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ABSTRACT

Many researchers have proposed damage detection techniques that exploit changes in modal parameters to identify

the extent and location of damage in large structures. These analyses, however, generally neglect the e�ects of envi-

ronmental changes on modal parameters. Such environmental e�ects include changes in loads, boundary conditions,

temperature, and humidity. Data from real bridge structures indicate that the e�ects of environmental changes

can be signi�cant. In fact, these changes can often mask more subtle structural changes caused by damage. This

paper examines a linear adaptive model that may discriminate the changes of modal parameters due to temperature

changes from those caused by structural damage or other environmental e�ects. Data from the Alamosa Canyon

Bridge in the state of New Mexico were used to demonstrate the e�ectiveness of the adaptive �lter for this problem.

Results indicate that a linear four-input (two time and two spatial dimensions) �lter of temperature can reproduce

the natural variability of the frequencies with respect to time of day. Using this simple model, we attempt to establish

a con�dence interval of the fundamental frequency for a new temperature pro�le in order to discriminate the natural

variation due to temperature.
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1. INTRODUCTION

Many techniques have been proposed to identify the extent and location of damage in large structures using changes in

the structures' modal parameters. These methods typically determine the baseline parameters through acquisition of

forced or ambient vibration test data. Damage detection is then based on the premise that damage in the structure

will cause changes in the measured vibration data. Existing methods, however, neglect the important e�ects of

environmental changes on the underlying structure. Changes in load, boundary conditions, temperature and humidity

can have a signi�cant e�ect on the underlying natural frequencies of large civil structures. In fact, the changes in the

modal parameters due to environmental factors can be far larger than those caused by structural damage. During

damp weather, for example, concrete bridges in the United Kingdom are reported to absorb considerable moisture;

The moisture increases their mass altering their natural frequencies.1 Before damage detection systems can be

reliably employed to monitor real structures, the non-stationarity of the modal parameters must be quanti�ed.

This paper mainly studies the thermal e�ects on the non-stationary responses of bridges. Very few researchers

have addressed these problems. Churchward and Sokal2 attempted to predict the temperature distribution within

bridge sections and to determine longitudinal expansion and vertical de
ection based on a three-year monitoring of a

poststressed concrete section of a bridge. The measured environmental parameters include ambient air temperature,

solar radiation, hours of sunshine and the temperature on the top surface of the section. It is found that the

temperature pro�le can be reasonably represented through only two design variables, namely maximum di�erential

temperature and base temperature. Wood1 reported that the bridge responses were closely related to the structural

temperature based on the vibration tests of �ve bridges in the United Kingdom. Analyses based on data compilation

of bridge tests suggested that the variability of the asphalt elastic moduli due to temperature e�ects was a major

contributor to the changes in the structural sti�ness.
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Turner3 tested a three-span foot-bridge which consisted of one central 16m and two 8m spans with 2m by 0.8m

reinforced T section concrete decks. To determine any correlation between temperature and changes in vibrational

response, three transverse modes of the central span and two transverse modes of one side span were monitored

over a thirty-month period at approximately four-month intervals. The natural frequencies of this small bridge

appeared una�ected by temperature changes. Moorty4 attempted to relate the response of bridges exposed to thermal

environmental conditions. An analytical model was developed to obtain the temperature-induced movements and the

associated stress in bridges. A �eld test was conducted on the Sutton Creek Bridge in Montana, and the movements

obtained both from the analytical model and the measured values showed signi�cant extensions of the bridge deck

as temperature increased.

This paper presents an adaptive �lter that accommodates the changes in temperature to the damage detection

system of a large-scale bridge. This system determines modal frequencies using conventional modal analyses, but is

able to adapt its prediction of the underlying natural frequencies of the structure based upon a time-temperature

pro�le. This may allow the system to discriminate the changes of modal parameters due to temperature changes

from those caused by other environmental factors or structural damage. For example, when the measured frequencies

move outside the predicted con�dence intervals, the system can provide a reliable indication that structural changes

are likely caused by factors other than thermal e�ect. Actual data were collected from the Alamosa Canyon Bridge

in the New Mexico and used to train and test the system.

2. DESCRIPTION OF THE ALAMOSA CANYON BRIDGE TEST

The Alamosa Canyon Bridge is located near the town of Truth or Consequences in southern New Mexico and is

approximately aligned in the north and south direction. This bridge has seven independent spans and each span

consists of a concreted deck supported by six W30x116 steel girders. The top 
anges of the girders are embedded

in the concrete slab. The roadway in a span is approximately 7.3 m (24 ft) wide and 15.2 m (50 ft) long. Along

the length of each span, four sets of crossing braces are equally spaced. Figure 1 depicts a side view of the Alamosa

Canyon Bridge. More detailed description of the bridge can be found in Farrar et al..5

A new bridge has been constructed adjacent to this old Alamosa Canyon Bridge and since that time the tested

bridge has not been used for regular tra�c. During the past three years, however, the bridge has been tested several

times. An attempt to characterize the natural variability of modal parameters was conducted in 1996.5 The inherent

uncertainty in the measured modal parameters was also studied using experimental test data from the bridge.6

This current study uses the results of vibration tests conducted on July 27-August 2, 1996 and July 21-25, 1997,

referred to as the �rst and second data sets, respectively. The �rst data set was used to train the adaptive �lter

while the second data set was used to test the predictor. For both tests, only one span was implemented with

sensors and tested. A total of 31 accelerometers were placed on the concrete deck and on the girders below the

bridge. Five accelerometers were spaced along the length of each girder. Since there were six girders, a total of

30 accelerometers were placed on the girders. The last accelerometer was placed near the driving point. The time

histories of accelerations and an excitation force were recorded, and the frequency response functions (FRFs) were

computed from the time histories. The FRFs were calculated for the range of 0 to 50 Hz with the resolution of 0.0625

Hz. Thirty averages were used for most FRFs. An impact hammer which weighted approximately 53.4 N (12 lbs)

was used to excite the bridge. The data acquisition for each test usually took 30-45 minutes. The modal parameters

were extracted employing eigensystem realization algorithm (ERA).7 Approximately nine meaningful modes were

identi�ed from ERA within the range of 0-30 Hz.

At the same time, temperature measurements were made on nine di�erent locations across the center of the span.

Figure 2 illustrates a cross-section view of the bridge and the distribution of the thermometers, as follows: The

Bottom West Outdoor (BWO) sensor was attached to the outside of the west-end exterior girder at the mid height

of the wed. The Bottom West Indoor (BWI) sensor was located on the inside bottom 
ange of the west-end exterior

girder. The Bottom Center (BC) sensor was taped the beneath of the concrete deck at the center of the span. The

Top West Outdoor (TWO) sensor was located next to the concrete curb at the west-end of the deck. The Top West

Indoor sensor (TWI) was placed on the top of the west-end guard rail. The four remaining sensors were placed on

the east end of the span symmetrically to the west-end sensors. All sensors were protected from the direct contact

with sunshine either by the bridge itself or by shades made from duct tape and cups.

The �rst vibration test was performed every two hours over a 24-hour time period to investigate the change of

modal parameters with respect to time of a day. The air was dry throughout the test. Farrar et al.5 showed that the
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�rst measured frequency varied approximately 5% during the 24-hour test period, and the change in the measured

�rst frequency was correlated to the temperature di�erence across the deck. Similar variations and correlation with

deck temperature di�erence were observed for the other modes of the bridge. Table 1 summarizes the measured �rst

frequencies and temperatures from the �rst vibration test. The test started on July 31 1996 at 09:15 and ended on

August 1 at 9:22. The temperature of a given time in Table 1 is an average of the thermometer readings before and

after each vibration test. In addition to the temperature e�ect, tra�c, winds, deterioration of the bridge and other

environmental conditions could produce changes of the modal parameters. However, since the bridge has not been

used during the test period, it is assumed that any changes of the modal parameters are the result of the temperature

changes.

The second testing was conducted about one year after the �rst testing. Vibration tests were performed eleven

times every two hours from four in the morning to midnight. A note is in order about the weather conditions prior

to the second vibration test; it had been raining hard from approximately 10:00 PM the previous night of the testing

until 3:00 AM. When the data acquisition was started at 4:00 AM, rain was su�cient to produce ponds of water

near the curbs and drainage paths were blocked by debris. The concrete deck was su�ciently cracked such that a

fair amount of moisture might have been absorbed by the bridge. When the second vibration test was conducted, no

signi�cant sti�ness deterioration were observed since the �rst testing. In the second testing, no temperature sensor

was placed at the bottom center. The other thermometers were placed almost in the same locations as those of the

�rst testing. Table 2 summarizes the results from the second vibration test. The second test started on July 22 at

04:00 and ended at midnight.

3. MODEL FORMULATION

The �rst challenge in the analysis was to determine an appropriate signal processing architecture for predicting the

(unknown) variation in modal frequencies as a function of temperatures. Prediction of the �rst natural frequency

was selected as a target for this study and it was presumed that the temperature changes of the bridge were mainly

responsible for the variation of that frequency. This assumption seems reasonable since the bridge was no longer

in service and there was no signi�cant change of weather conditions on the �rst test day (that is, there was no

tra�c, signi�cant wind or ground excitations, etc.). Observations of the bridge data coupled with some engineering

judgment led to three additional assumptions that appear simplistic but are important factors in the design of

the signal processing architecture: (1) changes in the modal parameters are linearly proportional to changes in

temperature; (2) the mass of the bridge forced the change in modal parameters to lag the temperature, that is, the

bridge took some time to warm up and cool o�; and (3) the geographical (north-south) orientation of the structure

with respect to the sun suggests that the temperature of the west end of the bridge will lag the temperature of the

east end.

Given these assumptions, a linear predictor appears to be a simple, but potentially very e�ective, system archi-

tecture. A linear �lter simply creates a linear one-to-one mapping on input and output pairs. It a�ords explicit

calculation of the �lter coe�cients using a simple matrix calculation and allows future modi�cation of these co-

e�cients using adaptive least-mean squares error minimization. The �lter operates in two modes: training and

prediction. Training is described in Section 3.1. Section 4 validates the applicability of the �lter for prediction by

testing its performance on the second data set.

3.1. Training the Linear Filter Model

This section discusses the method of Least Mean Squares (LMS) error minimization that is used to estimate the coef-

�cients of the linear �ler. The architecture of the linear �lter takes a subset of the temporal and spatial temperature

pro�les as inputs and delivers a single output that represents the estimated, or predicted, fundamental frequency (the

smallest natural frequency of the bridge). Determining the appropriate subset of the available temperature pro�les

is termed the variable selection problem and is discussed in Section 3.2. Since the bridge is oriented in the north

and south direction, one would expect the modal parameters of the structure to di�er depending upon the average

structure temperature and the distribution of that temperature across the span. Furthermore, the instantaneous

outside air temperature may not be important in the predictor design, but clearly a longer-term average will be

important. Therefore, the rate of change in temperature should be taken into account.

The �lter models the relationship between the selected bridge temperature inputs, x = [x1 x2 : : : xr ]
T , a column

vector of r inputs, and its measured fundamental frequency, yd, at that temperature pro�le as linear:
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yd = w0 + xTw+ � (1)

where w0 is bias or o�set, w is a column vector of coe�cients that weights each temperature input, and � is the �lter

error. Suppose that n observations are available and let x(i) and yd(i) denote the ith input-output pairs. We now

have a matrix development of Equation (1) to present n observations in matrix notation:

yd = Xw + � (2)

where

yd =

2
6664

yd(1)

yd(2)
...

yd(n)

3
7775 ; X =

2
6664

xT (1)

xT (2)
...

xT (n)

3
7775 =

2
6664

1 x1(1) x2(1) : : : xp(1)

1 x1(2) x2(2) : : : xp(2)
...

...
...

...

1 x1(n) x2(n) : : : xp(n)

3
7775 ; � =

2
6664

�(1)

�(2)
...

�(n)

3
7775

LMS error minimization is employed to estimate the �lter coe�cients. We wish to �nd the vector of the �lter

coe�cients ŵ that minimizes the expected value of the energy of the �lter error.8

min
w

E [ �(i)2 ]

; ŵ = R�1p (3)

where R(= E[xxT ]) is the autocorrelation of the random input vector x, and p (= E[ydx
T ]) is the cross-correlation

between the desired output and the input vector. Equation (3) is called the Wiener-Hopf equation and used to

determine the estimated coe�cients, ŵ, for a given set of input-output pairs.

One should note that the actual �lter output error that results after applying the Wiener-Hopf equation depends

upon the number of input-output mappings (n) that are used to determine ŵ and the dimension of ŵ, p. If the �lter

is underspeci�ed, that is, the number of input-output pairs is less than the dimension of ŵ, then the Wiener-Hopf

equation will produce an unlimited number of di�erent ŵ's that result in zero error (� = 0). This means that there

exists an in�nite number of weights that will produce zero error for the given observation sets.

Since the training data set was �xed for this study, we decided to reduce the dimension p. In the derivation of

Equation (1), all input variables are assumed to be in
uential in predicting the output response. However, in most

practical applications, the analyst must check the signi�cance of each input and determine some optimal subset of

inputs from a pool of candidate inputs. This variable selection is equivalent to pruning irrelevant or redundant inputs

from the �lter of Figure 3, and the procedure is addressed in the following subsection.

3.2. Input Variable Selection

In order to consider both the time and spatial variations of temperature, we decide to de�ne the temperature readings

at the current time Ti, and at one step previous time T 0

i
as an initial pool of candidate input variables. Let k denote

the size of this input pool. While the number of candidate input variables is eighteen (nine temperature readings

at the current time and the other nine from the one step previous time), the number of observations from the �rst

vibration test is thirteen (n = 13). Therefore, the selection of input variables should be conducted to reduce the size

of the �lter before any estimation of the �lter coe�cients. In general, a model with smaller number of input variables

is more desirable because the variable of the prediction ŷ increases as the number of inputs increases. Furthermore,

addition of extra inputs increases the costs of data collection and model maintenance.

First, the correlation of the nine sensor readings and the measured fundamental frequency is investigated. Table 3

presents the resulting correlation matrix. The correlation matrix shows that temperatures at the top east indoor (T3)
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and at the top west indoor (T4) are very closely related (Table 1 shows the relation between Ti's and thermometer

locations). The temperature at the bottom west indoor (T6) is also strongly correlated to the temperature at the

bottom west outdoor (T8). T4 is deleted from the �lter model because T3 has a larger correlation with the observation

output yd than T4. For the same reason, T6 is kept in the model and T8 is excluded. Since the second data set

did not measure the temperature at the bottom center, the variable search did not include T9. Now, the number of

candidate input variables becomes twelve (k=12).

Next, an exhaustive search of all possible subsets of the remaining input variables is conducted. If the intercept

weight wo is always included, a total of 2
k models should be examined. In this example, there are 212 (=4096) possible

models. This study employs adjusted R2 statistic for evaluating subset models. To explain adjusted R2 statistic, let

R
2

p
denote the coe�cient of multiple determination for a subset model with p weightings. Computationally

R
2

p
=
SSR(p)

Syy
= 1�

SSE(p)

Syy
(4)

and

Syy =

nX
i=1

(yi � �y)2; SSR(p) =

nX
i=1

(ŷi � �y)2; SSE(p) =

nX
i=1

(yi � ŷ)2 (5)

where Syy, SSR(p) and SSE(p) denote the total sum of squares, the regression sum of squares, and the residual

sum of squares of p size of subset model, respectively. Furthermore, �y denotes the mean of the output observation

(�y =
Pn

i=1
yd(i)=n). R

2

p increases as additional input variables are introduced to the model and reaches the maximum

when p = k + 1.

The analyst might use this criterion by adding input variables to the model up to the point where an additional

variable is not useful in that it provides only a small increase in R2

p
. However, since R2

p
increases as p increases, using

R
2

p is straightforward to determine the optimal model. To avoid this di�culty, this study prefers to use an adjusted

R
2 statistic de�ned as

�R2

p = 1�

�
n� 1

n� p

�
(1�R

2

p) (6)

Note that �R2

p
statistic does not necessarily increase as p increases. Consequently, one can consider the model that

has the maximum �R2

p value an optimum subset model.

Table 4 shows the three best models that maximize �R2

p
for each given number of inputs, 3 � r � 9. The �rst

column of Table 4 shows the identi�cation numbers of the examined subset models. The best models for each given r

(3 � r � 9) are retained for further comparison (models 1, 4, 7, 10, 13, 16 and 19). Note that three models with �ve

input variables (models 13, 14 and 15) and the best model with four inputs (model 16) have larger R2

p
values than

the best models for r = 7 and r = 6 (models 7 and 10). Therefore models 14 and 15 are also retained for further

investigation. The �lter system appears to approach the optimal architecture when the size of inputs is around four

or �ve (4 � r � 5).

The F statistic test is conducted for the remaining models (models 1, 4, 7, 10, 13, 14, 15, 16 and 19). The

F statistic test determines if there is a linear relationship between the output and any of the input variables. F0
> F�;r;n�r�1 implies that at least one of the inputs contributes signi�cantly to the model. Here, F0 is a ratio of

the regression mean square (MSR) to the residual mean square (MSE). Furthermore, the regression mean square

(MSR) and the residual mean square (MSE) are SSR=r and SSE=(n� r�1), respectively. F�;r;n�r�1 is found from

a statistical table of the F distribution. A detailed description for the F statistic test can be found in Reference 9.

The results of the F statistic test shows that all the selected models have signi�cant linear relationship between the

inputs and output. However, the passing of the F statistic test does not necessarily indicate that the model examined

is an appropriate one for predicting the output. Further tests of model adequacy are required.

The t statistic examines the signi�cance of the individual �lter coe�cient to the model given that the model

retains the other inputs. The hypotheses for testing the signi�cance of any input, such as wi, are

H0 : wi = 0 (7)

H1 : wi 6= 0
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If jt0j > t�=2;n�r�1, the hypothesis H0 is rejected implying that the examined input contributes signi�cantly to the

model. Here, t0 = ŵi=

p
Ĉi �

2, Ci is the ith diagonal element of (XT
X)�1, and �̂

2 is an unbiased estimate of the

sum of squared errors of the system.

�̂
2 =

nX
i=1

(yd(i)� ŷ(i))
2

n� p
(8)

The value of t�;r;n�r�1 is found from a statistical table of the t-student distribution. Note that this examines only

the marginal contribution of one input given the other inputs are in the model. The results of the t statistic test

shows that only for models 4, 16 and 19, the hypothesis H0 : �j = 0 is not rejected. This indicates that the other

models contain redundant inputs that can be deleted from the models.

Finally, model 16 with inputs T3, T7, T
0

2
and T 0

3
is selected as a satisfactory model for the prediction of the second

data set since (1) the �R2

p value of model 16 is comparable to that of model 4 or better than model 19, (2) this model

passes both F and t statistic tests, and (3) model 16 has only half as many inputs as model 4. From Equation (3),

the LMS estimator of ŵ is computed for model 16:

ŵ = [ŵo ŵT3 ŵT6 ŵT 0

2
ŵT 0

3
]T = [7:509 0:007694 � 0:001992 � 0:01575 0:01044]T (9)

The selection of model 16 and the estimated �lter coe�cients in Equation (9) reveals that (1) the response change

of the Alamosa Canyon Bridge lags the temperature of the bridge (the temperatures of two hours before the current

time contribute more signi�cantly to the change of the current frequency than the temperatures at the current time:

ŵT 0

2
and ŵT 0

3
are approximately ten times larger than ŵT3 ŵT7), and (2) the temperature gradient between the

top west outdoor and the top east indoor (0.01044T 0

3
-0.01575T 0

2
) largely in
uences the variable of the fundamental

frequency. This supports the observation in Reference 5 that the changes in modal frequencies are related to the

temperature di�erentials across the deck.

Figure 5 shows how well the selected model 16 reproduces the fundamental frequency from the �rst data set which

is employed for the training of the �lter. Note that only three temperature readings at TWO, TWI and BEO out of

nine total thermometers are necessary to reasonably estimate the change of the fundamental frequency. One might

apply the input selection scheme presented here to address the placement problem of measurement: how many and

where should the measurement sensors be placed to obtain better prediction of the desired output response?

4. PREDICTION USING A TRAINED MODEL

The adaptive �lter established in the previous section was used to predict the fundamental natural frequency of the

bridge. The predicted value is then used to discriminate the changes of the fundamental natural frequency caused

by temperature e�ects from changes caused by other environmental e�ects or potential damage of the structure.

For example, let x0 denote a vector of new temperature readings. A point prediction ŷ0 of the fundamental natural

frequency at the temperature becomes

ŷ0 = xT
0
ŵ (10)

where ŵ is the weight vector determined in Equation (9).

One cannot expect a perfect match of the prediction and the measured modal parameters because of incomplete-

ness of the model, insu�cient training data sets, uncertainties in actual testing and measurements and so on. Of

broader importance, however, one can compute a con�dence interval around the point prediction ŷ0 to account for

the inherent uncertainties. A 100(1-�)% con�dence interval for the predicted output at the given input observation,

namely ŷ0 in this case, is a classic regression analysis problem. In Reference 9, the con�dence interval is computed

as

ŷ0 � t�=2;n�p

q
�̂2(1 + xT

0
(XTX)�1x0) � y0 � ŷ0 + t�=2;n�p

q
�̂2(1 + xT

0
(XTX)�1x0) (11)

Once the �lter is trained, the newly collected frequency can be compared against the point prediction value and

the con�dence interval. If the fundamental natural frequency falls outside a 100(1-�)% con�dence interval, then
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one may suspect with 100(1-�)% con�dence that some changes in underlying structural characteristic are caused by

damage or other environmental e�ects. In Table 5, the predicted value of the fundamental natural frequency and a

95% con�dence interval were computed for the di�erent time of temperature pro�les from the second data set. The

�rst column of the table shows the starting time of each testing, and the second and third columns present the lower

and upper bounds of the con�dence interval, respectively. These bounds are computed from Equation (11). ŷ and yd
in Table 5 denote the predicted frequency from Equation (10) and the measured frequency from the second testing,

respectively.

In predicting new observations, one should be careful not to extrapolate beyond the input variable region con-

taining the training data set. A model that �ts well inside the the region of the original data may perform poorly

outside that region. In a multi-dimensional input space, it is di�cult to decide if an input variable point lies inside or

outside the region of the original data. The diagonal elements of the hat matrix H(= X(XTX)�1XT ) are employed

to detect a hidden extrapolation point.9 Let the largest diagonal value of the hat matrix H to be hmax, and de�ne

the smallest convex containing all of the training data points as the input variable hull (IVH). The relative distance

of any input variable vector x0 to the centroid of the IVH is re
ected by

h0 = xT
0
(XTX)�1x0 (12)

If h0 > hmax, the point is outside the IVH and requires an extrapolation. The value of h0 depends both on the

Euclidean distance of the corresponding point from the centroid of the training data and on the density of points in

the IVH. In the last column of Table 5, the h0 value of each input is compared to hmax. Only the last �ve points

corresponding to time 16:00, 18:00, 20:05, 21:54 and 24:00 are interpolation points. We presume that only these data

points inside the IVH are reliable for the prediction.

The measured natural frequencies from the second data sets, and the upper and lower bounds of the 95% con�dence

interval are plotted in Figure 5. From Figure 5, one can observe that the measured frequencies corresponding to the

interpolation points are consistently lower than the associated lower bounds of the 95% prediction interval (except

the one at time 16:00). This implies that the sti�ness of the structure deteriorated or the mass of the structure

increased. Considering the fact that the Alamosa Canyon Bridge is a concrete bridge, it had visible cracks over

the deck, and there was a severe rain from 10 PM the night before to the second testing until 3 AM of testing, it

is very possible that these consistent decreases of the fundamental natural frequency were caused by the increase

of the bridge mass as the Alamosa Canyon Bridge absorbed signi�cant amounts of moisture. Assuming that the

change of the bridge mass is solely responsible for the decrease of the fundamental frequency, the increase of mass

is approximately estimated as 1.62%. Several bridge tests in the United Kingdom report that a concrete bridge can

absorb considerable amounts of moisture during damp weather, which can consequently increase the mass of the

bridge.1

5. SUMMARY AND DISCUSSION

This paper has presented an adaptive �lter for predicting changes in modal parameters of a full-scale bridge due to

environmental temperature. Data from the Alamosa Canyon Bridge in New Mexico were employed to demonstrate

the applicability of the adaptive �lter. The vibration tests were conducted during the summer in 1996 and summer

in 1997. The �rst data set from the 1996 test was used to train the adaptive �lter while the second data set from

the 1997 test was used to test prediction performance.

Changes in the fundamental frequency are found linearly correlated with temperature readings from di�erent

parts of the bridge. The �lter uses spatial and temporal temperature distributions to determine changes in the

fundamental frequency. The simplicity of the �lter belies its importance: the �ler is able to account for the non-

stationarity in structure modes caused by an environmental factor. A linear �lter with two spatially-separated

temperature measurements and two temporally-separated temperature measurements reproduces the variation of

the fundamental frequency of the �rst data set.

From the trained �lter system, a prediction interval of the fundamental frequency for a new temperature pro�le

is developed and applied to the second data set. The system de�nes a con�dence interval of future values of

modal parameters in order to discriminate between variations caused by temperature changes and those indicative of

structural change or other environmental e�ects. The comparison of the prediction intervals obtained from the �rst

data set and the measured frequencies from the second test data reveals that the bridge experienced a statistically
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signi�cant decrease in the fundamental frequency. Considering the fact that there was a severe rain from 10 PM the

previous night of the second testing until 3 AM of the testing, it is very possible that this consistent decrease of the

frequency was caused by the increase of the bridge mass as the Alamosa Canyon Bridge absorbed signi�cant amount

of moisture.

It should be kept in mind that the �lter system presented was developed for a particular bridge under particular

environmental conditions. Further testing is required to fully validate the linear model. Although this study has

been limited to a single external variable (temperature), the approach might be extendible to other environmental

e�ects. To control for other environmental conditions and account for larger-scale seasonal variations, tests should

be conducted during di�erent times of the year as well as di�erent times of a day, and measurements for other

environmental factors should be obtained. Furthermore, a continuous data collection system would allow the �lter

coe�cients to be more reliably updated, and to shrink the size of the con�dence intervals. Reliable damage detections

must account for the signi�cant non-stationary environmental processes.
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Figure 1. A Side View of The Alamosa Canyon Bridge
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Figure 2. A Cross Section View and Thermometer Locations of The Alamosa Canyon Bridge

Table 1. Summary of The First Data Set
Time 1st Freq. Temperature (Fo)

(Hz) TEO TWO TEI TWI BEI BWI BEO BWO BC

(T1) (T2) (T3) (T4) (T5) (T6) (T7) (T8) (T9)

09:15 7.556 76.00 90.70 93.30 95.90 83.55 77.20 103.7 75.55 77.45

11:30 7.621 85.80 106.15 101.10 99.70 93.90 84.50 93.90 83.30 83.10

13:12 7.475 108.15 115.60 100.65 103.00 93.55 91.20 93.20 91.85 88.60

15:13 7.343 109.60 110.70 102.00 102.60 92.80 93.70 93.60 95.50 94.60

17:52 7.394 104.35 99.25 97.40 99.25 91.20 95.05 92.60 96.05 98.35

20:09 7.376 88.00 87.00 74.40 76.05 77.80 78.90 79.50 79.50 91.35

21:20 7.334 85.90 86.40 76.10 77.55 79.95 80.35 80.00 79.45 89.95

23:29 7.356 79.60 81.50 72.70 74.20 75.00 75.60 75.30 74.30 80.50

01:21 7.328 79.55 79.35 70.05 72.05 75.20 75.10 74.85 74.75 80.70

03:19 7.353 74.55 75.15 65.85 66.65 70.25 71.70 72.15 70.85 77.20

05:19 7.381 72.85 72.85 64.15 65.50 68.80 70.00 70.15 68.90 74.10

07:03 7.389 70.85 73.85 66.90 68.10 66.70 67.85 73.80 67.35 72.10

09:22 7.577 74.45 92.75 94.00 93.20 83.90 77.55 102.00 75.50 76.00
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Figure 3. A Linear Adaptive Filter
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Figure 4. Reproduction of The Fundamental Frequency Using A Linear Filter
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Figure 5. Prediction of The Fundamental Frequency Using A Linear Filter

Table 2. Summary of The Second Data Set

Time 1st Freq. Temperature (Fo)

(Hz) TEO TWO TEI TWI BEI BWI BEO BWO BC

(T1) (T2) (T3) (T4) (T5) (T6) (T7) (T8) (T9)

04:00 7.303 79.70 76.95 80.35 76.10 70.60 70.45 69.30 69.15 NA.

06:02 7.329 79.05 76.55 81.95 80.15 68.85 69.35 68.20 67.55 NA.

08:00 7.528 79.50 87.80 88.95 94.20 74.70 71.50 68.20 71.30 NA.

10:02 7.638 79.80 111.75 96.60 109.30 67.60 77.35 68.20 77.00 NA.

12:00 7.579 100.05 121.0 113.25 109.85 67.60 82.75 68.20 83.90 NA.

14:01 7.503 113.80 120.0 112.80 100.85 67.60 88.70 68.20 91.05 NA.

16:00 7.449 104.35 102.65 102.05 97.05 88.45 91.65 90.40 91.10 NA.

18:00 7.361 92.50 90.50 82.60 81.70 82.00 82.20 82.20 84.60 NA.

20:05 7.321 80.20 81.40 72.75 73.50 74.35 73.50 73.85 73.60 NA.

21:54 7.319 78.10 77.75 71.05 71.05 72.85 73.60 72.85 71.60 NA.

24:00 7.347 75.30 74.95 68.30 66.90 70.65 71.30 70.90 69.15 NA.

Table 3. Correlation of The Measured Natural Frequency and The Thermometer Readings

yd T1 T2 T3 T4 T5 T6 T7 T8 T9

yd 1:000

T1 �0:097 1.000

T2 0:435 0.835 1.000

T3 0:608 0.684 0.941 1.000

T4 0:580 0.707 0.943 0.997 1.000

T5 0:485 0.787 0.969 0.966 0.966 1.000

T6 0:130 0.949 0.901 0.839 0.853 0.916 1.000

T7 0:741 0.396 0.750 0.910 0.909 0.807 0.605 1.000

T8 0:065 0.968 0.883 0.804 0.820 0.886 0.996 0.556 1.000

T9 �0:232 0.886 0.641 0.518 0.540 0.668 0.870 0.283 0.889 1.000
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Table 4. The Best Three Models For Each Given Number Of Input Variables
# r �R2 R2

pred
Selected Input Variables

1� 9 0.99801 0.96958 T1 T2 T5 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

2 0.99718 0.98144 T1 T2 T3 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

3 0.99678 0.98716 T1 T2 T6 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6 T 0

7

4� 8 0.99747 0.99374 T1 T2 T6 T 0

1 T 0

3 T 0

5 T 0

6 T 0

7

5 0.99517 0.98352 T1 T2 T3 T6 T 0

1 T 0

3 T 0

5 T 0

7

6 0.99324 0.97479 T2 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

7� 7 0.99373 0.98514 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

8 0.99302 0.98485 T2 T3 T 0

1 T 0

2 T 0

3 T 0

5 T 0

6

9 0.99293 0.96718 T1 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5

10� 6 0.99387 0.98804 T1 T3 T7 T 0

2 T 0

3 T 0

5

11 0.99373 0.98639 T3 T7 T 0

1 T 0

2 T 0

3 T 0

5

12 0.99369 0.98766 T3 T6 T7 T 0

2 T 0

3 T 0

5

13� 5 0.99428 0.99112 T3 T7 T 0

2 T 0

3 T 0

5

14� 0.99414 0.99062 T1 T3 T7 T 0

2 T 0

3

15� 0.99386 0.99054 T2 T3 T7 T 0

2 T 0

3

16� 4 0.99410 0.99165 T3 T7 T 0

2 T 0

3

17 0.98934 0.98275 T3 T 0

1 T 0

2 T 0

3

18 0.98885 0.98131 T3 T 0

2 T 0

3 T 0

6

19� 3 0.98809 0.97809 T3 T 0

2 T 0

3

20 0.94915 0.90774 T 0

1 T 0

3 T 0

5

21 0.94346 0.89520 T5 T 0

2 T 0

3

* Theses models are remained for further comparison and investigation.

Table 5. Comparison of the measured second data set and the predicted 95% con�dence intervals

Time 95% Con�dence yd ŷ Relative� Check Extrapolation

Lower Upper Error(%) h (hmax)

06:02 7.592 7.669 7.630 7.329 3.95 3.6004 (> 0.7686)

08:00 7.660 7.755 7.707 7.528 2.32 5.9233 (> 0.7686)

10:02 7.612 7.712 7.662 7.638 0.31 6.6219 (> 0.7686)

12:00 7.435 7.550 7.493 7.579 1.15 9.0997 (> 0.7686)

14:01 7.463 7.570 7.517 7.503 0.19 8.0356 (> 0.7686)

16:00 7.379 7.424 7.401 7.449 0.64 0.5026 (< 0.7686)

18:00 7.407 7.451 7.429 7.361 0.92 0.4734 (< 0.7686)

20:05 7.338 7.378 7.358 7.321 0.51 0.1836 (< 0.7686)

21:54 7.367 7.408 7.388 7.319 0.93 0.2384 (< 0.7686)

24:00 7.389 7.431 7.410 7.347 0.85 0.3396 (< 0.7686)

* Relative Error (%)=100� jy � ŷj=ŷ
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