
ABSTRACT

Modal parameters obtained from modal testing (such as modal vectors, natural

frequencies, and damping ratios) have been used extensively in system identi�-

cation, �nite element model updating, and structural health monitoring. As an

alternative to modal vectors, load-dependent Ritz vectors have been shown use-

ful in various areas of structural dynamics such as model reduction and damage

detection. The applications of Ritz vectors, however, have been mainly limited

in analytical and numerical analyses because of the diÆculty to identify them

from vibration tests. This paper presents a procedure to extract load-dependent

Ritz vectors using a 
exibility matrix constructed from measured vibration test

data. The proposed method can not only construct the Ritz vectors correspond-

ing to the actual load pattern employed in vibration tests, but also generate Ritz

vectors from arbitrary load patterns. Experimental test data obtained from a

grid-type bridge structure are employed to validate and illustrate the proposed

extraction procedure.

INTRODUCTION

Modal parameters such as modal vectors, natural frequencies, and damping

have been widely employed in many �elds of structural dynamics. For example,

in numerical dynamic analysis, a multi-degree-of-freedom (MDOF) system can

be decoupled into a number of single-degree-of-freedom (SDOF) systems using

the orthogonality feature of modal vectors and the vibration response of the

system can be approximated by the superposition of a small set of the SDOF

system responses. For vibration test, the response time histories are typically

transformed into the frequency domain using a spectral analyzer and the test

results are often presented in the form of modal parameters.

It has been shown that load-dependent Ritz vectors have many potential
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advantages in structural dynamics over modal parameters. For linear dynamic

analyses, the response quantities of interest can be approximated more e�ec-

tively by a smaller number of Ritz vectors than the modal vectors [8, 11]. In

numerical analysis, Ritz (or Lanczos) vectors have been used to �nd partial ex-

tremal solutions of large eigenvalue problems [6] and to reanalyze a structural

system with localized modi�cations [3]. In structural monitoring and damage

diagnosis, numerical simulations have shown that Ritz vectors are able to iden-

tify damage better than modal vectors [1, 10]. For system identi�cation and

damage detection problems, however, the Ritz vectors need to be obtained from

experimental test data.

Cao and Zimmerman [2] are probably the �rst to attempt extracting Ritz

vectors from measured vibration data using a state-space formulation. In this

paper, we present a new extraction procedure based on a 
exibility matrix ob-

tained from vibration test data. While the method proposed by Cao and Zim-

merman constructs the Ritz vectors corresponding to the actual load pattern

imposed on the structure, the proposed method is able to generate Ritz vectors

from assumed load patterns as well. The e�ectiveness of the new extraction

procedure is demonstrated using the data obtained from a vibration test of a

grid-type bridge structure.

This paper is organized as follows: First, the proposed 
exibility matrix

based method is described. Next, we brie
y describe the grid-type bridge model

employed in the experimental study and the �nite element model corresponding

to the test structure. The proposed extraction procedure is then demonstrated

and compared with the state-space based method using the experimental test

data. Finally, this paper is concluded with a summary and discussions.

FLEXIBILITY BASED EXTRACTION OF RITZ VECTORS

Cao and Zimmerman [2] proposed a procedure to extract Ritz vectors based

on the state-space matrices estimated from vibration tests. In this section, we

present a new extraction procedure of Ritz vectors based on a measured 
exibil-

ity matrix. A close look at the analytical generation procedure in Reference [2]

reveals that the generation of Ritz vectors uses the 
exibility matrix F (de�ned

here as the inverse of the sti�ness matrix) rather than the sti�ness matrix itself.

The extraction of Ritz vectors starts with the assumption that the dynamic

loading F(t) can be separated into a spatial load vector f and time function u(t):

F(t) = fu(t) (1)

If the modal vectors are mass-normalized such that

V
T
KV = 
 (2)

V
T
MV = I

the 
exibility matrix then can be represented with the modal parameters [4]:

F = K�1 = V
�1VT (3)



where 
 is the diagonal eigenvalue matrix and V is the corresponding eigenvec-

tor (modal vector) matrix. In most experimental modal analyses, only a few

lower modal frequencies and modal vectors are identi�ed. For this case, the


exibility matrix is divided into the modal 
exibility, which is formed from the

estimated frequencies and modal vectors, and the residual 
exibility formed from

the residual modes [4]:

F = Fm + Fr = Vm

�1

m V
T
m +Vr


�1

r V
T
r (4)

where the subscript m and r denote the estimated and residual quantities, re-

spectively. Here, the modal 
exibility matrix is constructed only from the mea-

sured natural frequencies and modal vectors (Fm = Vm

�1

m V
T
m). The residual


exibility is the contribution of the unmeasured dynamic modes to the full 
ex-

ibility matrix. Note that the contribution of lower modes, which are normally

estimated in experimental modal analyses, are more signi�cant than those of

higher modes because the contribution of each mode is inversely proportional to

the magnitude of the corresponding natural frequencies.

From the modal 
exibility matrix Fm and the analytical mass matrix M,

the �rst Ritz vector can be computed as:

�r1 = Fmf (5)

where f is the spatial load distribution vector de�ned in Equation (1). The �rst

Ritz vector is, then, mass-normalized as:

r1 =
~r1

[~rT
1
M~r1]

1

2

(6)

The following Ritz vectors are recursively generated. Assuming the mass matrix

times the previous Ritz vector Mrs�1 as a load, the recurrence relationship

computes the next Ritz vector �rs:

�rs = FmMrs�1 (7)

The linear independence of Ritz vectors is achieved using the Gram-Schmidt

orthogonalization:

~rs = �rs �

s�1X

t=1

(rTt M�rs)rt (8)

Finally, the current Ritz vector is mass-normalized:

rs =
~rs

[~rTsM~rs]
1

2

(9)

It is worthwhile to compare the 
exibility based extraction procedure with

the state-space based procedure proposed by Cao and Zimmerman [2]. Since

the spatial load distribution vector f in Equation (5) can be assigned arbitrary,

the 
exibility based method is able to generate di�erent sets of Ritz vectors.



On the other hand, the state-space matrices estimated from the experimental

modal analysis retains the information of the actual load pattern used in the

modal test. Therefore, the state-space based method only identi�es the Ritz

vectors corresponding to the speci�c excitation pattern used in the actual modal

testing. Note that both methods require an appropriate approximation for the

mass matrix. However, since sti�ness changes are the main concern of damage

detection, the exact estimation of the mass matrix is not necessary.

AN EXPERIMENTAL BRIDGE MODEL

For this study, a grid-type bridge model has been constructed and tested at the

Hyundai Institute of Construction Technology (HICT), Korea (Figure 1). The

steel bridge model consists of two parallel girders and six evenly spaced cross

beams connecting the two girders. The girders are steel rectangular tubes and

the cross beams are C-shape members. Using impact excitations, we extract

Ritz and modal vectors from the vibration response of this test structure.

A SA-390 signal analyzer with four channels is used for the analog to dig-

ital conversion of accelerometer signals and the Fast Fourier Transform (FFT)

calculation. Data acquisition parameters are speci�ed such that a frequency

response function (FRF) in the range of 0 to 100 Hz could be estimated. Each

spectrum is computed by averaging three 8 seconds long time histories. A total

of 2048 points are sampled for a 8 second time period and this sampling rate

produces a frequency resolution of 0.125 Hz. An exponential window is applied

to all measured time histories prior to the FFT calculation.

For measurements, a Dytran 5801A4 impact hammer and three Dytran

3100B accelerometers with a normal sensitivity of 100 mV/g are used. The

excitation is applied at nodes 3, 4 and 5 as shown in Figure 2. The sensors

measure the vertical accelerations at the twelve nodes as indicated in Figure 2.

Note that since the SA-390 data acquisition system has only four channels and

there are three accelerometers, the �rst channel is always connected to the input

hammer and the remaining three channels are connected to three accelerome-

ters. To complete one set of modal test, the hammer excitation is repeated

twelve times at one point and the three accelerometers are moved from one

set of three nodes to another set of three nodes after every three excitations.

Note that each FRF is computed by averaging the three response time histo-

ries, and there are twelve measurement points and three accelerometers. The

rational polynomial [9] techniques are employed to extract the �rst six natural

frequencies and the corresponding modal vectors from the recorded FRFs.

ANALYTICAL MODELING OF THE TEST STRUCTURE

A �nite element (FE) model for the grid type bridge structure is constructed

using twenty three-dimensional beam elements. As shown in Figure 2, a girder

segment between two nodes or a cross beam is modeled as a single element. An



elastic modulus of 2.0�105 MPa, a mass density of 7850 kg/m3, and a Poission

ratio of 0.2 are speci�ed for the model. Since the accelerometers measure only

the vertical movement of the structure, the lateral DOFs are not included in

the analytical model. Therefore, each node of an element has two translational

DOFs and three rotational DOFs. The model has a total of 64 DOFs including

four rotational DOFs at the boundary. Both ends of the beam are modeled as

simple pinned connections. A pinned connection is modeled by a ball bearing

with a 35 mm diameter in the experimental setup. Based on a preliminary

vibration test, the boundary conditions appear to be less accurately modeled.

The boundary conditions are then modi�ed by introducing rotational springs

at the rotational DOFs of the boundaries. Furthermore, additional springs are

added to the rotational DOFs at both ends of the cross beams to simulate

the bolted connection between the girders and the cross beams. After these

modi�cations, the relative errors of the �rst six natural frequencies between the

analytical model and the test structure fall within 4%.

Table 1 compares the natural frequencies of the analytical model computed

after model updating with the experimental frequencies. Here, the experimental

frequency (!̂) is a mean value of the three frequencies estimated with an impact

load applied at nodes 3, 4 and 5, respectively. Figure 3 displays the analytical

and experimental modal vectors of the �rst six modes. All �gures are plotted in

the global X-Y plane of Figure 2, viewing the structure from the side.

As for the scaling of the modal or Ritz vectors, a mass-normalization is

conducted. However, since the DOFs of the analytical model do not coincide

with the DOFs of the experimental modal vectors, a reduced analytical mass

matrix is �rst computed using the Guyan (static) condensation procedure [7].

Both the analytical and experimental vectors are normalized with respect to the

reduced mass matrix. Errors arisen from the model reduction are found to be

minimum since the inertial forces associated with the omitted rotational and

axial DOFs (slave DOFs) are negligible in this example.

EXPERIMENTAL VERIFICATION

The experimental Ritz vectors are �rst computed following the state-space based

procedure. Figure 4 compares the �rst six Ritz vectors estimated by the state-

space method with the corresponding Ritz vectors computed from the FE model.

The experimental Ritz vectors in Figure 4 are obtained with an impulse exci-

tation at node 5. For the analytical procedure, a unit value is assigned to the

vertical DOF of node 5 for the load pattern vector f in Equation (5). The �rst

Ritz vector is equivalent to a de
ection pattern observed when a unit load is

applied at node 5. Figure 4 shows a good agreement between the experimental

and analytical Ritz vecotrs. More quantitative analysis is presented in Table 2

where the Modal Assurance Criterion (MAC) values are de�ned as follows:

MAC(i; j) =
(rTi Mr̂j)

2

(rTi Mri)(r̂
T
jMr̂j)

(10)



where ri and r̂j are the analytical and experimental Ritz vectors, respectively.

The extraction of Ritz vectors is repeated using the 
exibility matrix based

method. Table 3 presents the comparison of MAC values between the analyt-

ical Ritz vectors and the ones computed using the measured 
exibility matrix.

Again, the Ritz vectors generated with a point load at node 5 are presented.

The comparison of Tables 2 and 3 reveals that the state-space and 
exibility

based methods basically produce the same results. Although not presented, the

Ritz vectors generated from the other two impulse excitations at nodes 3 and 4

by the two extraction procedures are practically identical.

As mentioned earlier, the 
exibility matrix based method allows to generate

Ritz vectors from any �ctitious load patterns as well as the actual load pattern

applied during the tests. In Table 4, the experimental Ritz vectors generated

from an imaginary point load at nodes 2 � 7 and 10 � 15 are extracted and the

MAC comparison with the corresponding analytical Ritz vectors are presented.

For brevity, only the diagonal components of the MAC values are shown in the

table. The result indicates that the Ritz vectors can be successfully generated

from all the load patterns imposed. Next, imaginary point loads are simulta-

neously applied to nodes 2 and 5 (upward point load at node 2 and downward

point load at node 5) and the corresponding Ritz vectors are generated. The

Ritz vectors are plotted in Figure 5 and the MAC values are presented in Table 5.

SUMMARY AND DISCUSSIONS

In this paper, a new procedure has been proposed to extract load-dependent

Ritz vectors from vibration test data. First, a 
exibility matrix is approximated

from measured modal vectors and natural frequencies. Then, Ritz vectors are

recursively generated using the measured 
exibility matrix. The procedure is

successfully demonstrated using an experiment of a grid-type bridge structure

and the performance of the proposed method is compared with that of the state-

space based method [2]. The proposed method has at least two advantages over

the state-space method: (1) The procedure is computationally more eÆcient

requiring only the identi�cation of classical modal vectors and natural frequen-

cies, and (2) the proposed method is able to generate Ritz vectors from any

arbitrary load patterns. Furthermore, the increased amount of information and

better sensitivity to structural parameter changes, which are achievable by mul-

tiple loading and careful selection of load patterns, could improve the results of

damage detection, model re�nement, or component mode synthesis.

For the procedure described in this paper, only the modal 
exibility is used

for the computation of the measured 
exibility matrix (see Equation (4)). Doe-

bling et al. [5] have shown that a residual 
exibility matrix with complete reci-

procity can be estimated from experimental modal analyses. Using this tech-

nique, one can include the residual 
exibility to compute the 
exibility matrix.

The inclusion of the residual 
exibility matrix into the 
exibility matrix should

further allow the contribution of higher residual modes into experimentally es-

timated Ritz vectors.
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Table 1: Comparison of the analytical and experimental natural frequencies

Frequency (Hz) Relative

Mode Analytical (!) Experimental (!̂) Error� (%)

1st Bending 5.4488 5.5635 2.06

1st Torsion 10.1494 10.0406 1.08

2nd Bending 19.1841 18.6410 2.91

2nd Torsion 30.6216 29.4388 4.02

3rd Bending 41.6086 42.5910 2.31

3rd Torsion 54.9704 57.1864 3.88

* error=j!� !̂j=!̂

Table 2: MAC values between analytical and experimental Ritz vectors (using the

state-space based method)

r̂j

MAC(i; j)� 1 2 3 4 5 6

1 0.9990 0.0001 0.0001 0.0000 0.0004 0.0001

2 0.0001 0.9964 0.0004 0.0013 0.0002 0.0014

ri
3 0.0001 0.0006 0.9958 0.0009 0.0003 0.0000

4 0.0001 0.0015 0.0007 0.9945 0.0000 0.0007

5 0.0004 0.0003 0.0008 0.0002 0.9853 0.0100

6 0.0001 0.0011 0.0002 0.0001 0.0089 0.9877

* MAC(i; j) =
(rTi Mr̂j)

2

(rT
i
Mri)(r̂Tj Mr̂j)

, ri= analytical, and r̂j= experimental

Table 3: MAC values between analytical and experimental Ritz vectors (using the


exibility based method)

r̂j

MAC(i; j)� 1 2 3 4 5 6

1 0.9992 0.0000 0.0000 0.0000 0.0004 0.0001

2 0.0000 0.9961 0.0000 0.0021 0.0002 0.0014

ri
3 0.0000 0.0000 0.9970 0.0007 0.0000 0.0000

4 0.0000 0.0023 0.0009 0.9941 0.0002 0.0011

5 0.0004 0.0004 0.0003 0.0007 0.9859 0.0095

6 0.0002 0.0010 0.0001 0.0002 0.0087 0.9877

* MAC(i; j) =
(rTi Mr̂j)

2

(rT
i
Mri)(r̂Tj Mr̂j)

, ri= analytical, and r̂j= experimental



Table 4: MAC values for di�erent load patterns

Load i for MAC(i; i)�

Point 1 2 3 4 5 6

NODE 2 0.9958 0.9947 0.9963 0.9969 0.9902 0.9924

NODE 3 0.9985 0.9972 0.9963 0.9954 0.9417 0.9553

NODE 4 0.9993 0.9973 0.9978 0.9928 0.9904 0.9971

NODE 5 0.9993 0.9966 0.9960 0.9958 0.9806 0.9851

NODE 6 0.9989 0.9968 0.9977 0.9967 0.9788 0.9884

NODE 7 0.9951 0.9950 0.9930 0.9906 0.9694 0.9832

NODE 10 0.9929 0.9920 0.9948 0.9918 0.9754 0.9798

NODE 11 0.9979 0.9949 0.9980 0.9969 0.9798 0.9827

NODE 12 0.9994 0.9959 0.9987 0.9976 0.9899 0.9919

NODE 13 0.9997 0.9968 0.9989 0.9956 0.9940 0.9888

NODE 14 0.9994 0.9972 0.9963 0.9967 0.9593 0.9661

NODE 15 0.9969 0.9957 0.9943 0.9986 0.9842 0.9904

* MAC(i; i) =
(rTi Mr̂i)

2

(rT
i
Mri)(r̂Ti Mr̂i)

, ri= analytical, and r̂i= experimental

Table 5: MAC values between analytical and experimental Ritz vectors (with point

loads at nodes 2 and 13)

r̂j

MAC(i; j)� 1 2 3 4 5 6

1 0.9992 0.0000 0.0000 0.0000 0.0004 0.0001

2 0.0000 0.9961 0.0000 0.0021 0.0002 0.0014

ri
3 0.0000 0.0000 0.9970 0.0007 0.0000 0.0000

4 0.0000 0.0023 0.0009 0.9941 0.0002 0.0011

5 0.0004 0.0004 0.0003 0.0007 0.9859 0.0095

6 0.0002 0.0010 0.0001 0.0002 0.0087 0.9877

* MAC(i; j) =
(rTi Mr̂j)

2

(rT
i
Mri)(r̂Tj Mr̂j)

, ri= analytical, and r̂j= experimental

Figure 1: An overview of a grid-type bridge structure
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Figure 2: Con�guration of a grid-type bridge model
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Figure 3: Analytial & experimental modal vectors
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Figure 4: Comparison of analytical and ex-

perimental Ritz vectors (using the

state-space based technique)
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Figure 5: Experimental Ritz vectors with

loading at nodes 2 and 13 (using


exibility based technique)


