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ABSTRACT

This paper demonstrates the possibility of incorporating load-dependent Ritz vectors, as an alternative to modal

parameters, into a Bayesian probabilistic framework for detecting damages in a structure. Recent research has shown

that it is possible to extract load-dependent Ritz vectors from vibration tests. This paper shows that load-dependent

Ritz vectors have the following potential advantages for damage detection over modal vectors: (1) In general, load-

dependent Ritz vectors are more sensitive to damage than the corresponding modal vectors, and (2) substructures of

interest can be made more observable using the load-dependent Ritz vectors generated from particular load patterns.

An eight-bay truss structure and a �ve-story frame example are presented to illustrate the applicability of the

proposed approach.
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1. INTRODUCTION

Damage detection and heath monitoring of large scale structures are becoming an important challenge to engineering

research. One common approach for global damage detection is to employ the vibration characteristics of a structure

such as frequencies, modal vectors, and modal damping to predict the damage locations and to estimate the amount

of damage. However, it has been shown that changes in the modal parameters might not be apparent at an early stage

of damage. Also, the uncertainties caused by measurement noise, modeling error involved in an analytical model, and

environmental changes such as variations in temperature and load conditions can impede the reliable identi�cation of

damage. Therefore, for reliable damage detection, the damage would need to cause signi�cant changes in the modal

parameters that are beyond the natural variability caused by the e�ects other than the damage.

Recent research has shown that it is possible to extract Ritz vectors from vibration tests.1 The �rst Ritz vector is

the static deformation of a structure due to a particular load applied to the structure. The subsequent vectors account

for the inertial e�ects of the loading and are generated by iterative matrix multiplication and orthogonalization. Ritz

vectors (or Lanczos vectors) have been shown very e�ective for dynamic and earthquake analyses, eigenvalue problems

and model reductions. In this paper, we demonstrate the possibility of incorporating load-dependent Ritz vectors,

as an alternative to modal parameters, into the previously proposed Bayesian probabilistic framework for damage

detection.2 This study is motivated by the following potential advantages of Ritz vectors over modal vectors: (1) In

general, Ritz vectors are more sensitive to damage than the corresponding modal vectors, (2) substructures of interest

can be made more observable using the Ritz vectors generated from particular load patterns, (3) the computation

of Ritz vectors is less expensive than that of modal vectors (eigenvectors) and (4) while the practical di�culties of

modal testing impede the extraction of a large number of meaningful modes, a larger number of Ritz vectors can be

extracted by imposing di�erent load patterns on a structure.

This paper is organized as follows: The next section reviews the theoretical formulation of the previously proposed

Bayesian probabilistic approach.2 Section 3 presents numerical examples to illustrate the e�ectiveness of the proposed

method. Section 4 summarizes this paper.
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2. THEORETICAL FORMULATION

Bayesian probabilistic approaches, which use modal parameters, have been applied to damage detection by re-

searchers.3,2 The idea is to search for the most probable damage event by comparing the relative probabilities for

di�erent damage scenarios, where the relative probability of a damage event is expressed in terms of the posterior

probability of the damage event, given the estimated modal data sets from a structure. In this paper, the formula-

tion of the relative posterior probability is based on an output error, which is de�ned as the di�erence between the

estimated Ritz vectors and the theoretical Ritz vectors from the analytical model.

2.1. Notations and Assumptions

For an analytical model of a structure, we represent the system sti�ness matrix K as an assembly of substructure

sti�ness matrices. For a model with Nsub substructures, the overall sti�ness matrix can be expressed as:

K(�) =

NsubX
i=1

�iKsi (1)

where Ksi is the sti�ness matrix of the ith substructure and �i (0 � �i � 1) is a nondimensional parameter which

represents the contribution of the ith substructure sti�ness to the system sti�ness matrix. The nondimensional

parameter �i is introduced to allow the modeling of damage in the ith substructure. A substructure is de�ned

as damaged when the � value is less than a speci�ed threshold. As damage locations and amount are determined

according to the � values, the system sti�ness matrix in Equation (1) is expressed as a function of � =
�
�i; i =

1; :::; Nsub

	
.

Test data sets are assumed to be collected from repeated vibration tests. When vibration tests are repeated Ns

times, the total collection of Ns data sets is denoted as:

	̂Ns
=
�
 ̂(n) : n = 1; :::; Ns

	
(2)

A data set  ̂(n) in Equation (2) is composed of Ritz vectors estimated from the nth vibration test:

 ̂(n) =
�
r̂nT1 ; :::; r̂nT

Nr

�T
2 RNt (3)

where r̂n
i
denotes the ith estimated Ritz vector in the nth data set. The Ritz vector r̂n

i
(r̂n
i
2 RNd) has components

corresponding to the instrumented degrees of freedom (DOFs). The variables Nt; Nd and Nr represent the total

number of components in a data set  ̂(n), the number of the measured DOFs and the number of the estimated Ritz

vectors, respectively.

Let Hj denote a hypothesis for a damage event which can contain any number of substructures as damaged,

and the initial degree of belief about the hypothesis Hj is represented with a prior probability P (Hj). Using Baye's

theorem, the posterior probability P (Hj j	̂Ns
), after observing the estimated data sets 	̂Ns

, is given as:

P (Hj j	̂Ns
) =

P (	̂Ns
jHj)

P (	̂Ns
)
P (Hj) (4)

The most likely damaged substructures are the ones included in the hypothesis Hmax which has the largest posterior

probability, i.e.

P (Hmaxj	̂Ns
) = max

8Hj

P (Hj j	̂Ns
) (5)

Since the objective is to determine the most probable damage hypothesis (event), only the relative posterior proba-

bilities of alternative hypotheses are of interest. We attempt to avoid the explicit expression of a posterior probability

P (Hj j	̂Ns
) since the precise calculation of P (	̂Ns

jHj) is a di�cult task. To overcome these di�culties, we focus on

the relative comparisons of posterior probabilities.



2.2. Determination of the Most Probable Damage Event

When applying Equation (4) to calculate the posterior probability P (Hj j	̂Ns
), the only unde�ned term is P (	̂Ns

jHj).

The prior probability of a hypothesis P (Hj) is the prior information given by users and the probability of estimated

test data P (	̂Ns
) is simply a normalizing constant.

As shown in Equation (1), less than a unity value for �i re
ects the sti�ness decrease in the ith substructure. As

noted earlier, damage is characterized by sti�ness reduction. When �i is less than a speci�ed threshold ��
i
(< 1), the

ith substructure is de�ned as damaged. If we de�ne �1
Hj

as a set of �i's corresponding to the damaged substructures

in a hypothesis Hj and �2
Hj

as the remaining �i's, the conditional probability P (	̂Ns
jHj) can be interpreted as the

probability of obtaining 	̂Ns
when the �i's in �1

Hj
are less than or equal to their threshold ��

i
's and the remaining

�i's stay within �
�
i
< �i � 1. Denoting 
�

Hj
as the range of �Hj

such that 0 � �1
Hj

� �
1;�
Hj

and �
2;�
Hj

< �2
Hj

� 1, the

conditional probability P (	̂Hj
jHj) becomes:

P (	̂Ns
jHj) = P (	̂Ns

j�Hj
< 
�

Hj
) =

P (�Hj
< 
�

Hj
j	̂Ns

) P (	̂Ns
)

P (�Hj
< 
�

Hj
)

=
P (	̂Ns

)

P (�Hj
< 
�

Hj

)

Z
�Hj

<
�
Hj

f(�Hj
j	̂Ns

)d�Hj
(6)

where �
1;�
Hj

and �
2;�
Hj

are the sets of damage thresholds for �1
Hj

and �2
Hj
, respectively, and f(�Hj

j	̂Ns
) is a conditional

probability density function (PDF) of �Hj
given 	̂Ns

. Furthermore, �Hj
< 
�

Hj
indicates that �Hj

are within the

range of 
�
Hj

such that 0 � �1
Hj

� �
1;�
Hj

and �
2;�
Hj

< �2
Hj

� 1.

If we de�ne the most probable parameter values �max

Hj
, given a hypothesis Hj , such that:

f(�max

Hj
j	̂Ns

) = max
�Hj

<
�
Hj

f(�Hj
j	̂Ns

) (7)

then the upper bound of P (	̂Ns
jHj) in Equation (6) becomes:

PU (	̂Ns
jHj) =

P (	̂Ns
)

P (�Hj
< 
�

Hj
)

Z
�H

j
<
�

Hj

f(�max

Hj
j	̂Ns

)d�Hj
(8)

=
P (	̂Ns

)

P (�Hj
< 
�

Hj

)
f(�max

Hj
j	̂Ns

)

Z
�Hj

<
�
Hj

1 d�Hj

For simpli�cation, we assume that if damage occurs, it can have any arbitrary amount with equal probability. That

is, we assign a uniform probability density function to �i such that:

f(�i) =

�
1 if 0 � �i � 1

0 otherwise
(9)

Furthermore, if �i's are assumed to be independent, the following two equations hold:

f(�Hj
) =

Y
8 �i2�Hj

f(�i) = 1 (10)

1

P (�Hj
< 
�

Hj
)
=

1R
�Hj

<
�
Hj

f(�Hj
)d�Hj

=
1R

�Hj
<
�

Hj

1 d�Hj

(11)

Substituting Equation (11) into Equation (8), PU (	̂Ns
jHj) can be simpli�ed as:

PU (	̂Ns
jHj) = f(�max

Hj
j	̂Ns

) P (	̂Ns
) (12)



The next step is to compute the conditional PDF, f(�max

Hj
j	̂Ns

). First, let's de�ne an output error e(n;�Hj
) as:

e(n;�Hj
) =  ̂(n)�  (�Hj

); n = 1; :::; Ns (13)

where  ̂(n) is de�ned in Equation (3). Given �Hj
, an analytical data set  (�Hj

) is de�ned similar to Equation (3):

 (�Hj
) =

�
rT1 (�Hj

); :::; rT
Nr
(�Hj

)
�T

2 RNt (14)

It should be noted that a Ritz vector ri(�Hj
) in Equation (14) has only the components associated with the measured

DOFs.

Assuming each component of the output error fei(n;�Hj
);n = 1; :::; Nsg to be a multivariate normal distribution

with zero mean and variance �i, the conditional joint PDF of �Hj
becomes:

f(�Hj
j	̂Ns

) = f(e(n;�Hj
)j	̂Ns

) = k � exp
�
� J(	̂Ns

;�Hj
)
	

(15)

where k = 1

[2�]
Ns

2

1

kC
	̂
k
1

2

, kC
	̂
k = detjdiag[�21 ; :::; �

2
Nt
]j=

Q
Nt

i=1 �
2
i
, and the variance �i can be evaluated from ob-

servations of the estimated Ritz vector sets. When a large number of experimental data sets are available, sample

standard deviations (or variances) can be extracted from the data sets. When modal data sets available are not

su�cient to estimate the variances, we assign uniform coe�cient of variance (COV) to all components of e(n;�Hj
).

Furthermore, the error function J(	̂Ns
;�Hj

) is:

J(	̂Ns
;�Hj

) =
1

2

NsX
n=1

�
 ̂(n)�  (�Hj

)
�T
C�1

	̂

�
 ̂(n)�  (�Hj

)
�

(16)

From Equations (4), (12) and (15), the upper bound of P (Hj j	̂Ns
) becomes:

PU (Hj j	̂Ns
) = f(�max

Hj
j	̂Ns

)P (Hj) = exp
�
� J(	̂Ns

;�max

Hj
)
	
� P (Hj) � k (17)

From Equation (17) and the fact that the relative comparison of PU (Hj j	̂Ns
) is independent of the constant k, the

following relationships hold:

max
�
PU (Hij	̂Ns

); PU (Hj j	̂Ns
)
�
= max

�
ln PU (Hij	̂Ns

); ln PU (Hj j	̂Ns
)
�
=

min
�
J(	̂Ns

;�max

Hi
)� lnP (Hi); J(	̂Ns

;�max

Hj
)� lnP (Hj)

�
(18)

where ln denotes a natural logarithm. Therefore, the most probable hypothesis Hmax in Equation (5) satis�es:

J(	̂Ns
;�max

Hmax
)� lnP (Hmax) = min

8Hj

�
J(	̂Ns

;�max

Hj
)� lnP (Hj)

�
(19)

Now, the comparison of posterior probabilities can be conducted by examining only the error function J(	̂Ns
;�max

Hj
)

and the prior probability P (Hj).

A branch-and-bound search scheme is proposed to expedite the search for the most likely damaged substructure

without exhaustively examining all the possible damage cases. Furthermore, sensitivities of Ritz vectors with respect

to the sti�ness change of a member is derived to measure the relative signi�cance of the Ritz vectors to damages

and a weighting scheme of Ritz vectors is proposed based on the derived sensitivity. For a detailed explanation of

the branch-and-bound scheme and the sensitivity analyses, readers are referred to References 2 and 4.

3. NUMERICAL EXAMPLES

This section demonstrates the potential applicability of Ritz vectors to damage detection of structures and the better

sensitivity of Ritz vectors over modal vectors. A three-dimensional truss structure and a �ve-story frame building

structure are employed for numerical examples. The �rst example structure is an eight-bay truss structure from the

NASA dynamic scale model technology (DSMT) program of Langley Research Center. A detailed description of the

example structure can be found in Reference 5. The second example structure is a �ve-story frame building. This

section is organized as follows: First, sensitivity analyses of Ritz vectors are conducted and the sensitivities of Ritz

vectors are compared to those of modal vectors. Second, the damage detection of the eight-bay truss structure is

conducted by changing damage locations and load patterns. Furthermore, the damage detection using Ritz vectors

is compared to the damage detection using modal parameters. Third, the proposed method is applied to the damage

detection of the �ve-story frame building.
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Figure 1. An Eight-Bay Truss Structure

3.1. Sensitivity Analyses of Ritz Vectors

In this subsection, an eight-bay truss structure is employed for the sensitivity analyses. The structure is an eight-

bay truss structure �xed at one end, as shown in Figure 1. The structure is modeled using 104 truss elements, 36

nodes and 96 DOFs. Five truss members at the �xed end are not included in the model. Furthermore, each truss

member is assigned as a substructure. Figure 2 shows the classi�cation of the truss members into four di�erent lacing

patterns: longeron, batten, face diagonal and side diagonal. Load pattern 1 shown in Figure 3 (a) is employed for

the generation of Ritz vectors.

The sensitivity analysis is conducted by comparing the changes of the Ritz and modal vectors as the sti�ness of

each substructure (member) deteriorates. Selected results from the comparisons are presented in Figures 4, 5 and 6.

Figure 4 (a) shows how the �rst �ve Ritz vectors change as the sti�ness loss of the 33th member (a longeron in bay

six) varies from 0% to 100%. For a simple graphical representation, the ratio of krh
r
� rd

r
k2 to krh

r
k2 is computed to

indicate the change of a Ritz vector as damage progresses in the 33th member. Here, k � k2 denotes the Euclidean

norm and rh and rd denote the Ritz vectors before and after damage occurs, respectively. Figure 4 (b) shows similar

quantities for the �rst �ve modal vectors, where vh and vd present the modal vectors before and after sti�ness

changes, respectively. The shaded portion of the plot indicates that if each component of a modal vector has a 5% of

uncertainty level, no measurable change in any modal vector will be apparent unless the sti�ness loss exceeds 75%.

On the other hand, 10% change of sti�ness results in perceivable changes in the second and third Ritz vectors in

the presence of a 5% of uncertainty level. As a second example, Figure 5 presents the sensitivity comparison for the

sti�ness change of the 94th member (a side diagonal in bay six). While the fourth and �fth Ritz vectors are very

sensitive to the sti�ness change of the 94th member, the change of modal vectors is not apparent until the sti�ness

loss reaches about 40%. Figure 6 shows that the sti�ness change of the face diagonal member 71 does not change

the �rst �ve modal vectors at all and causes very little change in the Ritz vectors. Similar sensitivity results are

observed for all face diagonal members.

�
�
�
�
��
��
��
����

��
��
��

Z
X

Y

Side diagonal

Longeron X-batten

Y-battenFace diagonal

Figure 2. Lacing Patterns of An Eight-Bay Truss Structure

From the sensitivity analyses conducted in this subsection, several observations can be made: (1) In most cases,

sti�ness changes in the model lead to larger changes in the Ritz vectors than in the modal vectors, (2) face diagonals
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Figure 3. Load Patterns Applied to An Eight-Bay Truss Structure

do not cause signi�cant changes to either the Ritz or modal vectors, and (3) in many cases, Ritz and modal vectors

are more sensitive to the sti�ness losses of side diagonals and longerons than those of battens.

3.2. Damage Detection of An Eight-Bay Truss

This subsection presents the diagnosis results of an eight-bay truss structure conducted under di�erent conditions.

First, fourteen damage cases with a single damage location are investigated using di�erent damage threshold values

for substructures. Then, six damage cases with either two or three damaged substructures are examined. For

all examples, a uniform prior probability is assigned to all hypotheses. Therefore, the determination of the most

probable hypothesis in Equation (19) depends only on the error function J(	̂Ns
;�max

Hj
). The search space �Hj

< 
�
Hj

in Equation (7) is evaluated at the intersection of grid lines which discretize the search domain with an increment

of ��. For all numerical examples, we use an incremental step �� = 0.1. The branch-and-bound search in the

presented examples follows a depth-�rst/best-�rst search strategy.

Ritz vectors are simulated following the generation procedure described in Reference 4 and each Ritz vector is

normalized with respect to a reference point. The DOF which has the absolute maximum magnitude in each Ritz

vector of the healthy structure, is assigned as a reference point. All the other DOFs are normalized with respect to

this reference point. To simulate measurement uncertainties in the estimated Ritz vectors, the estimated Ritz vector

set  ̂(n) in Equation (3) is constructed such that:

 ̂(n) =  (1 +
N

100
R) (20)

where  is the exact Ritz vector set obtained from the analytical model, N is a speci�ed noise level in terms of

percentage, and R is a normally distributed random number with zero mean and a variance of 1.0. This process is

repeated Ns times to simulate the Ns data sets.

Excitation is assumed to be a swept sine excitation generated from electrodynamics or hydraulic shakers. All

actuators are assumed to generate forces with the same magnitude and phase. The spatial distribution of forces is

assumed not to vary with time. Load patterns are selected to maximize the sensitivities of the �rst �ve Ritz vectors

over all substructures. However, a systematic scheme for the selection of load patterns is not considered here. For

all examples, Ldam and Ddam denote the actual damage locations and the associated damage amount, respectively.

L̂dam and D̂dam denote the most probable damage locations and the associated damage amount estimated by the

proposed method.

Sensitivity analyses which are similar to Figures 4, 5 and 6, are conducted for load patterns 1 and 2 to de�ne

a minimum detectable damage. The minimum detectable damage of each substructure is de�ned as the minimum

damage amount which the estimated Ritz vectors from a given load pattern can detect when each component of a

Ritz vector is contaminated by a certain level of noise. The minimum detectable damage of each substructure is

computed assuming that, because of noise, each component of a Ritz vector is perturbed by 5% of its magnitude.

The branch-and-bound search is conducted including only substructures with damage larger or equal to the pre-

assigned minimum detectable damage. The sensitivity analysis in previous subsection show that Ritz vectors have

di�erent sensitivities for di�erent substructures. This observation motivates the use of a di�erent threshold for each

substructure. The damage thresholds in this subsection are assigned based on the minimum detectable damage.

For example, when the minimum detectable damage amount assigned to a substructure is 20%, the corresponding

damage threshold is set to 0.8. Noted that when the total removal of a substructure does not cause a perceivable

change in Ritz vectors, the substructure is de�ned as undetectable and excluded from the diagnosis. For example,

the 67th member (face diagonal in bay one) is de�ned as undetectable since the total removal of the member (100%
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sti�ness loss) does not yield signi�cant changes in Ritz vectors beyond the assumed variation caused by uncertainties.

Therefore, the 67th member is excluded from the diagnosis.

Table 1. Diagnoses Using Di�erent Threshold Values

Actual Damage Most Prob. Damage

Case Ldam Ddam Rank1 L̂dam D̂dam

A f46g f10%g 1/371(350/434) f46g f10%g

B f102g f10%g 1/552(30/434) f102g f10%g

C f39g f10%g 1/371(350/434) f39g f10%g

D f97g f10%g 1/461(55/434) f97g f10%g

E f36g f10%g 17/95(319/434) No Damage

F f71g f10%g -/95(-/95) No Damage

G f33g f10%g 1/371(372/434) f33g f10%g

H f35g f10%g 1/461(219/434) f35g f10%g

I f94g f10%g 1/462(356/434) f94g f10%g

J f28g f10%g 1/371(382/434) f28g f10%g

K f87g f10%g 1/371(405/434) f87g f10%g

L f22g f10%g 1/461(320/434) f22g f10%g

M f17g f10%g 9/95(428/494) No Damage

N f3g f10%g 1/461(213/494) f3g f10%g

1. The �rst number is the rank of the actual damage event and the second is the total number of the examined

hypotheses. The number in paranthesis is the rank estimaed by the �rst �ve modal vectors. \-" denotes that actual

damage is not detected.

2. The �rst �ve Ritz vectors are estimated from load pattern 2.

3. Ns=1, Noise=5%, and all DOFs are measured.

4. Di�erent damage threshold is assigned to each substructure.

In Table 1, fourteen damage cases with a single damaged substructure are simulated assuming a 10% sti�ness

loss, a 5% noise level and one data set (Ns=1). Furthermore, all DOFs are assumed to be measured. The damaged

substructures used in the examples are shown in Figure 1 by solid lines. For most damage cases, the proposed method

identi�es the actually damaged substructure as the most probable damage location. The rank of the actual damage

event, estimated using the �rst �ve modal vectors, is presented in parenthesis of the fourth column of Table 1. The

table shows that the �rst �ve modal vectors fail to locate the actual damage locations in most cases. In case E, the

proposed method indicates that most likely there is no damage. Considering the fact that the damage threshold of

the 36th substructure is set to 0.2, the 10% sti�ness loss in the 36th substructure is not detectable. The proposed

method ranks the 36th substructure as the 17th most probable damage location with 80% damage. Similar results

are observed for cases F and M. A sensitivity analysis shows that the sti�ness deterioration of the 71th substructure,

which is a face diagonal in the 7th bay, does not yield any noticeable changes to the estimated Ritz vectors. Therefore

the 71th substructure is precluded from the diagnosis and the proposed method provides a false-negative indication

of damage. For case M, the damage threshold of the 17th substructure is set to 0.8. Again the proposed method

indicates that most likely there is no damage and ranks the event of 20% damage in the 17th substructure as the

9th most probable damage case.

Next, we focus on the detection of damage in multiple locations. Table 2 presents diagnosis results of six di�erent

damage cases. In cases O � R, 10% sti�ness decrease is simulated in two substructures. Cases S and T introduce 10%

sti�ness reduction in three substructures. The six damage cases are repeatedly diagnosed under di�erent conditions.

In the third column of Table 2, the �rst �ve Ritz vectors are generated from load pattern 1 and employed for damage

detection. In the fourth column, load pattern 2 is employed instead of load pattern 1. In the last column of the

table, a total of ten Ritz vectors are generated from load patterns 1 and 2 (the �rst �ve Ritz vectors are generated

from each load pattern). For all cases in Table 2, all DOFs are measured and one set of Ritz vectors is simulated

assuming a 5% noise level (Ns=1 and Noise=5%).

When the �rst �ve Ritz vectors are generated from load pattern 1, the proposed method identi�es the actual

damage event of cases O, P, Q and T. However, the actual damage locations are not detected for cases R and S.



While the use of load pattern 2 yields the detection of actual damage locations in cases P, Q and R, load pattern

2 fails to identify damage of cases O, S and T. Finally, when a total of ten Ritz vectors are generated from load

patterns 1 and 2, the proposed method identi�es the actual damage locations for all cases. It is shown that each

damage case has di�erent sensitivity to di�erent load patterns and by including more Ritz vectors from di�erent load

patterns, diagnosis results can be improved.

Table 2. Diagnoses of An Eight-Bay Truss Structure With Multiple Damage Locations

Actual Damage Rank4

Case Ldam Ddam F11 F22 F1, F23

O f35,94g f10%,10%g 1/672 -/371 1/686

P f39,46g f10%,10%g 1/483 1/644 1/686

Q f28,102g f10%,10%g 1/861 2/914 1/974

R f39,87g f10%,10%g -/672 1/644 1/679

S f22,35,97g f10%,10%,10%g -/672 -/644 1/686

T f17,35,97g f10%,10%,10%g 1/577 -/554 1/986

1. The �rst �ve Ritz vectors are estimated from load pattern 1.

2. The �rst �ve Ritz vectors are estimated from load pattern 2.

3. Load Patterns 1 and 2 are employed and the �rst �ve Ritz vectors are estimated from each load pattern (i.e. a total

of ten Ritz vectors).
4. The �rst number is the rank of the actual damage event and the second is the total number of the examined

hypotheses. \-" denotes that actual damage is not detected.

5. Ns=1, Noise=5%, all DOFs are measured and the proposed weighting scheme is employed.

6. Di�erent damage threshold value is assigned to each substructure.

3.3. Damage Detection of A Five-Story Three-Dimensional Frame Structure

A �ve-story three-dimensional frame structure is employed to illustrate the applicability of Ritz vectors to damage

detection when di�erences exist between the baseline structure and the simpli�ed model. The term baseline structure

is used to refer to a structure from which the experimental Ritz vectors are simulated. In this example, a �nite element

(FE) model of a �ve-story frame structure serves as the baseline structure. Figures 7 (a) and (b) show the baseline

structure and the simpli�ed model, respectively. While the baseline structure has 6 DOFs at each node (three

translational and three rotational DOFs), the simpli�ed model has only 3 DOFs at the mass center of each 
oor.

For the current �ve-story example, the baseline structure has 120 DOFs and the simpli�ed model has 15 DOFs.

A simpli�ed model, which the proposed method works with, is formed by employing the modeling approach

described in Reference 2. The simpli�ed model is constructed assuming that (1) the 
oor diaphragm is rigid in its

own plane and only 
exible in the vertical direction, (2) the rotational and vertical DOFs can be condensed out of the

dynamic analysis, and (3) the axial deformations of beams and columns are negligible.6 First, the sti�ness matrix

of each planar frame is computed and the lateral sti�ness matrix of the individual planar frame is determined from

the sti�ness matrix of each planar frame. Finally, the system sti�ness matrix of the three-dimensional structure is

obtained by assembling the lateral sti�ness matrices of all planar frames. The system mass matrix is diagonalized

by lumping the 
oor mass and the half masses of columns connected to the 
oor. The moment of inertia of the 
oor

diaphragm is calculated about the vertical axis through the center of mass.

In many vibration tests of building structures, displacements are evaluated at the mass center of the 
oor di-

aphragm. Assuming a kinematic constraint that each 
oor diaphragm is rigid in its own plane, the deformation of

the FE model is reconstructed at the mass center of every 
oor to simulate the real testing conditions. Then, the

components of the estimated Ritz vector coincide with those of the simpli�ed model. Loads applied to the baseline

structure are also converted to equivalent forces in the simpli�ed model using the displacement transformation matrix

which relates the DOFs of the baseline structure to the mass center DOFs of the simpli�ed model. The �rst six

Ritz vectors are estimated from each load pattern. Compared to the previous eight-bay truss example, in which the

estimated Ritz vectors are insensitive to most face diagonals and battens, the frame example in this subsection has

less redundancy and the estimated Ritz vectors are reasonably sensitive to all substructures. Therefore, the damage

threshold is set to 0.9 for every substructure.
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Figure 7. The Baseline Structure and The Simpli�ed Model of A Five-Story Frame Structure

Each beam and column in the baseline structure is modeled as a substructure, and altogether, the system consists

of 40 substructures. Since the sti�ness matrix of the simpli�ed system is represented as an assembly of the e�ective

sti�ness contribution of each substructure (see Reference 2), damage locations can be tracked at the substructure

level of the baseline structure. That is, damage locations are identi�ed in the baseline structure, not in the simpli�ed

model. Note that using the simpli�cation technique, we are able to reduce the size of the system from 120 DOFs

to 15 DOFs without losing signi�cant accuracy. Note that to explicitly consider modeling error into the Bayesian

approach, Equation (16) should be modi�ed slightly. This procedure is omitted in this paper but is described in

Reference 4.
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Figure 8. Load Patterns Applied to A Five-Story Frame Structure

Table 3 summarizes the diagnoses of eight di�erent damage cases using four di�erent load patterns and a combi-

nation of them. To highlight the e�ect of modeling error, the e�ect of measurement noise is neglected in this example.

For all damage cases, 10% sti�ness decrease is assumed and only one set of Ritz vectors is simulated (Ns=1). Load

patterns in the this example are presented in Figure 8. The damaged substructures in Table 3 are shown as circled

numbers in Figure 7. For comparison, the results of diagnoses using modal vectors are also presented in the 7th

column of Table 3 (denoted as MV in the table). Table 3 shows that a careful selection of load patterns can improve

diagnoses of damage and, in general, Ritz vectors provide better diagnoses than modal vectors. For example, by

imposing load pattern 1 on the frame structure, the proposed method identi�es the actual damage locations in four

out of eight cases (cases C, D, E and G). Even for the other four cases (cases A, B, F and H), all the actual damage

locations are included in the most probable damage event. Load pattern 2 fails to detect the actual damage event in

case H, load pattern 3 does not �nd the actual damage event of case E, and load pattern 4 ranks the actual damage

event as the most probable one only for case G. When all four load patterns are employed simultaneously (the last



Table 3. Diagnoses of A Five-Story Frame Structure Using Four Di�erent Load Patterns
The rank of the actual damage event1

Case Ldam F12 F2 F3 F4 MV3 All F's4

A f5g 51/266 3/230 3/230 18/255 32/266 1/155

B f5,9g 8/266 3/266 7/266 15/266 20/266 6/266

C f13,20g 1/303 2/266 1/375 5/155 100/193 1/230

D f25,28g 1/193 1/230 1/193 14/230 -/155 2/155

E f25,30g 1/266 4/266 -/41 2/337 -/41 1/266

F f9,25g 2/266 2/266 1/266 2/266 -/80 1/302

G f34,38g 1/266 1/267 2/303 1/303 5/266 1/267

H f26,29g 7/230 -/41 3/266 2/338 -/41 1/302

1. The �rst number is the rank of the actual damage event and the second is the total number of the examined

hypotheses. \-" denotes that actual damage event is not detected.

2. In F1, F2, F3 and F4, the �rst six Ritz vectors are estimated from load patterns 1, 2, 3 and 4, respectively.

3. In MV, the �rst six modal vectors are employed instead of Ritz vectors.
4. Load patterns 1� 4 are employed and the �rst six Ritz vectors are generated from each load.

5. For all cases, D
dam

=10% and Noise=0.

column of Table 3), the rank of the actual damage event is improved for most damage cases.

In Table 4, the previous damage cases are re-diagnosed (1) using all four load patterns, (2) considering both

modeling error and measurement noise, and (3) increasing the number of data sets (Ns) from 1 to 20. Since the

use of all the four load patterns provides the best diagnosis in the last examples, all of the load patterns are again

employed in this example. To simulate the measurement noise, the analytical Ritz vectors generated from the baseline

structure are perturbed with a 5% noise level using Equation (20). Table 4 shows that (1) the diagnoses provided

by the proposed method improve as the number of data sets increases, and (2) if load patterns are selected carefully

and a large number of data set are available, the proposed method can identify the actual locations and amount of

damage even in the presence of measurement noise and modeling error.

Table 4. Diagnoses of A Frame Structure Considering Modeling Error and Measurement Noise

The Rank of The Actual Damage Event2 Most Prob. Damage3

Case1 Ns = 1 Ns = 5 Ns = 10 Ns = 20 L̂dam D̂dam

A 12/230 5/230 2/195 1/155 f5g f10%g

B 65/303 4/266 2/266 2/266 f4,5,9g f10%,10%,10%g

C 10/213 4/155 2/193 3/193 f9,20g f10%,10%g

D 6/155 5/155 3/155 2/155 f28g f20%g

E 1/303 1/299 1/266 1/303 f25,30g f10%,10%g

F 2/303 1/266 1/374 1/303 f9,25g f10%,10%g

G 1/230 1/267 1/267 1/267 f35,38g f10%,10%g

H 1/337 1/337 1/337 1/266 f25,26g f10%,10%g

1. The damage cases here are identical to the previous damage cases in Table 3.

2. The �rst number is the rank of the actual damage case and the second is the total number of the examined

hypotheses.

3. L̂
dam

, D̂
dam

are identi�ed using all the four load patterns and Ns = 20

4. CONCLUSION AND DISCUSSION

In this paper, load-dependent Ritz vectors are applied to a Bayesian probabilistic approach to detect the locations and

amount of damage. Using Bayes' theorem, the posterior probability of each assumed damage scenario, after observing

a set of experimental load-dependent Ritz vectors, are computed. The most probable damage case is searched by

comparing the posterior probabilities of di�erent damage scenarios. Then the most likely damaged substructures are



the ones included in the most probable damage scenario (hypothesis) which has the largest posterior probability. A

minimum detectable damage of each substructure is de�ned as the minimum damage amount which the estimated

Ritz vectors from a given load pattern can detect when each component of a Ritz vector is contaminated by a

certain level of noise. The damage threshold is assigned according to this minimum detectable damage. By assigning

a di�erent damage threshold to each substructure, a substructure which causes small changes to the estimated

Ritz vectors needs to undergo large sti�ness deterioration before the substructure can be detected as damaged and

the very insensitive substructures are precluded from a branch-and-bound search. The computational cost of the

proposed method is signi�cantly reduced by using a branch-and-bound search scheme and the modeling simpli�cation

technique.

Several damage scenarios using an eight-bay truss and a �ve-story frame structure illustrate the potential use of

load-dependent Ritz vectors for damage detection. Diagnosis examples of the truss and frame structures show that,

(1) in general, load-dependent Ritz vectors are more sensitive to damage than the corresponding modal vectors, (2)

by a careful selection of load patterns, substructures of interest can be made more observable using the Ritz vectors

generated from the particular load patterns, (3) if load patterns are selected carefully and a large number of data

set are available, the proposed method can identify most of the damage locations, even in the presence of modeling

error and measurement noise, and (4) while the extraction of higher modes is di�cult, a larger set of Ritz vectors

can be estimated by imposing di�erent load patterns.

While this paper has illustrated the potential applicability of load-dependent Ritz vectors to damage detection,

many interesting research issues remain. First, even though a procedure to experimentally extract load-dependent

Ritz vectors is proposed1 and the e�ect of noise on the estimated load-dependent Ritz vectors is studied,7 real testings

should be conducted to validate the experimental procedure. Second, the physical issue of the actuator placement

should be addressed to make the extraction of load-dependent Ritz vectors practical. In this paper, we assume

that the amplitudes and phases among actuators can be fully controlled and the power requirement to generate

the desired excitation forces is not addressed. Third, it is worth while to develop a systematic scheme to �nd load

patterns, which yield better detection of damage in substructures of interest. While the �rst load-dependent Ritz

vector is simply a static deformation of a structure cause by a particular load, a higher load-dependent Ritz vector

is orthogonalized with respect to the previous Ritz vectors during the generation procedure, and the relationship

between a load pattern and a higher Ritz vector may become obscure. This fact makes the load pattern selection

scheme di�cult.
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