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Modal parameters obtained from modal testing (such as modal vectors, natural frequen-
cies, and damping ratios) have been used extensively in system identi"cation, "nite element
model updating, and structural health monitoring. As an alternative to modal vectors,
load-dependent Ritz vectors have been shown useful in various areas of structural dynamics
such as model reduction and damage detection. The applications of Ritz vectors, however,
have been mainly limited in analytical and numerical analyses because of the di$culty to
identify them from vibration tests. This paper presents a procedure to extract load-
dependent Ritz vectors using a complete #exibility matrix constructed from measured
vibration test data. The proposed method cannot only construct the Ritz vectors corre-
sponding to the actual load pattern employed in vibration tests, but also generate Ritz
vectors from arbitrary load patterns. Experimental data obtained from the vibration test of
a grid-type bridge structure are employed to validate and illustrate the proposed extraction
procedure.
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1. INTRODUCTION

Modal parameters such as modal vectors, natural frequencies and damping have been
widely employed in many "elds of structural dynamics. For example, in numerical dynamic
analysis, a multi-degree-of-freedom (mdof ) system can be decoupled into a number of
single-degree-of-freedom (sdof ) systems using the orthogonality feature of modal vectors
and the vibration response of the system can be approximated by the modal superposition
of a small set of the sdof system responses. For vibration test, the response time histories are
typically transformed into the frequency domain using a spectral analyzer and the test
results are often presented in the form of modal parameters.

It has been shown that load-dependent Ritz vectors have many potential advantages in
structural dynamics over modal parameters. For linear dynamic analyses, the response
quantities of interest can be approximated more e!ectively by a smaller number of Ritz
vectors than the modal vectors [1, 2]. In numerical analysis, Ritz (or Lanczos) vectors have
been used to "nd partial extremal solutions of large eigenvalue problems [3] and to
reanalyse a structural system with localised modi"cations [4]. In structural monitoring and
damage diagnosis, numerical simulations have shown that Ritz vectors are able to identify
damage better than modal vectors [5, 6]. For system identi"cation and damage detection
problems, however, the Ritz vectors need to be obtained from experimental test data.
}3270/01/010213#14 $35.00/0 ( 2001 Academic Press
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Cao and Zimmerman were probably the "rst to attempt extracting Ritz vectors from
measured vibration data using a state-space formulation [5]. In this paper, we present
a new extraction procedure based on a complete #exibility matrix obtained from vibration
test data. While the method proposed by Cao and Zimmerman constructs the Ritz vectors
corresponding to the actual load pattern imposed on the structure, the proposed method is
able to generate Ritz vectors from assumed load patterns as well. The residual #exibility,
which is the contribution of unmeasured dynamic modes, is explicitly included in the
proposed formulation. The e!ectiveness of the new extraction procedure is demonstrated
using the data obtained from a vibration test of a grid-type bridge structure.

This paper is organised as follows: "rst, the analytical procedure of generating Ritz
vectors is presented. Both the state-space-based method and the proposed #exibility
matrix-based method are then described. We brie#y describe the grid-type bridge model
employed in the experimental study and the "nite element model corresponding to the test
structure. The proposed extraction procedure is then demonstrated using the experimental
test data. Finally, this paper is concluded with a summary and discussions.

2. RITZ VECTOR EXTRACTION TECHNIQUES

In this section, we "rst review the analytical procedure for the generation of Ritz vectors
[7]. Second, a state-space-based technique is described. A new extraction procedure
based on a complete #exibility matrix constructed using measured vibration data is then
presented.

2.1. ANALYTICAL PROCEDURE FOR GENERATING RITZ VECTORS

Let M, C1, and K denote the mass, damping, and sti!ness matrices of a N-dof system,
respectively. Then, the equations of motion can be expressed as

MzK (t)#C1z5 (t)#Kz(t)"F (t) (1)

where z, z5 , and zK are the vectors of displacement, velocity and acceleration, respectively. F (t)
is a N]1 vector representing the input force excitation. &Load-dependent' Ritz vectors are
generated by taking into account the &spatial distribution' of the dynamic loading which is
neglected in the generation of classical modal vectors. Assume that the dynamic loading F (t)
can be separated into a spatial load vector f and a time function u (t):

F (t)"fu (t). (2)

The "rst Ritz vector is a static deformation caused by the spatial distribution of the dynamic
load vector f:

Kr6
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-
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-
). (3)

Then, the "rst Ritz vector is mass-normalised as

r
-
"

r8
1

[r8 T
-
Mr8

-
]1@2

. (4)

The subsequent Ritz vectors are recursively generated. Assuming the mass matrix times
the previous Ritz vector Mr

s~1
to be a load, the recurrence relationship computes the next

Ritz vector r6
s
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The linear independence of Ritz vectors is achieved using the Gram}Schmidt ortho-
gonalisation. That is, the current Ritz vector is mass-orthogonalised with respect to all the
previous Ritz vectors:
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(6)

Finally, the current Ritz vector is mass-normalised as
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. (7)

2.2. A STATE-SPACE-BASED METHOD

Recently, a procedure to extract Ritz vectors based on measured vibration test data has
been proposed by Cao and Zimmerman [8]. This method involves a minimum rank
realisation of state-space models from vibration test data. The second-order di!erential
equations shown in equation (1) can be rewritten as the "rst-order di!erential equations in
a number of ways. In classical control theory, the following state-space representation is
often used (here, a single number of input is assumed for simplicity):

x5 "Ax#Bu (8)

where

A"C
0

!M~1K

I

!M~1C1D, B"C
0

M~1 fD and x"C
z

z5 D. (9)

When the response of a system is measured by the m output quantities y(t) (3 Rm]1) using
sensors such as accelerometer, the measurement vector y (t) is related to the state vectors
as follows:

y"Cx#Du (10)

where C is an m]1 output in#uence matrix and D is an m]1 gain matrix. Note that there
exist an in"nite number of state-space models that can be constructed from the same input
and output relationship.

The state-space-based procedure starts with a minimum rank realisation of state matrices
(A< , B< and C< ) from the vibration data. In this study, the eigensystem realisation algorithm
(ERA) is employed for the system realisation [9]. Note that the realised state matrices
preserve the actual input}output characteristics regardless of the selection of state variables,
x. The state-space-based approach for the extraction of experimental Ritz vectors follows
closely the analytical procedure for computing the Ritz vectors. The main di!erence is that
the triple state-space matrices A< , B< and C< are employed instead of the system matrices K, M,
and the spatial load vector f.

The static deformation vector x6
-
subject to a load at the excitation point is computed by

solving the following equation for x6
1
:

A< x6
-
"!B< : solve for x6

-
("x8

1
) (11)

where the input in#uence matrix B< contains the information of the load vector f. Then, the
"rst Ritz vector is normalised as
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The subsequent Ritz vectors are recursively generated as follows:

A< x6
s
"x

s~1
: solve for x6

s
. (13)

The linear independence among Ritz vectors is achieved by orthogonalising the current Ritz
vector with respect to all the previous Ritz vectors:
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Then, the current Ritz vector is normalised as

x
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. (15)

Note that x
s
is a Ritz vector in the state-space coordinate. Finally, the Ritz vector, which

corresponds to the actual measurement points r
s
, is computed as

r
s
"C< x

s
. (16)

It should be noted that the normalisation and orthogonalisation procedures in the state-
space method are not identical to those of the analytical generation procedure. Therefore,
the Ritz vectors obtained from equation (16) should be normalised and orthogonalised with
respect to the analytical mass matrix M in order to compare the experimental Ritz vectors
with the analytical ones. In addition, matrix A< obtained from vibration tests often contains
the &noise'modes as well as the actual system modes. Therefore, the true modes correspond-
ing to the actual system should be "rst distinguished before the Ritz vector extraction
procedure. This process requires some engineering judgment. Various approaches to
distinguish the true modes from the noise modes have been described in Juang [9].

2.3. A FLEXIBILITY MATRIX-BASED METHOD

In this section, we present a new extraction procedure of Ritz vectors based on a mea-
sured #exibility matrix. A close look at the analytical generation procedure reveals that the
generation of Ritz vectors uses the #exibility matrix G (de"ned here as the inverse of the
sti!ness matrix) rather than the sti!ness matrix itself. If the modal vectors are mass-
normalised such that VTKV"X and VTMV"I, the #exibility matrix can be represented
with the modal parameters [10]:

G"K~1"VX~1VT (17)

where X is the diagonal eigenvalue matrix and V is the corresponding eigenvector (modal
vector) matrix.

In most experimental modal analyses, only a few lower modal frequencies and modal
vectors are identi"ed. For this case, the #exibility matrix is divided into the modal -exibility,
which is formed from the estimated frequencies and modal vectors, and the residual
-exibility formed from the residual modes:
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(18)

where the subscripts m and r denote the modal and residual quantities, respectively.
Here, the modal #exibility G

m
is easily constructed using the measured natural frequencies

and modal vectors. The residual #exibility G
r

is the contribution of the unmeasured
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dynamic modes to the full #exibility matrix. In general, the contribution of lower modes,
which are normally estimated in experimental modal analyses, is more signi"cant than
those of higher modes because the contribution of each mode is inversely proportional to
the magnitude of the corresponding natural frequencies. Deobling et al. [10] report that the
contribution of the residual #exibility matrix is generally about 3}10% of the complete
#exibility matrix. However, as shown in later examples, the contribution of the residual
#exibility cannot be neglected in the extraction procedure of Ritz vectors.

The residual #exibility is constructed using a residual function R (u), which is computed
by subtracting the reconstructed response of the identi"ed modes from the measured
frequency response functions (FRFs) H (u):

R(u)"H (u)#u2V
m

(X
m
!u2 I)~1 VT

m
"!G

r
u2. (19)

Curve-"tting R(u) over a set of frequency samples (u3u
set

) yields an estimate of the
residual #exibility

G
r
"! +

u3u
4%5

R (u)

u2
. (20)

In this paper, H(u) and R(u) are assumed to be squared matrices. That is, individual modal
testing is conducted by applying an impulse excitation force to a dof and the excitation is
repeated for all measured dofs. Doebling et al. [10] discuss the extraction of a complete
#exibility when the number of excitation points are less than that of the response points.
While damping is not included in the formulation of the residual #exibility, equation (19)
can be easily modi"ed to take into account the damping.

From the measured #exibility matrix G ("G
m
#G

r
) and the analytical mass matrix M,

the "rst Ritz vector can be computed as

r6
-
"Gf (21)

where f is the spatial load distribution vector de"ned in equation (2). The "rst Ritz vector is,
then, mass-normalised as
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The subsequent Ritz vectors are recursively generated in a similar fashion to equation (5).
The only di!erence is that the #exibility matrix is directly constructed from the test data
instead of inverting the analytical sti!ness matrix. The orthogonalisation and mass-nor-
malisation procedures are identical to equations (6) and (7).

It is worthwhile to compare the #exibility-based extraction procedure with the state-
space based procedure. In the state-space method, the input in#uence matrix B< in equation
(11) is estimated using the information of the experimentally applied load. While the state-
space-based method only identi"es Ritz vectors corresponding to the speci"c excitation
pattern used in the actual modal testing, the #exibility-based method is able to generate Ritz
vectors with arbitrary load patterns as well. That is, the spatial load distribution vector f in
equation (21) can be arbitrarily assigned to generate di!erent sets of Ritz vectors. Further-
more, the contribution of the residual #exibility is not included in the state-space-based
method. (The in#uence of the residual #exibility on the accuracy of the estimated Ritz
vectors will be addressed in Section 5.) Note that both methods require an appropriate
approximation for the mass matrix. However, for problems that sti!ness changes are the
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main concern as in the case for damage detection, the exact estimation of the mass matrix is
not necessarily an important issue. One will be more likely interested in the change of Ritz
vectors caused by sti!ness perturbation. It should also be pointed out that Alvin [11] has
presented a theory to transform the realised state-space models into the corresponding
second-order structural parameters such as sti!ness, mass and damping matrices based on
an objective normalisation of physical-coordinated modal vectors. Using these directly
computed sti!ness and mass matrices, an arbitrary set of Ritz vectors could also be
extracted in theory.

3. AN EXPERIMENTAL BRIDGE MODEL

For this study, a grid-type bridge model has been constructed and tested at the Hyundai
Institute of Construction Technology (HICT), Korea (Fig. 1). The steel bridge model
consists of two parallel girders and six evenly spaced cross-beams connecting the two
girders. The girders are steel rectangular tubes and the cross-beams are C-shape members.
Using impact excitations, we extract Ritz and modal vectors from the vibration response of
this test structure.

A SA-390 signal analyzer with four channels is used for the analog-to-digital conversion
of accelerometer signals and the fast Fourier transform (FFT) calculation. Data acquisition
parameters are speci"ed such that a frequency response function (FRF) in the range of
0}100 Hz could be estimated. Each spectrum is computed by averaging three 8 s long time
histories. A total of 2048 points are sampled for a 8 s time period and this sampling rate
produces a frequency resolution of 0.125 Hz. An exponential window is applied to all
measured time histories prior to the FFT calculation.

For measurements, a Dytran 5801A4 impact hammer and three Dytran 3100B acceler-
ometers with a normal sensitivity of 100 mV/g are used. The excitation is applied at each
node as shown in Fig. 2. The sensors measure the vertical accelerations at the 12 nodes as
indicated in Fig. 2. Note that since the SA-390 data acquisition system has only four
channels and there are three accelerometers, the "rst channel is always connected to the
input hammer and the remaining three channels are connected to three accelerometers. To
complete one set of modal test, the hammer excitation is repeated 12 times at one point and
the three accelerometers are moved from one set of three nodes to another set of three nodes
after every three excitations. Note that each FRF is computed by averaging three response
time histories, and there are 12 measurement points and three accelerometers.
Figure 1. An overview of a grid-type bridge structure.



Figure 2. Con"guration of a grid-type bridge model.

Figure 3. A typical FRF & coherence function of the grid-type bridge model. (a) A FRF of node 5 with node
4 input. (b) A coherence function of node 5 with node 4 input.
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The rational polynomial technique is employed to extract the "rst six natural frequencies
and the corresponding modal vectors from the recorded FRFs [12]. Figure 3 shows
a typical FRF and coherence function of the test structure. Figure 3(a) is a FRF obtained at
node 5 when the structure is excited at node 4. Figure 3(b) presents the corresponding
coherence function. Figure 3(b) shows that the value of the coherence function is close to
unity at the resonance frequencies, which indicates that the output signals from the sensors
are reasonably strong as compared to the noise levels.



Figure 4. A reciprocity check of the grid-type bridge model: ** excitation: node 3, response: node 14; } } }
excitation: node 14, response: node 3.
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To validate the linearity assumption of the structure response, a reciprocity check has
been conducted. Figure 4 compares the FRFs obtained at node 3 with an input at node 14
and at node 14 with an excitation at node 3. For an ideal linear structure, these two FRFs
should be identical. For the grid structure, the linearity assumption seems valid up to the
fourth mode but the di!erence between the FRFs becomes noticeable after 40 Hz.

4. ANALYTICAL MODELLING OF THE TEST STRUCTURE

A "nite element (FE) model for the grid-type bridge structure is constructed using
23-dimensional beam elements. As shown in Fig. 2, a girder segment between two nodes or
a cross-beam is modelled as a single element. An elastic modulus of 2.0]105 MPa, a mass
density of 7850 kg/m3, and a Poission ratio of 0.2 are speci"ed for the model. Since the
accelerometers measure only the vertical movement of the structure, the lateral dofs are not
included in the analytical model. Therefore, each node of an element has two translational
dofs and three rotational dofs. The model has a total of 64 dofs including four rotational
dofs at the boundary. Both ends of the beam are modelled as simple pinned connections.

A pinned connection is modelled by a ball bearing with a 35 mm diameter in the
experimental set-up. Based on a preliminary vibration test, the boundary conditions appear
to be less accurately modelled. The boundary conditions are then modi"ed by introducing
rotational springs at the rotational dofs of the boundaries. Furthermore, additional springs
are added to the rotational dofs at both end of the cross-beams to simulate the bolted
connection between the girders and the cross-beams. After these modi"cations, the relative
errors of the "rst six natural frequencies between the analytical model and the test structure
fall within 4%.

Table 1 compares the natural frequencies of the analytical model computed after model
updating with the experimental frequencies. Here, the experimental frequency u( is a mean
value of the 12 frequencies estimated with an impact load applied at nodes 2}7, and 10}15,
respectively. The damping ratios for the "rst six modes are also estimated: 0.8725, 0.9780,
0.3420, 0.6151, 0.4231, and 0.4981%.

Figure 5 displays the analytical and experimental modal vectors of the "rst six modes. All
"gures are plotted in the global X}> plane of Fig. 2, viewing the structure from the side. As
for the scaling of the modal or Ritz vectors, a mass normalisation is conducted. However,



TABLE 1

Comparison of the analytical and experimental natural frequencies

Frequency (Hz)
Relative error

Mode Analytical Experimental (%)

1st bending 5.4488 5.5780 2.32
1st torsion 10.1494 10.0610 0.88
2nd bending 19.1841 18.6441 2.90
2nd torsion 30.6216 29.4503 3.98
3rd bending 41.6086 42.6292 2.39
3rd torsion 54.9704 57.2512 3.98

Error"100]D u!u( D/u( : u and u( are analytical and experimental frequencies.

Figure 5. Comparison of analytical and experimental modal vectors. (a) Modal vector 1; (b) Modal vector 2;
(c) Modal vector 3; (d) Modal vector 4; (e) Modal vector 5; (f ) Modal vector 6:** analytical; } } } experimental.

221EXTRACTION OF RITZ VECTORS
since the dofs of the analytical model do not coincide with the dofs of the experimental
modal vectors, a reduced analytical mass matrix is "rst computed using the Guyan
condensation procedure. Both the analytical and experimental vectors are normalised with
respect to the reduced mass matrix. Errors arisen from the model reduction are found to be
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minimum since the inertial forces associated with the omitted rotational and axial dofs
(slave dofs) are negligible in this example.

5. EXPERIMENTAL VERIFICATION

The new extraction procedure for Ritz vectors is demonstrated using the vibration data
obtained from the test structure. Special focus is placed on the in#uence of the residual
#exibility on the accuracy of extracted Ritz vectors. Figure 6 compares the "rst six Ritz
vectors estimated by the #exibility-based method with the corresponding Ritz vectors
computed from the FE model. Imaginary point loads are simultaneously applied to nodes
2 and 13 (upward point load at node 2 and downward point load at node 13), and the
corresponding Ritz vectors are generated. A complete #exibility matrix, including the
modal and residual #exibility matrices estimated from the measured FRFs, is employed for
the extraction of Ritz vectors. Figure 6 shows a good agreement between the analytical and
experimental Ritz vectors. The "rst Ritz vector is equivalent to a static de#ection pattern
observed when the unit loads are applied at nodes 2 and 13. Note that the discrepancy
between the analytical and experimental Ritz vectors increases for higher Ritz vectors.

To investigate the in#uence of the residual #exibility, Fig. 7 shows the experimental Ritz
vectors obtained by only using the measured modal #exibility. Comparison of Figs. 6 and
Figure 6. Comparison of analytical and experimental Ritz vectors (using a complete #exibility, G"G
m
#G

r
).

(a) Ritz vector 1; (b) Ritz vector 2; (c) Ritz vector 3; (d) Ritz vector 4; (e) Ritz vector 5; (f ) Ritz vector 6: **
analytical; } } } experimental.



Figure 7. Comparison of analytical and experimental Ritz vectors (using only a modal #exibility, G"G
m
). (a)

Ritz vector 1; (b) Ritz vector 2; (c) Ritz vector 3; (d) Ritz vector 4; (e) Ritz vector 5; (f ) Ritz vector 6:** analytical;
}} } experimental.

TABLE 2

MAC values between analytical and experimental Ritz vectors

i for MAC (i, i)

G 1 2 3 4 5 6

G
m
#G

r
0.9947 0.9930 0.9971 0.9956 0.9754 0.9720

G
m

0.9946 0.9930 0.9876 0.9099 0.3932 0.0211

MAC(i, j)"(rT
i

Mr;
j
)2/[(rT

i
Mr

j
) (r; T

i
Mr;

j
)], r

i
"analytical and r;

j
"experimental.
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7 reveals that the inclusion of the residual term signi"cantly improves the accuracy of higher
Ritz vectors. More quantitative analysis is presented in Table 2, where the modal assurance
criterion (MAC) value is de"ned as follows:

MAC(i, j)"(rT
i
Mr;

j
)2/[(rT

i
Mr

i
) (r; T

j
Mr;

j
)] (23)

where r
i
and r;

j
are the analytical and experimental Ritz vectors, respectively.



TABLE 3

MAC values for di+erent load patterns (using the complete -exibility, G
m
#G

r
)

i for MAC(i, i)

Node 1 2 3 4 5 6

2 0.9944 0.9929 0.9980 0.9931 0.9888 0.9805
3 0.9983 0.9964 0.9955 0.9945 0.9485 0.9657
4 0.9994 0.9974 0.9966 0.9948 0.9857 0.9900
5 0.9994 0.9966 0.9903 0.9907 0.9761 0.9656
6 0.9989 0.9965 0.9967 0.9976 0.9755 0.9824
7 0.9954 0.9952 0.9917 0.9800 0.9717 0.9731

10 0.9937 0.9925 0.9950 0.9785 0.9697 0.9737
11 0.9984 0.9956 0.9978 0.9978 0.9790 0.9849
12 0.9995 0.9965 0.9932 0.9929 0.9825 0.9764
13 0.9996 0.9970 0.9968 0.9970 0.9885 0.9877
14 0.9993 0.9970 0.9951 0.9958 0.9542 0.9635
15 0.9963 0.9953 0.9956 0.9935 0.9866 0.9819

MAC(i, j)"(rT
i

Mr
j
)2/[(rT

i
Mr

j
) (r; T

i
Mr;

j
)], r

i
"analytical and r;

j
"experimental.

TABLE 4

MAC values for di+erent load patterns (using the modal -exibility, G
m
)

i for MAC(i, i)

Node 1 2 3 4 5 6

2 0.9944 0.9920 0.9913 0.9429 0.7541 0.3560
3 0.9982 09958 0.9887 0.9502 0.4777 0.0848
4 0.9993 0.9967 0.9678 0.9262 0.7802 0.3623
5 0.9994 0.9958 0.9472 0.8818 0.6782 0.2588
6 0.9989 0.9962 0.9909 0.9627 0.5722 0.1649
7 0.9952 0.9933 0.9779 0.9019 0.6498 0.2654

10 0.9938 0.9910 0.9827 0.9096 0.6753 0.2651
11 0.9984 0.9952 0.9925 0.9621 0.5631 0.1578
12 0.9995 0.9958 0.9569 0.8997 0.7208 0.2973
13 0.9996 0.9964 0.9630 0.9139 0.7431 0.3377
14 0.9992 0.9965 0.9895 0.9566 0.5213 0.1140
15 0.9962 0.9938 0.9847 0.9306 0.7229 0.3424

MAC(i, j)"(rT
i

Mr
j
)2/[(rT

i
Mr

j
) (r; T

i
Mr;

j
)], r

i
"analytical and r;

j
"experimental.
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Although not presented here, the state-space-based method basically produces the same
results as the proposed method with only using the modal #exibility. Furthermore, as
mentioned earlier, only the #exibility-based method allows generating Ritz vectors from
any "ctitious load patterns as well as the actual load pattern applied during the tests.

In Table 3, the experimental Ritz vectors corresponding to a point load at nodes 2}7 and
10}15 are extracted, and the comparison of MAC values with the corresponding analytical
Ritz vectors are presented. Again, the measured complete #exibility is used for all cases in
the table. For brevity, only the diagonal components of the MAC values are shown in the
table. The result indicates that the Ritz vectors can be successfully generated from all the
load patterns imposed.
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Next, the Ritz vectors are estimated using only the modal #exibility, and the MAC values
are presented in Table 4. For all cases, the MAC values between the analytical and
experimental Ritz vectors fall below 0.8 after the fourth Ritz vectors. The inclusion of the
residual #exibility matrix into the extraction procedure allows the contribution of higher
residual modes into experimentally estimated Ritz vectors signi"cantly improving the
accuracy of the estimated Ritz vectors.

6. SUMMARY AND DISCUSSIONS

In this paper, a new procedure has been proposed to extract load-dependent Ritz vectors
using a statically complete #exibility matrix. First, modal #exibility and residual #exibility
matrices are estimated from measured FRFs. Then, Ritz vectors are recursively generated
using the #exibility matrix constructed.

The procedure is successfully demonstrated using an experiment of a grid-type bridge
structure. Particularly, the in#uence of the residual #exibility on the extracted Ritz vectors is
investigated. The proposed method has at least two advantages over the state-space
method: (1) the inclusion of the residual #exibility signi"cantly improves the accuracy of the
estimated Ritz vectors, and (2) the proposed method is able to generate Ritz vectors from
any arbitrary load patterns. The increased amount of information and better sensitivity to
structural parameter changes, which are achievable by multiple loading and careful
selection of load patterns, could improve the results of damage detection, test-analysis
correlation, model re"nement and system identi"cation.

Using the Ritz vectors extracted with the procedure described here, Sohn and Law [13]
have applied and analysed the various damage cases introduced to the grid-type bridge
structure presented in this study. Damage diagnoses of the grid-type bridge structure
indicates that the employment of Ritz vectors provides better indication of the actual
damage locations than using the modal vectors. The reason is that, using appropriate load
patterns, Ritz vectors can be made more sensitive to damage than modal vectors. The
superior performance of Ritz vectors over modal vectors attributes to (1) the better
sensitivity of Ritz vectors over modal vectors and (2) the increase amount of information
obtained by employing multiple load patterns.

There have been continuing interest in the application of Ritz vectors for experimental
dynamics problems. Rhee [14] shows how Ritz vectors can be used to e!ectively character-
ise the changes of the system dynamic properties caused by localised non-proportional
damping e!ects and/or structural perturbation. Model reduction and mode shape expan-
sion techniques are further developed for model updating purpose based on experimentally
extracted Ritz vectors. These techniques are demonstrated using experimental data ob-
tained from an eight dof mass}spring system. To verify the feasibility and accuracy of the
experimental Ritz vectors, Zimmerman [15] utilised the dynamic and static test data
obtained from a space shuttle vertical stabilizer. Compared to static test data, accurate Ritz
vectors were extracted from a modal survey test using both accelerometers and a laser
scanning vibrometer. Then, a matrix update approach using the measured Ritz vectors is
conducted to update an FE model and to estimate the location and extent of damage. The
proposed Ritz vector extraction procedure described in this paper could "nd many applica-
tions in system identi"cation and damage detection problems.
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