at each damage stage by exciting the

structure at nodes 3, 4 and 5, repeatedly), a single modal parameter set is separately

used for the SB-EBE method and the diagnosis is repeated for all three data sets.

Figure 6.12 shows the diagnosis results using the SB-EBE method. Note that,

the best diagnosis result among the diagnoses using three di�erent modal data sets

is presented for each damage stage. In Figure 6.12, the abscissa represents the sub-

structure number and the ordinate denotes the percent change of the corresponding

substructure sti�ness. For cases 1 and 2, the actual damaged member has the largest

sti�ness decrease. The SB-EBE method also correctly indicates the actual damage

locations for cases 3 and 4. However, damage locations 2 and damage location 3 are

missed in cases 5 and 6, respectively.

The damage index method proposed by Stubbs, Kim and Topole is based on the

assumption that the strain energy stored in the structure will decrease in damaged

regions [92,143,145]. Basically, the damage index for the ith member (�i) is the ratio

of the bending sti�ness between the undamaged element (EIhi ) and the damaged
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Figure 6.12: Damage diagnosis of a grid-type bridge model using the SB-EBE method
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element (EIdi ):

�i =
EIhi + 1

EIdi + 1
(6.48)

where a unity value is added to the numerator and denominator to avoid potential

numerical problems. This method requires the discretization of the structure into

a su�cient number of small elements and the method is applicable to beam-type

structures only. Since the bending sti�ness EIdi term is unknown, the damage index

�i is actually estimated by the curvature of the structure at the ith node. However,

since the direct measure of the curvature is infeasible, the curvature is approximated

as follows [143]: (1) Estimate the unmeasured node amplitudes of the modal vectors

by interpolating the measured nodes using cubic-spline functions [125], and (2) take

a second derivative of the interpolation function at each node. Finally, treating �i

as a realization of a random variable �, a normalized damage index is computed as

follows:

Zi =
�i � ��

��
(6.49)

�� and �� denote the mean and standard deviation of the damage indices, respectively.

The ith substructure is de�ned as damaged when jZij > 2, which corresponds to a

hypothesis testing with 95% con�dence level [57].

Table 6.6: Actual and estimated damage locations for the damage index method

Case Members with j�ij > 2 Actual damage locations

1 20-26, 34-39 16
2 17-26 16
3 17-24, 101-107 16, 106
4 22-27, 100-109 16, 106
5 20-29 16, 106
6 20-29 16, 56, 106

Figure 6.13 and Table 6.6 show the diagnosis results using the damage index

method. Each girder is discretized into seventy 7cm long members and damage loca-

tions 1, 2 and 3 correspond to members 16, 56 and 106 in this model, respectively.
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Figure 6.13: Damage diagnosis of a grid-type bridge model using the Damage Index method
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For each damage case of Figure 6.13, vertical grid lines are added to display all three

damage locations, and the abscissa is labeled only for the actual damaged members

at each damage stage. Note that the diagnosis results in Figure 6.13 and Table 6.6

are obtained by using only the �rst modal vector since the inclusion of higher modes

worsens the performance of damage index method. This phenomenon is also reported

when the damage index method is applied to the I-40 bridge in Albuquerque, New

Mexico [50]. It seems that the interpolation could not approximate the higher modes

well and this partially causes the worse diagnosis when the higher modes are included.

For cases 1 and 2, the damage index method estimates that the damage is located

in members 20-26 or members 17-26 which are near the actual damaged member 16.

For cases 3 and 4, the method successfully indicates the actual damage locations.

However the damage index method fails to detect the damaged members 106 and 56

for cases 5 and 6.

6.3 Summary and Discussions

This chapter �rst reviews the procedure of typical experimental modal analyses em-

phasizing the Eigensystem Realization Algorithm. Next, an extraction procedure of

Ritz vectors, which is based on the state-space model estimated from the ERA, is

presented. Furthermore, we describe a new procedure which extracts Ritz vectors

based on the measured 
exibility matrix. The main advantage of the 
exibility-based

extraction procedure is that while the state-space method extracts Ritz vectors only

from the actual loading that is applied to the structure, the 
exibility-based method

can generate Ritz vectors from arbitrary load patterns. The extraction procedures

successfully extract the �rst six Ritz vectors from the grid-type test structure.

For the grid-type bridge model, six di�erent damage cases are investigated using

Ritz and modal vectors. Diagnoses of the six damage cases reveal that the employ-

ment of Ritz vectors provides better indication of the actual damage locations. The

sensitivity comparison of Ritz/modal vectors exhibits that at every level of damage,

the changes of Ritz vectors are larger than those of the modal vectors and con�rms the

diagnosis results. However, the superiority of Ritz vectors is not as well demonstrated
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in this example as expected. It attributes to the facts that (1) since the geometry of

the grid structure is relatively simple and less redundant system, the load redistribu-

tion caused by di�erent load patterns and sti�ness deterioration was not signi�cant,

and (2) because of the limited frequency range for the experimental modal analysis,

the potential contribution of higher modes to Ritz vectors is truncated. We believe

that the advantage of Ritz vectors will be more signi�cant for complicated structures

because of greater redundancy. The proposed branch-and-bound search scheme is

shown to signi�cantly reduce the computational cost of the proposed Bayesian ap-

proach. Particularly when damages are localized in a few locations, the computation

is quite manageable.

The application of the MRPT, SB-EBE, and damage index method to the test

data of the grid structure shows that none of these methods provide better diagnosis

results than the Bayesian approach. The MRPT requires a decision on the rank

of the sti�ness perturbation that is added to the original sti�ness matrix and the

performance of the MRPT greatly depends on the rank selection. In this study, the

rank is decided based on the knowledge of the actual damage locations. However,

for real applications, the rank will be selected without the knowledge of damage

locations. The SB-EBE method provides better diagnosis result than the MRPT and

damage index method, and identi�es damage amount as well as damage locations.

However, the SB-EBE method can only employ a single modal parameter set at a

time and the diagnosis result varies drastically depending on which modal parameter

sets are used. Therefore, the SB-EBE method may not be suitable for the continuous

monitoring that we are aiming at in this study. The damage index method provides

better diagnosis results than the MRPT method. The advantage of this method is

that only a few modes are required to obtain reliable results. In our example, the

employment of only the �rst mode resulted in the best diagnosis result. However,

this method is applicable only to beam-type structures and requires the model to be

discretized into a large number of small elements.
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Environmental E�ects on Damage

Detection

Many vibration-based damage detection techniques attempt to identify the extent

and location of damage in large structures using the modal parameters estimated

by experimental modal analysis. These vibration-based damage detection is based

on the premise that damage in the structure will cause changes in the measured

vibration data. Before the proposed Bayesian approach can be reliably applied to

global damage diagnosis (level 2 assessment as described in Chapter 1.1), a decision

on the presence of damage should be made �rst (level 1 assessment).

For a civil structure, changes in load, boundary conditions, temperature and hu-

midity can have a signi�cant e�ect on the underlying dynamic characteristics of the

civil structure. Existing methods, however, neglect the important e�ects of environ-

mental changes on the underlying structure. In fact, the changes in the modal param-

eters due to environmental factors can be much larger than those caused by structural

damage. During damp weather, for example, concrete bridges in the United Kingdom

are reported to absorb considerable amount of moisture, which thus increases their

masses and alters their natural frequencies [151]. Therefore, these environmental

e�ects need to be �ltered out to make a reliable decision on the presence of damage.

This chapter mainly addresses the thermal e�ects on the non-stationary responses

of bridges due to temperature changes. Very few researchers have addressed such a

problem. Churchward and Sokal [38] attempted to predict the temperature distri-

bution within bridge sections and to determine longitudinal expansion and vertical
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de
ection based on a three-year monitoring of a post-stressed concrete section of a

bridge. The measured environmental parameters include ambient air temperature,

solar radiation, hours of sunshine and the temperature on the top surface of the sec-

tion. It is found that the temperature pro�le can be reasonably represented using

two design variables, namely maximum di�erential temperature and base tempera-

ture. Wood [151] reported that the changes of bridge responses were closely related to

the structural temperature based on the vibration tests of �ve bridges in the United

Kingdom. Analyses based on the data compiled suggested that the variability of the

asphalt elastic modulus due to temperature e�ects was a major contributor to the

changes in the structural sti�ness.

Askegaard and Mossing [5] tested a three-span RC footbridge to investigate if

modal parameters can provide a long term indication of structural deterioration or

crack formation. Seasonal changes of modal parameters were also monitored for a

three-year period, and about 10% change in frequency was repeatedly observed for

each year. The authors concluded that the change was partially attributed to the

variation of ambient temperature. Moorty [104] attempted to relate the responses of

a bridge to thermal environmental conditions. An analytical model was developed to

obtain the temperature-induced movements and the associated stresses in the bridge.

A �eld test was conducted on the Sutton Creek Bridge in Montana, USA. The move-

ments obtained from both the analytical model and the measured values showed

signi�cant expansion of the bridge deck as temperature increased. A comprehensive

research program on the Confederation Bridge in Eastern Canada has started in the

spring of 1997 and will continue over many years to evaluate the e�ect of temperature

on the short term and long term behavior of the bridge [41]. Data on temperature

and strain in the various components of the bridge, movement at expansion joints and

deformation of the piers have been collected hourly. The extensive data collected will

be used to develop computer models for predicting temperature e�ects in concrete

bridges.

This study presents an adaptive �lter that accommodates the changes in tem-

perature to the damage detection system of a large-scale bridge. This system deter-

mines modal frequencies using conventional modal analyses, but is able to adapt its
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prediction of the underlying natural frequencies of the structure based upon a time-

temperature pro�le. This allows the system to discriminate the changes of modal

parameters due to temperature changes from those caused by other environmental

factors or structural damage. For example, when the measured frequencies move out-

side the predicted con�dence intervals, the system can provide a reliable indication

that structural changes are likely caused by factors other than thermal e�ect.

Actual data collected from the Alamosa Canyon Bridge in New Mexico are used

to train and test the system. Results indicate that a linear four-input (two time and

two spatial dimensions) �lter of temperature can reproduce the natural variability of

the frequencies with respect to time of day. Using this simple model, we attempt to

establish a con�dence interval of the frequencies for a new temperature pro�le in order

to discriminate the natural variation due to temperature from potential damage.

This section is organized as follows. Section 7.1 describes the experimental setup

at the Alamosa Canyon Bridge. Sections 7.2 to 7.4 present the training of the adaptive

�lter and a selection procedure of temperature input variables. Section 7.5 presents

the prediction operation with the construction of con�dence intervals, and the exam-

ination of prediction performance.

7.1 Description of Experimental Setup

The Alamosa Canyon Bridge is located near the town of Truth or Consequences in

southern New Mexico and is approximately aligned in the north and south direction.

This bridge has seven independent spans and each span consists of a concrete deck

supported by six W30x116 steel girders. The top 
anges of the girders are embedded

in the concrete slab. The roadway in a span is approximately 7.3 m (24 ft) wide and

15.2 m (50 ft) long. Along the length of each span, four sets of crossing braces are

equally spaced. Figure 7.1 depicts a side view of the Alamosa Canyon Bridge. More

detailed description of the bridge can be found in Farrar et al. [49].

A new bridge has been constructed adjacent to this old Alamosa Canyon Bridge

and since that time the tested bridge has not been used for regular tra�c. During the

past three years, however, the bridge has been tested several times by the Engineering
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Analysis Group of the Los Alamos National Laboratory (LANL). An attempt to

characterize the natural variability of modal parameters was conducted in 1996 [49].

The inherent uncertainty in the measured modal parameters was also studied using

experimental test data from the bridge [42].

This current study uses the results of the vibration tests conducted on July 27-

August 2, 1996 and July 21-25, 1997, referred to here as the �rst and second data

sets, respectively. The test data were provided to the authors by the Engineering

Analysis Group of the LANL. The �rst data set was used to train the adaptive �lter

while the second data set was used to test the predictor. For both tests, only one

span was implemented with sensors and tested. A total of 31 accelerometers were

placed on the concrete deck and on the girders below the bridge. Five accelerometers

were spaced along the length of each girder. Since there were six girders, a total

of 30 accelerometers were placed on the girders. The last accelerometer was placed

near the driving point. The time histories of accelerations and an excitation force

were recorded, and the frequency response functions (FRFs) were computed from

the time histories. The FRFs were calculated for the range of 0 to 50 Hz with the

resolution of 0.0625 Hz. Thirty averages were used for all FRFs. An impact hammer

which weighted approximately 53.4 N (12 lbs) was used to excite the bridge. The

data acquisition for each test took 30 � 45 minutes. The modal parameters were

extracted using the Eigensystem Realization Algorithm (ERA) [76]. Approximately

nine meaningful modes were identi�ed from the ERA within the range of 0 to 30 Hz.

At the same time, temperature measurements were made on nine di�erent loca-

tions across the center of the span. Figure 7.2 shows a cross-section view of the bridge

and the distribution of the thermometers, as follows: The bottom west outdoor sensor

(T8) was attached to the outside of the west-end exterior girder at the mid height of

the web. The bottom west indoor sensor (T6) was located on the inside bottom 
ange

of the west-end exterior girder. The bottom center sensor (T9) was taped beneath the

concrete deck at the center of the span. The top west outdoor sensor (T2) was located

next to the concrete curb at the west-end of the deck. The top west indoor sensor

(T4) was placed on the top of the west-end guard rail. The four remaining sensors

(T1, T3, T5 and T7) were placed on the east end of the span symmetrically to the
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Figure 7.1: A side view of the Alamosa Canyon Bridge (Courtesy of the Los Alamos National
Laboratory)

west-end sensors. All sensors were protected from the direct contact with sunshine

either by the bridge itself or by the shades made from duct tape and cups. However,

the temperature measurements were not the most precise measurements that could

have been made. Attempts were made to calibrate the thermometers prior to the

tests, but the the accuracy of the readings was not that which could be obtained with

typical thermocouples.

The �rst vibration test was performed every two hours over a 24-hour time period

to investigate the change of modal parameters with respect to time of day. The test

started on July 31, 1996 at 09:15 and ended on August 1, 1996 at 9:22. The air

was dry throughout the test. Farrar et al. [49] showed that the measured �rst mode

frequency varied approximately 5% during the 24-hour test period, and the change

in the measured fundamental frequency was found to correlate with the temperature

di�erence across the deck. Similar variations and correlation with deck temperature

di�erence were observed for the other modes of the bridge. Table 7.1 summarizes the

measured frequencies and temperatures from the �rst vibration test. The temperature

of a given time in Table 7.1 is an average of the thermometer readings before and after

each vibration test. In addition to the temperature e�ect, tra�c, winds, deterioration

of the bridge and other environmental conditions could produce changes of the modal

parameters. However, since the bridge was not used and the weather was calm during

the test period, it is assumed that any changes of the modal parameters are mainly

the result of the temperature changes.
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The second test was conducted about one year after the �rst test. The second

test started on July 22, 1997 at 04:00 and ended at midnight. Vibration tests were

performed eleven times every two hours. A note is in order about the weather condi-

tions prior to the second vibration test; it had been raining hard from approximately

10:00 PM the previous night of the testing until 3:00 AM. When the data acquisi-

tion was started at 4:00 AM, rain was su�cient to produce ponds of water near the

curbs and drainage paths were blocked by debris. The concrete deck was su�ciently

cracked such that a fair amount of moisture might have been absorbed by the bridge.

When the second vibration test was conducted, no signi�cant sti�ness deterioration

were observed since the �rst testing. In the second testing, no temperature sensor

was placed at the bottom center. The other thermometers were placed almost in the

same locations as those of the �rst testing. Table 7.2 summarizes the results from the

second vibration test.

18cm(7’’)

C 12 x 25 6 W 30 x 116 @ 147cm (58’’) o.c.

3.66m ( 12’)3.66m ( 12’)

T1T2

T3T4

T5T6

T7T8
T9

Figure 7.2: A cross section view and thermometer locations of the Alamosa Canyon Bridge

7.2 Formulation of a Linear Filter

First, prediction of the fundamental frequency was selected as a target for this study

and the same procedure is repeated for the second mode frequency. It was presumed

that the temperature changes of the bridge were mainly responsible for the variation

of the frequencies. This assumption seems reasonable since the bridge was no longer

in service and there was no signi�cant change of weather conditions on the �rst test

day. Observations of the bridge data coupled with some engineering judgment led

to three additional assumptions that appear simplistic but are important factors in
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Table 7.1: Summary of the �rst data set (conducted in 1996 Summer)
Time Freq. (Hz) Temperature (Fo)

1st 2nd T1 T2 T3 T4 T5 T6 T7 T8 T9

09:15 7.556 8.311 76.00 90.70 93.30 95.90 83.55 77.20 103.7 75.55 77.45

11:30 7.621 8.384 85.80 106.15 101.10 99.70 93.90 84.50 93.90 83.30 83.10

13:12 7.475 8.084 108.15 115.60 100.65 103.00 93.55 91.20 93.20 91.85 88.60

15:13 7.343 7.874 109.60 110.70 102.00 102.60 92.80 93.70 93.60 95.50 94.60

17:52 7.394 7.972 104.35 99.25 97.40 99.25 91.20 95.05 92.60 96.05 98.35

20:09 7.376 8.042 88.00 87.00 74.40 76.05 77.80 78.90 79.50 79.50 91.35

21:20 7.334 8.037 85.90 86.40 76.10 77.55 79.95 80.35 80.00 79.45 89.95

23:29 7.356 8.087 79.60 81.50 72.70 74.20 75.00 75.60 75.30 74.30 80.50

01:21 7.328 8.071 79.55 79.35 70.05 72.05 75.20 75.10 74.85 74.75 80.70

03:19 7.353 8.119 74.55 75.15 65.85 66.65 70.25 71.70 72.15 70.85 77.20

05:19 7.381 8.157 72.85 72.85 64.15 65.50 68.80 70.00 70.15 68.90 74.10

07:03 7.389 8.178 70.85 73.85 66.90 68.10 66.70 67.85 73.80 67.35 72.10

09:22 7.577 8.342 74.45 92.75 94.00 93.20 83.90 77.55 102.00 75.50 76.00

Table 7.2: Summary of the second data set (conducted in 1997 Summer)
Time Freq. (Hz) Temperature (Fo)

1st 2nd T1 T2 T3 T4 T5 T6 T7 T8 T9

04:00 7.303 8.100 79.70 76.95 80.35 76.10 70.60 70.45 69.30 69.15 NA.

06:02 7.329 8.136 79.05 76.55 81.95 80.15 68.85 69.35 68.20 67.55 NA.

08:00 7.528 8.281 79.50 87.80 88.95 94.20 74.70 71.50 68.20 71.30 NA.

10:02 7.638 8.524 79.80 111.75 96.60 109.30 67.60 77.35 68.20 77.00 NA.

12:00 7.579 8.249 100.05 121.00 113.25 109.85 67.60 82.75 68.20 83.90 NA.

14:01 7.503 8.143 113.80 120.00 112.80 100.85 67.60 88.70 68.20 91.05 NA.

16:00 7.449 8.008 104.35 102.65 102.05 97.05 88.45 91.65 90.40 91.10 NA.

18:00 7.361 8.030 92.50 90.50 82.60 81.70 82.00 82.20 82.20 84.60 NA.

20:05 7.321 8.070 80.20 81.40 72.75 73.50 74.35 73.50 73.85 73.60 NA.

21:54 7.319 8.094 78.10 77.75 71.05 71.05 72.85 73.60 72.85 71.60 NA.

24:00 7.347 8.132 75.30 74.95 68.30 66.90 70.65 71.30 70.90 69.15 NA.
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the design of the �lter architecture: (1) changes in the modal parameters are linearly

proportional to changes in temperature; (2) the mass of the bridge forced the change

in modal parameters to lag behind the temperature, that is, the bridge takes some

time to warm up and cool o�; and (3) the geographical (north-south) orientation of

the structure with respect to the sun suggests that the temperature of the west end

of the bridge will have a time-lag behind the temperature of the east end.

Given these assumptions, a linear predictor is chosen as a system architecture. A

linear �lter simply creates a linear one-to-one mapping on input and output pairs. It

a�ords explicit calculation of the �lter coe�cients using a simple matrix calculation

and allows future modi�cation of these coe�cients using adaptive least-mean squares

error minimization. The �lter operates in two modes: training and prediction. Train-

ing is described here. Section 7.5 describes a validation regarding the applicability of

the �lter for prediction by testing its performance on the second data set.

7.3 Training the Linear Filter Model

The architecture of the linear �lter takes a subset of the temporal and spatial tem-

perature pro�les as inputs and delivers a single output that represents the estimated,

or predicted, fundamental frequency. (Later, the same procedure is repeated for the

second mode frequency.) In this sense, the �lter is also a multiple linear regression

model, but is more commonly termed a predictor or estimator. Determining the ap-

propriate subset of the available temperature pro�les is termed the variable selection

problem and is discussed in Section 7.4. The method of Least Mean Squares (LMS)

error minimization is used to estimate the coe�cients of the predictor [148].

The �lter models the relationship between the selected bridge temperature inputs,

x = [x1 x2 : : : xr]
T , a column vector of r inputs, and its measured fundamental

frequency, y, at that temperature pro�le as a linear function:

y = w0 + xTw + � (7.1)

where w0 is bias or o�set, w is a column vector of coe�cients that weighs each

temperature input, and � is the �lter error. Equation (7.1) can be rewritten to
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account for the o�set term w0 by rede�ning the input and weight vectors to have p

(= r + 1) dimensions:

y = xTw + � (7.2)

where x = [1 x1 x2 : : : xr]
T and w = [w0 w1 : : : wr]

T . Figure 7.3 depicts the �lter

to implement this model. In order to consider both the time and spatial variation of

temperature, the temperature readings at the current time Ti and the previous time

T 0
i are used as input variables. That is, x = [ 1 T1 : : : T9 T 0

1 : : : T
0
9 ]

T in Figure 7.3.

The �lter imposes a strictly linear mapping.

Suppose that n observations are available and let x(i) and y(i) denote the ith

input-output pairs. Equation (7.2) can be written in matrix notation:

y = Xw + � (7.3)

where, with n observations

y =

2
666664
y(1)

y(2)
...

y(n)

3
777775 ; X =

2
666664
1 x1(1) x2(1) : : : xr(1)

1 x1(2) x2(2) : : : xr(2)
...

...
...

...

1 x1(n) x2(n) : : : xr(n)

3
777775 ; � =

2
666664
�(1)

�(2)
...

�(n)

3
777775

The LMS error minimization is employed to estimate the �lter coe�cients. We

wish to �nd the vector of the �lter coe�cients w that minimizes the expected value

of the square of the �lter error:

min
w

E [ �(i)2 ] (7.4)

where E [ �(i)2 ] is the mean of the �lter errors created by n observations. E [ �(i)2 ]

can be rewritten as follows. The index i is omitted for notational simplicity after the
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�rst line.

E [ �(i)2 ] = E [ (y(i)�wTx(i))2 ] (7.5)

= E [ (y �wTx)2 ]

= E [ y2 +wTxxTw� 2yxTw ]

= E [ y2 ] +wTE [ xxT ]w � 2E [ yxT ]w

= E [ y2 ] +wTRw� 2pTw

where R (=E[ xxT ]) is the auto-correlation of the random input vector x, and p

(=E[ y xT ]) is the cross-correlation between the desired output and the input vec-

tor. We note that E [ �2 ] is quadratic with w and thus can be solved for a single

extrema (minima) with respect to w. The estimated coe�cients, ŵ, are found by

di�erentiating Equation 7.6 with respect to w and setting the result equal to zero:

r(E [ �2 ]) =
@E [ �2 ]

@w
= 2(Rŵ� p) = 0 (7.6)

Solving for ŵ,

ŵ = R�1p (7.7)

Equation (7.7) is called the Wiener-Hopf equation and is used to determine the esti-

mated coe�cients, ŵ, for a given set of input-output pairs.

One should note that the actual �lter output error that results after applying the

Wiener-Hopf equation is dependent upon the number of input-output mappings (n)

that are used to determine ŵ and the dimension of ŵ, p. If the �lter is under-speci�ed,

that is, the number of input-output pairs is less than the dimension of ŵ, then the

Wiener-Hopf equation will produce an unlimited number of di�erent ŵ's that result

in zero error (� = 0). This means that there exists an in�nite number of weights that

will produce zero error for the given observation sets.

Since the training data set was �xed for this study, we decided to reduce the di-

mension p. In the derivation of Equation (7.1), all input variables are assumed to
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be in
uential in predicting the output response. However, in most practical appli-

cations, the analyst must check the signi�cance of each input and determine some

optimal subset of inputs from a pool of candidate inputs. This variable selection is

equivalent to pruning irrelevant or redundant inputs from the �lter of Figure 7.3, and

the procedure is addressed in the following section.
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yŷ

�

Figure 7.3: A linear adaptive �lter

7.4 Input Variable Selection

We presume that the changes of the fundamental frequency are related to the spatial

and temporal variations of temperatures across the bridge. In order to consider both

the time and spatial variations of temperature, we decide to de�ne the temperature

readings at the current time Ti, and at the previous time T 0
i as an initial pool of

candidate input variables. Let k denote the size of this input pool. While the number

of candidate input variables are eighteen (nine temperature readings at the current

time and the other nine from the one step previous time), the number of observations

from the �rst vibration test is thirteen (n = 13). Therefore, the selection of input

variables should be conducted to reduce the size of the �lter before any estimation of
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the �lter coe�cients. In general, a model with smaller number of input variables are

more desirable because the variance of the prediction ŷ increases as the number of

inputs increases. Also, addition of extra inputs increases the costs of data collection

and model maintenance.

Table 7.3: Correlation of the measured fundamental frequency and the thermometer readings

y T1 T2 T3 T4 T5 T6 T7 T8 T9
y 1:000
T1 �0:097 1.000
T2 0:435 0.835 1.000 Sym.
T3 0:608 0.684 0.941 1.000

T4 0:580 0.707 0.943 0.997 1.000
T5 0:485 0.787 0.969 0.966 0.966 1.000
T6 0:130 0.949 0.901 0.839 0.853 0.916 1.000
T7 0:741 0.396 0.750 0.910 0.909 0.807 0.605 1.000

T8 0:065 0.968 0.883 0.804 0.820 0.886 0.996 0.556 1.000
T9 �0:232 0.886 0.641 0.518 0.540 0.668 0.870 0.283 0.889 1.000

First, the correlation of the nine sensor readings and the measured fundamental

frequency is investigated. Table 7.3 presents the resulting correlation matrix. The

correlation matrix shows that temperatures at the top east indoor (T3) and at the

top west indoor (T4) are very closely related. (Figure 7.2 shows the locations of the

thermometers.) The temperature at the bottom west indoor (T6) is also strongly

correlated to the temperature at the bottom west outdoor (T8). T4 is deleted from

the �lter model because T3 has a larger correlation with the observation output y

than T4. For the same reason, T6 is kept in the model and T8 is excluded. Since the

second data set did not measure the temperature at the bottom center, the variable

selection did not include T9. Now, the number of candidate input variables becomes

twelve (k=12).

Next, an exhaustive search of all possible subsets of the remaining input variables

is conducted using the SAS (Statistical Analysis System) program and the exhaustive

search took on a SUN ULTRA-2 workstation less than a minute. If the intercept

weight wo is always included, a total of 2k models should be examined. In this

example, there are 212 (=4096) possible models. This study employs adjusted R2
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Table 7.4: The best �ve models for each given number of input variables
# r �R2 R2

pred Selected Input Variables

1� 9 0.99801 0.96958 T1 T2 T5 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

2 0.99718 0.98144 T1 T2 T3 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

3 0.99678 0.98716 T1 T2 T6 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6 T 0

7

4 0.99665 0.86686 T1 T2 T6 T7 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

5 0.99424 0.72374 T1 T2 T6 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

7

6� 8 0.99747 0.99374 T1 T2 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

7 0.99517 0.98352 T1 T2 T3 T6 T 0

1 T 0

3 T 0

5 T 0

7

8 0.99324 0.97479 T2 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

9 0.99320 0.97169 T1 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

10 0.99318 0.93469 T1 T2 T6 T 0

1 T 0

2 T 0

3 T 0

5 T 0

7

11� 7 0.99373 0.98514 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

12 0.99302 0.98485 T2 T3 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

13 0.99293 0.96718 T1 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5

14 0.99277 0.96203 T1 T2 T3 T7 T 0

2 T 0

3 T 0

5

15 0.99275 0.97943 T3 T5 T6 T7 T 0

2 T 0

3 T 0

5

16� 6 0.99387 0.98804 T1 T3 T7 T 0

2 T 0

3 T 0

5

17 0.99373 0.98639 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5

18 0.99369 0.98766 T3 T6 T7 T 0

2 T 0

3 T 0

5

19 0.99360 0.98694 T3 T7 T 0

2 T 0

3 T 0

5 T 0

7

20 0.99358 0.98733 T3 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

21� 5 0.99428 0.99112 T3 T7 T 0

2 T 0

3 T 0

5

22� 0.99414 0.99062 T1 T3 T7 T 0

2 T 0

3

23� 0.99386 0.99054 T2 T3 T7 T 0

2 T 0

3

24 0.99361 0.98613 T3 T6 T7 T 0

2 T 0

3

25 0.99351 0.98878 T3 T7 T 0

2 T 0

3 T 0

7

26� 4 0.99410 0.99165 T3 T7 T 0

2 T 0

3

27 0.98934 0.98275 T3 T 0

1 T 0

2 T 0

3

28 0.98885 0.98131 T3 T 0

2 T 0

3 T 0

6

29 0.98757 0.97702 T2 T3 T 0

2 T 0

3

30 0.98735 0.97116 T3 T5 T 0

2 T 0

3

31� 3 0.98809 0.97809 T3 T 0

2 T 0

3

32 0.94915 0.90774 T 0

1 T 0

3 T 0

5

33 0.94346 0.89520 T5 T 0

2 T 0

3

34 0.93581 0.89347 T3 T 0

2 T 0

7

35 0.91828 0.87422 T3 T 0

2 T 0

5

* These models are retained for further comparison and investigation.
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statistic for comparing di�erent models. To explain adjusted R2 statistic, let R2
p

denote the coe�cient of multiple determination for a model with reduced size p (�
k + 1). Computationally

R2
p =

SSR(p)

Syy
= 1� SSE(p)

Syy
(7.8)

and

Syy =
nX
i=1

[y(i)� �y]2; SSR(p) =
nX
i=1

[ŷ(i)� �y]2; SSE(p) =
nX
i=1

[y(i)� ŷ(i)]2 (7.9)

where Syy, SSR(p) and SSE(p) denote the total sum of squares, the regression sum of

squares, and the residual sum of squares of a model with p weightings, respectively.

Furthermore, �y denotes the mean of the output observation (�y =
Pn

i=1 y(i)=n) and n is

the number of observations. R2
p increases as additional input variables are introduced

to the model and reaches the maximum when p = k + 1.

The analyst might use this criterion by adding input variables to the model up to

the point where an additional variable is not useful in that it provides only a small

increase in R2
p. However, since R

2
p increases as p increases, using R

2
p to determine the

optimal models is not straightforward. To avoid this di�culty, this study prefers to

use an adjusted R2 statistic de�ned as [102]:

�R2
p = 1�

�
n� 1

n� p

�
(1�R2

p) (7.10)

Note that �R2
p statistic does not necessarily increase as p increases. Consequently, one

can consider the model that has the maximum �R2
p value an optimum model.

Table 7.4 shows the �ve best models that maximize �R2
p for each given number of

inputs, 3 � r � 9. The �rst column of Table 7.4 shows the identi�cation numbers

of the examined models. The best models for each given r (3 � r � 9) are retained

for further comparison (models 1, 6, 11, 16, 21, 26 and 31). Note that three models

(models 21, 22, and 23) with �ve input variables and model 26 with four inputs

have larger �R2
p values than the models (models 11 and 16) with the largest �R2

p values

for r = 7 and r = 6. Therefore, models 22 and 23 are also retained for further
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investigation. The �lter system appears to approach the optimal architecture in

terms of �R2
p statistic, when the size of inputs is about four or �ve (4 � r � 5).

Furthermore, we want to estimate the prediction performance of the model before

future observations become available. A possible procedure is to split the training

data into two parts: the estimation data and the prediction data. The estimation

data is used to build the model, and the prediction data is employed to estimate the

prediction capability of the model. The basic process is summarized as follows [2]:

1. Select an observation y(i) as prediction data.

2. Fit the model to the remaining n�1 estimation data and use the model to pre-

dict the withheld observation (denote ~y(i) as the predicted value corresponding

to y(i)).

3. Compute the deleted residual de�ned as e(i) = y(i)� ~y(i).

4. Repeat this procedure for all observations.

The PRediction Error Sum of Squares (PRESS) statistic is then de�ned as the sum

of the deleted residuals. That is, PRESS=
Pn

i=1[y(i)� ~y(i)]2. Finally, an approximate

R2 for prediction is computed as

R2
pred = 1� PRESS

Syy
(7.11)

This R2
pred is used as a complementary criterion and shown in the fourth column of

Table 7.4.

For the remaining models (models 1, 6, 11, 16, 21, 22, 23, 26 and 31), two hy-

pothesis tests (the F - and t-statistic tests) are conducted to measure model adequacy.

These tests assume that the errors �(i) in Equation (7.3) are normally and indepen-

dently distributed with zero mean and variance �2� . A detailed description for the F -

and t-statistic tests can be found in Reference 102.

First, the F -statistic test determines if there is a linear relationship between the

output and any of the input variables. The appropriate hypothesis are

H0 : wi = 0 for all i (7.12)

H1 : wi 6= 0 for at least one i
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The hypothesis H0 is rejected if F0 > F�;r;n�r�1. Here, F0 is a ratio of SSR=r to

SSE=(n� r� 1), and F�;r;n�r�1 can be found from a statistical table of the F distri-

bution. SSR=�
2
� and SSE=�

2
� have �

2 distributions with r and (n� r � 1) degrees of

freedom, respectively. Furthermore, F0 (=(n�r�1)SSR=kSSE) have a F distribution

with r and n� r�1 degrees of freedom for numerator and denominator, respectively.

Rejection of H0 implies that at least one of the inputs contributes signi�cantly to the

model. Table 7.5 presents the LMS estimation of the weighting coe�cients and the

F -statistic of the remaining models (models 1, 6, 11, 16, 21, 22, 23, 26 and 31). The

last column of Table 7.5 shows that for all the selected models, the linear relationship

between the inputs and output is signi�cant. However, the passing of the F -statistic

test does not necessarily indicate that the model examined is an appropriate one for

predicting the output. Further tests of model adequacy are required.

Next, the t-statistic test examines the signi�cance of the individual �lter coe�cient

to the model given the other inputs in the model. The hypotheses for testing the

signi�cance of any input, such as wi, are

H0 : wi = 0 (7.13)

H1 : wi 6= 0

If jt0j > t�=2;n�r�1, the hypothesis H0 is rejected implying that the examined input

contributes signi�cantly to the model. Here, t0 (= wi=
q
Ĉi �2� ) has a t distribution,

Ci is the ith diagonal element of (X
TX)�1, and �̂2� is an unbiased estimate of the sum

of squared errors of the system:

�̂2� =
nX
i=1

[y(i)� ŷ(i)]2

n� p
(7.14)

The value of t�;r;n�r�1 is found from a statistical table of the t distribution. Note that

this examines only the marginal contribution of one input given the other inputs are

in the model. Table 7.6 shows the results of the t-statistic test. Each �lter coe�cient

that does not pass the t-statistic test is subscripted by an asterisk * in Table 7.6.

Except for models 6, 26 and 31, the hypothesis H0 : wi = 0 is not rejected. This

indicates that the other models contain redundant inputs that can be deleted from
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Table 7.5: The estimated weights for the selected models

# r Estimated Weightings

ŵo ŵT1 ŵT2 ŵT3 ŵT5 ŵT6 ŵT7
(�10�2) (�10�3) (�10�3) (�10�3) (�10�2) (�10�3)

1 9 7.457 -1.276 7.548 -4.179 1.419
6 8 7.559 -1.102 5.346 0.964
11 7 7.530 6.055 -1.162
16 6 7.572 -0.053 7.832 -2.358
21 5 7.580 7.478 -2.171
22 5 7.517 -0.070 8.105 -2.287
23 5 7.527 -0.633 8.462 -2.367
26 4 7.509 7.694 -1.992
31 3 7.429 5.957

ŵT 0
1

ŵT 0
2

ŵT 0
3

ŵT 0
5

ŵT 0
6

ŵT 0
7

Fo(F�;r;n�r�1)
(�10�3) (�10�2) (�10�2) (�10�2) (�10�2) (�10�3)

1 9 -9.258 1.303 -1.557 1.311 -5.822 670.487(>6.04)
6 8 -8.288 1.427 -1.475 1.029 -6.454 592.828(>4.88)
11 7 -4.049 -0.997 1.047 -0.785 0.628 272.680(>4.28)
16 6 -1.453 1.095 -0.186 325.259(>3.97)
21 5 -1.503 1.147 -0.232 418.202(>3.84)
22 5 -1.490 1.002 408.356(>3.84)
23 5 -1.573 1.050 389.600(>3.84)
26 4 -1.575 1.044 506.328(>3.86)
31 3 -1.480 1.005 332.842(>4.10)

the models.

Finally, model 26 with inputs T3, T7, T
0
2 and T

0
3 is selected as a satisfactory model

for the prediction of the second data set since (1) the �R2
p value of model 26 is com-

parable to that of model 6 or better than model 31, (2) the R2
pred value of model 26

is higher than the other models (except model 6), (3) this model passes both the F -

and t-statistic tests, and (4) model 26 has only half as many inputs as model 6. From
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Equation (7.7), the LMS estimator of ŵ is computed for model 26:

ŵ =

2
66666664

ŵo

ŵT3

ŵT7

ŵT 0
2

ŵT 0
3

3
77777775
=

2
66666664

7:509

0:007694

�0:001992
�0:01575
0:01044

3
77777775

(7.15)

Usually, the selection of an optimal model is not a computationally trivial task.

One should also check if the model is physically reasonable. The selection of model 26

and the estimated �lter coe�cients in Equation (7.15) reveals that (1) the response

change of the Alamosa Canyon Bridge lags the temperature of the bridge (the tem-

peratures of two hours before the current time contribute more signi�cantly to the

change of the current frequency than the temperatures at the current time: ŵT 0
2
and

ŵT 0
3
are approximately ten times larger than ŵT3 and ŵT7), and (2) the temperature

gradient between the top west outdoor and the top east indoor (0.01044T 0
3-0.01575T

0
2)

largely in
uences the variation of the fundamental frequency. This supports the ob-

servation in Reference 49 that the changes in modal frequencies are related to the

temperature di�erentials across the deck.

Figure 7.5 shows how well the selected model 26 reproduces the �rst mode fre-

quency from the �rst data set which is employed for the training of the �lter. Note

that only three temperature readings at the top west outdoor, top west indoor and

bottom east outdoor out of the total of nine thermometers are necessary to reasonably

estimate the change of the fundamental frequency.

7.5 Prediction using the Trained Model

The adaptive �lter established in the previous subsection was used to predict the

fundamental natural frequency of the bridge. The predicted value is then used to

discriminate the changes of the fundamental natural frequency caused by temperature

e�ects from changes caused by other environmental e�ects or potential damage of the

structure. For example, let x0 denote a vector of new temperature readings. A point
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Table 7.6: The t-statistic test of each weight for the selected models

ID# r t-statistic (to)
ŵo ŵT1 ŵT2 ŵT3 ŵT5 ŵT6 wT7

1 9 84.166 -7.548 4.629 -1.445� 4.292
6y 8 125.900 -8.255 8.156 8.557
11 7 72.692 4.313 -1.070�

16 6 103.642 -0.729� 9.824 -3.339
21 5 108.696 12.248 -3.416
22 5 247.207 -1.030� 11.420 -3.338
23 5 202.962 -0.832� 7.682 -3.033
26y 4 254.457 13.071 -3.188
31y 3 330.891 18.800

ŵT 0
1

ŵT 0
2

ŵT 0
3

ŵT 0
5

ŵT 0
6

ŵT 0
7

t�;r;n�r�1
1 9 -9.612 10.609 -10.160 5.281 -5.365 3.182
6y 8 10.639 14.386 -9.184 5.943 -5.763 2.776
11 7 -1.099 -2.247� 6.727 -1.465� 0.999� 2.571
16 6 -13.107 8.460 -0.830� 2.447
21 5 -17.902 11.023 -1.120� 2.365
22 5 -14.985 15.724 2.365
23 5 -27.998 20.699 2.365
24 5 -14.996 15.811 2.365
25 5 -18.894 8.911 0.519� 2.365
26y 4 -28.639 21.193 2.306
31y 3 -22.566 14.820 2.262
y Only these models pass the t-statistic test. � These coe�cients do not pass the
t-statistic test.

prediction ŷ0 of the fundamental natural frequency at the temperature pro�le becomes

ŷ0 = xT0 ŵ (7.16)

where ŵ is the weight vector determined in Equation (7.15).

One cannot expect a perfect match of the prediction and the measured modal

parameters because of incompleteness of the model, insu�cient training data sets,

uncertainties in actual testing and measurements and so on. Of broader importance,

however, one can compute a con�dence interval around the point prediction ŷ0 to

account for the inherent uncertainties. The upper and lower bounds of a 100(1��)%
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con�dence interval for the predicted output at the given input observation, namely

ŷ0 in this case, is computed as [102]:

ŷ0 � t�=2;n�p

q
�̂2� (1 + xT0 (X

TX)�1x0) (7.17)

where X is the collection of training data sets as de�ned in Equation 7.3.

Once the �lter is trained, the newly measured frequency can be compared against

the con�dence interval. If the fundamental natural frequency falls outside the con�-

dence interval, then one may suspect with the given con�dence that some changes in

the underlying structural characteristic are caused by damage or other e�ects. Ta-

ble 7.7 shows the predicted value of the fundamental frequency and a 95% con�dence

interval computed at the di�erent time of temperature pro�les from the second data

set. The �rst column of the table shows the starting time of each testing, and the

second and third columns present the lower and upper bounds of the con�dence in-

terval, respectively. These bounds are computed from Equation (7.17). The variables

ŷ and y in Table 7.7 denote the predicted frequency from Equation (7.16) and the

measured frequency from the second testing, respectively.

Table 7.7: Comparison of the measured fundamental frequency and the 95% con�dence intervals

Time Con�dence Bounds y ŷ Relative� Extrapolation Check
Lower Upper Error(%) h0 (hmax)

06:02 7.592 7.669 7.630 7.329 3.95 3.6004 (> 0.7686)
08:00 7.660 7.755 7.707 7.528 2.32 5.9233 (> 0.7686)
10:02 7.612 7.712 7.662 7.638 0.31 6.6219 (> 0.7686)
12:00 7.435 7.550 7.493 7.579 1.15 9.0997 (> 0.7686)
14:01 7.463 7.570 7.517 7.503 0.19 8.0356 (> 0.7686)
16:00 7.379 7.424 7.401 7.449 0.64 0.5026 (< 0.7686)
18:00 7.407 7.451 7.429 7.361 0.92 0.4734 (< 0.7686)
20:05 7.338 7.378 7.358 7.321 0.51 0.1836 (< 0.7686)
21:54 7.367 7.408 7.388 7.319 0.93 0.2384 (< 0.7686)
24:00 7.389 7.431 7.410 7.347 0.85 0.3396 (< 0.7686)
* Relative Error (%)=100� jy � ŷj=ŷ

In predicting new observations, one should be careful not to extrapolate beyond

the input variable region containing the training data set. A model that �ts well inside
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the region of the original data may perform poorly outside that region. In a multi-

dimensional input space, it is di�cult to decide if an input variable point lies inside

or outside the region of the original data. The diagonal elements of the hat matrix

H(= X(XTX)�1XT ) are employed to detect a hidden extrapolation point [102]. Let

the largest diagonal value of the hat matrixH be hmax, and de�ne the smallest convex

surface containing all of the training data points as the input variable hull (IVH). The

relative distance of any input variable vector x0 to the centroid of the IVH is re
ected

by

h0 = xT0 (X
TX)�1x0 (7.18)

If h0 > hmax, the point is outside the IVH and requires an extrapolation. The value

of h0 depends both on the Euclidean distance of the corresponding point from the

centroid of the training data and on the density of points in the IVH. In the last

column of Table 7.7, the h0 value of each input is compared to hmax. Only the last

�ve points corresponding to time 16:00, 18:00, 20:05, 21:54 and 24:00 are interpolation

points. We presume that only these data points inside the IVH are reliable for the

prediction.

The measured fundamental frequency from the second data set, and the upper

and lower bounds of the 95% con�dence interval are plotted in Figure 7.5. Figure 7.5

reveals that the measured frequencies corresponding to the interpolation points are

consistently lower than the associated lower bounds of the 95% prediction interval

(except the one at time 16:00). The linear �lter was also trained using the second

mode frequency from the �rst data set and tested for prediction of the second mode

frequency from the second data set. Figures 7.6 and 7.7 show the reproduction of the

training data set and the prediction result for the second mode frequency, respectively.

Again we observe that the measured second frequency is lower than or close to the

lower bound of the con�dence interval.

This result implies that the sti�ness of the structure is deteriorated and/or the

mass of the structure is increased. Considering the facts that the Alamosa Canyon

Bridge is a concrete bridge, it had visible cracks over the deck, and there was a severe

rain prior to the second test, and the drainage paths were �lled with debris and dirt, it
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is very possible that these consistent decreases of the fundamental natural frequency

were mainly caused by the increase of the bridge mass as the Alamosa Canyon Bridge

absorbed signi�cant amount of moisture and the bridge retained some of the rainfall

on its surface. Assuming that the change of the bridge mass is solely responsible

for the decrease of the fundamental frequency within the interpolation points, the

increase of mass is approximately estimated as 1.62%. Considering the experimental

study that several concrete bridges in the United Kingdom absorbed considerable

amount of moisture during damp weather, and consequently increased the mass of

the bridge approximately by 3 to 6 % [151], the change of the mass estimated in this

study falls within a reasonable range.

Note that statistical uncertainty bounds (mean � 2�) are added around the mea-

sured frequencies in Figures 7.5 and 7.7 to show that the variation caused by thermal

e�ect is larger than the inherent uncertainties in the measured frequencies. (The mea-

sured frequencies in Figures 7.5 to 7.7 are the mean values computed by averaging

thirty FRFs.) The standard deviation (�) of the frequencies is estimated using the

procedure in References 18 and 42.

7.6 Summary and Discussions

This chapter presents an adaptive �lter for predicting changes in modal parameters

of a full-scale bridge due to environmental temperature. Data from the Alamosa

Canyon Bridge in New Mexico were employed to demonstrate the applicability of

the adaptive �lter. The vibration tests were conducted during the summer of 1996

and 1997. The �rst data set from 1996 test was used to train the adaptive �lter

while the second data set from 1997 test was used to test the prediction performance.

Changes in the frequencies are found linearly correlated with temperature readings

from di�erent parts of the bridge. The �lter uses spatial and temporal temperature

distributions to determine changes in the �rst and second mode frequencies. A linear

�lter with two spatially-separated temperature measurements and two temporally-

separated temperature measurements reproduces the variation of the frequencies of

the �rst data set. Then, the system de�nes a con�dence interval for future values
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Figure 7.4: Reproduction of the �rst mode frequency using a linear �lter
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Figure 7.5: Prediction of the �rst mode frequency using a linear �lter
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Figure 7.6: Reproduction of the second mode frequency using a linear �lter
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Figure 7.7: Prediction of the second mode frequency using a linear �lter
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of modal parameters in order to discriminate between variations caused by tempera-

ture changes and those indicative of structural change or other environmental e�ects.

The comparison of the prediction intervals obtained from the �rst data set and the

measured frequencies from the second test data reveals that the bridge experienced a

statistically signi�cant decrease in the �rst and second mode frequencies. Consider-

ing the severe rain prior to the testing and the drainage system severely blocked by

debris, it is very possible that this consistent decrease of the frequencies was mainly

caused by the increase of the bridge mass as the Alamosa Canyon Bridge absorbed

signi�cant amount of moisture, and the bridge retained much of the rainfall on its

surface.

It should be kept in mind that the �lter system presented was developed for a par-

ticular bridge under particular environmental conditions. Further and well controlled

testings are required to fully validate this linear model. Although this study has been

limited to a single external variable (temperature), the approach might be extendible

to other environmental e�ects. To control for other environmental conditions and

account for larger-scale seasonal variations, tests should be conducted during di�er-

ent times of the year as well as di�erent times of a day, and measurements for other

environmental factors should be obtained. Furthermore, a continuous data collection

system would allow the �lter coe�cients to be more reliably updated, and to decrease

the size of the con�dence intervals. Last but not least, as shown in the test, reliable

damage detection must account for the signi�cant non-stationary environmental pro-

cesses. While the current study focuses on the temperature e�ect on the frequencies,

similar technique may also be applicable for obtaining con�dence bounds for other

parameters such as modal and Ritz vectors.
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Summary and Discussions

A Bayesian probabilistic framework for damage detection is proposed for the contin-

uous monitoring of structures. The idea is to search for the most probable damage

event by comparing the relative probabilities for di�erent damage scenarios. The

relative probability of a damage event is expressed in terms of the posterior proba-

bility of the damage event, given the estimated data sets from vibration tests of the

structure. The formulation of the relative posterior probability is based on an output

error, which is de�ned as the di�erence between the estimated vibration signatures

and the theoretical ones from the analytical model. This feature makes the Bayesian

approach well suited from long-term health monitoring of a structure. Through the

experimental investigations, the Bayesian approach is shown (1) to take into account

the uncertainties in the measurement and the analytical modeling, (2) to perform

damage diagnosis with a relatively small number of measurement points and a few

modes, and (3) to systematically extract information from continuously obtained test

data.

The proposed method has many advantages over the deterministic approaches,

which produce a single diagnosis result, in that (1) several suspicious damage events

are provided with their relative probabilities, (2) a series of measurement data ob-

tained from vibration tests can be included to improve the accuracy of the results,

and (3) engineering judgment about possible damage events via system reliabil-

ity/structural analysis or experience with similar structures can potentially be in-

corporated into the Bayesian framework as the prior probabilities of the damage
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events.

A branch-and-bound search scheme is devised to expedite the search for the most

likely damage event without exhaustively examining all possible damage cases. Our

experience has shown that the branch-and-bound search can signi�cantly reduce the

computational requirements of the Bayesian approach; particularly when damage is

localized in a few locations, the computation is quite manageable.

The Bayesian approach, like many other methods using vibration responses, is

based on the premise that when the physical properties (such as the mass, sti�ness

and damping) of a structure change due to damage, these changes can be revealed by

measuring the dynamic response of the structure. Therefore, the sensitivity of damage

with respect to the measured quantities is critical to the success of the method.

Furthermore, this method might have the drawback that the damage locations and

amount may not be uniquely determined from the estimated modal data when the

vibration measurements are obtained at limited points and only a few fundamental

modes are estimated. Particularly, in the presence of the modeling error and the

measurement noise, some erroneous models could have modal parameters closer to

the estimated modal parameters than the model with the correct damage locations

and amount.

As an alternative to modal vectors, load-dependent Ritz vectors are incorporated

into the Bayesian framework. Advantages of Ritz vectors over modal vectors are

shown through experimental and numerical examples: (1) in general, load-dependent

Ritz vectors are more sensitive to damage than the corresponding modal vectors

particularly for complicated, highly redundant systems, and (2) by a careful selection

of load patterns, substructures of interest can be made more observable by imposing

particular load patterns. Furthermore, a procedure to extract Ritz vectors from

vibration tests is proposed, and the procedure is successfully demonstrated using the

test data from a grid-type bridge structure. It is believed that the advantage of

Ritz vectors will be more salient for structures with complicated geometry because

load redistribution caused by di�erent load patterns will be signi�cant for the complex

structures. It would be worthwhile to develop a systematic scheme to �nd appropriate

load patterns, which yield better detection of damage in substructures of interest.
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Data from vibration tests of civil structures indicate that the environmental ef-

fects such as temperature, tra�c loading, humidity can often mask subtle structural

changes caused by damage. We examined a linear adaptive model to discriminate

the changes of modal parameters due to temperature changes from those caused by

structural damage or other environmental e�ects. Data from the Alamosa Canyon

Bridge in New Mexico were used to demonstrate the e�ectiveness of the adaptive

�lter for this problem. Results indicate that a simple linear �lter of temperature can

reproduce the natural variability of the frequencies with respect to time of day. A

con�dence interval of the frequencies is established for a new temperature pro�le in

order to discriminate the changes of modal parameters due to temperature changes

from those caused by other environmental e�ects or potential structural damage. It

should be noted that the adaptive �lter system presented was developed for a partic-

ular bridge under particular environmental conditions. To fully validate this linear

model, tests should be conducted during di�erent times of the year as well as di�erent

times of a day, and measurements for other environmental factors should be obtained.

Finally, the application of the Bayesian approach to real structures will be the

utmost important task to fully validate the proposed approach and to demonstrate

the viability of the approach and its implementation. Furthermore, recent advances in

wireless communication and information technologies will have signi�cant impacts on

the development of sensing devices for structural monitoring [142]. The development

of a cost e�ective, large scale instrumentation based on these technologies must be

carried out in parallel to make the monitoring of civil structures a reality.
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