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Abstract

This paper demonstrates the possibility of incorporating load-dependent Ritz vectors as an alternative to modal parameters into a Bayesian
probabilistic framework for detecting damages in a structure. Recent research has shown that it is possible to extract load-dependent Ritz
vectors from vibration tests. This paper shows that load-dependent Ritz vectors have the following potential advantages for damage detection
over modal vectors: (1) in general, load-dependent Ritz vectors are more sensitive to damage than the corresponding modal vectors; and (2)
substructures of interest can be made more observable using the load-dependent Ritz vectors generated from particular load patterns. An
eight-bay truss example and a five-story frame example, explicitly considering both modeling error and measurement noise, are presented to
illustrate the applicability of the proposed approach.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Damage detection and health monitoring of large-scale
structures are important challenges to engineering research.
One common approach is to employ the vibration character-
istics of a structure to predict the damage locations and to
estimate the amount of damage [3]. It was shown that
changes in the modal parameters might not be apparent at
an early stage of damage [6,12]. Also, the uncertainties
caused by measurement noise, modeling error involved in
an analytical model, and environmental changes such as
variations in temperature and load conditions can impede
reliable identification of damage [7]. Therefore, for reliable
damage detection, damage would need to cause significant
changes in the modal parameters that are beyond the natural
variability caused by the effects other than damage.

To overcome the insensitivity of modal vectors, several
alternatives were proposed. Pandey et al. [15] compute the
mode shape curvature from the displacement mode shape,
and demonstrate that the changes in the mode shape curva-
ture can be a good indicator of damage for beam structures.
Stubbs et al. [18] present a damage index method which
measures the decrease of modal strain energy before and
after damage occurrence. These two techniques were

applied successfully to the damage detection of the I-40
bridge in Albuquerque, New Mexico [8]. Yao et al. [19]
apply the strain mode shape to identify local damage of a
braced steel frame structure. The idea is that the force redis-
tribution caused by damage can be related to the change of
the strain mode shape. These methods require the direct
measurement of dynamic strains or the derivatives of the
measured displacement mode shapes to compute the strain
mode shape or mode shape curvature. However, the noise
induced by the measurement of dynamic strains is generally
higher than that by typical accelerometer measurement.
Furthermore, numerical procedures to compute the curva-
ture from the displacement also inevitably produce errors.
Cao and Zimmerman [2] show that it is possible to experi-
mentally extract Ritz vectors from the traditional modal
analysis using accelerometers. Ritz vectors (or Lanczos
vectors) were shown very effective for dynamic and earth-
quake analyses, eigenvalue problems and model reductions.
However, very few studies have applied Ritz vectors to
damage detection or system identification problems [1,
13]. It should be noted that since, similar to modal vectors,
Ritz vectors simply serve as a basis to expand the displace-
ment space, they can be easily employed in the aforemen-
tioned strain mode shape/mode shape curvature based
techniques.

In this paper, the possibility of incorporating load-depen-
dent Ritz vectors into the previously proposed Bayesian
probabilistic framework is investigated [17]. The idea is to

Probabilistic Engineering Mechanics 15 (2000) 139–153

0266-8920/00/$ - see front matterq 2000 Elsevier Science B.V. All rights reserved.
PII: S0266-8920(98)00044-7

www.elsevier.com/locate/probengmech

* Corresponding author.
E-mail address:law@ce.stanford.edu (K.H. Law).



search for the most probable damage event by comparing
the relative probabilities for different damage scenarios,
where the relative probability of a damage event is
expressed in terms of the posterior probability of the
damage event, given the estimated data sets from the struc-
ture. The approach described in this paper is analogous to
the pattern recognition using a Bayes classifier [9]. The goal
of the pattern recognition approach is to make a decision,
when a new measurement is observed, whether the measure-
ment comes from normal (healthy) or abnormal (damaged)
states of a system. To make this decision, the Bayes classi-
fier assumes a probabilistic distribution of each class, and to
estimate the characteristic parameters of each distribution
from observations. However, the difficulty of obtaining the
sample observations hampers the application of the Bayes
classifier to damage detection problems, the collection of
sample observations corresponding to the damaged state of
the specific location is practically infeasible unless the
structure is intentionally damaged. To overcome this diffi-
culty, Garcia and Stubbs [10] estimate the properties of the
undamaged and damaged classes from a finite element (FE)
model of the structure with simulated damages. The perfor-
mance of this approach depends on the selection of the
simulated data sets used to estimate the class properties.
Theoretically, for a structure withn number of substruc-
tures, 2n21 different damage scenarios need to be simulated
to correctly estimate the properties of a single class. This
process needs to be repeated for the damaged/undamaged
classes for all the substructures. Furthermore, if a different
damage amount for each substructure is considered, the
computation becomes practically prohibitive.

The proposed approach eliminates the parameter estima-
tion process by defining each damage scenario as a separate
class. In addition, a branch-and-bound search scheme is
proposed to reduce the computations and to expedite the
search for the most likely damage event without exhaus-
tively examining all the possible classes [17]. This paper
is motivated by the following potential advantages of Ritz
vectors over the modal vectors: (1) in general, Ritz vectors
are more sensitive to damage than the corresponding modal
vectors; (2) substructures of interest can be made more
observable using the Ritz vectors generated from particular
load patterns; (3) the computation of Ritz vectors is less
expensive than that of modal vectors (eigenvectors); and
(4) while the practical difficulties of modal testing impede
the extraction of a large number of meaningful modes, a
larger number of Ritz vectors can be extracted by imposing
different load patterns on a structure.

Sensitivity analyses of modal vectors [12,16] reveal that
only members (or substructures) which cause significant
changes in the estimated modal parameters can be detected
and the sensitivity of each mode varies according to damage
locations. Therefore, a weighting or selection scheme of
modal vectors is desirable to measure the relative signifi-
cance of the modal vectors to damage [4]. However, since
the actual damage locations are not known a priori, the

mode selection scheme becomes difficult. In this study,
we measure the relative significance of Ritz vectors to the
assumed damage locations for the computation of the
posterior probability. That is, components of Ritz vectors,
which are sensitive to the assumed damage locations, are
weighted for the posterior probability computation of each
damage case.

This paper is organized as follows: The next section
describes the theoretical formulation of the previously
proposed Bayesian probabilistic approach, the weighting
scheme and the derivation of Ritz vector sensitivities.
Section 3 presents numerical examples to illustrate the
effectiveness of the proposed method. Section 4 summarizes
this paper and discusses future work.

2. Theoretical formulation

This section first reviews the Bayesian framework for
damage detection [17]. Second, a weighting scheme is intro-
duced into the Bayesian framework to consider measure-
ment uncertainties and sensitivities of Ritz vectors to
damage. Third, the sensitivity of Ritz vectors is derived
along with the generation procedure of the Ritz vectors.

2.1. Formulation of Bayesian framework

For an analytical model withNsub substructures, the
system stiffness matrixK can be expressed as an assembly
of substructure stiffness matricesK si:

K �Q� �
XNsub

i 2 1

uiK si �1�

where Q � {u i ; i � 1;…;Nsub} and ui�0 # ui # 1� is a
nondimensional parameter which represents the contribu-
tion of the ith substructure stiffness to the system stiffness
matrix. A substructure is defined as damaged when theu
value is less than a specified threshold.

When vibration tests are repeatedNs, times, the total
collection ofNs, data sets is denoted as:

ĈNs
� { ĉ�n� : n� 1;…;Ns} �2�

Each data set̂c�n� is composed of Ritz vectors estimated
from thenth vibration test:

ĉ�n� � �r̂ nT
1 ;…; r̂nT

Nr
�T [ RNt �3�

wherer̂n
i denotes theith estimated Ritz vector in thenth data

set ĉ�n�. The Ritz vectorr̂ n
i �r̂ i [ RNd� has components

corresponding to the instrumented DOFs. The variables
Nt, Nd andNr, represent the total number of components in
a data set̂c�n�, the number of the measured DOFs and the
number of the estimated Ritz vectors, respectively.

Let Hj denote a hypothesis for a damage event which can
contain any number of substructures as damaged, and the
initial degree of belief about the hypothesisHj is represented
by a prior probabilityP(Hj). Using Bayes Theorem, the
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posterior probabilityP�Hj uĈNs
�, after observing the esti-

mated data setŝCNs
, is given as:

P�Hj uĈNs
� � P�ĈNs

uHj�
P�ĈNs

� P�Hj� �4�

The most likely damaged substructures are the ones
included in the hypothesisHmaxwhich has the largest poster-
ior probability, i.e.

P�HmaxuĈNs
� � max

;Hj

P�Hj uĈNs
� �5�

Since the objective is to determine the most probable
damage hypothesis (event), only the relative posterior prob-
abilities of alternative hypotheses are of interest. We
attempt to avoid the explicit expression of a posterior prob-
ability P�Hj uĈNs

� since the precise calculation ofP�ĈNs
uHj�

is a difficult task. To overcome these difficulties, we focus
on the relative comparisons of posterior probabilities. We
have shown that the comparison of posterior probabilities
can be conducted by examining the error function
J�ĈNs

;QHj
� and the prior probabilityP(Hj) [17]:

J�ĈNs
;Qmax

Hmax
�2 lnP�Hmax� � min

;Hj

�J�ĈNs
;Qmax

Hj
�2 lnP�Hj��

�6�
J�ĈNs

;QHj
� is defined as:

J�ĈNs
;QHj

� � 1
2

XNs

n�1

�ĉ�n�2 c�QHj
�2 eM�QHj

�� TC 21
Ĉ
�ĉ�n�

2 c�QHj
�2 eM�QHj

��
�7�

whereCĈ is the covariance matrix of̂c and an analytical
data setc�QHj

� givenQHj
, is defined similar to Eq. (3):

c�QHj
� � �r T

1 �QHj
�;…; r T

Nr
�QHj

�� T [ RNt �8�
The termeM�QHj

� in Eq. (7) is the output error caused by
the discrepancy between the measured response of the struc-
ture and the response of the associated analytical model.
When damage is not severe, the modeling error is assumed
not to change significantly and the output error caused by
the modeling error,eM�QHj

�, can be approximated by
eM�QHo

�. Here,eM�QHo
� can be evaluated from the mean

Ritz vector setĉ h
m of the healthy structure and the Ritz

vector setc�QHo
� of the initial analytical model:

eM�QHj
� ù eM�QHo

� � ĉ h
m 2 c�QHo

�;;QHj
�9�

where theith component ofĉ h
m;i is computed usingNh

s

number of Ritz vector sets,̂c h�n� �n� 1;…;Nh
s�, obtained

from the healthy structure:

ĉ h
m;i � 1

Nh
s

XNh
s

n�1

ĉ h
i �n� for i � 1;…;Nt �10�

The most probable parameter valuesQmax
Hj

, given a

hypothesisHj, is sought such that:

f �Qmax
Hj

uĈNs
� � max

QHj
,VH *

j

f �QHj
uĈNs
� �11�

If we defineQ 1
Hj

as a set ofuj’s corresponding to the
damaged substructures in a hypothesisHj andQ 2

Hj
as the

remaininguj’s, the search space forQmax
Hj

becomes such that
0 # Q 1

Hj
# Q 1;*

Hj
andQ 2;*

Hj
, Q 2

Hj
# 1. Here,Q 1;*

Hj
andQ 2;*

Hj

are the sets of damage thresholds forQ 1
Hj

andQ 2
Hj

, respec-
tively. QHj

V *
Hj

in Eq. (11) denotes this search space.
Furthermore, the conditional joint PDF in Eq. (11) is defined
as:

f �QHj
uĈNs
� � 1

�2p�
Ns
2

1

iCĈi
1
2

exp{ 2 J�ĈNs
;QHj

�} �12�

Note that the search for the most likely damage hypoth-
esis in Eq. (5) theoretically requires the examination of all
possible damage scenarios. We have proposed a branch-
and-bound search scheme using bounding heuristics to
expedite this search without exhaustively examining all
the possible damage hypotheses [17]. The following two
pruning heuristics are employed in this study:

1. Let Hj < Di denote an extension of hypothesisHj by
adding theith substructure as damaged. If a posterior
probability ofHj < Di is less than that ofHj, then further
extension ofHj < Di is ruled out; i.e.

if P�Hj < Di uĈNs
� , P�Hj uĈNs

� stop extendingHj < Di

�13�

2. If a posterior probability ofHj is less thanPmax which is
the largest posterior probability among all the hypotheses
examined so far, then further extension ofHj is ruled out;
i.e.

if P�Hj uĈNs
� , Pmax; stop extendingHj �14�

If the damages are localized in a few substructures, the
number of damage hypotheses that need to be examined by
the branch-and-bound search is relatively small and the
search becomes computationally feasible.

2.2. Modification of the error function, J�ĈNs
;QHj

�
Previous works have suggested to select the appropriate

modes which are sensitive to the critical members [4,12].
However, the ignorance of the actual damage locations
hinders the selection scheme. Since the posterior probabil-
ities of the assumed damage events are of interest in this
Bayesian approach, the Ritz vectors, which are more sensi-
tive to the stiffness changes of substructures in each
assumed damage event, can be weighted for each case. In
other words, the Ritz vectors, which are sensitive not to the
unknown actual damage but to the assumed damage, can be
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weighted for the computation of the error function. Realiz-
ing thatC 21

Ĉ
in Eq. (7) is one form of weighting matrix, we

modify the error functionJ�ĈNs
;QHj

� such that each term of
the error function is weighted considering the sensitivities of
Ritz vectors to the assumed damage as well as the measure-
ment uncertainties:

J�ĈNs
;QHj

� � 1
2

XNs

n�1

�ĉ�n�2 c�QHj
�2 eM�QHo

�� TWr�ĉ�n�

2 c�QHj
�2 eM�QHo

�� �15�

whereW j, is a diagonal matrix which weights each error
term considering the uncertainty of measurements and the
sensitivities of the correspondingrpk to the assumed
damage:

Wr � diag�Wr11
;Wr12

;…;Wr1Nd
;Wr21

;…;Wr2Nd
;…;WrNrNd

�
�16�

In Eq. (16) rpk denotes thekth component of thepth
analytical Ritz vector and each diagonal entryWrpk

is
defined as follows:

Wrpk
�QHj

� � wrpk
�QHj

�
s 2

r̂pk

�17�

wrpk
�QHj

� weights the corresponding error term in Eq. (15)
considering the sensitivity ofrpk to the assumed damage.
s r̂pk

is the standard deviation of thekth component of the
pth estimated Ritz vector.

It should be noted thatQHj
contains all the information

about the current damage state. The damaged substructures
are the ones included inHj as damaged and the damage amount
of theith substructure,Duj, is 12 uj. Since it is difficult to find
the sensitivities of the Ritz vectors for multiple damage cases,
we define the sensitivity ofrpk with respect to the current
damage state as the rate ofDrpk (the change ofrpk from the
undamaged state) to the average change ofui�[ Q 1

Hj
�. For

simplicity, rpk is assumed to change linearly with the change
of uj. Then,Drpk at the current damage state can be approxi-
mated as follows:

Drpk ù
X

ui[Q 1
Hj

2rpk

2ui
Dui �18�

The sensitivity of rpk at the current damage state,
S�rpkuQHj

�, is defined as:

S�rpkuQHj
� � Drpk

D�u
ù

X
ui[Q 1

Hj

2rpk

2ui

Dui

D�u
�

X
ui [Q 1

Hj

2rpk

2ui
bi

�19�
where D�u � 1

N
u1

P
ui [Q 1

Hj
Dui ;bi � Dui

D�ui
and Nu1 is the

number of damaged substructures in a hypothesisHj. The

sensitivity of a Ritz vector is defined as:

S�rpuQHj
� � �

PN
k�1S2�rpkuQHj

�� 1
2

�PN
k�1r2

pk�QHj
�� 1

2

�20�

where N is the total number of DOFs in the analytical
model. Finally, the weighting parameterwrpk

�QHj
� is related

to S�rpuQHj
� as:

wrpk
�QHj

� � S�rpuQHj
�PNr

i�1S�r i uQHj
� for all k �21�

2.3. Generation and sensitivity of Ritz vectors

The following introduces a generation procedure of Ritz
vectors [14, 2], and the sensitivity of a Ritz vector with
respect to the stiffness change of each substructure
2rp=2ui . Assume that the dynamic loadingF(s,t) can be
separated into a spatial load vectorf(s) and a time function
u(t):

F�s; t� � f �s�u�t� �22�
then the first mass-normalized Ritz vectorr1, is computed
as:

~r1 � K 21f �s�; and r1 �
~r1

�~rT
1M ~r1�

1
2

�23�

Taking the product between the mass matrix and the
previous Ritz vectorM rp21 as a load, the recurrence rela-
tionship computes the next Ritz vector�rp:

K �rp � M rp21 : solve for �rp �24�
The linear independence of Ritz vectors is achieved using

the Gram–Schmidt orthogonalization with respect to all the
previous Ritz vectors:

~rp � �rp 2
Xp2 1

q�1

�rT
qM �rp�rq; and rp �

~rp

�~rT
pM ~rp�

1
2

�25�

To compute the sensitivity of thepth Ritz vector with
respect to theith substructure stiffness2rp=2ui , each step
of the generation procedure of Ritz vectors is differentiated
with respect touj. Taking the derivative on the first equation
in Eq. (23) with respect toui gives:

2�r1

2ui
� 2K 21 2K

2ui
�r1 �26�

where2K =2ui is computed by differentiating Eq. (1) with
respect touj and equal to theith substructure stiffnessK j.
The second equation is differentiated in a similar manner to
produce the sensitivity of the first Ritz vector:

2r1

2ui
� 1

�~rT
1M ~r1�

1
2

2~r1

2ui
2

�~rT
1M

2�r1

2ui
�

�~rT
1M ~r1�

r1 �27�
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The sensitivities of the additional Ritz vectors (rp: p ± 1)
are computed in a similar manner by differentiating Eqs.
(24) and (25) with respect touj:

2�rp

2ui
� K21 2

2K
2ui

�rp 1 M
2rp21

2ui

� �
�28�

2~rp

2ui
� 2�rp

2ui

2
Xp2 1

q�1

2rT
q

2ui
M �rp 1 rT

q M
2�rp

2ui

 !
rq 1 �rT

qM �rp�
2rq

2ui

" #
�29�

2rp

2ui
� 1

�~rT
pM ~rp�

1
2

2~rp

2ui
2

�~rT
pM

2�rp

2ui
�

�~rT
pM ~rp�

rp �30�

The derived sensitivity reveals how the sensitivity of a
Ritz vector is related to that of the previous Ritz vectors.
Further, the derivative in Eq. (30) is employed to calculate
S�rpkuQHj

� in Eq. (19) andwrpk
�QHj

� in Eq. (21).

3. Numerical examples

This section demonstrates the potential applicability of

Ritz vectors to damage detection of structures and the better
sensitivity of Ritz vectors over the modal vectors. The first
example structure is an eight-bay truss structure from the
NASA dynamic scale model technology (DSMT) program
of Langley Research Center [11]. The second example
structure is a five-story frame building. This section is orga-
nized as follows. First, sensitivity analyses of Ritz vectors
are conducted and the sensitivities of Ritz vectors are
compared to those of modal vectors. Second, the damage
detection of the eight-bay truss structure is conducted by
changing damage locations and load patterns. Further, the
damage detection using Ritz vectors is compared to the
damage detection using modal parameters. Third, the
proposed method is applied to the damage detection of the
five-story frame building. The effect of the modeling error is
highlighted in the frame structure example.

3.1. Sensitivity analyses of Ritz vectors

In this subsection, a sensitivity analysis of Ritz vectors is
conducted using the eight-bay truss structure shown in Fig.
1. The structure is modeled using 104 truss elements, and
consists of 36 nodes and 96 DOFs. In Fig. 1, the 36 nodes
are numbered: (1) from the top left corner at the free end of
the structure to the top right, bottom left and bottom right
corner, respectively; and (2) from the bay one to the bay
eight. The DOFs follow the node numbering and for each
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Fig. 1. An eight-bay truss structure.

Table 1
Classification of truss members into four lacing patterns. T, B, R and L denote top, bottom, right and left direction shown in Fig. 1, respectively

Bay # Longeron Batten Face diag. Side diag.

TR TL BR BL T B R L T B R L

1 5 3 4 7 1 2 50 49 65 74 76 73 75
2 9 11 13 10 6 8 51 52 66 77 80 79 78
3 17 15 16 19 12 14 54 53 67 81 84 82 83
4 21 23 25 22 18 20 55 56 68 85 88 87 86
5 29 27 28 31 24 26 58 57 69 89 92 90 91
6 33 35 37 34 30 32 59 60 70 93 96 95 94
7 41 39 40 43 36 38 62 61 71 97 100 98 99
8 47 46 45 48 42 44 63 64 72 103 102 101 104



node, the DOFs are numbered consecutively thex, y, z
translational DOFs.

Table 1 classifies the truss members into four different
lacing patterns as shown in Fig. 1: longeron, batten, face
diagonal and side diagonal. In the sensitivity analysis, load
pattern 1 shown in Fig. 2(a) is employed for the generation
of Ritz vectors.

The derived sensitivity is validated by comparing the
analytical changes of Ritz vectors, computed using the
derived sensitivity, with the actual changes of Ritz vectors.
Figs. 3 and 4 present selected results for the comparison,
wherer h

j andrd
j represent thejth Ritz vector before and after

the stiffness changes, respectively. Imposing load pattern 1
on the healthy structure, the first five successive Ritz vectors
are generated from the procedures described in Eqs. (23)–
(25). After decreasing the stiffness of each member by 1%,
the actual changes of the Ritz vectors from the healthy state
are computed to arrive atrh

j 2 rd
j . The corresponding analy-

tical changes of the Ritz vectors are computed as
�2r j =2ui� × Dui . Here�2r j =2ui� is the derived sensitivity from
Eqs. (27)–(30) andDuj is set to 0.01. Asshown in Figs. 3 and 4,
the analytical changes of the Ritz vectors, which are computed
from the closed form sensitivity, are in good agreement with
the actual changes of the Ritz vectors.

Next, the sensitivities of Ritz vectors are compared to the
sensitivities of modal vectors. The comparison of the first
five Ritz and modal vectors, as shown in Fig. 5, reveals that
the Ritz vectors, particularly the higher Ritz vectors,
produce more complicated deformed shapes. This implies
intuitively that Ritz vectors might be more sensitive to the

stiffness changes of substructures. This observation can be
justified by a detailed sensitivity analysis. The sensitivity
analysis is conducted by comparing the changes of the
Ritz and modal vectors as the stiffness of each substructure
(member) deteriorates. Selected results from the compari-
sons are presented in Fig. 6 where the stiffness loss of the
selected member varies from 0% to 100%. Here,i·i denotes
the Euclidean norm,rh andr d denote the Ritz vectors before
and after damage occurs, respectively, andvh andvd present
the modal vectors before and after stiffness changes, respec-
tively. The shaded portion of Fig. 6(a) indicates that if each
component of a modal vector has a 5% uncertainty, no
measurable change in any modal vector will be apparent
unless the stiffness loss exceeds 75%. On the other hand,
10% change of stiffness results in perceivable changes in the
second and third Ritz vectors in the presence of a 5% uncer-
tainty.

From the sensitivity analyses, several observations can be
made in this example: (1) in most cases, stiffness changes in
the model lead to larger changes in the Ritz vectors than in
the modal vectors; (2) face diagonals do not cause signifi-
cant changes to either the Ritz or modal vectors; and (3) in
many cases, Ritz and modal vectors are more sensitive to the
stiffness losses of side diagonals and longerons than those of
battens. The sensitivity analyses allow one to determine
detectable damage amounts for each substructure before
the actual damage detection. Detectable damage should
cause significant changes of Ritz vectors greater than what
can be attributed to measurement uncertainties, modeling
error or environmental effects.
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Fig. 2. Load patterns applied to an eight-bay truss structure.

Fig. 3. Change of the fourth Ritz vector caused by a 1% decrease of the 94th member stiffness.
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Fig. 4. Change of the fifth Ritz vector caused by a 1% decrease of the 35th member stiffness.

Fig. 5. Comparison of Ritz vectors and modal vectors of an eight-bay truss structure.



3.2. Damage detection of an eight-bay truss structure

This subsection presents the diagnosis results of an eight-
bay truss structure conducted under different conditions. For

all examples, a uniform prior probability is assigned to all
hypotheses. Therefore, the determination of the most prob-
able hypothesis in Eq. (6) depends only on the error function
J�ĈNs

;Qmax
Hj
�. The search spaceQHj

V *
Hj

in Eq. (11) is
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Fig. 6. Sensitivity comparison of Ritz and modal vectors for an eight-bay truss structure.
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Table 2
Minimum detectable damage amount of each substructure for a given load pattern. “—” denotes that damage is undetectable

Bay # Sub. # Load pattern Modal vector Sub. # Load Pattern Modal vector

(1) (2) (3) (1) (2) (3)

Longeron 1 3 50% 10% 90% 80% 5 70% — 40% 100
4 50% 20% 70% 80% 7 70% — 90% 100%

2 9 10% 20% 60% 60% 11 40% 10% 90% 80%
10 10% 20% 60% 60% 13 40% 20% 70% 80%

3 15 30% 10% 40% 50% 17 10% 20% 60% 60%
16 30% 10% 30% 50% 19 10% 20% 50% 60%

4 21 10% 10% 20% 60% 23 20% 10% 40% 50%
22 20% 10% 20% 60% 25 20% 10% 30% 50%

5 27 10% 10% 10% 60% 29 10% 10% 20% 50%
28 10% 10% 10% 50% 31 20% 10% 20% 50%

6 33 10% 10% 10% 80% 35 10% 10% 10% 50%
34 10% 10% 10% 80% 37 10% 10% 10% 50%

7 39 10% 10% 10% 80% 41 10% 10% 10% 80%
40 10% 10% 10% 70% 43 10% 10% 10% 80%

8 45 10% 10% 10% 70% 47 10% 10% 10% 60%
46 10% 10% 10% 70% 48 10% 10% 10% 60%

Batten 1 1 40% 20% 90% 100% 49 40% 10% 90% 100%
2 10% 10% 80% 100% 50 40% 10% 60% 100%

2 6 30% 60% — — 51 40% 50% 90% —
8 40% 60% — — 52 60% 50% — —

3 12 30% 100% 100% — 53 80% 90% 100% —
14 30% 100% 100% — 54 70% 90% 90% —

4 18 30% 70% 100% — 55 70% 60% — —
20 40% 70% 100% — 56 60% 70% 100% —

5 24 50% 30% — — 57 10% 20% 100% —
26 40% 30% — — 58 40% 30% 100% —

6 30 50% 80% 10% 100% 59 60% 70% — 100%
32 60% 80% 90% 100% 60 60% 70% 10% 100%

7 36 70% 80% 10% — 61 80% 90% 10% —
38 70% 80% 90% — 62 80% 90% 10% —

8 42 90% 100% 70% — 63 90% 90% 80% —
44 90% 100% 60% — 64 90% 90% 70% —

Side diagonal 1 73 10% 10% 40% 70% 75 10% 10% 90% 70%
74 10% 10% 80% 70% 76 10% 10% 70% 70%

2 77 10% 10% 80% 60% 79 10% 10% 60% 60%
78 10% 10% 70% 60% 80 10% 10% 70% 60%

3 81 10% 10% 70% 60% 83 10% 10% 70% 60%
82 10% 10% 70% 60% 84 10% 10% 60% 60%

4 85 10% 10% 70% 60% 87 10% 10% 70% 60%
86 10% 10% 60% 60% 88 10% 10% 60% 60%

5 89 10% 10% 60% 60% 91 10% 10% 60% 60%
90 10% 10% 60% 60% 92 10% 10% 60% 60%

6 93 10% 10% 50% 40% 95 10% 10% 50% 40%
94 10% 10% 60% 40% 96 10% 10% 50% 40%

7 97 10% 10% 40% 20% 99 10% 10% 50% 20%
98 10% 10% 40% 20% 100 10% 10% 40% 20%

8 101 10% 10% 30% 20% 103 10% 10% 40% 20%
102 10% 10% 20% 20% 104 10% 10% 30% 20%

Face diagonal 1,2 65 80% 20% 30% — 66 — 90% 30% —
3,4 67 — — 30% — 68 — 100% 30% —
5,6 69 80% 30% 30% — 70 — 100% 30% —
7,8 71 — — 30% — 72 — — 40% —



evaluated at the intersection of grid lines which discretize
the search domain with an increment ofDu. For all numer-
ical examples, we use an incremental stepDu� 0.1. The
branch-and-bound search in the presented examples follows
a depth-first/best-first search strategy. Furthermore, the
extension of the branch-and-bound search is limited such
that a maximum of three substructures can be examined.

Each Ritz vector is normalized with respect to the DOF
which has the absolute maximum magnitude in the healthy
structure. Since one component is used for normalization,
only Nr 2 1 pieces of information exist for each Ritz vector.
To simulate the estimated Ritz vectorsĉ, the Ritz vectorsc
obtained from Eqs. (23)–(25) are perturbed with noise such
that:

ĉ�n� � c 1 1
N

100
R

� �
�31�

whereN is a specified percentage of noise level, andR is a
normally distributed random number with zero mean and a
variance of 1.0. This process is repeatedNs, times to simu-
late theNs, data sets.

Excitation is assumed to be a swept sine excitation gener-
ated from electrodynamics or hydraulic shakers [5]. All
actuators are assumed to generate forces with the same
magnitude and phase. According to Eq. (22), the spatial
distribution of forces is defined by a vectorf(s) and an
identical input excitation is given to all actuators by a scalar
function u(t). Load patterns are selected to maximize the
sensitivities of the first five Ritz vectors over all substruc-
tures. For all examples,Ldam and Ddam, denote the actual
damage locations and the associated damage amount,
respectively. L̂dam and D̂dam denote the most probable

damage locations and the associated damage amount esti-
mated by the proposed method. In addition, the measured
DOFs and the estimated modes are denoted by DOFm and
MODEm, respectively.

3.2.1. Diagnoses using uniform damage thresholds
In this subsection, twelve different damage cases are

investigated employing Ritz vectors and the proposed
weighting scheme. For the purpose of comparison, the
same damage cases are re-diagnosed using Ritz vectors
but without the weighting scheme. Furthermore, the diag-
nosis results using modal vectors are presented. Sensitivity
analyses which are similar to Fig. 6 are conducted for load
patterns 1 and 2 to compute a minimum detectable damage.
The minimum detectable damage of each substructure is
defined as the minimum damage amount for which the esti-
mated Ritz vectors from a given load pattern can detect
when each component of a Ritz vector is contaminated by
a certain level of noise. The minimum detectable damage of
each substructure is presented in Table 2 assuming that,
because of noise, each component of a Ritz vector is
perturbed by 5% of its magnitude.

Table 2 shows that a stiffness loss larger than 10% is
detectable from load patterns 1 and 2 for most side diago-
nals and longerons. Battens undergo a 10%–100% loss of
stiffness before the changes of Ritz vectors become obser-
vable. However, the stiffness changes of most face diago-
nals are undetectable from both load patterns. Based on
these preliminary sensitivity analyses, the detection of
10% stiffness loss in most face diagonals and battens
seems difficult from the assumed load patterns. Therefore,
the face diagonals and battens are precluded from the
branch-and-bound search in the examples presented here.
That is, only longerons and side diagonals are investigated
for potential damage. As shown in Table 2, the Ritz vectors
are clearly more sensitive to damage than the modal vectors.
For load pattern 3, 16 actuators are assumed to be placed at
both ends of all face diagonals to produce tensile forces in
the face diagonals. This load pattern is presented here to
show that this load pattern can make the face diagonals
more detectable (larger than 30% stiffness loss is detectable
from the Ritz vectors generated from load pattern 3).
However, since this loading is not realistic, only the first
two load patterns are employed for damage detection.

Twelve damage cases with a single damaged substructure
are simulated by assuming a 10% stiffness loss, a 5% noise
level and one data set (Ns � l). The damaged substructures
used in the examples are shown in Fig. 1 by solid lines.
Furthermore, all DOFs are assumed to be measured and a
value of 0.9 is used for the damage thresholdu* of each
substructure. The damage locations are identical to some of
the damage cases which are experimentally tested and
described in Kashangaki [11]. It should be noted that
while the damage cases in Kashangaki [11] refer to the
total removal of a truss member, only a 10% stiffness loss
is considered in this study.
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Table 3
Comparison of diagnosis results using Ritz or modal vectors.Ns� l,
noise� 5%, and all DOFs are measured. Only longeron and side diagonal
members are examined for damage

Case Actual Damage Ranka

Ldam Ddam scheme 1b scheme 2c scheme 3d

A {46} {10%} 3/313 3/313 350/434
B {102} {10%} 1/251 4/374 30/434
C {39} {10%} 3/313 6/313 350/434
D {97} {10%} 3/313 3/313 55/434
G {33} {10%} 2/313 3/313 372/434
H {35} {10%} 3/313 3/313 219/434
I {94} {10%} 3/313 3/313 356/434
J {28} {10%} 3/313 7/374 382/434
K {87} {10%} 1/251 3/313 405/434
L {22} {10%} 3/313 4/374 320/434
M {17} {10%} 3/313 3/252 428/494
N {13} {10%} 3/313 3/313 213/494

a The first number is the rank of the actual damage event and the second is
the total number of the examined hypotheses.

b The first five Ritz vectors are estimated from load pattern 2 and the
proposed weighting scheme is employed.

c Same as scheme 1 except that the weighting scheme is not used.
d The first five modal vectors are employed instead of Ritz vectors.



Table 3 shows the diagnosis results of the twelve damage
cases. Scheme 1 uses the first five Ritz vectors and the
proposed weighting and scheme 2 uses the same Ritz
vectors without the weighting scheme. These Ritz vectors
are generated from load pattern 2. In scheme 3, the first five
modal vectors are employed instead of the Ritz vectors.
Table 3 shows that scheme 1 provides the best diagnoses
among the three schemes. For all damage cases, the most
probable damage event computed by scheme 1 includes the
actually damaged substructure. In some cases, however,

undamaged substructures are found to be included in the
most probable damage event. For example, the 7th substruc-
ture is included as a potentially damaged substructure in
case A. Table 2 shows that the Ritz vectors employed in
this diagnosis set (the Ritz vectors generated from load
pattern 2) are insensitive to the stiffness changes of the
7th substructure. Therefore, a small stiffness change of the
7th substructure may not result in a noticeable change of the
error function value in Eq. (7) or can actually reduce the
error function value when Ritz vectors are noise contami-
nated. For similar reasons, the 5th substructure is also
included in the most probable damage event for other
damage cases. Comparing schemes 1 and 2, we observe
that the weighting in scheme 1 slightly improves the diag-
noses. Scheme 3 using modal vectors fails to detect most
damage cases. These results show the superiority of Ritz
vectors to modal vectors for damage detection.

3.2.2. Diagnoses using different damage thresholds
In this subsection, fourteen damage cases (including the

previous twelve cases) are diagnosed using a different
threshold value for each substructure. The other conditions
are unchanged (noise� 5%, Ns � 1 and all DOFs are
measured). We prevent unnecessary extensions of the
branch-and-bound search by employing preliminary sensi-
tivity analyses The branch-and-bound search is conducted
including only substructures with damage larger or equal to
the pre-assigned minimum detectable damage.

The damage thresholds in this subsection are assigned
based on the minimum detectable damage computed in
Table 2. For example, since the minimum detectable
damage amount assigned to the first substructure is 20%
(when load pattern 2 is employed), the corresponding
damage threshold is set to 0.8 (12 0.2). The damage thresh-
olds for other substructures are determined in the same fash-
ion. It should be noted that when the total removal of a
substructure does not cause a perceivable change in Ritz
vectors, the substructure is defined as undetectable and
excluded from the diagnosis. For example, the 67th member
is defined as undetectable since the total removal of the
member (100% stiffness loss) does not yield significant
changes in Ritz vectors beyond the assumed variation
caused by uncertainties. Therefore, the 67th member is
excluded from the diagnosis.

Table 4 shows that the redefined damage threshold
improves the diagnoses. Comparing the most probable
events (hypothesis) of case A in Tables 3 and 4, one can
observe that the undamaged 7th substructure is removed
from the most probable hypothesis, making the actual
damage case the most probable one. In case E, the proposed
method indicates that most likely there is no damage.
Considering the fact that the damage threshold of the 36th
substructure is set to 0.2, the 10% stiffness loss in the 36th
substructure is not detectable. The proposed method ranks
the 36th substructure as the 17th most probable damage
location with 80% damage. Similar results are observed
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Table 4
Diagnoses of an eight-bay truss structure using different threshold values.
The first five Ritz vectors are estimated from load pattern 2 and the
proposed weighting scheme is employed.Ns � l, noise� 5%, and all
DOFs are measured. Different damage threshold value is assigned to
each substructure

Case Actual damage Ranka Most prob. damage

Ldam Ddam L̂dam D̂dam

A {46} {10%} 1/371 {46} {10%}
B {102} {10%} 1/552 {102} {10%}
C {39} {10%} 1/371 {39} {10%}
D {97} {10%} 1/461 {97} {10%}
E {36} {10%} 17/95 No damage
F {71} {10%} –/95 No damage
G {33} {10%} 1/371 {33} {10%}
H {35} {10%} 1/461 {35} {10%}
I {94} {10%} 1/462 {94} {10%}
J {28} {10%} 1/371 {28} {10%}
K {87} {10%} 1/371 {87} {10%}
L {22} {10%} 1/461 {22} {10%}
M {17} {10%} 9/95 No damage
N {3} {10%} 1/461 {3} {10%}

a The first number is the rank of the actual damage event and the second is
the total number of the examined hypotheses. “–” denotes that actual
damage is not detected.

Table 5
Diagnoses of an eight-bay truss structure with multiple damage locations.
Ns � l, noise� 5%, all DOFs are measured and the proposed weighting
scheme is employed. Different damage threshold value is assigned to each
substructure

Case Actual damage Ranka

Ldam Ddam F1b F2c F1, F2d

O {35,94} {10%,10%} 1/672 –/371 1/686
P {39,46} {10%,10%} 1/483 1/644 1/686
Q {28,102} {10%,10%} 1/861 2/914 1/974
R {39,87} {10%,10%} –/672 1/644 1/679
S {22,35,97} {10%,10%,10%} –/672 –/644 1/686
T {17,35,97} {10%,10%,10%} 1/577 –/554 1/986

a The first number is the rank of the actual damage event and the second is
the total number of the examined hypotheses. “–” denotes that actual
damage is not detected.

b The first five Ritz vectors are estimated from load pattern 1.
c The first five Ritz vectors are estimated from load pattern 2.
d Load Patterns 1 and 2 are employed and the first five Ritz vectors are

estimated from each load pattern (i.e. a total of ten Ritz vectors).



for cases F and M. Sensitivity analyses in Table 2 show that
the stiffness deterioration of the 71th substructure, which is
a face diagonal in the seventh-bay, does not yield any
noticeable changes to the estimated Ritz vectors. Therefore,
the 71th substructure is precluded from the diagnosis and
the proposed method provides a false-negative indication of
damage. For case M, the damage threshold of the 17th
substructure is set to 0.8. Again, the proposed method indi-
cates that most likely there is no damage and ranks the event
of 20% damage in the 17th substructure as the 9th most
probable damage case.

3.2.3. Diagnoses of damage in multiple locations
In this subsection, we focus on the detection of damage in

multiple locations. Table 5 presents diagnosis results of six
different damage cases. In cases O–R, a 10% stiffness
decrease is simulated in two substructures. Cases S and T
present damage cases with three damaged substructures.
The six damage cases are repeatedly diagnosed under differ-
ent conditions. In the fourth column of Table 5, the first five
Ritz vectors are generated from load pattern 1 and employed
for damage detection along with the proposed weighting
scheme. In the fifth column, load pattern 2 is employed
instead of load pattern 1. In the last column of the table, a
total of ten Ritz vectors are generated from load patterns 1
and 2 (the first five Ritz vectors are generated from each
load pattern). For all cases in Table 5, all DOFs are
measured and one set of Ritz vectors is simulated assuming
a 5% noise level (Ns � 1 and noise� 5%). Furthermore, the
proposed weighting scheme is employed.

When the first five Ritz vectors are generated from load
pattern 1, the proposed method identifies the actual damage
event of cases O, P, Q and T. However, the actual damage
locations are not detected for cases R and S. While the use of

load pattern 2 yields the detection of actual damage loca-
tions in cases P, Q and R, load pattern 2 fails to identify
damage of cases O, S and T. Finally, when a total of ten Ritz
vectors are generated from load patterns 1 and 2, the
proposed method identifies the actual damage locations
for all cases (cases O–T). It is shown that each damage
case has different sensitivity to different load patterns and
by including more Ritz vectors from different load patterns,
diagnosis results can be improved.

3.3. Damage detection of a five-story three-dimensional
frame structure

A five-story three-dimensional frame structure is
employed to illustrate the applicability of Ritz vectors to
damage detection when differences exist between the base-
line structure and the simplified model. The termbaseline
structure is used to refer to a structure from which the
experimental Ritz vectors are simulated. The simplified
model is constructed such that the system stiffness matrix
of the three-dimensional structure is obtained by assembling
the lateral stiffness matrices of the planar frames [17]. Fig. 7
(a) and (b) show the baseline structure and the simplified
model, respectively. While the baseline FE model has 6
DOFs at each node (three translational and three rotational
DOFs), the simplified model has only three DOFs at the
mass center of each floor. For the current five-story exam-
ple, the baseline structure has 120 DOFs and the simplified
model has 15 DOFs.

In many vibration tests of building structures, displace-
ments are evaluated at the mass center of the floor
diaphragm. Assuming a kinematic constraint that each
floor diaphragm is rigid in its own plane, the deformation
of the FE model is reconstructed at the mass center of every
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Fig. 7. The baseline structure and the simplified model of a five-story frame structure.



floor to simulate the real testing conditions. Then, the
components of the estimated Ritz vector coincide with
those of the simplified model. Loads applied to the baseline
structure are also converted to equivalent forces in the
simplified model using the displacement transformation
matrix which relates the DOFs of the baseline structure to
the mass center DOFs of the simplified model. Furthermore,
for the calculation ofeM�QHo

� in Eq. (9), ĉ h
m is computed

from the Ritz vectors of the initial FE model without
damage.c�QHo

� is obtained from the simplified model
following Eqs. (23)–(25). That is,eM�QHo

� is defined as
an output error caused by the difference between the base-
line structure and the simplified model.

The first six Ritz vectors are estimated from each load
pattern. Since the frame example in this subsection has less
redundancy and the estimated Ritz vectors are reasonably
sensitive to all substructures, the damage threshold is set to
0.9 for every substructure.

3.3.1. Diagnoses of damage cases with modeling error
The applicability of the proposed method is illustrated

when a modeling error exists between the baseline structure
and the simplified model. To highlight the effect of a model-
ing error, the effect of measurement noise is neglected in
this example. Table 6 summarizes the diagnoses of eight
different damage cases using the first six Ritz vectors gener-
ated from load pattern 1 and only one set of them is

simulated (Ns � 1). Load pattern 1 and the other load
patterns employed in the next example are presented in
Fig. 8. The damaged substructures in Table 6 are shown
as circled numbers in Fig. 7. Each beam and column in
the baseline structure is modeled as a substructure, and alto-
gether, the system consists of 40 substructures. Since the
stiffness matrix of the simplified system is represented as an
assembly of the effective stiffness contribution of each
substructure (see Sohn and Law [17]), damage locations
can be tracked at the substructure level of the baseline struc-
ture. That is, damage locations are identified in the baseline
structure, not in the simplified model.

For cases C, D, E and G of Table 6, the proposed method
ranks the actual damage event as the most likely damage
event. In cases A, B, F and H, the actual damage locations
are included in the most probable damage event, which the
proposed method identifies. However, undamaged substruc-
tures are also mistakenly included in this most probable
damage event. For example, in case B, the proposed method
diagnoses that damage is most likely located in the 5th, 9th
and 25th substructures. While the 5th and 9th substructures
are actually damaged, the 25th substructure is mistakenly
included. This can be explained as follows. We search for
the most likely hypothesisHmax and the corresponding
nondimensional parameter valueQmax

Hmax
which minimizes

the approximated error functionJ�ĈNs
;QHj

� defined in

Eq. (6). For the exact definition ofJ�ĈNs
;QHj

�, eM�QHd
�,

which is the output error caused by the modeling error after
damage occurrence, should be evaluated. Since the actual
damage locations and amount, which are required to evalu-
ate eM�QHd

�, are unknown,eM�QHd
� is approximated by

eM�QHo
�. Here,eM�QHo

� is the output error caused by the
modeling error before damage occurrence, assuming that
the modeling error is constant for arbitrary damage locations
and damage amount. Since Ritz vectors are very sensitive to
stiffness changes, it appears that a relatively large difference
betweeneM�QHd

� andeM�QHo
�may exist even for the small

damage amount like the 10% stiffness loss presented in the
example here. This difference explains why the undamaged
substructures are mistakenly included in the most probable
damage event in cases A, B, F and F, and why the estimated
damage amount is slightly different from the actual damage
amount in case E. However, using the simplification tech-
nique, we are able to reduce the size of the system from 120
DOFs to 15 DOFs without losing significant accuracy.
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Table 6
Diagnoses of a five-story frame structure considering modeling error. The
first six Ritz vectors are estimated from load pattern 1 in Fig. 8.Ns � 1 and
noise� 5%. The damage threshold is set to 0.9 for all substructures

Case Actual damage Ranka Most prob. damage

Ldam Ddam L̂dam D̂dam

A {5} {10%,10%} 51/266 {5,25} {10%,10%}
B {5,9} {10%,10%} 8/266 {5,9,25} {10%,10%,10%}
C {13,20} {10%,10%} 1/303 {13,20} {10%,10%}
D {25,28} {10%,10%} 1/193 {25,28} {10%,10%}
E {25,30} {10%,10%} 1/266 {25,30} {20%,10%}
F {9,25} {10%,10%} 2/266 {9,25,28} {10%,10%,10%}
G {34,38} {10%,10%} 1/266 {34,38} {10%,10%}
H {26,29} {10%,10%} 7/230 {25,26,29} {10%,10%,10%}

a The first number is the rank of the actual damage event and the second is
examined hypotheses.

Fig. 8. Load patterns applied to a five-story frame structure.



The eight damage cases are re-diagnosed in Table 7
employing four different load patterns and a combination
of them. Except changing the load patterns, all the other
conditions remain the same as the cases shown in Table 6.
Table 7 shows that a careful selection of load patterns can
improve diagnoses of damage and, in general, Ritz vectors
provide better diagnoses than modal vectors. For example,
by imposing load pattern 1 on the frame structure, the
proposed method identifies the actual damage locations in
four out of eight cases (cases C, D, E and G). Even for the
other four cases (cases A, B, F and H), all the actual damage
locations are included in the most probable damage event.
Load pattern 2 fails to detect the actual damage event in case
H, load pattern 3 does not find the actual damage event of

case E, and load pattern 4 ranks the actual damage event as
the most probable one only for case G. When all four load
patterns are employed simultaneously (the last column of
Table 7), the rank of the actual damage event is improved
for most damage cases.

3.3.2. Diagnoses of damage cases with modeling error and
measurement noise

In Table 8, the previous damage cases are re-diagnosed:
(1) using all four load patterns; (2) considering both model-
ing error and measurement noise; and (3) increasing the
number of data sets (Ns) from 1 to 20. To simulate the
measurement noise, the analytical Ritz vectors generated
from the baseline structure are perturbed with a 5% noise
level using Eq. (31). Table 8 shows that: (1) the diagnoses
provided by the proposed method improve as the number of
data sets increases; and (2) if load patterns are selected care-
fully and a large number of data sets are available, the
proposed method can identify the actual locations and
amount of damage even in the presence of measurement
noise and modeling error.

4. Conclusion and discussion

In this paper, load-dependent Ritz vectors are applied to a
Bayesian probabilistic approach to detect the locations and
amount of damage. Several damage scenarios using an
eight-bay truss and a five-story frame structure illustrate
the potential use of load-dependent Ritz vectors for damage
detection. Sensitivity analyses show that the derived deri-
vative of a load-dependent Ritz vector with respect to a
substructure stiffness is a good approximation of the actual
sensitivity, and the sensitivity analyses allow us to identify
detectable substructures before actual diagnoses. The diag-
nosis results of the truss and frame structures show that: (1)
load-dependent Ritz vectors are able to identify the actual
damage locations for most damage cases when the estimated
Ritz vectors are contaminated by 5% noise, only one set of
Ritz vectors are estimated, and a small amount of stiffness
deterioration (10% stiffness loss) is assumed; (2) by a care-
ful selection of load patterns, substructures of interest can be
made more observable using the Ritz vectors generated
from the particular load patterns; (3) the proposed weighting
scheme, which weights Ritz vectors according to their sensi-
tivity to the assumed damage locations, improves the diag-
nosis results; and (4) if load patterns are selected carefully
and a large number of data sets are available, the proposed
method can identify most of the damage locations, even in
the presence of modeling error and measurement noise.

While this paper has illustrated the potential applicability
of load-dependent Ritz vectors to damage detection, many
interesting research issues remain. First, even though a
procedure to experimentally extract load-dependent Ritz
vectors is proposed [2] and the effect of noise on the
estimated load-dependent Ritz vectors is studied [20], real
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Table 7
Diagnoses of a five-story frame structure using different load patterns

Casea The rank of the actual damage eventb

F1c F2 F3 F4 MVd All F’s e

A 51/266 3/230 3/230 18/255 32/266 1/155
B 8/266 3/266 7/266 15/266 20/266 6/266
C 1/303 2/266 1/375 5/155 100/193 1/230
D 1/193 1/230 1/193 14/230 –/155 2/155
E 1/266 4/266 –/41 2/337 –/41 1/266
F 2/266 2/266 1/266 2/266 –/80 1/302
G 1/266 1/267 2/303 1/303 5/266 1/267
H 7/230 –/41 3/266 2/338 –/41 1/302

a The damage cases here are identical to the damage cases in Table 6.
b The first number is the rank of the actual damage event and the second is

the total number of the examined hypotheses. “–” denotes that actual
damage event is not detected.

c In Fl, F2, F3 and F4, the first six Ritz vectors are estimated from load
patterns 1, 2, 3 and 4, respectively.

d In MV, the first six modal vectors are estimated.
e Load patterns 1–4 are employed and the first six Ritz vectors are

generated from each load pattern.

Table 8
Diagnoses of a frame structure considering modeling error and measure-
ment noise

Casea The rank of the actual damage eventb Most prob. damagec

Ns� 1 Ns� 5 Ns� 10 Ns� 20 L̂dam D̂dam

A 12/230 5/230 2/195 1/155 {5} {10%}
B 65/303 4/266 2/266 2/266 {4,5,9} {10%,10%,10%}
C 10/213 4/155 2/193 3/193 {9,20} {10%,10%}
D 6/155 5/155 3/155 2/155 {28} {20%}
E 1/303 1/299 1/266 1/303 {25,30} {10%,10%}
F 2/303 1/266 1/374 1/303 {9,25} {10%,10%}
G 1/230 1/267 1/267 1/267 {35,38} {10%,10%}
H 1/337 1/337 1/337 1/266 {25,26} {10%,10%}

a The damage cases here are identical to the previous damage cases in
Table 6.

b The first number is the rank of the actual damage case and the second is
the total number of the examined hypotheses.

c cL̂dam and D̂dam are identified using all the four load patterns and
Ns � 20.



testings should be conducted to validate the experimental
procedure. Second, the physical issue of the actuator place-
ment should be addressed to make the extraction of load-
dependent Ritz vectors practical. In this paper, we assume
that the amplitudes and phases among actuators can be fully
controlled and the power requirement to generate the
desired excitation forces is not addressed. Third, it is
worth while to develop a systematic scheme to find load
patterns, which yield better detection of damage in substruc-
tures of interest. While it is shown that a careful selection of
load patterns can make the substructures of interest more
observable, a systematic selection scheme for the load
patterns has not been addressed.
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