
SC COLLABORATOR: A SERVICE ORIENTED
FRAMEWORK FOR CONSTRUCTION SUPPLY CHAIN

COLLABORATION AND MONITORING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF

CIVIL AND ENVIRONMENTAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Chin Pang Cheng

November 2009

ii

© Copyright by Chin Pang Cheng 2009

All Rights Reserved

iii

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

(Kincho H. Law) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

(Hans C. Bjornsson)

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

(John Haymaker)

Approved for the University Committee on Graduate Studies.

iv

Abstract

Importance of supply chain integration has been shown in many industry sectors. The

construction industry is one of the least integrated among all major industries. One of the

major reasons is that construction supply chains are unstable and often consist of

numerous distributed members, most of which are small and medium construction

companies. With the proliferation of the Internet and the current maturity of web

services standards, service oriented architecture (SOA) with open source technologies is a

desirable computing model to support construction supply chain integration and

collaboration due to its flexibility and low cost. This thesis investigates and demonstrates

the potential of the current web services technologies and SOA for construction supply

chain collaboration and management, through a prototype service oriented system

framework, namely SC Collaborator (Supply Chain Collaborator).

SC Collaborator is designed and implemented according to the system requirements for

construction supply chain integration. The framework leverages web services and portal

technologies, open standards, and open source packages. Although some web services

systems allow user connection and integration through web services protocol, their

system functions and operations are fixed and not adaptive to changes. The SC

Collaborator framework enables flexible reconfiguration of internal service invocation,

integration, and system layout without recompilation of the system. The framework can

serve as a separate collaborative system, or integrate with other systems such as inventory

management systems.

v

To align a collaborative system with the supply chains it integrates, this thesis proposes

and demonstrates the incorporation of supply chain models in a service oriented system

framework. Specifically, the Supply Chain Operations Reference (SCOR) framework, a

widely used model developed by the Supply Chain Council, is employed to model

construction supply chains. The SCOR modeling framework provides a generic and

hierarchically structured means to specify supply chain networks and processes. The

SCOR process elements and operations are wrapped as individual web service units,

which are integrated and orchestrated in the service oriented SC Collaborator framework.

A case example on a student center construction project is used to illustrate the SCOR

modeling framework for performance monitoring.

The SC Collaborator framework is also extended to support collaboration among

distributed service oriented collaborative systems. Due to the temporary project-based

relationship among participants in construction projects, project participants that do not

have direct business partnership may hesitate to expose and share sensitive and

proprietary information with each other. The distributed SC Collaborator framework

allows users to specify shared information and data. This thesis discusses how

information consistency is ensured among distributed SC Collaborator systems. The

distributed network of SC Collaborator systems is tested with a case scenario of a

completed expansion project of a three-storey residential building.

vi

Acknowledgments

I would like to express my heartfelt thanks to my advisor and mentor, Professor Kincho

H. Law, for his continuous guidance and support, as well as the many inspiring and

enjoyable discussions we had over the years. It has been my privilege to have the

opportunity to share his passion for research and his insights in life. I am greatly

indebted to him.

I would like to extend my gratitude to the rest of my defense committee. I am grateful to

Professor Hans Bjornsson for his valuable collaboration, comments, and suggestions. I

am also grateful to Professor John Haymaker for his advice and feedbacks. I would like

to thank Professor Gio Wiederhold for chairing my defense. I would also like to thank

Professor Bimal Kumar for traveling from Glasgow, Scotland and serving on my defense

committee. I am grateful to Professor Ozalp Ozer for his advice when he was serving on

my dissertation committee.

I would like to express my sincere thanks to many friends for their encouragement and

support. My special thanks go to Henry Chan, Tony Dong, Cheryl Chi, Stephan Jooste,

Forest Flager, and Victor Gane. I would like to extend my thanks to the members of the

Engineering Informatics Group, particularly Dr. Chuck Han, Dr. Gloria Lau, Dr. Julie

Ekstrom, Dr. Yang Wang and Amy Askin, for helping me in various aspects of my

research. I would like to thank Dr. Albert Jones and Dr. Ram Sriram from the National

Institute of Standards and Technology (NIST) for their discussions and comments. I

vii

would also like to thank Wast-Bygg, AB and DPR Construction, Inc. for their time and

data for the case examples presented in this thesis.

I gratefully acknowledge the financial support provided by the National Science

Foundation, Grant Number CMS-0601167, the Center for Integrated Facility Engineering

(CIFE) at Stanford University, the Enterprise Systems Group at the National Institute of

Standards and Technology (NIST), and Wast-Bygg, AB, Sweden. Any opinions and

findings are those of the author, and do not necessarily reflect the views of NSF, CIFE,

NIST or Wast-Bygg, AB. No approval or endorsement of any commercial product by

NIST, NSF, Stanford University or Wast-Bygg, AB is intended or implied.

Finally, I would like to express my deepest gratitude to my family. This thesis would not

be possible without their unconditional love and encouragements over the years. This

thesis is dedicated to them all.

viii

Table of Contents

Abstract iv

Acknowledgments vi

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Problem Statement ..1

1.2 System Requirements for Construction Supply Chain Integration3

1.2.1 Ease of Installation and Configuration ..4

1.2.2 Low Cost ...5

1.2.3 Ease to be Connected and Integrated ...5

1.2.4 Ability to Integrate External Systems and Information6

1.2.5 Customizable Access to Information and Applications7

1.3 Current Practices for Supply Chain Integration ..7

1.3.1 Electronic Data Interchange (EDI) Standards ...8

1.3.2 Enterprise Resource Planning (ERP) Systems ..8

1.3.3 Web-Based Collaboration and Project Management Systems in

Construction ..10

1.4 Service Oriented Architecture and Web Services ...11

1.5 Research Objectives ..13

1.6 Thesis Outline ...14

ix

2 Service Oriented Portal-Based Framework – SC Collaborator 16

2.1 Introduction ...16

2.2 Service Oriented Portal-based Framework ...18

2.3 System Architecture ..20

2.3.1 Communication Layer ...24

2.3.2 Portal Interface Layer ..25

2.3.2.1 System Management ...25

2.3.2.2 User Management ..27

2.3.2.3 Layout Management ..28

2.3.3 Business Applications Layer ...29

2.3.4 Database Support ...30

2.4 Service Oriented Architecture in SC Collaborator ...31

2.4.1 Deployment of Basic Web Service Units ..33

2.4.2 Service Invocation and System Layout in Application Portlet Units40

2.4.3 Service Aggregation and Orchestration Using Business Process

Execution Language (BPEL) ...45

2.4.3.1 Overview of BPEL ..47

2.4.3.2 Service Orchestration Using BPEL ...48

2.4.3.3 Development and Deployment of BPEL Processes52

2.5 Discussions of the SC Collaborator System ...56

2.6 Scenario Examples ..58

2.6.1 Procurement Interactions ...59

2.6.2 Project Rescheduling ...64

2.7 Summary ...71

3 Supply Chain Modeling and Performance Monitoring 74

3.1 Introduction ...74

3.2 Supply Chain Operations Reference (SCOR) Model78

3.3 Modeling of Construction Supply Chains Using SCOR Framework: A

Case Example ..83

x

3.3.1 Case Example ..84

3.3.2 SCOR Level 2 Modeling ...86

3.3.2.1 Stocked Standard Products ..88

3.3.2.2 Make-to-order Standard / Configurable Products89

3.3.2.3 Custom Products ..91

3.3.3 SCOR Level 3 and Level 4 Modeling ...92

3.3.3.1 Business Process Modeling Notation (BPMN) Models94

3.3.3.2 BPMN Model for SCOR Level 3 Modeling96

3.3.3.3 BPMN for SCOR Level 4 Modeling98

3.4 Supply Chain Performance Monitoring ..99

3.4.1 Supply Chain Performance Metrics ...102

3.4.2 System Implementation ...106

3.4.2.1 Conversion of BPMN Models into BPEL Skeleton Files109

3.4.2.2 Completing BPEL Process Files ...113

3.4.2.3 Deployment of BPEL Process Files124

3.5 Scenario Demonstration ..126

3.6 Summary ...130

4 Distributed SC Collaborator Network 133

4.1 Introduction ...133

4.2 Distributed SC Collaborator Network Architecture135

4.3 Service Security ..137

4.4 Information Consistency ...139

4.4.1 Consistency Issues in Distributed System Networks140

4.4.2 Implementation in SC Collaborator ...145

4.5 Scenario Demonstration on the Distributed SC Collaborator Network153

4.5.1 E-Procurement ...154

4.5.2 Responding to Material Delivery Delay ..159

4.6 Summary ...166

5 Conclusions and Future Works 168

xi

5.1 Summary of Research ...168

5.2 Research Contributions ...170

5.3 Future Directions...172

5.3.1 Ontology Based Systems ...173

5.3.2 Extending the Research Scope on Modeling173

5.3.3 Application Programming Interface for SC Collaborator174

5.3.4 Evaluation of SC Collaborator Using TAM ..174

5.3.5 Applications of the GreenSCOR Framework175

Bibliography 177

xii

List of Tables

Number Page

Table 2.1: Examples of the operations of the web service unit Material Order Service

in SC Collaborator ...34

Table 3.1: SCOR Level 2 process categories ...81

Table 3.2: SCOR Level 3 process elements for “Source” ...81

Table 3.3: SCOR Level 3 process elements for “Make” ...82

Table 3.4: SCOR Level 3 process elements for “Deliver” ..82

Table 3.5: Examples of supply chain performance metrics used in the case example105

Table 3.6: Conversion table from BPMN elements to BPEL elements111

xiii

List of Figures

Number Page

Figure 1.1: Commonly used web-based collaborative tools ..10

Figure 2.1: Conceptual framework of service oriented portal-based framework19

Figure 2.2: System architecture of the SC Collaborator system ..21

Figure 2.3: Homepage of the SC Collaborator system ..24

Figure 2.4: System administrator selecting different modules in SC Collaborator26

Figure 2.5: System administrator managing the sub-module pages27

Figure 2.6: The application portlet unit for configuring the user permissions of the

“Directory” portlet unit ..29

Figure 2.7: Schematic representation of the major information managed in SC

Collaborator ...31

Figure 2.8: Interactions among different parts on the business applications layer in SC

Collaborator ...32

Figure 2.9: Excerpt of the service implementation class for the Material Order Service ..36

Figure 2.10: Java class for data type “productInfoType” ..37

Figure 2.11: Service descriptor file “services.xml” ...37

Figure 2.12: Excerpt of the WSDL file for the service unit Material Order Service39

Figure 2.13: Invocation of web services by the order management portlet unit in SC

Collaborator ...42

Figure 2.14: Excerpt of the JSP codes for the order management portlet unit43

xiv

Figure 2.15: The SOAP request and response messages of the service operation

“getItemInfoById” ...45

Figure 2.16: Schematic representation of the BPEL activities for the operation

“respondOrderNew” ..49

Figure 2.17: Excerpt of the BPEL code for the service operation “respondOrderNew” ...51

Figure 2.18: Eclipse BPEL Visual Designer..52

Figure 2.19: Deployment of BPEL process service “Material Order Service 2” with

service operation “respondOrderNew” ..54

Figure 2.20: Deployment descriptor “deploy.xml” for the BPEL process service with

operation “respondOrderNew” ..54

Figure 2.21: WSDL document for the process service with operation

“respondOrderNew” ..55

Figure 2.22: Workflow in the e-Procurement scenario ..60

Figure 2.23: Integrating online purchasing with CAD and procurement services: (1)

designers dragging items from supplier’s online catalogs to CAD

drawings, (2) extracting the embedded item information to a spreadsheet

in Microsoft Excel, (3) and sending the suggested item list to SC

Collaborator for contractor to review ..60

Figure 2.24: Contractor’s layout for review of procurement item list and submission

of electronic purchase orders ...61

Figure 2.25: Supplier’s layout for managing received purchase orders62

Figure 2.26: Connection to internal and external information and applications in the

portlet unit that suppliers manage and evaluate received purchase orders63

Figure 2.27: Contractor’s layout showing updated item status and purchase order

information ...63

Figure 2.28: Floor plan and finished layout of the supermarket in Boras, Sweden64

Figure 2.29: An excerpt of the project schedule between May 2007 and August 200766

Figure 2.30: Information flows and interactions in the rescheduling process67

Figure 2.31: Supplier’s layout for production reporting ..67

xv

Figure 2.32: Subcontractor’s layout for monitoring material production and delivery68

Figure 2.33: Subcontractor’s layout for activity review and adjustment68

Figure 2.34: Inventory (in m2) of form material (wood) under different supply delay

conditions ...70

Figure 2.35: BPEL process for the operation “changeDeliveryEstimate”72

Figure 3.1: The Supply Chain Model framework [51] introduced by the Global

Supply Chain Forum (GSCF) ..76

Figure 3.2: SCOR Level 1 modeling [91] ..79

Figure 3.3: Four levels of SCOR business processes [91] ...80

Figure 3.4: Inputs and outputs for Level 3 process “S1.1 Schedule Product

Deliveries” ...80

Figure 3.5: 3D model of the two-storey high school student center84

Figure 3.6: Project schedule showing only the tasks on the critical path85

Figure 3.7: Flow chart of a typical material planning, procurement, and delivery

management process in construction projects ..87

Figure 3.8: SCOR Level 2 model for a typical construction supply chain for stocked

standard products ...89

Figure 3.9: SCOR Level 2 model for a typical construction supply chain for make-to-

order standard / configurable products ..91

Figure 3.10: SCOR Level 2 model for a general construction supply chain for custom

products ..92

Figure 3.11: SCOR Level 3 model for a typical construction supply chain for stocked

standard products ...93

Figure 3.12: Snapshot of Eclipse BPMN Modeler ..95

Figure 3.13: Core components in BPMN standard ..96

Figure 3.14: BPMN representation of the SCOR Level 3 model for stocked standard

products ..97

Figure 3.15: BPMN representation of the SCOR Level 3 model for make-to-order

standard / configurable products ..97

xvi

Figure 3.16: BPMN representation of the SCOR Level 3 model for custom products98

Figure 3.17: BPMN graphical representation of the process “Manu D2.2 Receive,

Configure, Enter & Validate Order” in Figure 3.15 ..99

Figure 3.18: Development framework for service oriented supply chain performance

monitoring systems using the SCOR framework, open standards, and open

source technologies ..101

Figure 3.19: Performance metrics hierarchically structured in the SCOR guidelines103

Figure 3.20: Level 4 BPMN model for the process “Manu D2.2 Receive, Configure,

Enter & Validate Order” with addition of two tasks to calculate the cycle

time ..104

Figure 3.21: Incorporating SCOR Level 3 and Level 4 models in SC Collaborator107

Figure 3.22: Procedures to incorporate the SCOR models to the service oriented SC

Collaborator system framework ...108

Figure 3.23: XMI representation of the SCOR Level 4 BPMN model for the process

“Manu D2.2 Receive, Configure, Enter & Validate Order,” which is

shown in Figure 3.20..110

Figure 3.24: The linked list of “Process” class instances after parsing the SCOR Level

4 model for the process “Manu D2.2 Receive, Configure, Enter & Validate

Order” ..112

Figure 3.25: BPEL skeleton file converted from the linked list of “Process” class

instances depicted in Figure 3.24 ...112

Figure 3.26: BPEL skeleton file converted from the “Subcontractor” lane in the

SCOR Level 3 BPMN model for stocked standard products, which is

shown in Figure 3.14..113

Figure 3.27: Eclipse BPEL Visual Designer for completing the BPEL process file115

Figure 3.28: Creating and assigning partner link to an invoke activity “Check

inventory” ..116

Figure 3.29: Specification details for the “Check inventory” activity added to the

BPEL process file ..117

xvii

Figure 3.30: Displaying the definition of the partner link “Inventory”118

Figure 3.31: Displaying the specification of the BPEL activity “Check inventory”118

Figure 3.32: Excerpt of the complete BPEL process file of the Level 4 model for the

process “Manu D2.2 Receive, Configure, Enter & Validate Order”120

Figure 3.33: WSDL file of the Level 4 model for the process “Manu D2.2 Receive,

Configure, Enter & Validate Order” ..121

Figure 3.34: Excerpt of the complete BPEL process file of the “Subcontractor” role in

the Level 3 model for stocked standard products ..122

Figure 3.35: WSDL file of the “Subcontractor” role in the Level 3 model for stocked

standard products ...123

Figure 3.36: Deployment descriptor of the “Subcontractor” role in the Level 3 model

for stocked standard products ..125

Figure 3.37: Deployment descriptor of the Level 4 model for the process “Manu D2.2

Receive, Configure, Enter & Validate Order” ...126

Figure 3.38: General contractor registering the distributors and manufacturers127

Figure 3.39: SCOR status checking in SC Collaborator ..128

Figure 3.40: Supply chain performance monitoring in SC Collaborator129

Figure 4.1: Centralized SC Collaborator system versus distributed SC Collaborator

network ..136

Figure 4.2: System architecture for communications among individual SC

Collaborator systems ..136

Figure 4.3: Password protected web page allowing users with successful

authentication to view available web service units ..138

Figure 4.4: Java implementation class of the service unit Work Schedule Service141

Figure 4.5: Business service that changes project schedule and updates individual

distributed work schedules ...142

Figure 4.6: Pseudo code of the schedule changing business service143

Figure 4.7: The BPEL process that changes a project schedule144

Figure 4.8: Java implementation class of the service unit PIP Service146

xviii

Figure 4.9: Maintaining information consistency in a distributed SC Collaborator

network ..147

Figure 4.10: Java implementation class of the modified Work Schedule Service149

Figure 4.11: Java class for data type “notificationType” ...150

Figure 4.12: BPEL codes showing activity “Change work schedule 2” in a scope150

Figure 4.13: Interactions in distributed SC Collaborator network when the BPEL

process that changes a project schedule completes successfully151

Figure 4.14: Interactions in distributed SC Collaborator network when the activity

“Change work schedule 2” fails ...152

Figure 4.15: 3D model of the three-storey residential building153

Figure 4.16: Organizations involved in the example scenario ...154

Figure 4.17: Original product information of the selected window155

Figure 4.18: Inquiry to window supplier partners ...157

Figure 4.19: Updated product information of the selected window157

Figure 4.20: E-Procurement by contractor using its SC Collaborator system158

Figure 4.21: Supplier managing and responding received purchase orders using its SC

Collabroator system ...159

Figure 4.22: Flowchart for coordinating material delivery delay by supplier Anderson.160

Figure 4.23: Originial project schedule ...161

Figure 4.24: Application portlet unit in general contractor’s layout that displays

alternative project schedules ..163

Figure 4.25: BPEL process that changes the project schedule and the distributed work

schedules in the scenario demonstration ..164

Figure 4.26: SOAP response message showing the connection fault when invoking

the Work Schedule Service unit located in Kent’s system165

Figure 5.1: Technology acceptance model (TAM) [30] ..175

Figure 5.2: The GreenSCOR framework [91] ...176

Chapter 1

Introduction

1.1 Problem Statement

A supply chain consists of a network of key business processes and facilities, involving

end users and suppliers that provide products, services, and information [53].

Traditionally, marketing, distribution, planning, manufacturing, and purchasing units and

organizations along a supply chain often operate independently. The value of integrating

members along supply chains has been studied and identified in many industries [68, 87].

Supply chain integration helps reduce cost, improve responsiveness to changes, increase

service level, and facilitate decision making. In an integrated supply chain, information

is shared and becomes available among the members. This enhances supply chain

visibility and avoids information delays and distortions. Insufficient supply chain

visibility makes members vulnerable to quality and service level problems from business

partners and therefore subject to risks [23, 67]. Information delays and distortions lead to

an increase in demand signal variation along the supply chain upstream, a phenomenon

called the bullwhip effect [57]. Therefore, information sharing is one of the keys to

effective supply chain management.

CHAPTER 1. INTRODUCTION 2

Construction is one of the largest industries in any country of the world [41]. In the

United States, the value of construction put in place was $1,072 billion in 2008 [97], or

7.5% of the U.S. gross domestic product (GDP) that year [18]. There are many

companies and many trades involved in a construction project and development.

Unfortunately, the construction industry is arguably the least integrated among all the

major industrial sectors [34]. New [71] and Cox [26] have also suggested that supply

chain research in construction should focus on the development of interactive, inter-

organizational relationships, which requires integration.

Briscoe and Dainty [17] have summarized eight key attributes to successful construction

supply chain integration: (1) managing communication, (2) managing information flow,

(3) alignment of supply chain systems, (4) mechanisms for problem resolution, (5)

engineering additional value in projects, (6) ensuring high quality standards, (7) securing

commitment to the client and the project objectives, and (8) establishing long-term

supply chain relations. Therefore, system frameworks that can easily align with other

supply chain systems and facilitate communication and information flows are critical to

integration of construction supply chains. O’Brien [75] also emphasizes the importance

of good communication and information sharing between different parties to construction

contracts. In addition, London et al. [61] indicate that strategic management combined

with assured flows of information is critical to the creation of value across supply chains.

However, the high fragmentation and project-based nature of the industry pose a

significant challenge to cross-enterprise integration of information and applications in

construction supply chains. The characteristics of construction supply chains lead to

various requirements for information and collaborative systems such as low cost and

system adaptability. With the proliferation of the Internet and the current maturity of

web services standards, this thesis aims to propose and demonstrate that integration and

collaboration of construction supply chains can be improved by adopting web services

and portal technologies, open standards, open source packages, and the concept of service

oriented architecture (SOA). This thesis presents a prototype service system framework

CHAPTER 1. INTRODUCTION 3

that is designed for managing and integrating construction supply chains. This

framework supports flexible system reconfiguration and integration of scattered

information and application operations, alignment of supply chain configuration, and

communication of distributed systems.

1.2 System Requirements for Construction Supply
Chain Integration

Construction supply chains are characterized by the involvement of many companies

from a wide variety of trades [74]. A construction project involves a diverse group of

participants including contractors, architects, engineers, laborers, and developers [43]. A

project of medium to large scale typically involve hundreds of different companies

supplying materials, components, and a wide range of construction services [27]. The

multi-participant and multi-domain characteristic is partly caused by the high

fragmentation of the industry. According to a study on the construction industry in the

United States [64], the top eight architectural, engineering and construction (AEC)

companies control less than twenty percent of the market share while by contrast the top

companies in the aerospace industry control over seventy-five percent of all trades within

the industry. This is probably due to the fact that the construction industry is comprised

of countless companies from many different trades, most of which are small to medium

in size. Furthermore, AEC companies tend to use a wide range of hardware platforms

and software applications for their own operations, posing many technical challenges in

integrating the construction supply chains.

The temporary project-based nature of construction projects also hinders integration of

construction supply chains. Even though the processes can be similar for construction

projects of a specific kind, most construction projects create new products or prototypes

and consist of temporary supply chains that organizations need to be reconfigured for

CHAPTER 1. INTRODUCTION 4

each project [99]. Sharing of information and integration of systems require trust and

coordination. Since construction supply chains are highly dynamic and the

organizational structure and the project team change frequently, it is, therefore, unlikely

for project participants to work together long enough on a project to build enough trust

and to share information willingly. A secure and customizable support system may help

establish trust and encourage integration during short-term partnerships. A flexible

system may facilitate adapting to new configurations and changes in supply chains.

Based on the characteristics of construction supply chains, literature review, and

feedbacks from practitioners in the industry, the following sections summarize the

desirable requirements of a collaborative platform to enhance communication among

members and integration of services in a construction supply chain.

1.2.1 Ease of Installation and Configuration

As discussed in [95], an information infrastructure to interface the members of a supply

chain should simultaneously satisfy three requirements: (1) accommodating members

with varying degrees of IT sophistication, (2) offering a wide range of functionalities, and

(3) allowing constantly changing pool of suppliers and customers. The third requirement

is particularly important for construction supply chains because additions, removals, and

changes of project participants such as the second tier suppliers are common in

construction projects. Furthermore, construction companies often need to extensively

customize each individual business application before usage, because every construction

project is characterized by a unique set of site conditions, project team, and relationships

between project stakeholders [24]. As a result, information systems for construction

supply chain integration should be flexible to allow quick installation and configuration

at the beginning of a project, and to enable easy re-configuration and adaption for

changes throughout the project.

CHAPTER 1. INTRODUCTION 5

1.2.2 Low Cost

Small and medium enterprises (SMEs) play a critical role as subcontractors and suppliers

in construction supply chains. According to a study in the United Kingdom, about 83

percent of the contracting companies in the private sector employ three or less workers

[27]. Almost 98 percent of all the companies employ 24 or less workers, which are

generally defined as small companies. Medium-sized companies that employ between 25

and 114 workers account for a further 2 percent. These SMEs are usually reluctant to

invest much time, money, and effort in information systems and technologies. To create

a network to support data exchange and communication among information sources and

software applications can be expensive. Large corporations routinely spend up to 50

percent of their information technology budgets on application integration [14]. Most of

the SMEs in the construction industry are not able and/or willing to make such a huge

investment. Solutions that are economical are needed.

1.2.3 Ease to be Connected and Integrated

As noted earlier, ability to accommodate users with varying degrees of IT sophistication

is one of the three requirements for supply chain information infrastructure [95]. The

requirement especially applies to the construction industry because participants on a

construction project are from a wide variety of domains and possess different levels of

experience and educational backgrounds. In addition, according to the technology

acceptance model (TAM) [30], the perceived ease of use of a system affects the early

willingness to try and use the system and the subsequent adoption of the system.

Therefore, systems for managing construction supply chains should provide user-friendly

and easily accessible communication interface. It is also important that the

communication interface allows disparate systems to be connected through machine

understandable protocols. In this way, information and applications residing inside a

CHAPTER 1. INTRODUCTION 6

system can be integrated with other applications and systems in the IT infrastructure of an

organization or company.

1.2.4 Ability to Integrate External Systems and

Information

Supply chains involve many participating companies that are geographically distributed

in locations. They may use different systems and keep their information separately. Not

only is it desirable to expose internal applications and system operations securely to

external systems, but it is also beneficial to allow connection and integration with

external systems and information on a collaborative project. Some companies may be

using ERP or database systems to support various business operations. A supply chain

integration system should be able to access and combine these distributed information

sources and systems.

Functionalities of a system become extensible if it can integrate external systems and

information. Ability to extend the functionalities beyond an individual software system

can facilitate usage. For example, functionality of ERP systems usually is limited and

fixed. Therefore, functionality is an important factor for the selection and successful

implementation of an ERP system [49, 50, 70]. An ERP system successfully

implemented on one project may not be applicable to another project. Different projects

may need different system functionalities depending on factors like the construction

processes, project organizations, scopes of planning and management, hardware and

software that the stakeholders use, and the materials and components involved in the

project. It is difficult and costly to customize functionalities of a pre-packaged

commercial ERP system typically for business applications for construction projects

[105]. Many software packages such as CAD programs allow extension of functionality

via application programming interface (API). Likewise, if collaborative systems for

CHAPTER 1. INTRODUCTION 7

enterprise-wide integration can conveniently extend their functionality, the usability of

the systems will be greatly enhanced.

1.2.5 Customizable Access to Information and

Applications

Security is an issue that many companies concern for collaborative systems. Some

project participants may be reluctant to share information with other participants who do

not have a direct business relationship. For example, although a subcontractor may be

willing to share information with direct trading partners and suppliers, the subcontractor

may not be willing to share information with the suppliers of other subcontractors even

though they are involved in the same project. Moreover, many participants in

construction projects work together on a project-based relationship. It is often difficult

for all the project participants to build enough trust and share information with others. A

system that enables users to control and customize the accessibility of information and

applications can promote information sharing.

1.3 Current Practices for Supply Chain Integration

There are many attempts to develop methodologies, technologies, and tools to integrate

various applications for communication and collaboration among supply chain members.

For example, standards for Electronic Data Interchange (EDI) are developed to facilitate

electronic exchange of business information over networks. Enterprise resource planning

(ERP) systems are adopted for inter- and intra-organizational communication. The

Internet has also been leveraged for communication, collaboration, and project

management. The following sections discuss EDI standards, ERP systems, and the

current web-based communication technologies in the construction industry.

CHAPTER 1. INTRODUCTION 8

1.3.1 Electronic Data Interchange (EDI) Standards

Good communications and information sharing among various parties in construction

projects are critical and can be achieved through information technology integration [17,

27]. The issue of Electronic Data Interchange (EDI) for inter-organizational interactions

has been discussed for over twenty years in both academia and industry [33, 40, 45].

National Institute of Standards and Technology (NIST) defined in 1996 that EDI was the

computer-to-computer interchange of strictly formatted messages that represent

documents other than monetary instruments [47]. The formatted data representing the

documents may be transmitted via telecommunications or physically transported on

electronic storage media.

Some companies in the manufacturing industry establish communication networks using

EDI standards such as ANSI ASC X12 standards [5], RosettaNet standards [84], and

ebXML [94] to connect and exchange data with partners. ANSI ASC X12 is the official

designation of the U.S. national standards body founded in 1979 for the development and

maintenance of EDI standards. RosettaNet is a non-profit consortium aimed at

establishing standard processes for the sharing of business information. ebXML is a

XML-based standard sponsored by Organization for the Advancement of Structured

Information Standards (OASIS) and United Nations Centre for Trade Facilitation and

Electronic Business (UN/CEFACT) for the exchange of electronic business information.

These standards and infrastructures provide a stable means for electronic business

communication. However, the implementation of such communication infrastructures

usually requires high cost and long configuration time, partly due to the lack of

information standardization among trading partners.

1.3.2 Enterprise Resource Planning (ERP) Systems

Recently, major construction companies have adopted enterprise resource planning (ERP)

systems to integrate loosely distributed information and applications within and across

CHAPTER 1. INTRODUCTION 9

companies [24]. An ERP system is typically employed to seamlessly integrate all the

information flowing through the company such as finances, accounting, human resources,

supply chain, and customer information [29]. ERP systems can potentially enhance

transparency across the supply chain by eliminating information distortions and increase

information velocity by reducing information delays [3]. Many corporations have

implemented ERP systems to facilitate their front-end customer relationship and to

support their back-end operations.

ERP systems were not designed and are often not suitable for the construction industry

[105]. There are many research studies and efforts on selection and implementation of

‘generic’ ERP systems in the construction industry [2, 24, 25, 86, 105]. Companies that

use a generic ERP system often need to configure and customize it to support their own

business needs. This configuration and customization process usually takes significant

time, effort, and investment. In addition, most ERP systems on the market are mainly

targeted to large companies with a stable supply chain, while construction supply chains

are unstable project-based in nature. Furthermore, adoption of ERP systems does not

often result in significant improvement in project performance as expected. One study

estimated that 96.4% of ERP implementations failed [82] whereas another study reported

that 70% of ERP implementations did not achieve their estimated benefits [4].

ERP systems have many technical limitations such as implementation complexity,

integration problems, and customization problems [93]. Akkermans et al. [3] conducted

an exploratory study on commercial implementation of ERP systems and concluded four

major limitations of ERP systems that often led to unexpected underperformance of these

tools: (1) inability to share internal data efficiently with supply chain partners across

organizational boundaries, (2) inflexibility to accommodate changes of supply chain

structures, (3) lack of functionality beyond managing transactions, and (4) lack of

modular and open system architecture.

CHAPTER 1. INTRODUCTION 10

Connected view of
databases

Message
(notification)

Web publishing
(e.g. web sites,
online catalogs)

Screen sharing

Electronic
whiteboards

Instant Messaging

Email

Wiki / Blog /
Forum

Document sharing

Video
conferencing

Tele‐conferencing

Web‐based project
management
system

Communication and Info sharing Group activity
managementStatic/one‐way Dynamic/interactive

Same time
(Synchronous)

Different time
(Asynchronous)

Figure 1.1: Commonly used web-based collaborative tools

1.3.3 Web-Based Collaboration and Project Management

Systems in Construction

With rapid development of communication technology, the Internet has become

ubiquitously and instantaneously accessible. The proliferation of the Internet makes it

the most cost effective means of driving supply chain integration and information sharing

[58]. Companies increasingly take advantage of the Internet to create a virtual value

chain where individuals and business partners can communicate and collaborate with

each other.

Nowadays in the construction industry, information technology and the Internet have

been leveraged to support multi-organizational collaborations. Examples include web-

based collaborations for design and learning [20, 73, 88], for document and knowledge

management [62, 107], and for project monitoring and management [19, 22, 72]. Figure

1.1 categorizes various means that are currently used for web-based communication and

CHAPTER 1. INTRODUCTION 11

collaboration in the construction industry. In particular, web-based project management

systems (WPMS) and construction project extranets (CPE) have been increasingly used

to support communication in construction projects [11, 72]. CPE is a private network

that is designed for the use of construction projects and hosted by Application Service

Providers (ASP). Project participants can access a CPE through web browsers. System

functionalities of CPEs, usually project specific, can include team communication,

process and project management, organization directory, and document management.

However, the use of these tools is slow in the construction industry because of barriers

such as security issues, a lack of management commitment, high cost, and deployment

inflexibility [63]. In addition, these tools are mostly standalone, specific applications that

cannot be integrated nor extended easily.

1.4 Service Oriented Architecture and Web Services

An Internet-enabled system based on the service oriented architecture (SOA) can address

many of the limitations of ERP systems and CPEs for supply chain integration. SOA is a

model in which information sources and software functionalities are delivered as

individual distinct service units, which are distributed over a network and combined to

create business applications to solve complex problems. SOA enables the dynamic

reconfiguration of supply chains, making them readily adaptable to changing business

models, growing globalization and increasing coordination. Using the SOA approach,

information sources and systems are converted into modular service components that can

be discovered, located and invoked by other applications through a standard protocol.

The service components can be reused by multiple applications or other services residing

on a network. This “plug-and-play” capability allows agile development and quick

reconfiguration of the system, which are essential for building a flexible system for fast

changing supply chains.

CHAPTER 1. INTRODUCTION 12

The shortcomings of traditional ERP systems that were stated by Akkermans et al. [3]

can be partially resolved using the SOA. First, SOA allows partners to share their

internal data by deploying the data into individual service units that are made available

over the network. Second, the “plug-and-play” ability of SOA allows easy and flexible

reconfiguration to accommodate changes of supply chain structures. Third, service

oriented systems not only allow information transfer across organizational boundaries,

but also enable invocation of various applications via the service components. System

functionalities therefore are not bounded and can be extended to operations such as

analysis and evaluation of alternatives. Fourth, service oriented systems can be divided

into modules for control, management and development, providing both modularity and

scalability. As a result, systems using SOA can provide many of the functionalities by

ERP systems while eliminating many shortcomings of ERP systems. Service oriented

systems can potentially provide higher benefits and cost effectiveness to users than ERP

systems.

Web services are the building blocks of SOA. Utilizing the Internet as the

communication network, the web services technology has emerged as a promising tool to

integrate distributed information sources and software functionalities in a flexible,

scalable, and reusable manner. A “web service” can be described as a specific function

that is distributed on the Internet to provide information or services to users through

standardized application-to-application interactions. Leveraging well established Internet

protocols and commonly used machine readable representations, web services can be

located, invoked, combined, and reused. Web services can create dynamic responses and

are different from conventional websites, which deliver only static information. Web

services are self-contained in that the application using the web services does not need to

depend on anything other than the services themselves. They are also self-describing in

that all the information on how to use the services can be obtained from the services

themselves. Web services are encapsulated, meaning that integrated web services can be

updated or replaced without affecting the functionality or integrity of other independent

services. Interoperability is also achieved by web services as applications written in

CHAPTER 1. INTRODUCTION 13

different languages and operating on different operating systems can be integrated via

standardized web services protocol.

1.5 Research Objectives

Cross-enterprise integration of information and applications in construction supply chains

is hindered by the high fragmentation and project-based nature of the industry. The

current information and collaborative systems cannot fully fulfill the requirements of

supply chain integration and management in the construction industry. The objective of

this thesis is thus to investigate and to demonstrate the potential of the concept of service

oriented architecture (SOA) and the current web services and open source technologies

for construction supply chain collaboration and management. Using a service oriented

approach, a collaborative system can be developed based on supply chain models to

reflect the structure of a supply chain. Leveraging web services technology, a distributed

network of collaborative systems can be supported to promote sharing of private

information and operations. This thesis presents a prototype service oriented

collaborative system framework namely SC Collaborator (Supply Chain Collaborator).

SC Collaborator is designed according to the system requirements for managing and

integrating construction supply chains, which are (1) ease of installation and

configuration, (2) low cost, (3) ease to be connected and integrated, (4) ability to

integrate external systems and information, and (5) customizable access to information

and applications. This thesis also illustrates the modeling of construction supply chains,

which results in supply chain models that can be incorporated in the developed prototype

framework.

The prototype SC Collaborator framework presented in this thesis is designed to manage

the procurement, production, and delivery processes among general contractors,

subcontractors, and suppliers. The framework supports flexible system reconfiguration

CHAPTER 1. INTRODUCTION 14

and service composition, alignment of supply chain configuration, and communication

among peer systems. The framework implements service oriented architecture

leveraging web services and portal technologies, open standards, and open source

packages. Unlike the current web services systems, SC Collaborator allows easy and

flexible reconfiguration of system functions and operations, because internal information,

applications and operations in SC Collaborator are delivered as individual web service

units that can be integrated and reused.

1.6 Thesis Outline

This thesis presents the developed prototype system SC Collaborator framework designed

for managing construction supply chains. Its system extensions to incorporate supply

chain models and to support distributed network architecture are then discussed. This

thesis is organized into the following four chapters.

• Chapter 2 presents the service oriented portal-based SC Collaborator system

framework. Open source technologies are leveraged to support the system

communication, the portal-based user interface, the business applications, and the

data management and storage. Open standards for web services are used to

implement SOA in SC Collaborator. This chapter also justifies the suitability of

SC Collaborator for supply chain integration and collaboration in the construction

industry. A procurement scenario and a project rescheduling scenario are

included to demonstrate the potential of SC Collaborator.

• Chapter 3 demonstrates the modeling of construction supply chains and the

leverage of supply chain models for system implementation using a service

oriented approach. The Supply Chain Operations Reference (SCOR) framework

is utilized for supply chain modeling. This chapter describes the SCOR

framework and its uses to model mechanical, electrical and plumbing (MEP)

CHAPTER 1. INTRODUCTION 15

supply chains, with reference to a study of the MEP process of a student center

construction project. The developed SCOR models are then integrated in SC

Collaborator to build a service oriented model-based platform that monitors

supply chain performance.

• Chapter 4 introduces a distributed SC Collaborator network architecture for

promoting information sharing among organizations in a collaborative

environment that each organization owns and fully controls the information it

shares. This chapter discusses the communication between distributed SC

Collaborator systems and addresses the information consistency issue potentially

hindering a distributed network of systems. This chapter illustrates the approach

of logging and fault handling in SC Collaborator for tackling the consistency

issue. The proposed distributed SC Collaborator network is demonstrated and

tested in this chapter using a case scenario based on a completed residential

building expansion project.

• Chapter 5 summaries the development of the SC Collaborator system framework

for facilitating integration of information and operations among supply chain

members in construction projects. Research contributions and suggestions of

potential future research directions are also provided.

Chapter 2

Service Oriented Portal-Based
Framework – SC Collaborator

2.1 Introduction

A supply chain is a network of organizations that procure raw materials, transform them

into intermediate goods and then final products, and deliver the products to customers

through a distribution system [56]. These organizations often operate separately, leading

to myopic operations with reduced efficiency and performance. Cross-firm coordination

of processes is often needed among supply chain members to avoid conflicts, since these

members may have different objectives and constraints. Therefore, business-to-business

integration and collaboration are needed to achieve streamlined material, information,

and financial flows across supply chains [81].

The essence of cross-firm supply chain collaboration is to share information, to jointly

develop strategic plans, and to synchronize operations [16]. Collaborative systems exist

to facilitate communication, information sharing, and alignment of supply chain

operations. Some of them enable users to access, retrieve, and modify information

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 17

residing in those systems through standardized web services protocol. A few of them

also allow invocation of web services to exchange data between external systems and to

combine internal system operations with the functionality provided by external web

services. However, current collaborative systems tend not to be easily reconfigured and

extended. For example, service invocation specifications are often embedded in the

source codes which cannot be easily modified. In addition, built-in system operations

and information schema are fixed and are difficult to modify for changing needs.

SC Collaborator (Supply Chain Collaborator) is a prototype system framework developed

for supporting information sharing and system integration along construction supply

chains. In SC Collaborator, invocation and aggregation of web services can be

performed and modified easily without the need to recompile the system. Internal

information, applications, and system operations are wrapped and deployed as separate

web service units for invocation and integration. Therefore, system functionality and

operations can be reconfigured and extended flexibly. The system framework leverages

web portal technology to provide a customizable user interface, and utilizes open source

technologies to minimize implementation costs which hinder the system usability in

construction companies that are SMEs.

A supply chain is a network of business entities collectively responsible for procurement,

manufacturing, and distribution activities associated with one or more families of

products [44]. The SC Collaborator system thus focuses on the buyer-supplier

interactions among suppliers, subcontractors, and general contractors in the processes of

procurement, manufacturing, and delivery. The framework addresses the five system

requirements for construction supply chain management, which are (1) ease of

installation and configuration, (2) low cost, (3) ease to be connected and integrated, (4)

ability to integrate external systems and information, and (5) customizable access to

information and applications.

This chapter is organized as follows. Section 2.2 discusses the service oriented portal-

based framework that the development of SC Collaborator is based on. Section 2.3

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 18

presents the system architecture and components of the SC Collaborator system

framework. Section 2.4 describes the implementation of SOA in SC Collaborator.

Section 2.5 discusses how the SC Collaborator system addresses the system requirements

for construction supply chain integration. Section 2.6 illustrates the flexibility and

extensibility of SC Collaborator through two example scenarios. The first scenario is an

electronic procurement example while the second one is a rescheduling example based on

data collected from a completed construction project of a supermarket in Sweden. This

chapter is concluded with a summary in Section 2.7.

2.2 Service Oriented Portal-based Framework

A web portal is a web-based system that acts as a gateway to a larger system or a network

of web applications. It is a useful tool to aggregate scattered, distributed information and

services into a single point of access regardless of their location or storage mechanism.

The basic operational units of a portal system are web portlets, which are sub-programs

that encapsulate a single or a number of web applications. Portlets generate only a

fragment of a complete HTML code, and therefore need to be contained in a portal

system in order to become visible and accessible. Through the portal system, multiple

information sources and applications can be accessed, retrieved, and integrated into a

workflow or a supply chain.

Web portals are commonly used to build an intranet for content and document

management within organizations [66]. They serve as a repository of information and

documents for data storage, publication, and retrieval. Due to their security and

customizability, web portals allow users to securely access sensitive personal

information, and enable system administrators to manage a huge amount of information

in a centralized manner. There is also a trend to build portal systems for cross-

organizational collaboration. However, there is little, if any, rigorous research on portal

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 19

design, development, maintenance, and updating for facilitating supply chain

management decisions [98].

SC Collaborator is designed and implemented following a service oriented approach as a

portal-based system. A service oriented portal-based framework is a system development

framework that leverages web portal technology to provide a secure and customizable

user interface and implements SOA to integrate information, applications and services in

a flexible and reusable manner. As illustrated in Figure 2.1, conceptually, there are three

functional components in a service oriented portal-based framework.

• The service deployment component allows information sources, application

functionalities and system operations to be wrapped and deployed into individual

web service units, which can be located and invoked by application portlet units

via standardized protocol.

Application
Portlet Unit

Portlet gateway

Application
Portlet Unit

Portlet gateway

Application
Portlet Unit

Portlet gateway

Service
Unit

Web services

Service Oriented Portal-Based System

App 3
Wrapper

Web services

Fragments
of HTML

Fragments
of HTML Fragments

of HTML

Service
Deployment of

Applications and
Info Sources

App 1
Wrapper

Web services

App 2
Wrapper

Web services

Source 1
Wrapper

Web services
Source 2
Wrapper

Web services

Service - Service
interaction

Centralized
Management and

User Interface

1

2

3

Figure 2.1: Conceptual framework of service oriented portal-based framework

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 20

• In the service-service interaction component, web service units are connected,

integrated and orchestrated into various workflows to perform different business

tasks. The service invocation and composition can be performed by application

portlet units and by web service units. Web service units can be reused in

different workflows or reused multiple times in the same workflow. As a result,

development of repeated system operations is avoided, and applications and

information sources can be used concurrently. In addition, modification of

system functionalities becomes easy and quick as every business process is

divided into separate atomic reusable web service components.

• The centralized user interface component is provided by a web portal system.

The layouts specified in the application portlet units are combined and displayed

through the portal-based interface. As the system layout is independent of the

service implementation, changes in the location or implementation of a web

service unit do not affect the system interface from a user’s perspective. System

reconfiguration is therefore facilitated.

The system architecture which is designed to support these three system functions is

described in the following section in detail.

2.3 System Architecture

Figure 2.2 shows the system architecture of the SC Collaborator framework. The

framework consists of a database support and four layers of integrated functionalities – a

communication layer, a portal interface layer, a business applications layer, and an

extensible computing layer. The communication layer provides a communication

channel for users to access the system. The portal interface layer serves as a unified and

customizable platform to support interactions between users and the system. The

business applications layer provides an environment that connects to internal and external

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 21

web service units for executing various business processes such as order management and

material delivery monitoring. The extensible computing layer may include databases,

software applications, and web services that the business applications layer can integrate

to support high-level or computationally intensive business functions.

As highlighted in Figure 2.2, SC Collaborator implements the service oriented portal-

based framework shown in Figure 2.1. The service deployment component is represented

by the extensible computing layer and the services repository component on the business

applications layer of SC Collaborator. The service-service interaction component is

implemented by both the service units and the application portlet units residing on the

business applications layer of SC Collaborator. The centralized user interface component

is supported by the communication layer and the portal interface layer of SC

Collaborator.

Web
browsers

WSDL
Apache
Struts

Apache
Axis2

System
Management

Portal Interface
(Liferay)

User
Management

Layout
Management

Communication
Layer
(Apache Tomcat)

Business
Applications
Layeretc…

Databases

SC Collaborator (Java)

Applications Web
services

Clients

HTTP

WAP

SOAP

Wireless
devices

Web
services

Owners

Engineers

Contractors

Suppliers

Architects

[Centralized User Interface]

[Service - Service Interaction]
[Service Deployment]

Order Mgt

Procurement
Collaboration

Portlets
(Java, JSP, Apache Struts)

Services
(Apache Axis2, ODE)
Material Orders

Schedules

BPEL WSDL

Materials
Monitoring

etc…

Extensible
Computing

1
2

3

H
ib

er
na

te

DB
(MySQL)

Figure 2.2: System architecture of the SC Collaborator system

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 22

This multi-layer, modular architecture permits flexible system installation and

maintenance because each layer can be modified or altered easily and independently. For

example, suppose a user has already installed another communication application server

in the company server. To install SC Collaborator on the same server, the user does not

need to install the bundled communication layer and run both communication servers

simultaneously in the same machine, which may affect the performance of both servers.

The user can extract other components from the SC Collaborator, bundle and install them

with the existing application server in the server machine. This flexibility makes system

maintenance easier.

Open standards and open source technologies are utilized in the system design and

implementation of SC Collaborator. Open standards are standard specifications that are

available to the general public and developed through the collaboration of multiple

organizations. Open source software is computer software that is technology-neutral, that

does not place restriction on other software, that distributes the source codes freely, and

that allows users to modify, integrate, and redistribute the software [79]. The open

standards used in SC Collaborator are:

• Simple Object Access Protocol (SOAP) [102], an XML-based protocol and

encoding format specification released by World Wide Web Consortium (W3C)

for data exchange between web services,

• Web Service Description Language (WSDL) [104], an XML-based specification

released by W3C for describing web services, and

• Business Process Execution Language (BPEL) [80], an XML-based specification

released by Organization for the Advancement of Structured Information

Standards (OASIS) for composition and orchestration of web services.

These open standards support the implementation of service oriented architecture in SC

Collaborator. The details of the structure of these web services standards and their

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 23

relationships will be discussed in Section 2.4. The open source tools leveraged in SC

Collaborator are:

• Apache Axis2 [7], a framework developed by the Apache Software Foundation

that supports deployment of web service units and provides system accessibility

using standardized SOAP and WSDL technologies,

• Apache Orchestration Director Engine (ODE) [9], an execution engine developed

by the Apache Software Foundation that deploys and implements BPEL

processes,

• Apache Struts [8], a framework developed by the Apache Software Foundation

that offers system accessibility using web browsers or wireless devices and

enables control of page flows and management of consistent layouts,

• Apache Tomcat [6], a servlet container developed by the Apache Software

Foundation that executes web applications which are programmed and packaged

using the Java Servlet technologies,

• Hibernate [83], a framework developed by JBoss, Inc. (now part of Red Hat) that

provides flexibility to use different relational databases by mapping object-

oriented Java classes to data in traditional relational databases,

• Liferay Portal [60], a web portal system developed by Liferay, Inc. that offers a

web-based user interface with functionalities such as login authentication, content

management, and blogging, and

• MySQL [90], a relational database management system developed and owned by

MySQL AB (a subsidiary of Sun Microsystems) that provides data storage,

retrieval, and management.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 24

The following sections discuss the leverage of the open standards and open source tools

in the main components of the SC Collaborator framework in detail.

2.3.1 Communication Layer

A user-friendly and readily accessible communication channel is essential to the usability

of a system. The SC Collaborator system uses open source packages – Apache Tomcat

[6], Apache Struts [8], and Apache Axis2 [7] – to enable the connectivity and access to

the system. Apache Tomcat serves as a container for the communication frameworks,

Apache Struts and Apache Axis2. While some information systems require the client-

side to install particular communication software in order to be connected, the Struts

framework that resides in SC Collaborator allows users to access the system using web

browsers, which are commonly available on every computer. Basic security control of

user login with password is provided by the portal interface layer. Figure 2.3 shows the

guest homepage that allows users to log into the system through web browsers. The

Struts framework also enables remote users to access the system using wireless devices

such as personal digital assistants (PDA) via the Wireless Application Protocol (WAP).

Figure 2.3: Homepage of the SC Collaborator system

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 25

The Axis2 framework residing on the communication layer enables system operations of

the SC Collaborator system to be exposed as standard web services. WSDL documents

are used to describe the deployed web service units for service discovery, description,

and invocation. Users can request information from the system and execute internal

operations by invoking the service units via the standardized web services protocol

SOAP.

2.3.2 Portal Interface Layer

2.3.2.1 System Management

An open source web portal system – Liferay Portal [60] – is leveraged to provide a

flexible and customizable user interface in the system. The portal user interface of the

SC Collaborator system is managed in separate modules. Every module represents a

project, an organization, or a group of similar business functionalities. For example,

Figure 2.4 shows the layout of a system administrative user with accessibility

permissions to seven modules designated for a single project namely “SHS Project.” The

My Community module is unique for users to host personal application portlets. The

company module (shown as “GenCon” in Figure 2.4) is available for all the users

registered with the company. The Guest module does not require authentication and is

intended to display project information to the public, if any. The General Contractor,

Subcontractor, and Supplier modules are accessible to the designated users performing

the role of general contractor, subcontractor, or supplier in the SHS Project. The System

Config module contains applications for managing and configuring the system and is

available to users with system administrator role only.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 26

Figure 2.4: System administrator selecting different modules in SC Collaborator

A single module contains a number of sub-module pages, each of which can contain

multiple application portlet units. Configuration, permissions, and layout can be

configured for each module, sub-module page, and portlet. Figure 2.5 shows the

application portlet unit accessible in the System Config module for system administrators

to change the display settings of the six sub-module pages in the Subcontractor module.

System management also includes activity logging, user tracking, and computer resources

utilization configuration. It helps the system administrators evaluate the system and

configure it to suit different needs.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 27

Figure 2.5: System administrator managing the sub-module pages

2.3.2.2 User Management

Accessibility of the system functionalities and the internal information and operations can

be assigned to a user at the levels of roles, organizations, user groups, and individual

users. Every user inherits the permissions that are assigned to the role, organization or

user group that the user belongs to. The types of roles in the SC Collaborator system are

system administrator, module administrator, module member, normal user, and guest.

Each role has its predefined set of permissions to the system, layout, modules, sub-

module pages, and portlets. For example, users with system administrative role can view,

configure, and assign permissions of every module, sub-module page, and application

portlet unit. An organization is the company that a user belongs to. A user can be

associated with multiple roles, but only one organization.

Users can be grouped and assigned with a user group name. For instance, SC

Collaborator has three user groups with names “supplier”, “subcontractor” and “general

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 28

contractor.” Suppliers can manage and respond received purchase orders, and share

production and delivery information with customers. Subcontractors and general

contractors can submit and manage purchase orders, monitor product production and

delivery information, and update the information of project tasks. General contractors

can also edit the overall project schedule. Users of different roles, organizations, and/or

user groups can collaborate using the SC Collaborator system.

2.3.2.3 Layout Management

The user interface for web browsers and wireless devices can be configured through the

layout management portlet unit. The portlet unit allows users with either a system

administrator role or a module administrator role to add and delete sub-module pages, to

set up the permissions of sub-module pages, and to configure the sub-module page style.

On each sub-module page, the administrative users can add, delete, and allocate

application portlet units. The administrative users can also grant individual users the

permissions to view and configure a specific module, sub-module page, and portlet.

Therefore, the system layout can be highly customizable so that some modules or portlet

units are available only to the designated users, organizations, or user groups. This

ensures that the right information is delivered to the right person at the right time. Figure

2.6 shows that the system administrator is adding a “view” permission of the “Directory”

portlet unit displayed in the Subcontractor module to the user “Peter Kane.”

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 29

Figure 2.6: The application portlet unit for configuring the user permissions of the

“Directory” portlet unit

2.3.3 Business Applications Layer

The business applications layer implements the service oriented architecture (SOA) in SC

Collaborator. As shown in Figure 2.2, the business applications layer consists of two

components – a repository of web service units and a collection of application portlet

units. The web service units can be simple services performing basic information and

application operations, or composite services supporting complex business processes.

The application portlet units specify the layout of the user interface and invoke both

internal and external web service units.

There are three distinct functional roles of a component in a service oriented computing

model – service providers, service consumers, and service aggregators [13]. Service

providers offer the service implementation, deploy the services, and supply their service

descriptions. Service consumers are the end-users which invoke, locate, and execute the

The user to be
assigned with the
permission Permission to

view the portlet
unit is assigned

Permission to
configure the
portlet unit is
available but not
yet assigned to
the user

Assigning a
permission by moving
it from right to left

Name of the application
portlet unit

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 30

services. Service aggregators consolidate multiple services into a new, single

orchestrated service offering which is commonly known as a business process. A service

aggregator can be considered as a consumer of multiple services and a provider of the

final composite service. The details of service deployment, invocation, and aggregation

on the business applications layer will be presented Section 2.4.

2.3.4 Database Support

In the database tier, an open source relational database – MySQL [90] – is used to store

the application data as well as the system information including user information, layout

configurations, and system settings. The dependencies of the major information managed

in the database are depicted in Figure 2.7. For example, configuration of system layout

and authentication of web service units are dependent on the access rights information,

which is user-specific and organization-specific. Each product item is associated with

information about its buyer and supplier, its purchase order, if any, its product

specification, and the project task that the item is needed. A timestamp is also generated

for all the products at every change in item status (item proposed, purchase order

submitted, purchase order confirmed, item delivered, estimated item arrival, and actual

item arrival). This information is stored in the system to aid evaluate the performance of

business partners and plan the life cycle of each material product. Bottlenecks of the

construction supply chain may also be noticed at an early stage of the project.

The SC Collaborator system is not bounded to a particular database system. The system

can be installed with any Java Database Connectivity (JDBC) [89] compliant database

without any complicated configuration and modification of codes due to the use of the

Hibernate framework. The Hibernate framework maps the objects in a relational

database into object-oriented Java classes. If a user has already installed other databases

such as PostgreSQL and Oracle database, SC Collaborator can integrate with the existing

database with little effort. The user does not need to install and execute MySQL in order

for SC Collaborator to run.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 31

Figure 2.7: Schematic representation of the major information managed in SC

Collaborator

2.4 Service Oriented Architecture in SC Collaborator

Service oriented architecture (SOA) in SC Collaborator is implemented on the business

applications layer. The layer is comprised of two components – (1) the services

component that takes the roles of service provider and service aggregator, and (2) the

portlets component that takes the role of service consumer. As illustrated in Figure 2.8,

there are three main parts on the business applications layer:

User Interface

Project Schedule

Project Tasks

Organizations

Product
Specifications

Purchase Orders

Access Rights

Messages

Service
Specifications

Product
Timestamps

General Contractor Subcontractors Suppliers

UsersLayout
Configuration

Web
Browsers

SC Collaborator

Web
Browsers

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 32

• Basic web service units, residing on the Apache Axis2 framework, which perform

basic operations such as providing information, running an application, or

manipulating data,

• Application portlet units, residing on the Apache Struts framework, which provide

system layout and allow invocation of web service units, and

• BPEL process service units, residing on the Apache ODE engine, which combine

and orchestrates web service units, which can be basic web service units or BPEL

process service units.

Figure 2.8: Interactions among different parts on the business applications layer in SC

Collaborator

Service implementation
classes (Java)

Basic web service units

Deploy

WSDL documents
automatically generated

Apache Axis2 Framework

Action
controllers

(Java)

App. portlet
units
(JSP)

Apache Struts Framework

Service
descriptor

BPEL
process
service
units

WSDL
from

package

Deployment
packages

Apache ODE Engine

Deploy

Service
spec.

Invoke
(SOAP)

Invoke
 (SOAP)

Invoke
 (SOAP) Service spec.

Service
spec.

Invoke
(SOAP)

Invoke
(SOAP)

Portlets
Component

Services
Component

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 33

As illustrated in Figure 2.8, basic web service units are deployed from service

implementation classes written in Java language. Each basic web service unit is

associated with a WSDL document, which is exposed to provide the service consumers

with the information on how to invoke the service unit. A BPEL process service unit is

deployed using a deployment package. The package includes a BPEL process file that

executes service orientation, and a WSDL file that provides service specification

information of the BPEL process service unit. Application portlet units and the

associated action controllers refer to the service specification provided by the WSDL

documents and invoke the basic and BPEL service units via SOAP.

The following sections discusses (1) implementation and deployment of basic web

service units, (2) system layout configuration and service invocation in application portlet

units, and (3) orchestration, development, and deployment of BPEL process service units.

2.4.1 Deployment of Basic Web Service Units

Basic web service units provide fundamental functionalities to support complex

operations. A web service unit can provide one or more operations. For example, the

web service unit Material Order Service in SC Collaborator includes the operation

“getItemDeliveryDetailsById” that obtains the delivery information of a particular

product, the operation “getItemIdByOrder” that provides a list of product items in a

specific purchase order, the operation “changeItemTargetDelivery” that changes the

target delivery date of a product, and the operation “reportItemArrived” that reports the

arrival of a product.

There are two types of web service operations – data service operation and transaction

service operation. Table 2.1 shows some of the data service operations and transaction

service operations of the web service unit Material Order Service as an example.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 34

Table 2.1: Examples of the operations of the web service unit Material Order Service in

SC Collaborator

Data /
Transaction Operation Name Input Parameters Output Parameters

Data getItemIdByOrder orderId itemId
getItemIdByTask taskId itemId
getItemInfoById itemId buyer, color, itemId,

material,
modelNumber,
orderId, price, product,
productCode, quantity,
status, supplier

getItemDelivery-
DetailsById

itemId arrival, buyer,
deliveryEstimate,
deliveryTarget, itemId,
orderId, product,
productCode, quantity,
requested, shipped,
supplier

Transaction addItem itemId, productCode,
modelNumber, product,
buyer, supplier, color,
material, quantity, price

notification

changeItem-
TargetDelivery

itemId, deliveryTime ---

reportItemArrived itemId ---
reportItemOrdered itemId, orderId ---
respondOrder orderId,

confirmationNumber,
accept, reject

• Data service operations provide data to the consumers. This type of operations

may connect to databases and submit queries, run a legacy software application

and obtain the simulation outputs, locate a document and parse it for useful

information, or simply manipulate the input values and offer the results. Data

service operations are request-response in nature and contain both request inputs

and response outputs. For instance, as illustrated in Table 2.1, the data service

operation “getItemDeliveryDetailsById” that provides contractors with the

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 35

delivery details of a purchased product requires both request inputs and response

outputs. For service operations that do not require an input parameter, an empty

request message needs to be sent for service invocation.

• Transaction service operations create, modify, or remove data in an underlying

system. This type of operations may change the data in databases, the values of a

model in software applications, or the content of a document. Transaction service

operations can be request-only or request-response in nature. For example, as

illustrated in Table 2.1, the transaction service operation “reportItemArrived” that

allows contractors to report arrival of product delivery returns no response

message.

Web services can be implemented in programming languages such as Java and C# and be

deployed in various ways using different engines. In SC Collaborator, web services are

implemented in Java and deployed using the open source Apache Axis2 framework

developed by the Apache Software Foundation. A Java service implementation class can

contain multiple functions, each of which will be represented as an individual web

service operation after deployment. As an example, Figure 2.9 shows the Java service

implementation class for a data service operation “getItemInfoById” and a transaction

service operation “respondOrder” of the service unit Material Order Service in SC

Collaborator. As shown in Figure 2.9, the operation “getItemInfoById” receives a

product identification number, submits SQL query to the back-end database, and returns

product specification information in the format of productInfoType, which contains

elements such as product code and status (refer to Figure 2.10). The operation

“respondOrder” receives an order identification number, an order confirmation number,

an array of identification numbers of the product items accepted by the supplier, and an

array of identification numbers of the items rejected by the supplier. The operation then

updates the product information and the purchase order information at the back-end

database and returns nothing.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 36

import java.sql.*;

public class MaterialOrderService {

public productInfoType getItemInfoById(String itemId) {
 productInfoType output = new productInfoType();
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection

("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();
 stmt.setQueryTimeout(180);
 ResultSet rs = stmt.executeQuery("SELECT itemId, productCode,

product, modelNumber, material, color, quantity, price, status,
orderId, buyer, supplier FROM materials WHERE itemId='" +
itemId + "' ORDER BY productCode");

 rs.next();
 output.itemId = rs.getString("itemId");
 output.productCode = rs.getString("productCode");

 output.orderId = rs.getString("orderId");
 conn.close();
 } catch (Exception e) {
 } return output;
}

... ...

public void respondOrder(String orderId, String confirmationNumber,
 String[] accept, String[] reject) {
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn = DriverManager.getConnection

("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();
 stmt.setQueryTimeout(180);
 stmt.executeQuery("update purchase_order set replyDate=now(),

confirmationNumber='"+confirmationNumber+"' where
orderId='"+orderId+"'");

 for (int i = 0; i < accept.length; i++) {
 stmt.executeUpdate("update materials set status='Confirmed',

confirmed=now() where itemId='"+accept[i]+"'");
 }
 for (int j = 0; j < reject.length; j++) {
 stmt.executeUpdate("update materials set status='Rejected',

rejected=now() where itemId='"+reject[j]+"'");
 }
 conn.close();
 } catch (Exception e) {
 }
}
}

Figure 2.9: Excerpt of the service implementation class for the Material Order Service

Name of the web service unit

Name of the web service operation

Input parameters:
product ID number

Data type of output

Submission of SQL query

Return product specification
information

Service operation “respondOrder”
No response returned

Input parameters: order ID,
order confirmation number,
ID of accepted products, ID
of rejected products

Update order information

Update product information

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 37

public class productInfoType {
 String itemId = "";
 String product = "";
 String productCode = "";
 String modelNumber = "";
 String material = "";
 String color = "";
 int quantity = 0;
 double price = 0;
 String buyer = "";
 String supplier = "";
 String orderId = "";
 String status = "";

 public String getItemId() {
 return itemId;
 }
 public void setItemId(String itemId) {
 this.itemId = itemId;
 }
 public String getProduct() {
 return product;
 }

}

Figure 2.10: Java class for data type “productInfoType”

<service>
 <parameter name="ServiceClass" locked="false">
 MaterialOrderService
 </parameter>
 <messageReceivers>

<messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-only"
class="org.apache.axis2.rpc.receivers.RPCInOnlyMessageReceiver"/>
<messageReceiver mep="http://www.w3.org/2004/08/wsdl/in-out"
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

 </messageReceivers>
</service>

Figure 2.11: Service descriptor file “services.xml”

The Java service implementation classes are deployed in order to be discovered, located,

and invoked to. To deploy the web service unit Material Order Service using the Axis2

framework, for example, the Java service implementation class and the associated Java

classes are compiled to a single folder. Next, the service descriptor named as

“services.xml” is created to define the class to be used by the service and the appropriate

message receivers, as illustrated in Figure 2.11. The service classes and the service

Parameters of the output data type
“productInfoType”

Name of the web service unit
Definition class of message receivers for
request-only operations

Definition class of message receivers for request-response operations

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 38

descriptor file are then combined and packaged into a file with an extension of “aar.”

Finally, the packaged file is deployed either by using the Axis2 web administration

application or by copying it to the Axis2 services directory.

Once a web service is successfully deployed in the Axis2 framework, a Web Service

Description Language (WSDL)1 [104] file is automatically generated in the framework.

WSDL is a W3C standard for describing web services. WSDL document specifies the

location of a web service on the network, the specific operations available, and the

request and response message formats of a web service. Service consumers can know

how to use a web service by referring to its WSDL document. Figure 2.12 shows an

excerpt of the WSDL of the service unit Material Order Service automatically generated

when the service unit is deployed in the Axis2 framework. There are five major sections

in a WSDL document.

• The Types section specifies the schema definitions of the data types used in the

service.

• The Message section describes an abstract, typed definition of the request and

response messages being exchanged.

• The PortType section provides an abstract set of operations, each of which is an

abstract description of an action supported by the service.

• The Binding section specifies a concrete protocol and data format specification

for a particular port type.

• The Service section is a collection of ports, each of which defines a connection

endpoint as a combination of a binding and a network address.

1 WSDL 1.0 was developed by IBM, Microsoft, and Ariba in 2000. The WSDL 1.1 standard was released

in 2001 while the current version WSDL 2.0 was released in 2007.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 39

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://ws.apache.org/axis2">
<wsdl:types>
 <xs:schema xmlns:ns="http://ws.apache.org/axis2"

targetNamespace="http://ws.apache.org/axis2">
 <xs:element name="getItemInfoById"> <xs:complexType> <xs:sequence>
 <xs:element name="itemId" type="xs:string"/>
 </xs:sequence> </xs:complexType> </xs:element>
 <xs:element name="getItemInfoByIdResponse"> <xs:complexType> <xs:sequence>
 <xs:element name="return" type="ns1:productInfoType"/>
 </xs:sequence> </xs:complexType> </xs:element>
 <xs:element name="respondOrder"> <xs:complexType> <xs:sequence>
 <xs:element name="orderId" type="xs:string"/>
 <xs:element name="confirmationNumber" type="xs:string"/>
 <xs:element name="accept" maxOccurs="unbounded" type="xs:string"/>
 <xs:element name="reject" maxOccurs="unbounded" type="xs:string"/>
 </xs:sequence> </xs:complexType> </xs:element>

 <xs:complexType name="productInfoType"> <xs:sequence>
 <xs:element name="buyer" type="xs:string"/>

 <xs:element name="supplier" type="xs:string"/>
 </xs:sequence> </xs:complexType>
</xs:schema> </wsdl:types>
<wsdl:message name="respondOrderRequest">
 <wsdl:part name="parameters" element="ns0:respondOrder"/> </wsdl:message>
<wsdl:message name="getItemInfoByIdRequest">
 <wsdl:part name="parameters" element="ns0:getItemInfoById"/> </wsdl:message>
<wsdl:message name="getItemInfoByIdResponse">
 <wsdl:part name="parameters" element="ns0:getItemInfoByIdResponse"/> </wsdl:message>
... ...
<wsdl:portType name="MaterialOrderServicePortType">
 <wsdl:operation name="respondOrder">
 <wsdl:input message="ns0:respondOrderRequest" Action="urn:respondOrder"/>
 </wsdl:operation>
 <wsdl:operation name="getItemInfoById">
 <wsdl:input message="ns0:getItemInfoByIdRequest" Action="urn:getItemInfoById"/>
 <wsdl:output message="ns0:getItemInfoByIdResponse"
 Action="urn:getItemInfoByIdResponse"/> </wsdl:operation>

</wsdl:portType>
<wsdl:binding name="MaterialOrderServiceSOAP11Binding"
 type="ns0:MaterialOrderServicePortType">
 <wsdl:operation name="respondOrder">
 <soap:operation soapAction="urn:respondOrder" style="document"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 </wsdl:operation>
 <wsdl:operation name="getItemInfoById">
 <soap:operation soapAction="urn:getItemInfoById" style="document"/>
 <wsdl:input> <soap:body use="literal"/> </wsdl:input>
 <wsdl:output> <soap:body use="literal"/> </wsdl:output>
 </wsdl:operation>

</wsdl:binding>
<wsdl:service name="MaterialOrderService">
 <wsdl:port name="MaterialOrderServiceSOAP11port_http"
 binding="ns0:MaterialOrderServiceSOAP11Binding">
 <soap:address
 location="http://171.67.80.217:8080/service/processes/MaterialOrderService"/>
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

Figure 2.12: Excerpt of the WSDL file for the service unit Material Order Service

Types

Message

PortType

Binding

Service

1

2
3

5

4

Target namespace of service

Request message data type name
Elements in request message

Elements in response message
type data

Name of operation

Location of service

No output response message
for “respondOrder”

“getItemInfoById” has both input and output messages

Multiple elements are allowed

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 40

In WSDL, the abstract definition of ports and messages is separated from the network

deployment or data format bindings. This allows the reuse of definitions for messages,

which are abstract descriptions of the data being exchanged, and for port types, which are

abstract collections of operations. For example, from the PortType section of the WSDL

document shown in Figure 2.12, the service operation “respondOrder” is request-only in

nature without response message whereas the operation “getItemInfoById” is request-

response with both request and response messages. As described in the Types and

Message sections, the operation “getItemInfoById” receives one parameter itemId and

returns a result of type productInfoType. The input parameters accept and reject of the

operation “respondOrder” contain an attribute of “maxOccurs” with a value of

“unbounded,” meaning that multiple elements of accept and reject are allowed. These

specifications stay unchanged when the service unit Material Order Service is deployed

in another machine. However, the address of the service location which is specified in

the Service section changes according to the actual service deployment on the network.

2.4.2 Service Invocation and System Layout in

Application Portlet Units

Each application portlet unit in SC Collaborator is an independent unit, which performs a

specific task or business process. The application portlet units are based on Java

framework and JavaServer Pages (JSP) technology. The JSP technology enables HTML

codes to be embedded with Java codes. The HTML codes in a JSP file specify the layout

and display as a regular web page. The embedded Java codes allow various Java-enabled

functionalities such as basic computation, application execution, connection to databases,

and invocation of web services. Therefore, multiple services can be integrated in a single

portlet unit to implement various business processes. For instance, the application portlet

unit that helps retailers to manage the purchase orders they have submitted can integrate

three different services: (1) service that submits purchase orders to manufacturers, (2)

service that monitors the status of each purchase order, and (3) service that triggers

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 41

warning notifications when a problem is encountered. The application portlet units in SC

Collaborator are compliant with Java Specification Request (JSR) 168 standard [1], a

specification that defines a standard programming model for portlet development.

Consequently, the portlet units can be packaged and reused by other portal systems,

allowing high portability across platforms.

There are two ways to invoke a standardized web service. One method to invoke a web

service is by regenerating the implementation classes of the service and importing them

into the programs that service invocation is performed. There exist programs that allow

users to specify the location of a WSDL document and then produce a set of service

implementation Java codes that are consistent with the service specification. Users can

compile the Java codes into client classes and import them as normal external library

classes. Another method is by specifying the location and operation of the service,

initializing the request message, sending the request directly to the deployed service, and

parsing the response message to obtain useful information, in the programs that service

invocation is performed. Unlike the first method, the second method requires

understanding of the schema of the request and response messages and identification of

particular service specifications from a WSDL document, which may pose challenges to

beginner service consumers. However, the second method does not require compilation

of client classes and allows flexible modifications of service invocation. Therefore, the

second method is utilized in the SC Collaborator system.

Take the supplier’s order management portlet unit in SC Collaborator as an example.

The portlet unit allows suppliers to select a particular purchase order they have received,

to view the products that are in the purchase order, and to respond to the order

electronically with a confirmation number. As illustrated in Figure 2.13, the portlet unit

invokes the operation “getIdemIdByOrder” of the Material Order Service to obtain a list

of identification numbers of the products included in the purchase order “PO-WM-389.”

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 42

Figure 2.13: Invocation of web services by the order management portlet unit in SC

Collaborator

After that, the portlet unit invokes the service operation “getItemInfoById” and obtains

the product specification information for each product, which is tabulated in the user

interface display. Figure 2.14 shows an excerpt of the JSP codes of the portlet unit. As

illustrated in Figure 2.14, invocation of a web service operation requires five pieces of

information: (1) target namespace of the service, (2) name of the data type used in the

request message, (3) names of the elements in the request message, (4) location of the

service on the network, and (5) name of the invoked service operation. As labeled in

Figure 2.12 and Figure 2.14, WSDL document of the service operation

“getItemInfoById” being invoked provides all these five pieces of information. System

administrator can refer to the WSDL documents and modify these service invocation

specifications easily to accommodate any change in the service operations being invoked.

Struts framework

“getItemInfoById”
service operation

DB

“respondOrder”
service

operation

Portlet unit (JSP)

Action
controller

(Java)

Information
Control Another JSP page Action

controller
(Java) Same page

“getItemIdByOrder”
service operation

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 43

... ...
<table>
<tr> <td colspan=10> List of Materials from Customer "<%= buyer %>" for Order "<%=
orderNumber %>" </td> </tr>
<tr> <td>Accept</td> <td>Product Code</td> <td>Product</td>
 <td>Model Number</td> <td>Material</td> <td>Color</td> <td>Quantity</td>
 <td>Price</td> <td>Total Cost</td> <td>Status</td>
</tr>

<%
// Obtain a list of itemIds

OMFactory fac = OMAbstractFactory.getOMFactory();
OMNamespace omNs = fac.createOMNamespace("http://ws.apache.org/axis2", "eig");
OMElement payload = fac.createOMElement("getItemIdByOrder", omNs);
OMElement value = fac.createOMElement("orderId", omNs);
value.setText(orderNumber);
payload.addChild(value);

ServiceClient serviceClient = new ServiceClient();
Options options = new Options();
options.setTo(new EndpointReference
("http://171.67.80.217:8080/service/processes/MaterialOrderService"));
options.setAction("getItemIdByOrder");
serviceClient.setOptions(options);
OMElement result = serviceClient.sendReceive(payload);

Iterator<OMElement> iter = result.getChildElements();
while (iter.hasNext()) {
 String itemId = iter.next().getText();

 // For each item, obtain the product specification information

 OMFactory fac2 = OMAbstractFactory.getOMFactory();
 OMNamespace omNs2 = fac2.createOMNamespace("http://ws.apache.org/axis2", "eig");
 OMElement payload2 = fac2.createOMElement("getItemInfoById", omNs2);
 OMElement value2 = fac2.createOMElement("itemId", omNs2);
 value2.setText(itemId);
 payload2.addChild(value2);

 ServiceClient serviceClient2 = new ServiceClient();
 Options options2 = new Options();
 options2.setTo(new EndpointReference

("http://171.67.80.217:8080/service/processes/MaterialOrderService"));
 options2.setAction("getItemInfoById");
 serviceClient2.setOptions(options2);
 OMElement result2 = serviceClient2.sendReceive(payload2);

 Iterator<OMElement> iter2 = result2.getFirstElement().getChildElements();
 String buyer2 = iter2.next().getText();
 String color = iter2.next().getText();

 String status = iter2.next().getText();
 String supplier2 = iter2.next().getText();
%>
<tr> <td> <input type=checkbox name="item" value="<%= itemId %>" /> </td>
 <td><%= productCode %></td> <td><%= product %></td>
 <td><%= modelNumber %></td> <td><%= material %></td>
 <td><%= color %></td> <td><%= quantity %></td>
 <td>$<%= price %></td>
 <td>$<%= Double.parseDouble(price)*Integer.parseInt(quantity) %></td>
 <td><%= status %></td>
</tr>
... ...

Figure 2.14: Excerpt of the JSP codes for the order management portlet unit

1

2
3

4

5

Target namespace of service

Request message data
type name Elements in

request message

Location of service

Name of operation

Invocation of the service
operation “getItemInfoById”

Iterate for every product item,
then parse the product ID number

Embedded Java codes in JSP

HTML codes in JSP

Embedded Java codes in JSP

Invocation of the service
operation “getIdemIdByOrder”

Internal variable with value
“PO-WM-389” in the example

Parse the response message for
the product information

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 44

Communication with web service units is performed using Simple Object Access

Protocol (SOAP)2 [102] messaging. SOAP is a W3C standard that provides a protocol

for communications between web services. To invoke a web service operation, the

embedded Java codes in the application portlet units generate a request message in the

SOAP XML format and send it to the service unit through the SOAP. A response

message is returned if the service operation being invoked request-response in nature.

The response message is parsed in the portlet units for information of interest. Figure

2.15 shows the SOAP request and response messages of the service operation

“getItemInfoById.”

In SC Collaborator, invocation of web service units can also be performed by the action

controllers in the Apache Struts framework. The action controllers are intended to

specify the page flow of a portlet unit. Since they are Java-based, they can also be used

to perform business logic, application execution, database connection, and service

invocation. As illustrated in Figure 2.13, the action controllers can be triggered by button

controls in a JSP portlet page. For example, the “PO Overview” button is associated with

an action controller which redirects the portlet unit to another portlet page which shows

all the purchase orders the supplier has received. The “Submit Confirmation” button

triggers an action controller that collects the inputs of the accept checkboxes and the

confirmation number, invokes the service operation “respondOrder,” and redirects to the

same portlet page with updated information.

2 SOAP was originally designed with backing from Microsoft in 1998. SOAP 1.1 became a W3C standard

in 2000. The current version is SOAP 1.2, which was released as a W3C standard in 2003 (first edition)
and in 2007 (second edition) respectively.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 45

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:q0="http://ws.apache.org/axis2"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>
 <q0:getItemInfoById>
 <q0:itemId>KO-AN-4793</q0:itemId>
 </q0:getItemInfoById>
 </soapenv:Body>
</soapenv:Envelope>

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <getItemInfoByIdResponse xmlns:ns="http://ws.apache.org/axis2">
 <ns:return xmlns:ax21="http://ws.apache.org/axis2/xsd"

type="productInfoType">
 <ax21:buyer>GenCon</ax21:buyer>
 <ax21:color />
 <ax21:itemId>KO-AN-4793-1</ax21:itemId>
 <ax21:material>MetalGlass</ax21:material>
 <ax21:modelNumber>WIN-200-DHL</ax21:modelNumber>
 <ax21:orderId>PO-WM-389</ax21:orderId>
 <ax21:price>278.0</ax21:price>
 <ax21:product>Window</ax21:product>
 <ax21:productCode>KO-AN-4793</ax21:productCode>
 <ax21:quantity>63</ax21:quantity>
 <ax21:status>Sent</ax21:status>
 <ax21:supplier>Anderson</ax21:supplier>

 </ns:return>
 </getItemInfoByIdResponse>
 </soapenv:Body>
</soapenv:Envelope>

Figure 2.15: The SOAP request and response messages of the service operation

“getItemInfoById”

2.4.3 Service Aggregation and Orchestration Using

Business Process Execution Language (BPEL)

In a service oriented portal framework, information, applications and internal system

operations are deployed and delivered as web services. These basic web services usually

Information being parsed by the
embedded Java codes in the order
management application portlet unit

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 46

are not sufficient to perform a business process individually. These web services often

need to be aggregated with each other into a workflow. For instance, multiple cross-

application activities are required to implement a business process “add purchase order.”

These activities may include adding a purchase order to the production plan, sending

confirmation to the customer, changing the status of the order and the corresponding

items, and allocating materials and resources to fulfill the order. Each of these activity

components could be separated and deployed as individual web services. A mechanism

to combine and coordinate these activity component services is necessary to complete a

business process.

There are several research efforts on the mechanisms to invoke, terminate, and combine

web-based services. Cheng [21] has developed a simulation access language (SimAL)

and framework that integrate legacy project management applications, manage the

information flow among them, and allow users to build up scenarios for engineering

simulation. Benatallah et al. [12] presents a framework called Self-Serv which consists

of a runtime environment that performs dynamic provider selection and orchestrates

composite services using SOAP standard. Greenwood et al. [35] introduces a framework

namely Web Service Integration Gateway Service (WSIGS) which allows combination of

web services and software agents by message encodings translation and exchange using

WSDL, SOAP and UDDI standards. Maamar et al. [65] attempts to deploy web services

into agents, each of which contains a service chart diagram that defines the underlying

web service and is able to interact with peer agents through XML-based conversation

messages.

Standards are also available to support composition and orchestration of web services.

Web Services Choreography Description Language (WS-CDL) [103] and Web Services

Choreography Interface (WSCI) [100] are W3C standards that provide a global, message-

oriented view of interactions by describing the collective message exchanges among the

interacting web services. Web Services Conservation Language (WSCL) [101] published

by W3C helps specify the XML documents being exchanged among web services and the

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 47

sequence of these document exchanges. However, these standards only provide an

abstract specification of web services composition. Supports for programming and

executing these standards are also very limited. In contrast, Business Process Execution

Language (BPEL)3 is an implementation-level standard for web services composition and

supported by commercial and open source orchestration engines for execution. The

integration and orchestration of the web service units in SC Collaborator using BPEL will

be discussed next.

2.4.3.1 Overview of BPEL

BPEL is an executable XML-based language for specifying a business process in which

most of the tasks represent interactions between the process and external web services.

The language is interpreted and executed by an orchestration engine which realizes the

process flow and invokes the connected web services. BPEL is a layer on top of WSDL

and XML Schema, with WSDL and XML Schema defining the structural aspects of

service interactions, and BPEL defining the behavioral aspects.

The BPEL standard supports two kinds of activity coordination – basic activities and

structured activities. Basic activities, also called primitive activities, correspond to

atomic actions such as message exchange and service initiation that are being performed

within a process. For instance, an invoke activity invokes an operation of some web

service units. A receive activity waits for a message from an external partner. A reply

activity sends response messages to an external partner. A wait activity pauses for a

certain period of time. An assign activity copies data from one place to another. In a

3 BPEL was first developed in 2002 by BEA Systems, IBM, and Microsoft. The BPEL 1.0 standard was a

merger of Web Services Flow Language (WSFL) [59] and XLANG [92], which were developed in 2001
by IBM and Microsoft respectively. In 2003, the three companies together with SAP and Siebel Systems
modified BPEL 1.0 into Business Process Execution Language for Web Services (BPEL4WS) 1.1 [10]
and submitted the BPEL4WS 1.1 to Organization for the Advancement of Structured Information
Standards (OASIS) for standardization. The current version is Web Services Business Process Execution
Language (WS-BPEL) 2.0 [80], which was published as one of the OASIS standards by the BPEL
Technical Committee of OASIS in 2007.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 48

BPEL process, partners interact through web service interfaces called port types, and the

structure of the relationship at the interface level is specified by a partner link. Invoke,

receive, and reply activities are three types of interaction activities defined in the BPEL

specification. These interaction activities need to specify the partner link through which

the interaction occurs, the operation involved, the port type in the partner link that is

being used, and the input and output variables that will be read from or written to.

Structured activities manage the overall process flow, specifying what activities should

run and in what order. One can think of structured activities as the underlying

programming logic for a BPEL process. There are eight structured activities in BPEL

2.0: sequence, flow, if, pick, while, repeat-until, scope, and for-each. A sequence activity

contains one or more activities that are performed sequentially. A flow activity allows

parallel execution of activities. A if activity provides conditional routing between

activities. A pick activity executes a conditional branch when it is triggered by either a

message event or an alarm event. While and repeat-until activities repeats performance

of an activity in a structured loop until a certain condition no longer holds true. A scope

activity groups activities into a block, which is treated as an individual unit. A for-each

activity iteratively executes an activity according to an internal counter. Structured

activities can be nested and combined in arbitrary ways, thus enabling the presentation of

complex structures.

2.4.3.2 Service Orchestration Using BPEL

BPEL defines a model and a grammar for describing the behavior of a business process

based on interactions between the process and its partners. A BPEL process consists of a

set of activities that can be combined through structured operators. The interaction

activities – invoke, receive and reply – connects internal or external web service units

while other BEPL activities specify the flow and logic among the interaction activities.

Therefore, BPEL can integrate individual web service units and orchestrate them to offer

specific business functions.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 49

for-each

receive

flow

invoke

invoke

reply

port

port

port Material
Order

partner
linkclient

Inventory

partner
link

partner
link

partner
link

Message

if

invoke

port

orderId
confirm number
accept
reject

notification

respondOrderNew
[Material Order Service 2]

confirm number
NOT empty

orderId
confirm number
accept
reject

notification

notification

itemId
incrementElse

respondOrder-
New

[Material Order
Service 2]

respondOrder
[Material Order

Service]

changeInventory
[Inventory Service]

addMessage
[Message Service]

Figure 2.16: Schematic representation of the BPEL activities for the operation

“respondOrderNew”

As an example, a BPEL process operation “respondOrderNew” is created to extend the

operation “respondOrder” of the service unit Material Order Service using BPEL. Figure

2.16 depicts the behavior of the BPEL process operation “respondOrderNew.” The

activities with solid lines are BPEL basic interaction activities whereas the activities with

dotted lines are structured activities. The service operation “respondOrder” has been

described in Section 2.4.1. Both operations “respondOrderNew” and “respondOrder”

receive an order identification number, an order confirmation number, a list of

identification numbers of the accepted products, and a list of identification numbers of

the rejected products, and then update the information of the corresponding purchase

order and product items.

Other functionalities can be added to the created operation “respondOrderNew.” As

illustrated in Figure 2.16, after receiving the input parameters from the partner link

“client,” the operation “respondOrderNew” checks whether the confirmation number

input is empty. If not, the operation performs two tasks concurrently – (1) updating order

and product information, and (2) updating the inventory planning information. The

former task is done by invoking the operation “respondOrder” of the service unit Material

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 50

Order Service through partner link “Material Order.” The latter task is performed by

invoking the operation “changeInventory” of the service unit Inventory Service through

partner link “Inventory” for each accepted product. The operation “changeInventory” is

request-response in nature. It receives input parameters of a product identification

number and the increment on product inventory record required to change, and returns a

notification to the service consumers. After that, the operation “respondOrderNew”

sends a notification to the supplier record by invoking the operation “addMessage” of the

service unit Message Service through partner link “Message.” Finally, the operation

“respondOrderNew” returns a notification to the customer.

Figure 2.17 shows the BPEL code that defnes an executiable “respondOrderNew”

process. As illustrated in Figure 2.17, there are four sections in a BPEL process file.

• The Import section specifies the WSDL documents of the external service units

invoked by the BPEL process.

• The PartnerLinks section indicates the role of the partner and the process itself.

• The Variables section describes the name and message type of the variables

defined in the process.

• The orchestration logic section defines the flow and implementation details of

each activity in the process.

This example illustrates that functionalities provided by basic web service units can be

combined and orchestrated in BPEL process service units to provide complex business

operations. BPEL process can also invoke and combine other BPEL process service

units. In other words, recursive service composition is allowed and service units of

different level of complexity can be built based on the basic service units.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 51

<bpel:process name="MaterialOrderService2" suppressJoinFailure="yes"
 targetNamespace="http://171.67.80.217:8080/service/processes/MaterialOrderService2"
 xmlns:tns="http://171.67.80.217:8080/service/processes/MaterialOrderService2"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:ns="http://ws.apache.org/axis2">
<bpel:import namespace="http://ws.apache.org/axis2" location="InventoryService.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/" />
<bpel:import namespace="http://ws.apache.org/axis2"
location="MaterialOrderService.wsdl" importType="http://schemas.xmlsoap.org/wsdl/" />

<bpel:import namespace="http://ws.apache.org/axis2" location="MessageService.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/" />

<bpel:partnerLinks>
 <bpel:partnerLink name="client" partnerLinkType="tns:MaterialOrderService2"
 myRole="MaterialOrderService2Provider" />
 <bpel:partnerLink name="MaterialOrder" partnerLinkType="tns:MaterialOrderPLT"
 partnerRole="serviceProvider" />
 <bpel:partnerLink name="Inventory" partnerLinkType="tns:InventoryPTL"
 partnerRole="serviceProvider" />
 <bpel:partnerLink name="Message" partnerLinkType="tns:Message"
 partnerRole="serviceProvider" />
</bpel:partnerLinks>
<bpel:variables>
 <bpel:variable name="input" messageType="tns:MaterialOrderService2RequestMessage"/>
 <bpel:variable name="output" messageType="tns:MaterialOrderService2ResponseMessage"/>
 <bpel:variable name="MaterialOrderRequest" element="ns:respondOrder"/>
 <bpel:variable name="InventoryRequest" element="ns:changeInventory"/>
 <bpel:variable name="MessageRequest" messageType="ns:addMessageRequest"/>
</bpel:variables>
<bpel:sequence name="main">
<bpel:receive name="receiveInput" partnerLink="client"
 portType="tns:MaterialOrderService2" operation="respondOrderNew" variable="input"/>
<bpel:if name="If">
 <bpel:condition><![CDATA[$input.payload/tns:confirmationNumber!=""]]></bpel:condition>
 <bpel:sequence>
 <bpel:flow name="Flow"><bpel:sequence name="Sequence">
 <bpel:assign name="Assign">
 <bpel:copy> </bpel:copy>
 </bpel:assign>
 <bpel:invoke name="respondOrder" partnerLink="MaterialOrder" operation="respondOrder"
 portType="ns:MaterialOrderServicePortType" inputVariable="MaterialOrderRequest" />
 </bpel:sequence><bpel:forEach parallel="no" counterName="Counter" name="ForEach">
 <bpel:startCounterValue><![CDATA[1]]></bpel:startCounterValue>
 <bpel:finalCounterValue> <![CDATA[count($input.payload/tns:accept)]]>
 </bpel:finalCounterValue>
 <bpel:scope>
 <bpel:sequence name="Sequence">
 <bpel:assign validate="no" name="Assign"> </bpel:assign>
 <bpel:invoke name="updateInventory" partnerLink="Inventory"
 operation="changeInventory" inputVariable="InventoryRequest" />
 </bpel:sequence>
 </bpel:scope></bpel:forEach></bpel:flow>
 <bpel:assign validate="no" name="notifySuccess"> </bpel:assign>
 <bpel:assign validate="no" name="Assign"> </bpel:assign>
 <bpel:invoke name="Invoke" partnerLink="Message" operation="addMessage"
 inputVariable="MessageRequest" />
 </bpel:sequence>
<bpel:else>
 <bpel:assign validate="no" name="notifyError"> </bpel:assign>
</bpel:else>
</bpel:if>
<bpel:reply name="replyOutput" partnerLink="client"/>
</bpel:sequence>
</bpel:process>

Figure 2.17: Excerpt of the BPEL code for the service operation “respondOrderNew”

Import

Variables

Orchestration logic

Partner links

Partner link
name

Name of operation
to be invoked Variable

name

Location of external WSDL

Name of the service unit

Partner link type

Name of operation
provided

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 52

2.4.3.3 Development and Deployment of BPEL Processes

Editing BPEL codes can be challenging, especially when dealing with a large scale

service orientation. Eclipse BPEL Visual Designer [32] is used to facilitate the

development and validation of BPEL process files. The open source BPEL editor is an

eclipse plug-in developed by the Eclipse Foundation. It provides a graphical

visualization of BPEL processes, a user-friendly interface for defining the BPEL

activities, and a validation engine that check the compliance of BPEL files. Figure 2.18

shows the graphical representation of the aforementioned operation “respondOrderNew”

displayed in Eclipse BPEL Visual Designer.

Figure 2.18: Eclipse BPEL Visual Designer

Properties window

Name of service unit

Drag and drop
BPEL activities

Partner links

Variables

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 53

When a BPEL activity is selected in the display in Eclipse BPEL Visual Designer, the

Properties window shows a form for entering specification details of the BPEL activity

element. The form is dependent on the type of the selected BPEL activities. For

example, Figure 2.18 shows the form for the assign activity that assigns input values to

the request message for the “changeInventory” operation. Users can create BPEL

process easily in Eclipse BPEL Visual Designer by simple drag-and-drop of BPEL

activities from the column on the right. The BPEL editor also facilitates the definition of

partner links and variables in BPEL processes.

A BPEL process file needs to be deployed in a BPEL engine in order to execute the

business process specified in the file. The BPEL engine used in SC Collaborator is

Apache Orchestration Director Engine (ODE), an open source package developed by the

Apache Software Foundation. As illustrated in Figure 2.19, to deploy a BPEL process

file in Apache ODE, a deployment package consisting of four types of files is required.

The four types of files included in a deployment package are:

• A BPEL process file that describes the behavior and orchestration details of the

BPEL process (Figure 2.17),

• A deployment descriptor with file name “deploy.xml” that indicates the name and

port of the partner links defined in the BPEL process (Figure 2.20),

• A WSDL document that describes the BPEL process unit (Figure 2.21), and

• WSDL documents that describe the web service units that are invoked in the

BPEL process.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 54

Figure 2.19: Deployment of BPEL process service “Material Order Service 2” with

service operation “respondOrderNew”

<?xml version="1.0" encoding="UTF-8"?>
<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
xmlns:MaterialOrderService2="http://171.67.80.217:8080/service/processes/Mate
rialOrderService2" xmlns:axis2="http://ws.apache.org/axis2">
 <process name="MaterialOrderService2:MaterialOrderService2">
 <active>true</active>
 <process-events generate="all"/>
 <provide partnerLink="client">
 <service name="MaterialOrderService2:MaterialOrderService2"
 port="MaterialOrderService2Port"/>
 </provide>
 <invoke partnerLink="MaterialOrder">
 <service name="axis2:MaterialOrderService"
 port="MaterialOrderServiceSOAP11port_http"/>
 </invoke>
 <invoke partnerLink="Inventory">
 <service name="axis2:InventoryService"
 port="InventoryServiceSOAP11port_http"/>
 </invoke>
 <invoke partnerLink="Message">
 <service name="axis2:MessageService"
 port="MessageServiceSOAP11port_http"/>
 </invoke>
 </process>
</deploy>

Figure 2.20: Deployment descriptor “deploy.xml” for the BPEL process service with

operation “respondOrderNew”

WSDL
- Inventory Service

BPEL
- Service unit name
- WSDL imports of
services being invoked
(location)

- Partner links (name,
type, role)

- Variables (name,
message type)

- Orchestration logic
- Name of operations
provided

Deployment Descriptor
- Service unit name
- Partner links (name, service
name, name of service port)

WSDL
- Partner link types (name, role)
- WSDL imports of services
being invoked (location)

- Data types
- Messages
- Port types (operations
provided)

- Binding (operations provided)
- Service (service unit name,
service location, name of
service port)

WSDL
- Material Order Service

WSDL
- Message Service

Deployment Package

Service unit:
 Material Order Service 2
Operation provided:
 respondOrderNew

Deploying BPEL

Apache ODE
Engine

For the web service unit provided
by the BPEL process itself

For every web service
unit that is invoked

Partner link name

Name of the
service unit

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 55

Import

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:plnk="http://docs.oasis-
open.org/wsbpel/2.0/plnktype" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:tns="http://171.67.80.217:8080/service/processes/MaterialOrderService2"
xmlns:vprop="http://docs.oasis-open.org/wsbpel/2.0/varprop"
xmlns:wsdl="http://ws.apache.org/axis2" name="MaterialOrderService2"
targetNamespace="http://171.67.80.217:8080/service/processes/MaterialOrderService2">
<plnk:partnerLinkType name="MaterialOrderPLT">
 <plnk:role name="serviceProvider" portType="wsdl:MaterialOrderServicePortType"/>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="InventoryPTL">
 <plnk:role name="serviceProvider" portType="wsdl:InventoryServicePortType"/>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="Message">
 <plnk:role name="serviceProvider" portType="wsdl:MessageServicePortType"/>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="MaterialOrderService2"> <plnk:role
 name="MaterialOrderService2Provider" portType="tns:MaterialOrderService2"/>
</plnk:partnerLinkType>
<import location="MaterialOrderService.wsdl" namespace="http://ws.apache.org/axis2"/>
<import location="InventoryService.wsdl" namespace="http://ws.apache.org/axis2"/>
<import location="MessageService.wsdl" namespace="http://ws.apache.org/axis2"/>
<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://171.67.80.217:8080/service/processes/MaterialOrderService2">
 <element name="MaterialOrderService2Request"> <complexType> <sequence>
 <element name="orderId" type="string"/>
 <element name="confirmationNumber" type="string"/>
 <element maxOccurs="unbounded" name="accept" type="string"/>
 <element maxOccurs="unbounded" name="reject" type="string"/>
 </sequence> </complexType> </element>
 <element name="MaterialOrderService2Response"> <complexType> <sequence>
 <element name="notification" type="string"/>
 </sequence> </complexType> </element>
 </schema>
</types>
<message name="MaterialOrderService2RequestMessage">
 <part element="tns:MaterialOrderService2Request" name="payload"/>
</message>
<message name="MaterialOrderService2ResponseMessage">
 <part element="tns:MaterialOrderService2Response" name="payload"/>
</message>
<portType name="MaterialOrderService2">
 <operation name="respondOrderNew">
 <input message="tns:MaterialOrderService2RequestMessage"/>
 <output message="tns:MaterialOrderService2ResponseMessage"/>
 </operation>
</portType>
<binding name="MaterialOrderService2Binding" type="tns:MaterialOrderService2">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="respondOrderNew">
 <soap:operation soapAction=
 "http://171.67.80.217:8080/service/processes/MaterialOrderService2/respondOrderNew"
/>
 <input> <soap:body use="literal"/> </input>
 <output> <soap:body use="literal"/> </output>
 </operation>
</binding>
<service name="MaterialOrderService2">
 <port binding="tns:MaterialOrderService2Binding" name="MaterialOrderService2Port">
 <soap:address
 location="http://171.67.80.217:8080/service/processes/MaterialOrderService2"/>
 </port>
</service>
</definitions>

Figure 2.21: WSDL document for the process service with operation “respondOrderNew”

PartnerLinkType

Types

Message

PortType

Binding

Service

Partner link type name

Location of external WSDL

Name of operation provided

Name of the service unit

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 56

While the deployment descriptor file can be easily created, it can be time-consuming to

create and edit the WSDL document that describes a BPEL process. Eclipse BPEL

Visual Designer facilitates the generation of the WSDL document. When a BPEL

process file is created in Eclipse BPEL Visual Designer, an empty WSDL document is

generated and linked to the BPEL process file. When the BPEL process file is changed,

the BPEL editor automatically alters the linked WSDL document and makes sure that

both the WSDL and BPEL files are consistent with each other. The WSDL document for

the BPEL process unit Material Order Service 2 shown in Figure 2.21 is the WSDL

document generated by Eclipse BPEL Visual Designer.

The BPEL file, deployment descriptor file, WSDL document, and external WSDL

documents are related to each other with some overlaps of information, as illustrated in

Figure 2.19. After deployment, the BPEL process acts as a standardized web service and

can be invoked by standardized SOAP messaging. As a result, the operation

“respondOrderNew” can replace the operation “respondOrder” with only minimal

changes of the JSP codes of the application portlet units. The actual service

implementation can be encapsulated and modified in a flexible manner.

2.5 Discussions of the SC Collaborator System

A collaborative system that is designed to manage construction supply chains needs (1)

low cost, (2) ability to integrate external systems and information, (3) ease of installation

and configuration, (4) ease to be connected and integrated, and (5) customizable access to

information and applications. All of these requirements are taken into consideration

when designing and implementing the SC Collaborator system.

• Low cost: The SC Collaborator system framework is developed leveraging open

source tools. These tools can be freely downloaded and easily installed.

Furthermore, these tools are widely supported in various open source

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 57

communities. Therefore, SC Collaborator provides an economical solution with

low cost for system installation and maintenance.

• Ability to integrate external systems and information: The connectivity to the

extensible computing layer enables SC Collaborator to integrate with external

systems and information. Since the application portlet units are based on the Java

framework, the SC Collaborator system can connect to databases through JDBC,

and to systems through protocols such as TCP/IP and JRMP (Java Remote

Method Protocol). If the systems and databases of trading partners are wrapped

into web services, connectivity and integration are even easier. SC Collaborator

can also obtain files and information from online sources such as web sites. This

allows dynamic responses to changes of online information. The scope of

integration in SC Collaborator is therefore not constrained to a local machine or to

a communication network that a user belongs to; instead, any information,

applications and systems that are online and available on the web can potentially

be integrated in SC Collaborator.

• Ease of installation and configuration: The SC Collaborator system can be easily

installed and reconfigured. The modular system architecture of SC Collaborator

allows flexible installation of the system components. Configuration on the

system, users, and layout can be conveniently modified using the administrative

portlet units provided on the portal user interface. System layout and service

invocation can also be conveniently altered in the JSP codes of application portlet

units. In addition, system functionality can be changed flexibly because the

internal information, applications and operations are encapsulated and deployed

as separate web service units, which can be integrated and modified easily.

Therefore, a lot of time and effort can be saved on installation and configuration.

• Ease to be connected and integrated: Ease to be connected and integrated is

fulfilled by leveraging Apache Axis2, Apache Struts, and the web portal user

interface. Many programming languages such as Java and commercial software

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 58

such as Microsoft Excel have developed the infrastructure to invoke web services

through SOAP messaging. As internal system operations can be exposed to

external systems via standardized web services protocol, information and

applications residing in the SC Collaborator system can be integrated in external

software applications. For example, a construction material supplier uses a home-

grown inventory management system in its warehouse. Suppose the supplier is

also one of the users of a SC Collaborator system which has been installed to

support collaborations with clients and suppliers regarding material procurement

and delivery. The inventory management system can be configured so that it

downloads the material orders from the SC Collaborator system every hour, and

then checks for any time conflicts and updates the production planning schedule

in an appropriate manner.

• Customizable access to information and applications: Accessibility to system

layouts and operations in SC Collaborator can be assigned to users according to

the roles, user groups, and organization the user belongs to. The access control

can also be customized to individual users. As a result, internal information,

applications and system operations in SC Collaborator are protected for trading

partners. This ensures that the right information and operations are delivered to

the right person at the right time.

2.6 Scenario Examples

To illustrate the SC Collaborator system for construction industry applications, two

example scenarios are described in the following sections. These examples demonstrate

the potential of SC Collaborator to facilitate communication among construction project

participants, and to integrate distributed web applications and systems for construction

project management.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 59

2.6.1 Procurement Interactions

The first example is an e-Procurement scenario among interior designers, contractors and

suppliers. Many studies have shown the values of electronic procurement (e-

Procurement) in supply chain management [43, 85]. In addition to the obvious savings in

transaction cost and time, e-Procurement increases responsiveness to orders, offers

product standardization, and enhances inventory management. However, it usually takes

time to configure and establish the communication channels between buyers and sellers.

Due to its service oriented architecture, SC Collaborator allows easy and quick

integration of system users. When there is a new supplier, the system administrator

simply needs to create an account in SC Collaborator for the supplier and add the address

of the supplier’s web services to the system. The communication between trading

partners is then achieved through the standardized web services protocol.

This scenario demonstrates the integration of external applications (Microsoft Excel) and

information (production planning schedule) for e-Procurement in SC Collaborator.

Figure 2.22 shows the workflow of activities involved in this example scenario. In this

scenario, suppliers publish their product information on company online catalogs on the

Internet or an Extranet. The catalogs can be password protected so that only business

partners can access the published information. An interior designer working with a

general contractor company GenCon connects to the catalogs and selects the items (such

as furniture items) the designer needs (Figure 2.23). As the catalogs are incorporated

with Autodesk i-drop4 technology, the designer can drag and drop the items from online

catalogs directly to architectural design software Autodesk Architectural Desktop (ADT).

As illustrated in Figure 2.23, embedded item information is also dropped to the

architectural drawings.

4 Autodesk i-drop technology allows users to drag and drop contents from web pages to the drawing

interface in computer-aided design (CAD) software programs developed by Autodesk, Inc. The i-drop
indicator software that enables Autodesk i-drop technology can be downloaded at
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=2753219&linkID=9240618.

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 60

Online catalog

1. Drag and
drop items
to CAD

Autodesk ADT

[HTTP]

2. Summarize
& review
materials
[Java]

Microsoft Excel

3. Send
proposed
materials

[WS]

4. Review
material lists

5. Submit
purchase orders

6. Check
capacity

7. Review
purchase
orders

8. Submit
confirmation

9. Finalize
procurement

[WS] [WS]
Production

planning schedule

In
te
ri
or
 D
es
ig
ne

r
Co

nt
ra
ct
or

Su
pp

lie
r

Figure 2.22: Workflow in the e-Procurement scenario

Figure 2.23: Integrating online purchasing with CAD and procurement services: (1)

designers dragging items from supplier’s online catalogs to CAD drawings, (2) extracting

the embedded item information to a spreadsheet in Microsoft Excel, (3) and sending the

suggested item list to SC Collaborator for contractor to review

Floor plan in
Autodesk ADT

SC
Collaborator

[Web service]

[Autodesk
i-drop]

XML package file:
<?xml version=”1.0”?>
<package
xmlns=”x-schema:idrop-schema.xml”>
 <proxy defaultsrc=”data/bed1.jpg”>
</proxy>
<dataset defaultsrc=”Portrait_K1456.max”>
 <datasrc clipformat=”CF_IDROP.max”>
 <datafile src=”IK-CA-0789.max”/>
 </datasrc>
 <datasrc clipformat=”CF_IDROP.dwg”>
 <datafile src=”IK-CA-0789.dwg”/>
 </datasrc>
</dataset>
</package>

(1)

(2)

(3)

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 61

After selecting and adding the items to the architectural drawings, the designer extracts

the item information from Autodesk ADT to Microsoft Excel for final checking and

submission (Figure 2.23). The procurement is submitted to SC Collaborator via

standardized web services protocol for the general contractor to review. The

procurement officer in GenCon can log into the SC Collaborator system and evaluate the

material lists proposed by the designer through the portlet unit shown in Figure 2.24.

Each product item is hyperlinked to a separate window that displays the product

information and timestamps. Items that have not been included in any purchase order can

be selected and grouped together for procurement. By providing an order number, an

electronic purchase order can be easily generated and sent to the designated suppliers for

confirmation.

Figure 2.24: Contractor’s layout for review of procurement item list and submission of

electronic purchase orders

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 62

The suppliers log into the SC Collaborator system and manage the purchase orders they

receive, as illustrated in Figure 2.25. In this scenario, the portlet unit for suppliers to

manage purchase orders is modified to integrate external information and systems useful

for the decision making process. Before making decisions, the suppliers need to check

the product availability in their inventory and the capacity of their production units. For

each supplier in this scenario, this information is stored in production management

systems deployed as web services. Queries are sent to the production management

systems and results are displayed in the SC Collaborator system.

The information displayed in the portlet unit is provided by separate web service units

that connect to the external systems as well as the internal database in SC Collaborator

(Figure 2.26). Changes of the locations or operations of the production management

systems do not affect the system functioning and layout in the portlet unit due to the

abstraction using web service units. After considering the inventory information and

production schedule, the furniture supplier can confirm the feasibility to deliver the

requested products and select the items that they decide to offer. As shown in Figure

2.25, the supplier decides to offer only two of the requested items and responds to

GenCon electronically with a confirmation number. The contractor GenCon can obtain

the instantaneously updated item status and purchase order information from the SC

Collaborator system (Figure 2.27).

Figure 2.25: Supplier’s layout for managing received purchase orders

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 63

SC Collaborator

Web
service

unit

DB

Web
service

unit

Production planning
schedule

Web service interface

Supplier

Figure 2.26: Connection to internal and external information and applications in the

portlet unit that suppliers manage and evaluate received purchase orders

Figure 2.27: Contractor’s layout showing updated item status and purchase order

information

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 64

2.6.2 Project Rescheduling

The second scenario is based on data collected from a completed construction project of a

supermarket of 11,500 square meters in Boras, Sweden (Figure 2.28). The project started

in April 2007 and finished in April 2008. In this project, the main contractor hired 21

subcontractors. Since the project was heavily dependent on subcontractors,

communication and collaboration among the general contractor and subcontractors were

crucial to the success of the project.

Figure 2.28: Floor plan and finished layout of the supermarket in Boras, Sweden

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 65

One of the major problems in the project reported by the general contractor was the

schedule delay by the subcontractors, which causes the project manager to reschedule

almost every day. Turnkey-type of contracts were used in the project. In other words,

material procurement, delivery and installation were performed by the subcontractors

themselves. The general contractor was not involved in any of these activities.

Therefore, poor communication and coordination among the general contractors and

subcontractors could prevent the project manager from gathering all the necessary

information for making the right decisions in schedule change, hindering the rescheduling

and project planning processes.

To limit the scope, the period between May 2007 and August 2007 was extracted for

testing purposes. In this period, the construction site was divided into five areas (i.e.

major parts 1, 2, 3, entry area, and loading area) in most processes such as ground works,

piling works and foundation works. There were 38 activities in total in this period,

involving five subcontractors. Figure 2.29 shows a portion of the project schedule.

Figure 2.29 also illustrates some of the activity dependencies in the period. This implies

the interdependencies and constraints of the site areas as well as the subcontractors. This

scenario focuses on the suppliers of a concrete works subcontractor, Muniak.

Information such as material delivery and activity start time is crucial for project

rescheduling. The SC Collaborator system provides a platform for integrating this

information from suppliers, subcontractors and general contractor. The flows of

information and interactions are as follows (Figure 2.30). In the scenario, production

status information and expected delivery time information were reported to

corresponding subcontractors by the suppliers (Figure 2.31). By sharing the current

status and future forecast of production, suppliers could let customers be aware of any

potential production problems ahead of time and be able to mitigate the problems.

Sharing of current delivery status and expected delivery time allowed the contractors to

plan for the on-site product verification and storage and to evaluate their schedule

feasibility. General contractor and subcontractors could monitor the production and

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 66

delivery information provided by their suppliers in the SC Collaborator system (Figure

2.32). The latest time the suppliers updated their information was also recorded in the

system so that the contractors knew how up-to-date the information was.

If the subcontractors anticipated any need for change of the activity start time or finish

time, due to changes in material delivery time or unexpected delay in installation, the

subcontractors could adjust the scheduled start, finish and every scheduled delivery time

(Figure 2.33). The adjustment information was sent to the suppliers and the general

contractor. This information may change the suppliers’ decisions about the size of

production for the next production period and the expected delivery time. This

information may also help the general contractor alter the task sequence and resource

allocation. Consequently, the information provided by the participants and the decisions

made by the participants were highly interdependent on each other.

Figure 2.29: An excerpt of the project schedule between May 2007 and August 2007

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 67

Su
pp

lie
rs 1. Report

production

2. Check
scheduled
delivery time

3. Determine
number of
production for
next period and
expected
delivery time

Su
b-

co
nt

ra
ct

or
s 1. For each task,

review all
materials
delivery time

2. Adjust
scheduled start,
finish and every
scheduled
delivery time

3. Report start,
finish and
progress

G
en

er
al

 C
on

tr
ac

to
r 1. Review

change of
scheduled start
and finish

2. Consistency
check & update
schedule

Figure 2.30: Information flows and interactions in the rescheduling process

Figure 2.31: Supplier’s layout for production reporting

Delivery time requested by contractor

Delivery time estimated by
supplier can be changed

Notify contractor when product is
delivered

Reporting current status and future
forecast of production

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 68

Figure 2.32: Subcontractor’s layout for monitoring material production and delivery

Figure 2.33: Subcontractor’s layout for activity review and adjustment

Subcontractors can change the estimated
start time and finish time of the task they
are responsible for

Reporting of current progress

Showing the delivery status of the
materials required for this task

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 69

Transparency among the suppliers, subcontractors and general contractor is important for

construction supply chain management. The general contractor reported that they had no

idea about the situations and problems of materials and therefore could only keep pushing

the subcontractors, while several subcontractors in the project even did not have all the

information from their suppliers. The SC Collaborator system allows instantaneous

sharing and analysis of information, adding values to the entire supply chain. Different

cases of collaboration and information transparency were tested using the SC

Collaborator system. It showed that the benefits of information sharing in this scenario

can be significant. For example, there was a material production and delivery delay of

one week (five working days) starting from Day 1 of Week 20 for a sandwich concrete

element called Siroc. The element was required for the activity “7.1.1 foundation works

– concrete surrounding beam – major part 1.” The activity required two more materials –

1,121 m3 of concrete and 2,388 m2 of form material (wood). The form material was

delivered to the construction site every working day. There were several constraints that

had to be satisfied: every delivery must be confirmed at least three working days before

the delivery time. In addition, product type, configuration, amount, and delivery time

cannot be changed after confirmation.

Figure 2.34 is a plot of the inventory on site of the form material over time. The area

under each curve multiplied by per-unit per-day holding cost represents the total

inventory holding cost of the form material due to delivery delay of the material Siroc,

which happened in Day 1 of Week 20. If the Siroc supplier notified the subcontractor

Muniak of the delay at least three days earlier, Muniak could contact the supplier of the

form material immediately and delay the delivery for one week. The activity 7.1.1 could

also be postponed, allowing the general contractor and other subcontractors to modify the

project schedule and reallocate resources. If Muniak knew the delay one day earlier than

delivery time, the inventory holding cost it would incur was more than double the cost it

would incur if it knew two days earlier. If the Siroc supplier did not notify Muniak of

the delay, either due to unwillingness to report or lack of communication channels, the

inventory holding cost could be tremendous. Therefore, although information sharing

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 70

between trading partners looks simple, it can aid decision making and add significant

values to each supply chain member.

People often are not aware of the changes in the materials or schedules and do not react

to the changes promptly, leading to time lags of the information flowing among project

participants. The time lags can accumulate along a supply chain and result in significant

impacts. Therefore, message notifications and automated responses can support efficient

supply chain management. In this scenario, for instance, basic service units were

integrated and orchestrated into a composite service unit to facilitate automated response

and notification upon changes of material delivery. When a supplier changed the

estimated delivery time of a product item using the production reporting application

portlet unit (Figure 2.31), the composite service operation “changeDeliveryEstiamte” is

triggered.

0

50

100

150

200

250

300

350

400

Wk 19
D5

Wk 20
D1

Wk 20
D2

Wk 20
D3

Wk 20
D4

Wk 20
D5

Wk 21
D1

Wk 21
D2

Wk 21
D3

Wk 21
D4

Wk 21
D5

Wk 22
D1

Wk 22
D2

>=3 days notification
2 days notification
1 day notification
No notification

Figure 2.34: Inventory (in m2) of form material (wood) under different supply delay

conditions

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 71

As illustrated in Figure 2.35, the operation combines the functionality of various basic

service operations from the Material Order Service, Message Service, and Project

Schedule Service. First, the operation notifies the buyer of the change in item delivery

time and checks the impact of the change to the affected task. If the impact is high and

the start time of the affected task needs to be changed (postponed in most cases), the

operation “changeDeliveryEstimate” modifies the task schedule, alters the target delivery

time of the other product items involved in the affected task, and notifies the general

contractor, subcontractors, and suppliers impacted. This shows that business tasks can be

customized and automated conveniently in a service oriented framework such as SC

Collaborator.

2.7 Summary

This chapter describes a prototype service oriented portal-based system, SC Collaborator,

designed for construction supply chain integration and collaboration. Open standards and

open source technologies are leveraged for the system implementation. The SC

Collaborator system provides a single point of access to distributed information,

applications and services among scattered supply chain members. It is modular, flexible,

secure, and easy to install and reconfigure, which make the SC Collaborator system a

desirable means for companies in the construction industry. The system also allows

interoperation among applications because programs written in different languages and

operating on different systems can be integrated via standardized web services protocol.

The system consists of four major components. The communication layer allows users to

connect to the system using web browsers, wireless devices, and web services. The

portal-based user interface manages the system configuration and layout. The business

applications layer performs deployment, invocation, and orchestration of web service

units. The back-end database stores and provides the information that supports the

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 72

system and various application operations. Based on the characteristics of construction

supply chains and the study in literatures, we have summarized five desirable sytem

features for construction supply chain integration and collaboration as described in

Section 1.2. The SC Collaborator system fulfills all these five system features.

Figure 2.35: BPEL process for the operation “changeDeliveryEstimate”

Message Service

Material Order Service

Project Schedule Service

Message Service
Material Order Service

Material Order Service

Message Service

- itemId
- new estimated
delivery time

- notification

[If the item is essential to the
affected task]

CHAPTER 2. SERVICE ORIENTED PORTAL-BASED FRAMEWORK 73

Two example scenarios have been presented to illustrate the potential of the SC

Collaborator system to extend functionality and to integrate partners in construction

projects. The first one is an e-Procurement scenario which involves designers,

contractors and suppliers. In this scenario, online catalogs, architectural design software,

SC Collaborator, and production and inventory planning systems are integrated to

facilitate the procurement process in construction projects. The second one is a scenario

based on a real construction project of a supermarket in Boras, Sweden. The

rescheduling problem among general contractor, subcontractors and material suppliers

has been studied. The importance of transparency in an integrated construction supply

chain which can be enabled by the SC Collaborator system has been illustrated in the

chapter.

Chapter 3

Supply Chain Modeling and
Performance Monitoring

3.1 Introduction

The planning and management of supply chains require properly specifying the

participating members and identifying the relationships among them. This task is

especially challenging in the construction industry because construction supply chains are

complex in structure and often composed of a large number of participants who work

together in a project-based temporary manner. Construction projects typically involve

tens and hundreds of companies, supplying materials, components, and a wide range of

construction services [28]. Modeling the structure of participants involved in a

construction supply chain can help understand the complexity and the organization in a

supply chain [74]. Supply chain network models also facilitate the identification of

bottlenecks and provide the basis for supply chain re-configuration and re-engineering.

There are very few standard methods or frameworks for representing and modeling

supply chain structures. Supply chain structures are commonly recorded as tables that

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 75

enlist the members of a supply chain, or represented as network diagrams that show the

supply chain members as well as the links between them. Lambert and Cooper [52]

proposed a mapping of supply chain structures using three primary attributes: members of

the supply chain, structural dimensions, and types of business processes between the

members. However, these methods do not provide a direct migration from the modeling

of supply chain structures to the modeling of the business operations.

There are two commonly used supply chain modeling frameworks that provide guidelines

to systematically map the relationships of companies and specify the operations involved

in a supply chain. The Supply Chain Model framework introduced by the Global Supply

Chain Forum (GSCF) is built on eight key business processes that are both cross-

functional and cross-organizational in nature [51]. As illustrated in Figure 3.1, the eight

processes are customer relationship management, supplier relationship management,

customer service management, demand management, order fulfillment, product

development and commercialization, manufacturing flow management, and returns

management. Each process is managed by a cross-functional team, including

representatives from logistics, production, purchasing, finance, marketing, and research

and development. The Supply Chain Model framework provides a granular framework

to model the cross-departmental interactions in every process along a supply chain.

However, the majority of construction companies are small and medium enterprises

(SMEs). According to a study on the construction industry in United Kingdom [28], for

example, about 83% of the private contracting companies employ three or less workers

while 98% of the companies employ 24 or less workers. Construction companies often

do not have a clear boundary between business functional units. Employees in

construction companies usually work on a project basis instead of a business functional

basis. Therefore, the Supply Chain Model framework that describes the interactions

across internal business functional units is not suitable for modeling construction supply

chains.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 76

Figure 3.1: The Supply Chain Model framework [51] introduced by the Global Supply

Chain Forum (GSCF)

The other framework is the Supply Chain Operations Reference (SCOR) modeling

framework established by the Supply Chain Council for supply chain standardization,

measurement, and improvement [91]. The SCOR modeling framework is based on five

key supply chain processes – Plan, Source, Make, Deliver, and Return. The SCOR

modeling framework is hierarchically structured into four levels, with increasing details

at each level. Construction supply chains often do not have a standard and well

structured configuration. Members may not be involved in both the material flows and

the information flows of the procurement, manufacturing, and distribution activities in

construction supply chains. Since the SCOR framework is generic and can be used to

model supply chains of various types and scales, the framework is suitable for modeling

various construction supply chains of different complexity. The material flows and

information flows in a supply chain are represented separately in the SCOR framework.

Therefore, the SCOR framework is employed for modeling construction supply chains in

this study.

The SCOR framework has been widely used to model supply chain network structures

and operations for strategic planning purposes [42]. However, the SCOR framework is

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 77

seldom leveraged for the design and implementation of information systems for supply

chain management. Furthermore, while performance monitoring is critical to the

measurement and improvement of supply chains, there have been little efforts focused on

performance monitoring systems for construction supply chain management. This

chapter discusses the modeling of construction supply chains using the SCOR

framework. Furthermore, this chapter describes the development of a supply chain

performance monitoring system by incorporating the SCOR models into the service

oriented SC Collaborator framework described in Chapter 2.

The supply chain models for a demonstration application presented in this chapter are

developed using a retrospective case study of the mechanical, electrical and plumbing

(MEP) processes in a student center construction project. There are altogether 524

distinct process-based performance metrics recommended in SCOR [91]. Since the MEP

case example is focused on the procurement and delivery processes, the metrics selected

in this study are the process cycle times, documentation accuracy, and product conditions

upon arrival. A model-based service oriented approach is adopted in the development of

the performance monitoring system. First, the supply chain models are transformed into

process execution files by leveraging Business Process Modeling Notation (BPMN) [78]

and Business Process Execution Language (BPEL) [80]. The BPEL process execution

files are then incorporated in the monitoring system, which is built on SC Collaborator.

This chapter is organized as follows. Section 3.2 briefly describes the SCOR framework.

Section 3.3 presents the MEP processes in the construction project we studied and

illustrates the modeling of the MEP supply chains using the SCOR framework. Section

3.4 demonstrates the implementation of the prototype supply chain performance

monitoring system and discusses the usage of performance metrics. Section 3.4 also

presents a service oriented approach to implementation of a system framework based on

SCOR models. Specially, the conversion of supply chain models into BPEL executable

files and the incorporation of the BPEL files in the service oriented system SC

Collaborator are illustrated in Section 3.4. Section 3.5 shows the system with the

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 78

construction project example. Section 3.6 summarizes the chapter and discusses the

limitations and potentials.

3.2 Supply Chain Operations Reference (SCOR)
Model

The Supply Chain Operations Reference (SCOR) modeling framework was initially

developed by Supply Chain Council in 1996. The current version is the SCOR model

version 9.0, which was released in 2008 [91]. The framework provides a systematic

approach to describe, characterize, and evaluate complex supply chain processes.

Standardization of business processes is necessary to allow the communication and

integration between business partners of the supply network [38]. The SCOR model is a

process reference model for standardization purposes. The model attempts to capture

business operations including (1) customer interactions, from order entry through paid

invoice, (2) product transactions, from supplier’s supplier to customer’s customer, and (3)

market interactions, from the understanding of aggregate demand to the fulfillment of

each order [91].

The SCOR modeling framework is based on five basic management processes in supply

chains – Plan, Source, Make, Deliver, and Return – to meet planned and actual demand

(Figure 3.2). Plan includes processes that balance resources to establish plans that best

meet the requirements of a supply chain and its sourcing, production, delivery, and return

activities. Source includes processes that manage the procurement, delivery, receipt, and

transfer of raw material items, subassemblies, products, and services. Make includes

processes that transform products to a finished state. Deliver includes processes that

provide finished goods and services, including order management, transportation

management, and distribution management. Return includes post-delivery customer

support and processes that are associated with returning or receiving returned products.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 79

Figure 3.2: SCOR Level 1 modeling [91]

The SCOR framework allows users to model supply chain structures and relationships in

a progressive and systematic manner. There are four levels of model development in the

SCOR framework (Figure 3.3). Level 1 modeling provides a broad definition of the

scope and content for the SCOR model (Figure 3.2). Level 2 modeling divides the five

basic management processes into process categories, which allow companies to describe

the configuration of their supply chains. Table 3.1 shows the Level 2 process categories

described in the SCOR framework. Level 2 models conceptually specify the relationship

and interactions among supply chain members. The conceptual specification can be

extended to describe the process workflow through Level 3 modeling.

Level 3 modeling provides companies with the information for detailed planning and

setting goals. The SCOR framework offers a guideline of the inputs and outputs for each

Level 3 process element. As an example, Figure 3.4 shows a Level 3 process “S1.1

Schedule Product Deliveries.” As shall be discussed in Section 3.4.1, Level 3 processes

provide the basis for defining the supply chain performance metrics. The Level 3

processes for process type Source, Make, and Deliver are illustrated in Table 3.2, Table

3.3, and Table 3.4 respectively.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 80

Figure 3.3: Four levels of SCOR business processes [91]

Figure 3.4: Inputs and outputs for Level 3 process “S1.1 Schedule Product Deliveries”

 Level
 # Description Schematic

SC
O

R
 M

od
el

1 Top Level
(Process Types)

2
Configuration

Level
(Process

Categories)

3
Process Element

Level
(Decompose
Processes)

4
Implementation

Level
(Decompose

Process Elements)

Plan
Deliver MakeSource

Return Return

Plan

P5 P4 P3P2P1

P1.1
Identify, Prioritize, and

Aggregate Supply-Chain
Requirements

P1.4
Establish and
Communicate
Supply-Chain

Plans
P1.2

Identify, Assess, and
Aggregate Supply-Chain

Resources

P1.3
Balance Supply-
Chain Resources

with Supply-Chain
Requirements

N
ot

 In
cl

ud
ed

in

 S
C

O
R

 D
oc

P1: Plan Supply Chain; P2: Plan Source; P3: Plan Make;
P4: Plan Deliver; P5: Plan Return

S1.1
Schedule
Product

Deliveries

Inputs
Sourcing Plans
P2.4
Replenishment Signal
M1.2, M2.2, M3.3, D1.3,
D2.3, D3.3
Return Inventory Transfer
Data
DR1.4, DR2.4, DR3.3, DR3.4
Production Schedule
M1.2, M2.1, M3.2

Outputs
Product On Order
P2.2
Scheduled Receipts
S1.2, S3.4, M1.1, M2.1,
M3.2, D1.8, D4.2
Procurement Signal
(Supplier)

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 81

Table 3.1: SCOR Level 2 process categories

Level 1 Process Type Level 2 Process Category
PLAN P1: Plan Supply Chain

P2: Plan Source
P3: Plan Make
P4: Plan Deliver
P5: Plan Return

SOURCE S1: Source Stocked Product
S2: Source Make-to-Order Product
S3: Source Engineer-to-Order Product

MAKE M1: Make-to-Stock
M2: Make-to-Order
M3: Engineer-to-Order

DELIVER D1: Deliver Stocked Product
D2: Deliver Make-to-Order Product
D3: Deliver Engineer-to-Order Product
D4: Deliver Retail Product

RETURN SR1: Source Return Defective Product
SR2: Source Return Maintenance, Repair, Operations
(MRO) Product
SR3: Source Return Excess Product
DR1: Deliver Return Defective Product
DR2: Deliver Return Maintenance, Repair, Operations
(MRO) Product
DR3: Deliver Return Excess Product

Table 3.2: SCOR Level 3 process elements for “Source”

S1: Source Stocked Product S2: Source Make-to-Order
Product

S3: Source Engineer-to-
Order Product

S1.1: Schedule Product
Deliveries

S1.2: Receive Product
S1.3: Verify Product
S1.4: Transfer Product
S1.5: Authorize Supplier

Payment

S2.1: Schedule Product
Deliveries

S2.2: Receive Product
S2.3: Verify Product
S2.4: Transfer Product
S2.5: Authorize Supplier

Payment

S3.1: Identify Sources of Supply
S3.2: Select Final Supplier(s) and

Negotiate
S3.3: Schedule Product Deliveries
S3.4: Receive Product
S3.5: Verify Product
S3.6: Transfer Product
S3.7: Authorize Supplier Payment

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 82

Table 3.3: SCOR Level 3 process elements for “Make”

M1: Make-to-Stock M2: Make-to-Order M3: Engineer-to-Order
M1.1: Schedule Production

Activities
M1.2: Issue Product
M1.3: Produce and Test
M1.4: Package
M1.5: Stage Product
M1.6: Release Product to

Deliver
M1.7: Waste Disposal

M2.1: Schedule Production
Activities

M2.2: Issue Product
M2.3: Produce and Test
M2.4: Package
M2.5: Stage Product
M2.6: Release Finished Product

to Deliver
M2.7: Waste Disposal

M3.1: Finalize Engineering
M3.2: Schedule Production

Activities
M3.3: Issue Product
M3.4: Produce and Test
M3.5: Package
M3.6: Stage Product
M3.7: Release Product to Deliver
M3.8: Waste Disposal

Table 3.4: SCOR Level 3 process elements for “Deliver”

D1: Deliver Stocked
Product

D2: Deliver Make-
to-Order Product

D3: Deliver Engineer-
to-Order Product

D4: Deliver
Retail Product

D1.1: Process Inquiry
and Quote

D1.2: Receive, Enter and
Validate Order

D1.3: Reserve Inventory
and Determine
Delivery Date

D1.4: Consolidate
Orders

D1.5: Build Loads
D1.6: Route Shipments
D1.7: Select Carriers and

Rate Shipments
D1.8: Receive Product

from Source or Make
D1.9: Pick Product
D1.10: Pack Product
D1.11: Load Product and

Generate Shipping
Docs

D1.12: Ship Product
D1.13: Receive and

Verify Product by
Customer

D1.14: Install Product
D1.15: Invoice

D2.1: Process Inquiry
and Quote

D2.2: Receive,
Configure, Enter and
Validate Order

D2.3: Reserve
Resources and
Determine Delivery
Date

D2.4: Consolidate
Orders

D2.5: Build Loads
D2.6: Route Shipments
D2.7: Select Carriers

and Rate Shipments
D2.8: Receive Product

from Source or Make
D2.9: Pick Product
D2.10: Pack Product
D2.11: Load Product

and Generate Shipping
Docs

D2.12: Ship Product
D2.13: Receive and

Verify Product by
Customer

D2.14: Install Product
D2.15: Invoice

D3.1: Obtain and
Respond to RFP/RFQ

D3.2: Negotiate and
Receive Contract

D3.3: Enter Order,
Commit Resources and
Launch Program

D3.4: Schedule
Installation

D3.5: Build Loads
D3.6: Route Shipments
D3.7: Select Carriers and

Rate Shipments
D3.8: Receive Product

from Source or Make
D3.9: Pick Product
D3.10: Pack Product
D3.11: Load Product and

Generate Shipping
Docs

D3.12: Ship Product
D3.13: Receive and

Verify Product by
Customer

D3.14: Install Product
D3.15: Invoice

D4.1: Generate
Stocking Schedule

D4.2: Receive
Product at the
Store

D4.3: Pick Product
from Backroom

D4.4: Stock Shelf
D4.5: Fill Shopping

Cart
D4.6: Checkout
D4.7: Deliver

and/or install

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 83

Level 4 modeling focuses on implementation. Since SCOR Level 4 models are unique to

each company, the specific elements at this level are not defined within the SCOR

framework. In Level 4 modeling, users need to design the implementation details of each

Level 3 process to meet their own needs. Through the four levels of development, the

SCOR models can be extended to capture and represent complex interactions among

supply chain partners. Therefore, the SCOR framework is a useful tool for modeling

construction supply chains, which usually involve many organizations and are complex in

nature. The application of the SCOR framework to model construction supply chains is

illustrated in the next section.

3.3 Modeling of Construction Supply Chains Using
SCOR Framework: A Case Example

In this chapter, a construction project of a two-storey high school student center is used as

a case example (Figure 3.5). Specifically, the mechanical, electrical and plumbing

(MEP) supply chains of the project have been studied retrospectively and modeled based

on the information from the documents provided by and the interviews conducted with

the general contractor, subcontractors, and suppliers. The buyer-supplier relationships in

a construction project can differ from project to project, organization to organization, and

product to product. However, similar patterns are observed in the buyer-supplier

interactions and configuration of supply chains among various organizations and products

in the MEP processes of the project. Although the supply chain modeling is

demonstrated only with the MEP supply chains, the framework can be potentially applied

and extended to other kinds of supply chains in construction projects of various scales

and types.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 84

Figure 3.5: 3D model of the two-storey high school student center

3.3.1 Case Example

The student center in the example construction project is a two-storey building with a 650

fixed-seat auditorium, a 350 seat dining hall with a full commercial kitchen and server,

three bathrooms, and eight sophisticated science classrooms. The construction project

started in May 2008 and was planned to finish by December 2009. To minimize the

impact of the construction on student activities on campus, the construction site was kept

to minimal. The stocking space on site was limited in size and needed to change

locations occasionally over the project time. Early delivery of materials leading to long-

time stocking was not recommended in order to free up the construction site space and to

avoid double material handling. Therefore, the general contractor heavily emphasized

Just-in-Time material delivery in the project.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 85

There are 170 tasks in the project, and 47 of them are on the critical paths. Since many

MEP activities are essential for enabling other critical tasks, the MEP activities are

usually on the critical path. For example, as shown in Figure 3.6, the MEP activities for

the assembly hall on Level 1, the classrooms on Level 2, and the bathroom on Level 2 are

on a critical path. In addition, MEP activities are interior work and often start at the late

stage of the project. Therefore, there is little schedule buffer for problems in the MEP

activities. The performance and timeliness of the MEP components delivery are

important to the on-schedule project delivery. In fact, the project once experienced a

serious potential for prolonging project completion time due to the material delays of

several electrical products.

Figure 3.6: Project schedule showing only the tasks on the critical path

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 86

Managing the MEP supply chains in the project was more challenging than many project

participants had anticipated. The MEP components in the project were large in number

and supplied by many different companies. In addition, the project is expected to achieve

LEED Platinum Certification from the U.S. Green Building Council. Therefore, many of

the MEP (especially electrical) components were designed and specified by the

architects. Only a small portion of the electrical components are standard products that

can be delivered in a short period of time after procurement. The electrical subcontractor

and several other subcontractors did not anticipate and were surprised by the complexity

of the material supply management in a project of this scale.

3.3.2 SCOR Level 2 Modeling

Figure 3.7 shows the major interactions between the MEP subcontractors (buyers) and

the suppliers in the project. The flowchart represents a typical material planning,

procurement, and delivery management process for various products in construction

projects. The interactions start from the selection of suppliers and the request for

submittals and quotes. If the owners or architects do not specify the suppliers, the quotes

are used by the subcontractors to evaluate and to select the suppliers. The submittals,

which normally include shop drawings, product data, samples, manuals, and reports, are

then submitted to the engineers through the general contractor for approval. The

submittals may be approved as it is, approved with minor revisions needed, undecided

with major revisions needed and resubmission needed, and rejected. For the latter two

cases, the subcontractors need to revise the submittals and resubmit them to the

engineers. The revision and resubmission process can be iterative and could take weeks

to months in the planning phase.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 87

Figure 3.7: Flow chart of a typical material planning, procurement, and delivery

management process in construction projects

Subcontractors are awarded the bid

Subcontractors obtain quotes from different
suppliers for supplier selection

Subcontractors ask Suppliers for submittals

Subcontractors send the submittals to
General Contractor (GC)

GC forwards the submittals to
Engineers for comments

Subcontractors receive approved submittals

Approved?

Yes

Subcontractors (and
Suppliers) revise the

submittals

Yes

No

No

Subcontractors places orders to Suppliers

Type of products

Suppliers deliver to the
site/Subcontractors’ warehouse

Subcontractors, Suppliers, and
Manufacturers collaborate with

each other for delivery

Assembly/modification/fabrication by Plants

Collaboration among Subcontractors,
Plants, and Suppliers

Plants deliver to the site/Subcontractors’ warehouse

Stocked
standard
products

Make-to-order
standard /

configurable
products

Custom
products

 Suppliers specified by
Owners or Architects?

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 88

In the material procurement and delivery management phase in the student center

construction project, the interactions along the MEP supply chains show three major

patterns according to the nature of products. For high-demand standard commodity

products such as wires, tubing, bolts, and nuts that subcontractors purchase from

distributors (suppliers), the suppliers usually keep stocks of such products to meet

anticipated orders. Therefore, the suppliers usually can deliver the products in a short

time once they receive the purchase orders. The second type is standard and configurable

products that have low turnover rate and/or high inventory cost, for instance, light

fixtures and switchgears. Products of this type are produced only after customers'

purchase orders are received, or so-called “made-to-order.” The third type is products

that are specially designed, engineered, and customized by the owners, architects,

engineers, or subcontractors. One example is customized ductwork. Close interactions

and collaborations among the subcontractors, the plants, and the suppliers are often

required in the design, engineering, sourcing, and delivery processes. In the following

subsections, the high-level SCOR Level 2 modeling of the information flows and

material flows for these three types of products is illustrated. The supply chain models

are then extended to create supply chain process maps with greater details through the

SCOR Level 3 and Level 4 modeling in Section 3.3.3.

3.3.2.1 Stocked Standard Products

Some standard products such as wires and tubing are maintained in a finished goods state

and kept in stocks in suppliers’ inventory prior to the receipt of a customer order. These

products usually have high demand and low inventory cost. Suppliers procure according

to sales forecast, so products are produced before the suppliers receive order. Supply

chains of this type are inventory driven. Unsatisfied orders usually become lost sales as

alternative suppliers can often be found.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 89

Figure 3.8: SCOR Level 2 model for a typical construction supply chain for stocked

standard products

Construction supply chains for stocked standard products involve foremen in the

construction site, subcontractors, distributors, and manufacturers. Figure 3.8 shows the

SCOR Level 2 model for this type of supply chains. The dotted lines and the solid lines

represent the information flows and the material flows respectively. The information

flows start from the subcontractors’ headquarters, where purchase orders are sent. There

are two alternative material flow paths. Products are often delivered to the construction

site at the time designated by the subcontractors. In some cases, subcontractors hope to

better control the material delivery time and practice just-in-time delivery on site. These

subcontractors prefer the suppliers first delivering the products to the subcontractors'

warehouses and manage the products themselves.

3.3.2.2 Make-to-order Standard / Configurable Products

Products of this type include products that are built to a specific design and the products

that are manufactured, assembled, or configured from standard parts or subassemblies.

Suppliers prefer make-to-order due to various reasons. Suppliers of products such as

(P1: Plan Supply Chain; P2: Plan Source; P4: Plan Deliver; S1: Source Stocked Product; D1: Deliver Stocked Product)

D1 S1 D1

P4

P2

P1

P4

S1 D1
S1

Manufacturers Distributors
Subcontractors’

headquarters
Subcontractors’

warehouses Construction site

S1

Information
flow

Material
flow

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 90

light fixtures usually do not keep stocks of their products because they often publish a

wide variety of products in catalogs and it is hard for them to anticipate the demand for

each specific design. Moreover, some products such as switchgears have a high

inventory cost and depreciation rate, making it risky to keep stock for uncertain

anticipated demand. Many suppliers also like to keep the flexibility to slightly configure

and customize their products based on the requirements of a particular customer order.

For these reasons, manufacture, assembly, or configuration of these make-to-order

standard / configurable products begins only after the receipt and validation of a firm

customer order.

Similar to the stocked standard products, members of construction supply chains for

make-to-order standard / configurable products include foremen in the construction site,

subcontractors, distributors, and manufacturers. Figure 3.9 shows the SCOR Level 2

model for a typical construction supply chain for make-to-order standard / configurable

products. Normally, the products can be delivered directly from the manufacturers to

either the construction site or the subcontractors’ warehouses. On the other hand,

procurement directly to manufacturers is not allowed in general. Distributors serve as a

middleman between subcontractors and manufacturers, coordinating the procurement,

production, and delivery in the supply chain. Besides the distributors, some

subcontractors also communicate actively with their manufacturers to check the

production and to schedule the delivery (the communication channels are shown as the

information links with asterisks in Figure 3.9). By communicating directly with the

manufacturers, subcontractors can be less vulnerable to supply chain risk because they

can notice any material delay or shortage and mitigate the impact at an early stage.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 91

Figure 3.9: SCOR Level 2 model for a typical construction supply chain for make-to-

order standard / configurable products

3.3.2.3 Custom Products

While make-to-order standard / configurable products include standard products built

only in response to a customer order or products configured according to a customer

order, custom products include products that are designed, developed, and manufactured

in response to a specific customer request. HVAC systems and customized ductworks

are examples of custom products. While some standardized ducts can be made-to-order

or made-to-stock, ductwork systems with special configurations and dimensions need to

be designed and engineered before production.

Members of supply chains for custom MEP products usually consist of foremen in the

construction site, subcontractors, plants, and material suppliers. A plant represents a

business unit for the engineering and production of the custom products. A plant can be a

third party company, a department of a supplier, or a subsidiary of a subcontractor.

Suppliers, plants, and subcontractors collaborate with each other in the negotiation,

(P1: Plan Supply Chain; P2: Plan Source; P3: Plan Make; P4: Plan Deliver; S1: Source Stocked Product;
S2: Source Make-to-Order Product; M2: Make-to-Order; D1: Deliver Stocked Product; D2: Deliver Make-to-order Product)

D2

D2

P4
S2

P2
P4

S2 D1

S2

Manufacturers Distributors
Subcontractors’

headquarters
Subcontractors’

warehouses
Construction

site

M2

P3 P4

S1

P1

**

**

Information
flow

Material
flow

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 92

Figure 3.10: SCOR Level 2 model for a general construction supply chain for custom

products

design, procurement, production, and delivery processes. Architects and engineers who

have specialized requirements may also be involved in the negotiation, design, and

production processes. Final and detailed design often starts after the receipt and

validation of a customer order. Therefore, supply chains of this type of products are

driven by customer requirements and specifications and often take a long time to

complete. Figure 3.10 shows the SCOR Level 2 model for a general construction supply

chain for custom products.

3.3.3 SCOR Level 3 and Level 4 Modeling

While SCOR Level 2 models provide an overview of the information flows and material

flows along a supply chain, SCOR Level 3 and 4 models specify the business processes

involved in the supply chain. A Level 3 model links different SCOR Level 3 supply

chain processes into a process map whereas a Level 4 model specifies the necessary

D2
D3

P4 S3

P2
P4

S3 D1

S3

Suppliers Plants
Subcontractors’

headquarters
Subcontractors’

warehouses
Construction

site

M2

P3
P4

S1

P1

D1 M1
M3

P3

S1

S2

P2

(P1: Plan Supply Chain; P2: Plan Source; P3: Plan Make; P4: Plan Deliver; S1: Source Stocked Product;
S2: Source Make-to-Order Product; S3: Source Engineer-to-Order Product; M1: Make-to-Stock; M2: Make-to-Order;
M3: Engineer-to-Order; D1: Deliver Stocked Product; D2: Deliver Make-to-order Product; D3: Deliver Engineer-to-Order Product)

Information
flow

Material
flow

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 93

business operations to implement a particular SCOR Level 3 process. As an example,

Figure 3.11 depicts the SCOR Level 3 model for a typical construction supply chain for

stocked standard products. Similarly, SCOR Level 3 models can be constructed for

make-to-order standard / configurable products and for custom products. A Level 3

model usually is a complex map of processes, making it difficult to be developed on

paper. The complexity of a Level 4 model may vary, but the configuration in a Level 4

model for a particular Level 3 process may change occasionally. Therefore, a user-

friendly digital graphical representation should be used to facilitate the creation,

modification, and manipulation of the SCOR Level 3 and Level 4 models. Business

process modeling notation (BPMN) [78], supported by several open source and

commercial graphical tools, offers such a standard graphical representation for business

processes modeling.

Manufacturers

Distributors

Sub-cons’
headquarters

Sub-cons’
warehouses

Construction
site

S1.1
Schedule
Product

Deliveries

S1.2
Receive
Product

S1.3
Verify

Product

S1.2
Receive
Product

S1.3
Verify

Product

S1.4
Transfer
Product

D1.8
Receive
Product

from S/M

D1.11
Load

Product

D1.12
Ship

Product

P4.4
Establish

Delivery Plans

P1.4
Establish
& Com.
SC Plans

P2.4
Establish
Sourcing

Plans

D1.8
Receive
Product

from S/M

D1.11
Load

Product

D1.12
Ship

Product

D1.6
Route

Shipments

D1.7
Select

Carriers

D1.13
Receive &
Verify by
Customer

D1.8
Receive
Product

from S/M

D1.11
Load

Product

D1.12
Ship

Product

D1.6
Route

Shipments

D1.7
Select

Carriers

D1.13
Receive &
Verify by
Customer

D1.3
Determine
Delivery

Date

D1.4
Consolidate

Orders

S1.1
Schedule
Product

Deliveries

S1.2
Receive
Product

S1.3
Verify

Product

S1.4
Transfer
Product

P4.4
Establish
Delivery

Plans
Storage

Storage

D1.2
Receive, Enter

& Validate
Order

PO

Figure 3.11: SCOR Level 3 model for a typical construction supply chain for stocked

standard products

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 94

3.3.3.1 Business Process Modeling Notation (BPMN) Models

BPMN [78] is an Object Management Group (OMG) standard for business process

modeling. This graph-oriented modeling language provides a visual modeling notation to

specify business processes in a diagram. The primary objective of BPMN is to bridge the

gap between process design and process implementation. BPMN is targeted both as a

high level process specification for business users and as a low level process description

details for implementers. The business users should be able to easily read and understand

a BPMN business process diagram. On the other hand, the process implementer can add

further details to a business process diagram in order to represent the process suitable for

a physical implementation. As a result, BPMN models can help define process

interactions and facilitate communication in the process design and analysis phase.

BPMN models can also act as a blueprint for the subsequent implementation.

There are various standards such as IDEF0 [96] and UML [77] for process modeling. In

this study, BPMN is used for SCOR Level 3 and Level 4 modeling because BPMN

models can easily be converted into executable languages such as Business Process

Execution Language (BPEL) [80]. Efforts spent on the development of SCOR Level 3

and Level 4 models in BPMN can thus be leveraged for system execution, which will be

demonstrated in Section 3.4.2. In addition, the modeling in BPMN is made by simple

diagrams with a small set of graphical elements. BPMN models can make complex

system architecture understandable and facilitate the understanding of the flows and the

processes between different organizations. Moreover, BPMN modeling is user-friendly

due to the support of several open source and commercial graphical BPMN tools. This

research uses an open source BPMN modeling tool developed by Eclipse Foundation,

called Eclipse BPMN Modeler [31] (Figure 3.12).

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 95

Figure 3.12: Snapshot of Eclipse BPMN Modeler

There are four basic categories of elements in BPMN models – flow objects, connecting

objects, swimlanes, and artifacts (Figure 3.13). Flow objects consist of three core

elements – events, gateways, and activities. An event is denoted as a circle and

represents something that happens. An event can associate with other elements such as a

message envelope or a clock to perform a complex event. Every process has only one

start event and one end event. A gateway determines forking and merging of paths

depending on the conditions expressed. An activity element can be a task which

represents a single unit of work or a sub-process which has its own self-contained

sequence flows and start and end events. Connecting objects represent linkages between

flow objects, with sequence flows linking flow objects in the same pool and message

flows linking flow objects in different pools. Swimlanes consist of pool and lane

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 96

Figure 3.13: Core components in BPMN standard

elements. A pool represents a major participating company in a process, whereas a lane

represents a division of a company. Nevertheless, pool and lane elements are

interchangeable and different companies can also be separated by lanes in the same pool.

3.3.3.2 BPMN Model for SCOR Level 3 Modeling

The SCOR Level 3 model for a typical supply chain for stocked standard products shown

in Figure 3.11 can be represented using BPMN (Figure 3.14). The sourcing activities of

distributors, highlighted in Figure 3.11, are not included in the BPMN representation

because it is assumed that there is no backlog and that a subcontractor only procures

stocked standard products from the suppliers with sufficient inventory. Therefore, the

supply chain from a subcontractor’s perspective is independent of the sourcing activities

of distributors. The SCOR Level 3 models for make-to-order standard / configurable

products and for custom products are shown in Figure 3.15 and Figure 3.16, respectively.

Different pools are used to represent the subcontractor, the distributors, the

manufacturers, the plants, and the suppliers. The subcontractor’s headquarter,

warehouse, and the construction site are separated by lanes.

Flow Object - Event

Start End

Swimlane

Pool

Lane

Flow Object - Activity

Connecting Object

Flow Object - Gateway

Sequence Flow

Parallel Fork/Join

Inclusive Decision/
Merge (OR)

N
am

e
N

am
e

N
am

e N
am

e

Artifact

Data
Object

Text
Annotation

Message Flow

Association

Descriptive Text
Here

Task Sub-process

Exclusive Decision/
Merge (XOR) or

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 97

Figure 3.14: BPMN representation of the SCOR Level 3 model for stocked standard

products

Figure 3.15: BPMN representation of the SCOR Level 3 model for make-to-order

standard / configurable products

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 98

Figure 3.16: BPMN representation of the SCOR Level 3 model for custom products

3.3.3.3 BPMN for SCOR Level 4 Modeling

The complexity of the implementation for different Level 3 processes can vary. Figure

3.17 illustrates the BPMN representation of a SCOR Level 4 model for the fairly

complex Level 3 process “Manu D2.2 Receive, Configure, Enter & Validate Order”

performed by manufacturers, which is shown in Figure 3.15. When performing the Level

3 process, as described in the Level 4 process model, the manufacturer processes the

purchase order received and checks the order consistency and validity. If the order is not

valid, the manufacturer will return the order and ask for clarification; otherwise, the

manufacturer will check its inventory status and production plan concurrently. After

evaluating the order, the manufacturer will either send a confirmation message if the

order is accepted, or notify a rejection on the purchase order otherwise.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 99

Figure 3.17: BPMN graphical representation of the process “Manu D2.2 Receive,

Configure, Enter & Validate Order” in Figure 3.15

These processes and their arrangements depicted in Figure 3.17 are only one of the many

possible configurations. In fact, SCOR Level 4 models are specific to company and

product. The SCOR documents do not provide the detailed process components, process

structures, and implementation. Users need to define the Level 4 models to fit their own

needs and situations.

3.4 Supply Chain Performance Monitoring

The SCOR framework is commonly used to describe the network structure of a supply

chain for strategic planning. The use of the SCOR models in the development of

information systems for supply chain integration and management is herein proposed and

demonstrated. This section presents a development framework that leverages SCOR

Level 3 and Level 4 models to build a supply chain performance monitoring system for

construction projects.

In the construction industry, consumers increasingly place a higher value on quality than

on loyalty to suppliers, and price is often not the only determining factor in making

choices [76]. Performance management is a common means to improve quality level and

to maintain a high quality. Performance monitoring and measurement is at the heart of

the performance management processes [15]. It is often said that a business can only

If

And

If

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 100

manage what it measures. The lack of performance measurement systems is one of the

major obstacles to effective supply chain management [55]. In the construction industry,

various researchers have developed conceptual frameworks and systems for the

monitoring and measurement on the performance at the project level [22, 46, 106].

However, studies on the performance monitoring and measurement systems of supply

chains in construction projects are lacking. Supply chain performance monitoring and

measurement systems allow project participants to identify any bottleneck in a supply

chain and offer the basis for supply chain process evaluation and improvement.

Therefore, a performance monitoring system can help contractors to evaluate suppliers’

information for use in future projects.

Building a supply chain performance monitoring system is a non-trivial task because it

involves understanding and integration across organizational boundaries. Traditionally,

supply chain performance is measured in the form of scorecards or reports through

interviews or questionnaires. These approaches are labor-intensive in the data collection

processes and often provide information with time lags. Nowadays the Internet provides

a means to instantaneously share and integrate distributed information and applications at

low cost. Monitoring supply chain performance and sharing the data across company

boundaries can now be performed conveniently over the web. This section describes the

use of the Internet and web services technologies for the development of a web-enabled

performance monitoring system for construction supply chains.

The system development framework, as illustrated in Figure 3.18, adopts a model-based

service oriented approach. At the beginning of the system design phase, the supply chain

network and its members are identified and modeled through the SCOR Level 1 and

Level 2 modeling framework. Process maps of internal and external supply chain

operations are then produced through SCOR Level 3 and Level 4 modeling and

represented in the BPMN standard. Performance metrics for each SCOR Level 3 process

are specified, with the aid of the SCOR guidelines. Whenever necessary, the SCOR

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 101

Level 4 BPMN models are modified to measure and record the specified performance

metrics.

In the system implementation phase, the SCOR Level 3 and Level 4 models are then

converted into web services execution language BPEL files. Implementation details such

as port types of the connected web services are added to the BPEL files, which are finally

incorporated to the SC Collaborator system.

We can reuse the modeling techniques in Section 3.3 for the supply chain network

modeling and the process modeling in the system development framework. The

following sections describe the incorporation of performance metrics in a BPMN process

model and the conversion of the system implementation of BPMN process models in SC

Collaborator.

Figure 3.18: Development framework for service oriented supply chain performance

monitoring systems using the SCOR framework, open standards, and open source

technologies

Supply chain
network modeling
(SCOR framework)

Process modeling and
definition

(SCOR framework, BPMN)

Web services mechanisms
and protocols

(SC Collaborator, SOAP,
WSDL)

Process execution
(BPEL)

Performance metrics
specification

(SCOR framework, BPMN)

System Design System Implementation

Make DeliverSource

Plan

Deliver Source

PlanPlan

Process Metrics
S2.2 …
S2.3 …
D1.2 …
D1.3 …
… …

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 102

3.4.1 Supply Chain Performance Metrics

What to measure and how to measure should be clearly defined when developing a

performance monitoring and measurement system. Various performance metrics for

supply chain management have been suggested, investigated, and analyzed in literature

[36-39, 48, 54]. Gunasekaran et al. [38] emphasizes performance metrics related to

suppliers, delivery performance, customer-service, and inventory and logistics costs in a

supply chain. Kleijnen and Smits [48] analyzes performance metrics in fill rate,

confirmed fill rate, response delay, stock level, delivery delay, and sales/inventory ratio.

Gunasekaran and Kobu [36] reviews recently published literature on performance

measurement in supply chains and summarizes 27 key performance indicators for supply

chain management. In this research, we refer to the guidelines for supply chain

performance metrics in the SCOR framework [91].

The SCOR document suggests 524 distinct performance metrics that are divided into five

categories: supply chain reliability (RL), responsiveness (RS), agility (AG), costs (CO),

and asset management (AM). Reliability measures the accuracy and conditions of the

products, documentation, packaging, etc. in the delivering process. Responsiveness

refers to the speed at which a supply chain provides products to the customer. Agility

measures the flexibility and adaptability of a supply chain to respond to the changes in

markets. Costs correspond to the costs associated with operating the supply chain. Asset

management measures the effectiveness in managing assets to support supply chain

operations. The performance metrics are hierarchically structured in three levels. For

example, as illustrated in Figure 3.19, the performance metric “Receive, Configure, Enter

& Validate Order Cycle Time” belongs to “RS 2.3 Delivery Cycle Time” on Level 2,

which belongs to “RS 1.1 Order Fulfillment Cycle Time” on Level 1 in the Supply Chain

Responsiveness category.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 103

Figure 3.19: Performance metrics hierarchically structured in the SCOR guidelines

Level 3 performance metrics are related to SCOR Level 3 processes. For example, the

performance metric “Receive, Configure, Enter & Validate Order Cycle Time” measures

the average time associated with reserving resources and determining a delivery date in

the SCOR Level 3 processes “D1.2 Receive, Configure, Enter & Validate Order” and

“D2.2 Receive, Configure, Enter & Validate Order.” Therefore, we can select the supply

chain performance metrics in a process-based approach after the SCOR Level 3

modeling. Selection of performance metrics is specific to the characteristics of the project

and the needs of the stakeholders. One approach is to first decide one or two

performance categories of interest, and then selects the performance metrics in the

categories of interest in each SCOR Level 3 supply chain process.

Reliability

Responsiveness

Agility

Costs

Asset Management

Receive, Configure, Enter & Validate Order Cycle Time

Reserve Resources & Determine Delivery Date Cycle Time

Receive Product from Make/Source Cycle Time

Receive & Verify Product Cycle Time

Ship Product Cycle Time
:

RS.2.3 Delivery Cycle Time

RS.1.1 Order Fulfillment Cycle Time

Performance
Category

Level 1
Metrics

Level 2
Performance

Metrics

RS.2.1 Source Cycle Time

RS.2.2 Make Cycle Time

Level 3
Performance

Metrics

D1.2, D2.2

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 104

For the case example, since timeliness was emphasized in the MEP processes in the

student center construction project, performance metrics in the Supply Chain

Responsiveness category are selected for most of the processes. Metrics in the Supply

Chain Reliability category are also selected because unreliable and incomplete order

fulfillment can delay the material delivery. For demonstration purpose, the selected

metrics include mainly process cycle time, timeliness of product arrival, product

conditions upon arrival, and documentation accuracy. Table 3.5 enlists some of the

supply chain performance metrics used in the student center construction case example.

Task elements can be added at the beginning and/or at the end of a SCOR Level 4 model

to measure and record the performance values. To measure the cycle time of the process

“D2.2 Receive, Configure, Enter & Validate Order,” for example, a task is added after

the start event to record the starting time of every instance of the process and a task is

added right before the end event to calculate the time spent on the instance, as illustrated

in Figure 3.20. The time spent is the cycle time for an instance of the D2.2 process. The

performance value of “Receive, Configure, Enter & Validate Order Cycle Time” for a

particular organization or a particular product type can be obtained by taking the average

of the cycle time of the D2.2 process instances.

Figure 3.20: Level 4 BPMN model for the process “Manu D2.2 Receive, Configure,

Enter & Validate Order” with addition of two tasks to calculate the cycle time

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 105

Table 3.5: Examples of supply chain performance metrics used in the case example

SCOR Supply Chain Processes SCOR Performance Metrics
P1.4 Establish & Communicate
Supply-Chain Plans

• (RS) Establish Supply Chain Plans Cycle
Time

P2.4 Establish Sourcing Plans • (RS) Establish Sourcing Plans Cycle Time
P3.4 Establish Production Plans • (RS) Establish Production Plans Cycle Time
P4.4 Establish Delivery Plans • (RS) Establish Delivery Plans Cycle Time
S1.1 S2.1 S3.3 Schedule Product
Deliveries

• (RS) Schedule Product Deliveries Cycle Time
• (RS) Average Days per Schedule Change
• (CO) Quantity per shipment

S1.2 S2.2 S3.4 Receive Product • (RL) % Orders/ Lines Received On-Time
• (RL) % Orders/ Lines Received with Correct

Shipping Documents
• (RS) Receiving Product Cycle Time

S1.3 S2.3S3.5 Verify Product • (RL) % Orders/ Lines Received Defect Free
• (RL) % Orders/ lines Received with Correct

Content
• (RS) Verify Product Cycle Time

M1.1 M2.1 Schedule Production
Activities

• (RS) Schedule Production Activities Cycle
Time

• (AM) Capacity Utilization
M2.2 M3.3 Issue Sourced/ In-
Process Product

• (RS) Issue Sourced/In-Process Product Cycle
Time

• (CO) Quantity per Shipment
M2.3 Produce and Test • (RL) Yield

• (RS) Produce and Test Cycle Time
• (AM) Capacity Utilization

D1.1 D2.1 Process Inquiry and
Quote

• (RS) Process Inquiry & Quote Cycle Time

D1.2 D2.2 Receive, Configure,
Enter and Validate Order

• (RS) Receive, Configure, Enter & Validate
Order Cycle Time

D1.3 D2.3 Reserve Inventory and
Determine Delivery Date

• (RL) % of Orders Delivered In Full
• (RS) Reserve Inventory & Determine Delivery

Date Cycle Time
D1.8 D2.8 D3.8 Receive Product
from Source or Make

• (RL) % correct material documentation
• (RS) Receive Product from Source or Make

Cycle Time

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 106

3.4.2 System Implementation

The SCOR Level 3 and Level 4 BPMN models developed in Section 3.3.3 are deployed

in the SC Collaborator system framework. Each of these models is deployed as a

separate process service unit to be integrated in the system. The process service units are

implemented using Business Process Execution Language (BPEL) [80], an

implementation-level standard for web services orchestration. The SCOR Level 3 and

Level 4 BPMN models are converted to BPEL processes, which are deployed in an

orchestration engine for execution. After deployment, a Web Service Description

Language (WSDL) [104] document that describes the deployed BPEL process units is

available for each of the deployed SCOR Level 3 and Level 4 BPEL processes. The

WSDL documents provide information on how to invoke the process units.

Figure 3.21 illustrates the relationship among different components in the SCOR-based

SC Collaborator system framework. There are three types of service units – SCOR Level

3 process units, SCOR Level 4 process units, and fundamental web service units.

• As discussed in Section 3.3.3, SCOR Level 3 models can be categorized for (1)

stocked standard products, (2) make-to-order standard / configurable products,

and (3) custom products. Each role in the Level 3 model is deployed as a BPEL

process unit. Each SCOR Level 3 process node in the Level 3 models links to a

SCOR Level 4 process unit. For example, as represented in Figure 3.21, the

SCOR Level 3 process unit of the Subcontractor role for stocked products links to

the SCOR Level 4 process units of “D2.2” and “P4.4.” WSDL documents of the

Level 4 process units are needed for service invocation.

• The SCOR Level 4 BPEL process units integrate the fundamental web service

units to perform various SCOR Level 3 processes. The process units refer to the

WSDL documents of the fundamental service units for service invocation.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 107

Fundamental Web
Service Units

SCOR Level 4
Process Units

Centralized User
InterfaceSC Collaborator Layout

Web services

App 1
Wrapper

Application
Portlet Unit

Portlet gateway

Web services

App 3
Wrapper

Web services

Source 2
WrapperWeb services

App 2
WrapperWeb services

Source 1
Wrapper

BPEL (D2.2) BPEL (P4.4) BPEL (D2.3)

BPEL (Stocked-
Subcon) BPEL (MTO-

Manu)
BPEL (Custom-

Subcon)

SCOR Level 3
Process Units

Application
Portlet Unit

Portlet gateway

Application
Portlet Unit

Portlet gateway

Application Portlet
Units

WSDL WSDL

WSDL
WSDL

WSDL

WSDLWSDLWSDL

WSDL
WSDL

WSDL

Figure 3.21: Incorporating SCOR Level 3 and Level 4 models in SC Collaborator

• Fundamental web service units include both the internal and external web service

units that are available to invocation. These web service units may perform

various operations such as offering data or system functionality, running an

application, or modifying information. The implementation and deployment of

web service units in SC Collaborator are discussed in Section 2.4. Each of these

web service units is associated with a WSDL specification document.

Figure 3.22 shows the procedures to implement a SCOR-based SC Collaborator system

framework based on SCOR Level 3 and Level 4 models. First, SCOR Level 4 BPMN

models are converted into BPEL skeleton files, which capture the process flows

described in the BPMN models. The skeleton files form the basis to develop complete,

executable BPEL process files. BPEL deployment packages are then created by

combining the BPEL process files with the WSDL documents that describe the Level 4

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 108

BPEL processes. The deployment packages are then deployed by Apache ODE engine

[9], an open source BPEL execution engine developed by the Apache Software

Foundation. Similarly, SCOR Level 3 BPMN models are converted into BPEL skeleton

files. Referring to the deployed SCOR Level 4 process units, complete Level 3 BPEL

process files are created. After that, deployment packages are built and deployed using

Apache ODE engine. Finally, both the SCOR Level 3 and Level 4 process units can be

invoked by application portlet units in SC Collaborator for system operations and layouts.

The details of the procedures are presented in the following sections.

Figure 3.22: Procedures to incorporate the SCOR models to the service oriented SC

Collaborator system framework

[Level 4]
BPMN models

[Level 4]
BPEL skeleton files

[Level 4]
Complete BPEL process files

Conversion program
(Java)

Add details
Link to web service units
(Eclipse BPEL Visual Designer)

[Level 3]
BPMN models

[Level 3]
BPEL skeleton files

[Level 3]
Complete BPEL process files

Conversion program
(Java)

Add details
Link to Level 4 BPEL units
(Eclipse BPEL Visual Designer)

[Level 4]
BPEL Deployment Package

[Level 3]
BPEL Deployment Package

[Level 4]
Deployed BPEL Processes

Deploy BPEL processes
(Apache ODE engine)

[Level 3]
Deployed BPEL Processes

Deploy BPEL processes
(Apache ODE engine)

Service invocation by
Application Portlet Units in

SC Collaborator

WSDL
Documents

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 109

3.4.2.1 Conversion of BPMN Models into BPEL Skeleton Files

BPMN models cannot be executed directly due to its high level of abstraction. However,

BPMN models can be easily converted into BPEL [80]. The converted BPEL files

capture the process flow and logic specified in the BPMN models. However, to make the

converted BPEL files executable, specifications of the BPEL activities and the partner

links have to be added.

BPMN models are stored and transferred using XML Metadata Interchange (XMI)

format. XMI is a standard developed by OMG for exchanging metadata information via

Extensible Markup Language (XML). To convert BPMN models into BPEL files, XMI

output of the BPMN models are exported, and then parsed to extract the process

definitions and sequences. Figure 3.23 shows the XMI representation of the BPMN

model for the SCOR Level 3 process “Manu D2.2 Receive, Configure, Enter & Validate

Order,” which is depicted in Figure 3.20. In the XMI output, every event, gateway,

activity, or artifact object is represented as an individual <vertices> element, while every

connecting object is represented as a <sequenceEdges> element. As illustrated in Figure

3.23, an XMI file indicates the linkages between the flow objects (events, gateways and

activities) represented in a BPMN model.

A Java conversion program has been built to parse XMI files and to create a BPEL

skeleton file for every BPMN model. The program instantiates a Java class Process for

every extracted <vertices> element. Every Process instance has (1) a process name, (2)

a process type, and (3) a list of succeeding Process instances. The name attribute of a

<vertices> element is used as the process name. The activityType attribute of a

<vertices> element is converted and used as the process type. The conversions between

activityType attribute values and the BPEL process type are listed in Table 3.6. The

outgoingEdges and incomingEdges attributes of <vertices> elements are matched to each

other to regenerate the sequences and relationships of the flow objects. As illustrated in

Figure 3.23, for example, the outgoingEdges attribute of <vertices> element “start”

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 110

<?xml version="1.0" encoding="UTF-8"?>
<bpmn:BpmnDiagram xmi:version="2.0"

xmlns:xmi="http://www.omg.org/XMI"
xmlns:bpmn="http://stp.eclipse.org/bpmn"
xmi:id="_7eIVwYYMEd6DcYMaJrJywg" iD="_7eIVwIYMEd6DcYMaJrJywg">
<pools xmi:type="bpmn:Pool" xmi:id="_7fUokYYMEd6DcYMaJrJywg"

iD="_7fUokIYMEd6DcYMaJrJywg" name="Manufacturer">
<vertices xmi:type="bpmn:Activity"

xmi:id="_ED9jIYYNEd6DcYMaJrJywg" iD="_ED9jIIYNEd6DcYMaJrJywg"
outgoingEdges="_ZJwbsYYOEd6DcYMaJrJywg" name="start"
activityType="EventStartEmpty"/>

<vertices xmi:type="bpmn:Activity"
xmi:id="_7fUok4YMEd6DcYMaJrJywg" iD="_7fUokoYMEd6DcYMaJrJywg"
outgoingEdges="_oin4kYYNEd6DcYMaJrJywg"
incomingEdges="_ZJwbsYYOEd6DcYMaJrJywg" name="Record Time"
activityType="Task"/>

 :
<vertices xmi:type="bpmn:Activity"

xmi:id="_Xy4vYYYOEd6DcYMaJrJywg" iD="_Xy4vYIYOEd6DcYMaJrJywg"
incomingEdges="_Xy4vaoYOEd6DcYMaJrJywg" name="end"
activityType="EventEndEmpty"/>

<sequenceEdges xmi:type="bpmn:SequenceEdge"
xmi:id="_ZJwbsYYOEd6DcYMaJrJywg" iD="_ZJwbsIYOEd6DcYMaJrJywg"
source="_ED9jIYYNEd6DcYMaJrJywg"
target="_7fUok4YMEd6DcYMaJrJywg"/>

<sequenceEdges xmi:type="bpmn:SequenceEdge"
xmi:id="_oin4kYYNEd6DcYMaJrJywg" iD="_oin4kIYNEd6DcYMaJrJywg"
source="_7fUok4YMEd6DcYMaJrJywg"
target="_oiUWkYYNEd6DcYMaJrJywg"/>

 :
<sequenceEdges xmi:type="bpmn:SequenceEdge"

xmi:id="_r2D_QYYNEd6DcYMaJrJywg" iD="_r2D_QIYNEd6DcYMaJrJywg"
name="Not validated" source="_oiUWkYYNEd6DcYMaJrJywg"
target="_r16OQYYNEd6DcYMaJrJywg"/>

 </pools>
</bpmn:BpmnDiagram>

Figure 3.23: XMI representation of the SCOR Level 4 BPMN model for the process

“Manu D2.2 Receive, Configure, Enter & Validate Order,” which is shown in Figure 3.20

matches the incomingEdges attribute of the succeeding <vertices> element “Process PO.”

The unique IDs of these two elements are specified in the <sequenceEdges> element

linking the <vertices> elements. As an example, the Process class instance for the

<vertices> element highlighted in Figure 3.23 has a value of (process name = “start”,

process type = “empty”, succeeding = [“Process@19821f”]), where “Process@19821f” is

the internal ID for the Process class instance with process name “Process PO.”

Vertex ID

Vertex ID

Vertex IDs

Edge ID

Edge ID

Edge ID

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 111

Table 3.6: Conversion table from BPMN elements to BPEL elements

BPMN element type “activityType” attribute value Converted BPEL activity
Event EventStartEmpty <bpel:empty>
Event EventEndEmpty <bpel:empty>

Activity Task, or null <bpel:empty>

Gateway GatewayDataBasedExclusive <bpel:if>, <bpel:elseif>,
<bpel:else>

Gateway GatewayDataBasedInclusive <bpel:if>
Gateway GatewayParallel <bpel:flow>

After parsing all the <vertices> elements in an XMI file, the Java conversion program

generates a linked list of instances of the class Process internally. The linked list is

then converted into a BPEL skeleton file with the corresponding BPEL activity tags. The

internally generated linked list and the BPEL skeleton file of the SCOR Level 4 model

for “Manu D2.2 Receive, Configure, Enter & Validate Order” are shown in Figure 3.24

and Figure 3.25, respectively. As illustrated in Figure 3.25, whenever there is an “if”

process instance or a “flow” process instance, the elements in the resulted BPEL skeleton

will move a level down. The conversion program finally adds an <bpel:process> tag as

the beginning element of the XML-based BPEL skeleton file.

SCOR Level 3 BPMN models can also be converted to BPEL skeleton files using the

conversion program using the same approach. Each lane in the SCOR Level 3 BPMN

model generates a single BPEL skeleton file. Figure 3.26 shows the BPEL skeleton file

for the “Subcontractor” lane in the SCOR Level 3 model for stocked standard products,

which is shown in Figure 3.14.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 112

Figure 3.24: The linked list of “Process” class instances after parsing the SCOR Level 4

model for the process “Manu D2.2 Receive, Configure, Enter & Validate Order”

<?xml version="1.0" encoding="UTF-8"?>
<bpel:process exitOnStandardFault="yes" name="Manu D2.2“

suppressJoinFailure="yes” xmlns:bpel="http://docs.oasis-
open.org/wsbpel/2.0/process/executable">

 <bpel:sequence>
 <bpel:empty name="start"/>
 <bpel:empty name="Record Time"/>
 <bpel:empty name="Process PO"/>
 <bpel:if name="Validate order">
 <bpel:sequence>
 <bpel:flow name="Feasibility check">
 <bpel:empty name="Check inventory"/>
 <bpel:empty name="Check production plan"/>
 </bpel:flow>
 <bpel:if name="Evaluate order">
 <bpel:empty name="Notify PO rejection"/>
 <bpel:elseif>
 <bpel:empty name="Send confirmation"/>
 </bpel:elseif>
 </bpel:if>
 </bpel:sequence>
 <bpel:elseif>
 <bpel:empty name="Ask for Clarification"/>
 </bpel:elseif>
 </bpel:if>
 <bpel:empty name="Calculate cycle time"/>
 <bpel:empty name="end"/>
 </bpel:sequence>
</bpel:process>

Figure 3.25: BPEL skeleton file converted from the linked list of “Process” class

instances depicted in Figure 3.24

start
[Empty]

Process PO
[Empty]

Validate
order
[If]

Ask for
Clarification

[Empty]

Check
inventory
[Empty]

Feasibility
check
[Flow]

Check
production

plan
[Empty]

[Flow]

Evaluate
order
[If]

Notify PO
rejection
[Empty]

Send
confirmation

[Empty]

[If]

[If]

end
[Empty]

Type

Name

Process
class

instance

Record
Time

[Empty]

Calculate
cycle time
[Empty]

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 113

<?xml version="1.0" encoding="UTF-8"?>
<bpel:process exitOnStandardFault="yes" name="Stocked-Subcontractor"

suppressJoinFailure="yes" xmlns:bpel="http://docs.oasis-
open.org/wsbpel/2.0/process/executable">

 <bpel:sequence>
 <bpel:empty name="start"/>
 <bpel:empty name="Sub P1.4 Est. SC Plans"/>
 <bpel:empty name="Sub P2.4 Est. Sourcing Plans"/>
 <bpel:empty name="Sub S1.1 Schedule Prod. Deliveries"/>
 <bpel:if name="Deliver Warehouse">

<bpel:sequence>
 <bpel:empty name="Sub S1.2 Receive Product"/>
 <bpel:empty name="Sub S1.3 Verify Product"/>
 <bpel:empty name="Sub S1.4 Transfer Product"/>
 <bpel:flow name="Inventory">
 <bpel:empty name="Sub P4.4 Est. Delivery Plans"/>
 <bpel:empty/>
 </bpel:flow>
 <bpel:empty name="Sub D1.8 Receive Prod. from S/M"/>
 <bpel:empty name="Sub D1.11 Load Product"/>
 <bpel:empty name="Sub D1.12 Ship Product"/>
 </bpel:sequence>
 </bpel:if>
 <bpel:empty name="Sub S1.2 Receive Product"/>
 <bpel:empty name="Sub S1.3 Verify Product"/>
 <bpel:empty name="end"/>
 </bpel:sequence>
</bpel:process>

Figure 3.26: BPEL skeleton file converted from the “Subcontractor” lane in the SCOR

Level 3 BPMN model for stocked standard products, which is shown in Figure 3.14

3.4.2.2 Completing BPEL Process Files

The generated BPMN skeleton file only describes the process flow represented in BPMN

model. The process flow serves as a backbone for the orchestration logic section of a

BPEL process file. Detailed specification of the BPEL activities and the PartnerLinks

and Variables sections need to be added before the BPEL process can be deployed.

Eclipse BPEL Visual Designer [32], an open source BPEL editor developed by the

Eclipse Foundation, is used to facilitate the addition of implementation and connection

details to BPEL skeleton files.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 114

To obtain a complete SCOR Level 4 BPEL process file, a new BPEL process file is

created in Eclipse BPEL Visual Designer. The BPEL codes in the generated Level 4

skeleton file are then copied to the new empty BPEL process file. Specifications of the

BPEL activities, partner links, and variables are then defined using the user interface

provided in Eclipse BPEL Visual Designer. Creation of a new BPEL process file in

Eclipse BPEL Visual Designer generates a WSDL document that is linked to the BPEL

process file. The WSDL document is modified automatically by the BPEL editor

whenever the linked BPEL process file is changed. Therefore, consistency between the

WSDL and BPEL files can be guaranteed.

Consider the SCOR Level 4 model for the process “Manu D2.2 Receive, Configure,

Enter & Validate Order” as an example. Figure 3.27 shows the Eclipse BPEL Visual

Designer displaying a new BPEL file with the BPEL codes from the skeleton file, which

are shown in Figure 3.25. When a BPEL activity is selected in the display in the BPEL

editor, the Properties window shows a form for entering specification details of the

selected BPEL activity. The form is dependent on the type of the selected BPEL

activities. For instance, when the empty BPEL activity “Check inventory” is selected, the

Properties window shows an option to replace the empty activity by a invoke, receive,

reply, or assign activity, as illustrated in Figure 3.27.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 115

Figure 3.27: Eclipse BPEL Visual Designer for completing the BPEL process file

For receive, reply and invoke activities, the partnerLink, portType, operation, and

variable attributes should be defined. Take the activity “Check inventory” as an

example. It is replaced by an invoke BPEL activity using the interface in Eclipse BPEL

Visual Designer. As illustrated in Figure 3.28, when the replaced “Check inventory”

activity is selected, the Properties window allows creation of a partner link that will be

associated with the activity. After naming the newly created partner link as “Inventory,”

WSDL document of the service unit Inventory Service is then imported to the BPEL

editor. The editor can extract the specification from the imported WSDL file such as the

service port type and the data structure of the request and response messages. Users can

Invoke

Receive

Reply Assign

Empty

Properties
window

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 116

associate the service unit Inventory Service to the newly created partner link “Inventory”

and assign the partner link to the activity “Check inventory,” as demonstrated in Figure

3.28. Finally, the operation “checkInventory” of the service unit Inventory Service is

selected. This automatically generates the variables with data structure consistent to the

request and response messages of the operation “checkInventory,” and assigns the

variables as well as the operation to the BPEL activity “Check inventory.” The BPEL

codes added at the back-end are shown in Figure 3.29.

Figure 3.28: Creating and assigning partner link to an invoke activity “Check inventory”

Create and assign
partner link to
invoke activity
“Check inventory”

Definition of input and
output message
structures of operation
“checkInventory” from
WSDL document

From WSDL of service
unit “Inventory Service”

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 117

 :
<bpel:partnerLink name="Inventory" partnerLinkType="tns:InventoryPLT"

partnerRole="ServiceProvider" />
 :
<bpel:variable name="InventoryResponse"

messageType="ns:checkInventoryResponse" />
<bpel:variable name="InventoryRequest"

messageType="ns:checkInventoryRequest" />
 :
<bpel:invoke name="Check inventory" partnerLink="Inventory"

operation="checkInventory" portType="ns:InventoryServicePortType"
inputVariable="InventoryRequest"
outputVariable="InventoryResponse" />

 :

Figure 3.29: Specification details for the “Check inventory” activity added to the BPEL

process file

Eclipse BPEL Visual Designer also allows a user-friendly interface for checking,

modifying and managing the specification details of each component in a BPEL process

file. As illustrated in Figure 3.30, for example, the created partner link “Inventory” and

variables “InventoryResponse” and “InventoryRequest” are listed in the user interface

display. When the partner link is selected, the Properties window shows the partner role

and available service operations of the service unit associated with the partner link.

Similarly, the definition of partner link, operation, input variable, and output variable for

the activity “Check inventory” can be conveniently viewed and changed using the

Properties window in the user interface, as shown in Figure 3.31.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 118

Figure 3.30: Displaying the definition of the partner link “Inventory”

Figure 3.31: Displaying the specification of the BPEL activity “Check inventory”

Partner link named
“Inventory” is defined

Available service
operations

Partner role

Variables that are consistent
with the request and response
messages of “checkInventory”
are automatically created

Operation
“checkInventory”

Definition of BPEL activity
“Check inventory”

Partner link

Operation

Variables

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 119

Based on the BPEL codes from BPEL skeleton files, specification details of the activities,

partner links and variables can be added easily using the BPEL editor Eclipse BPEL

Visual Designer. As the BPEL process files are changed, the BPEL editor also modifies

the WSDL documents associated with them, which are useful for deployment and

invocation of the BPEL service units. The complete BPEL process file and the

associated WSDL document of the Level 4 model for the process “Manu D2.2 Receive,

Configure, Enter & Validate Order” are shown in Figure 3.32 and Figure 3.33,

respectively.

For SCOR Level 3 models, similar procedures are taken to build complete, executable

BPEL process files from BPEL skeleton files, which are converted from Level 3 BPMN

models. The only difference is that SCOR Level 3 BPEL processes integrate multiple

Level 4 processes while SCOR Level 4 BPEL processes integrate multiple fundamental

service units. Therefore, WSDL documents of various Level 4 BPEL process units are

imported when adding specification details to SCOR Level 3 BPEL processes using

Eclipse BPEL Visual Designer. The complete BPEL process file and the associate

WSDL document of the “Subcontractor” role in the Level 3 model for stocked standard

products are illustrated in Figure 3.34 and Figure 3.35, respectively.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 120

<bpel:process name="Manu_D2_2" suppressJoinFailure="yes"
 targetNamespace="http://localhost:8080/service/process/Manu_D2_2"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
<bpel:import location="Manu_D2_2Artifacts.wsdl"
 namespace="http://localhost:8080/service/process/Manu_D2_2"
 importType="http://schemas.xmlsoap.org/wsdl/" />
<bpel:partnerLinks>
 <bpel:partnerLink name="client" partnerLinkType="tns:Manu_D2_2"
 myRole="Manu_D2_2Provider" partnerRole="Manu_D2_2Requester" />
 <bpel:partnerLink name="Inventory" partnerLinkType="tns:InventoryPLT"
 partnerRole="ServiceProvider"></bpel:partnerLink>
 :
 <bpel:partnerLink name="Message" partnerLinkType="tns:MessagePLT"
 partnerRole="ServiceProvider"></bpel:partnerLink>
</bpel:partnerLinks>
<bpel:variables>
 <bpel:variable name="input" messageType="tns:Manu_D2_2RequestMessage"/>
 <bpel:variable name="output" messageType="tns:Manu_D2_2ResponseMessage"/>
 <bpel:variable name="InventoryResponse" messageType="ns:checkInventoryResponse" />
 <bpel:variable name="InventoryRequest" messageType="ns:checkInventoryRequest" />
 :
 <bpel:variable name="MessageRequest" messageType="ns:addMessageRequest" />
 <bpel:variable name="CycleTimeRequest1" messageType="ns:calculateCycleTimeRequest" />
</bpel:variables>
<bpel:sequence name="main">
 <bpel:receive name="start" partnerLink="client" portType="tns:Manu_D2_2"
 operation="initiate" variable="input" createInstance="yes"/>
 <bpel:invoke name="Record Time" partnerLink="CycleTime" operation="addCycleTime"
 portType="ns:CycleTimeServicePortType" inputVariable="CycleTimeRequest" />
 <bpel:invoke name="Process PO" partnerLink="MaterialOrder" operation="processOrder"
 portType="ns:MaterialOrderServicePortType" inputVariable="MaterialOrderRequest"
 outputVariable="MaterialOrderResponse" />
 <bpel:if name="Validate order">
 <bpel:condition><![CDATA[$input.payload/tns:orderNumber!="" &&
 $$input.payload/tns:productCode!="" && $$input.payload/tns:quantity>0 &&
 $$input.payload/tns:fromCompany!=""]]></bpel:condition>
 <bpel:sequence>
 <bpel:flow name="Feasibility check">
 <bpel:invoke name="Check inventory" partnerLink="Inventory"
 operation="checkInventory" portType="ns:InventoryServicePortType"
 inputVariable="InventoryRequest" outputVariable="InventoryResponse" />
 <bpel:invoke name="Check production plan" partnerLink="Production"
 operation="checkProductionPlan" portType="ns0:production"
 inputVariable="ProductionRequest" outputVariable="ProductionResponse" />
 </bpel:flow>
 <bpel:if name="Evaluate order">
 <bpel:condition>...</bpel:condition>
 <bpel:invoke name="Notify PO rejection" partnerLink="Message" operation="addMessage"
 portType="ns:MessageServicePortType" inputVariable="MessageRequest" />
 <bpel:elseif>
 <bpel:invoke name="Send confirmation" partnerLink="Message" operation="addMessage"
 portType="ns:MessageServicePortType" inputVariable="MessageRequest" />
 </bpel:elseif>
 </bpel:if> </bpel:sequence>
 <bpel:elseif>
 <bpel:invoke name="Ask for Clarification" partnerLink="Message"
 operation="addMessage" inputVariable="MessageRequest" />
 </bpel:elseif>
 </bpel:if>
 <bpel:invoke name="Calculate cycle time" partnerLink="CycleTime"
operation="calculateCycleTime" portType="ns:CycleTimeServicePortType"
inputVariable="CycleTimeRequest1" />
</bpel:sequence> </bpel:process>

Figure 3.32: Excerpt of the complete BPEL process file of the Level 4 model for the

process “Manu D2.2 Receive, Configure, Enter & Validate Order”

Import

Partner links

Variables

Orchestration
logic

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 121

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdl="http://ws.apache.org/axis2" name="Manu_D2_2"
targetNamespace="http://localhost:8080/service/process/Manu_D2_2">
<plnk:partnerLinkType name="InventoryPLT">
 <plnk:role name="ServiceProvider" portType="wsdl:InventoryServicePortType"/>
</plnk:partnerLinkType>
 :
<plnk:partnerLinkType name="MessagePLT">
 <plnk:role name="ServiceProvider" portType="wsdl:MessageServicePortType"/>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="Manu_D2_2">
 <plnk:role name="Manu_D2_2Provider" portType="tns:Manu_D2_2"/>
 <plnk:role name="Manu_D2_2Requester" portType="tns:Manu_D2_2Callback"/>
</plnk:partnerLinkType>
<import location="InventoryService.wsdl" namespace="http://ws.apache.org/axis2"/>
<import location="CycleTimeService.wsdl" namespace="http://ws.apache.org/axis2"/>
<import location="MaterialOrderService.wsdl" namespace="http://ws.apache.org/axis2"/>
<import location="ProductionService.wsdl" namespace=" http://ws.apache.org/axis2"/>
<import location="MessageService.wsdl" namespace="http://ws.apache.org/axis2"/>
<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://localhost:8080/service/process/Manu_D2_2">
 <element name="Manu_D2_2Request"> <complexType> <sequence>
 <element name="buyer" type="string" />
 <element name="orderNumber" type="string"></element>
 :
 <element name="delivery" type="dateTime" maxOccurs="unbounded"></element>
 </sequence> </complexType> </element>
 <element name="Manu_D2_2Response"> <complexType> <sequence>
 <element name="result" type="string"/>
 </sequence> </complexType> </element>
</schema> </types>
<message name="Manu_D2_2RequestMessage"> <part element="tns:Manu_D2_2Request"
name="payload"/> </message>
<message name="Manu_D2_2ResponseMessage"> <part element="tns:Manu_D2_2Response"
name="payload"/> </message>
<portType name="Manu_D2_2"> <operation name="initiate">
 <input message="tns:Manu_D2_2RequestMessage"/>
</operation> </portType>
<portType name="Manu_D2_2Callback"> <operation name="onResult">
 <input message="tns:Manu_D2_2ResponseMessage"/>
</operation> </portType>
<binding name="Manu_D2_2" type="tns:Manu_D2_2">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation soapAction="initiate"/>
 <input> <soap:body use="literal"/> </input>
</operation> </binding>
<binding name="Manu_D2_2CallbackBinding" type="tns:Manu_D2_2Callback">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="onResult">
 <soap:operation soapAction="onResult"/>
 <input> <soap:body use="literal"/> </input>
</operation> </binding>
<service name="Manu_D2_2Service"> <port binding="tns:Manu_D2_2" name="Manu_D2_2Port">
 <soap:address location="http://localhost:8080/service/process/Manu_D2_2"/>
</port> </service>
<service name="Manu_D2_2CallbackService">
 <port binding="tns:Manu_D2_2CallbackBinding" name="Manu_D2_2CallbackPort">
 <soap:address location="http://localhost:8080/service/process/Manu_D2_2"/>
 </port>
</service>
</definitions>

Figure 3.33: WSDL file of the Level 4 model for the process “Manu D2.2 Receive,

Configure, Enter & Validate Order”

Partner link
type

Import

Types

Message

Port type

Binding

Service

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 122

<bpel:process name="Stocked_Subcon"
 targetNamespace="http://localhost:8080/service/process/Stocked_Subcon"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
<bpel:import namespace="http://localhost:8080/service/process/Sub_S1_4"
 location="Sub_S1_4.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import>
 :
<bpel:import namespace="http://localhost:8080/service/process/Sub_P1_4"
location="Sub_P1_4.wsdl" importType="http://schemas.xmlsoap.org/wsdl/"></bpel:import>
<bpel:import location="Stocked_SubconArtifacts.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/" />
<bpel:partnerLinks>
 <bpel:partnerLink name="client" partnerLinkType="tns:Stocked_Subcon"
 myRole="Stocked_SubconProvider" partnerRole="Stocked_SubconRequester" />
 <bpel:partnerLink name="Sub_P1_4" partnerLinkType="tns:Sub_P1_4PLT"
 partnerRole="ServiceRequester"></bpel:partnerLink>
 :
 <bpel:partnerLink name="Sub_D1_12" partnerLinkType="tns:Sub_D1_12PLT"
 partnerRole="ServiceRequester"></bpel:partnerLink>
</bpel:partnerLinks>
<bpel:variables>
 <bpel:variable name="input" messageType="tns:Stocked_SubconRequestMessage"/>
 <bpel:variable name="output" messageType="tns:Stocked_SubconResponseMessage"/>
 <bpel:variable name="Sub_P1_4Request" messageType="ns1:Sub_P1_4ResponseMessage" />
 :
 <bpel:variable name="Sub_D1_12Request" messageType="ns8:Sub_D1_12ResponseMessage" />
</bpel:variables>
<bpel:sequence name="main">
 <bpel:receive name="receiveInput" partnerLink="client" portType="tns:Stocked_Subcon"
 operation="initiate" variable="input" createInstance="yes"/>
 <bpel:invoke name="Sub P1.4 Est. SC Plans" partnerLink="Sub_P1_4" operation="onResult"
 portType="ns1:Sub_P1_4Callback" inputVariable="Sub_P1_4Request"/>
 <bpel:invoke name="Sub P2.4 Est. Sourcing Plans" partnerLink="Sub_P2_4"
 operation="onResult" portType="ns2:Sub_P2_4Callback" inputVariable="Sub_P2_4Request"/>
 <bpel:invoke name="Sub S1.1 Schedule Prod. Deliveries" partnerLink="Sub_S1_1"
 operation="onResult" portType="ns3:Sub_S1_1Callback" inputVariable="Sub_S1_1Request"/>
 <bpel:if name="Deliver Warehouse"> <bpel:sequence>
 <bpel:invoke name="Sub S1.2 Receive Product" partnerLink="Sub_S1_2"
 operation="onResult" portType="ns4:Sub_S1_2Callback" inputVariable="Sub_S1_2Request"/>
 <bpel:invoke name="Sub S1.3 Verify Product" partnerLink="Sub_S1_3"
 operation="onResult" portType="ns5:Sub_S1_3Callback" inputVariable="Sub_S1_3Request"/>
 <bpel:invoke name="Sub S1.4 Transfer Product" partnerLink="Sub_S1_4"
 operation="onResult" portType="ns6:Sub_S1_4Callback" inputVariable="Sub_S1_4Request"/>
 <bpel:invoke name="Sub P4.4 Est. Delivery Plans" partnerLink="Sub_P4_4"/>
 <bpel:invoke name="Sub D1.8 Receive Prod. from S/M" partnerLink="Sub_D1_8"
 operation="onResult" portType="ns0:Sub_D1_8Callback" inputVariable="Sub_D1_8Request"/>
 <bpel:invoke name="Sub D1.11 Load Product" partnerLink="Sub_D1_11"
 operation="onResult" portType="ns7:Sub_D1_11Callback"
 inputVariable="Sub_D1_11Request"/>
 <bpel:invoke name="Sub D1.12 Ship Product" partnerLink="Sub_D1_12"
 operation="onResult" portType="ns8:Sub_D1_12Callback"
 inputVariable="Sub_D1_12Request"/>
 </bpel:sequence> </bpel:if>
 <bpel:invoke name="Sub S1.2 Receive Product" partnerLink="Sub_S1_2"
 operation="onResult" inputVariable="Sub_S1_2Request"/>
 <bpel:invoke name="Sub S1.3 Verify Product" partnerLink="Sub_S1_3"
 operation="onResult" inputVariable="Sub_S1_3Request"/>
 <bpel:invoke name="callbackClient" partnerLink="client"
 portType="tns:Stocked_SubconCallback" operation="onResult" inputVariable="output"/>
 </bpel:sequence>
</bpel:process>

Figure 3.34: Excerpt of the complete BPEL process file of the “Subcontractor” role in the

Level 3 model for stocked standard products

Import

Partner links

Variables

Orchestration
logic

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 123

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" name="Stocked_Subcon"
targetNamespace="http://localhost:8080/service/process/Stocked_Subcon">
<plnk:partnerLinkType name="Sub_P1_4PLT">
 <plnk:role name="ServiceProvider" portType="wsdl:Sub_P1_4"/>
 <plnk:role name="ServiceRequester" portType="wsdl:Sub_P1_4Callback"/>
</plnk:partnerLinkType>
 :
<plnk:partnerLinkType name="Sub_D1_12PLT">
 <plnk:role name="ServiceProvider" portType="wsdl8:Sub_D1_12"/>
 <plnk:role name="ServiceRequester" portType="wsdl8:Sub_D1_12Callback"/>
</plnk:partnerLinkType>
<plnk:partnerLinkType name="Stocked_Subcon">
 <plnk:role name="Stocked_SubconProvider" portType="tns:Stocked_Subcon"/>
 <plnk:role name="Stocked_SubconRequester" portType="tns:Stocked_SubconCallback"/>
</plnk:partnerLinkType>
<import location="Sub_P1_4.wsdl"
 namespace="http://localhost:8080/service/process/Sub_P1_4"/>
<import location="Sub_D1_12.wsdl"
 namespace="http://localhost:8080/service/process/Sub_D1_12"/>
<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" attributeFormDefault="unqualified"
 targetNamespace="http://localhost:8080/service/process/Stocked_Subcon">
 <element name="Stocked_SubconRequest"> <complexType> <sequence>
 <element name="input" type="string"/>
 </sequence> </complexType> </element>
 <element name="Stocked_SubconResponse"> <complexType> <sequence>
 <element name="result" type="string"/>
 </sequence> </complexType> </element>
</schema> </types>
<message name="Stocked_SubconRequestMessage">
 <part element="tns:Stocked_SubconRequest" name="payload"/> </message>
<message name="Stocked_SubconResponseMessage">
 <part element="tns:Stocked_SubconResponse" name="payload"/> </message>
<portType name="Stocked_Subcon"> <operation name="initiate">
 <input message="tns:Stocked_SubconRequestMessage"/>
</operation> </portType>
<portType name="Stocked_SubconCallback"> <operation name="onResult">
 <input message="tns:Stocked_SubconResponseMessage"/>
</operation> </portType>
<binding name="Stocked_SubconBinding" type="tns:Stocked_Subcon">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate"> <soap:operation soapAction="initiate"/>
 <input> <soap:body use="literal"/> </input>
</operation> </binding>
<binding name="Stocked_SubconCallbackBinding" type="tns:Stocked_SubconCallback">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="onResult"> <soap:operation soapAction=" onResult"/>
 <input> <soap:body use="literal"/> </input>
</operation> </binding>
<service name="Stocked_SubconService">
 <port binding="tns:Stocked_SubconBinding" name="Stocked_SubconPort">
 <soap:address location="http://localhost:8080/service/process/Stocked_Subcon"/>
</port> </service>
<service name="Stocked_SubconCallbackService">
 <port binding="tns:Stocked_SubconCallbackBinding" name="Stocked_SubconCallbackPort">
<soap:address location="http://localhost:8080/service/process/Stocked_SubconCallback"/>
</port> </service>
</definitions>

Figure 3.35: WSDL file of the “Subcontractor” role in the Level 3 model for stocked

standard products

Partner link
type

Import

Types

Message

Port type

Binding

Service

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 124

3.4.2.3 Deployment of BPEL Process Files

The SCOR Level 3 and Level 4 BPEL processes are deployed as web service units in SC

Collaborator for invocation and integration. Deployment of BPEL processes in SC

Collaborator has been discussed in Section 2.4.3.3. To deploy a BPEL process, a

deployment package is created and then submitted to Apache Orchestration Director

Engine (ODE) engine [9] residing in SC Collaborator. A deployment package contains

four components – (1) the BPEL process file to be deployed, (2) a deployment descriptor

with file name “deploy.xml,” (3) a WSDL document that describes the BPEL process to

be deployed, and (4) WSDL documents of the service units invoked in the BPEL process.

As an example, the BPEL deployment package of the “Subcontractor” role in the SCOR

Level 3 model for stocked standard products contains:

• The SCOR Level 3 BPEL process file, as illustrated in Figure 3.34,

• A deployment descriptor file, as illustrated in Figure 3.36,

• The WSDL document associated with the Level 3 BPEL process file, as

illustrated in Figure 3.35, and

• WSDL documents of the SCOR Level 4 process units invoked in the Level 3

BPEL process, such as “Sub P1.4”, “Sub P2.4” and “Sub D1.12.” The WSDL

documents are similar to the WSDL document of the process unit “Manu D2.2,”

which is illustrated in Figure 3.33.

The BPEL deployment package of the SCOR Level 4 model for the Level 3 process

“Manu D2.2 Receive, Configure, Enter & Validate Order” contains:

• The SCOR Level 4 BPEL process file, as illustrated in Figure 3.32,

• A deployment descriptor file, as illustrated in Figure 3.37,

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 125

• The WSDL document associated with the Level 4 BPEL process file, as

illustrated in Figure 3.33, and

• WSDL documents of the fundamental service units invoked in the Level 4 BPEL

process.

<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
xmlns:Stocked_Subcon="http://localhost:8080/service/process/Stocked_Subcon"
xmlns:Sub_D1_11="http://localhost:8080/service/process/Sub_D1_11"
 :
xmlns:Sub_S1_4="http://localhost:8080/service/process/Sub_S1_4">
 <process name="Stocked_Subcon:Stocked_Subcon">
 <active>true</active>
 <process-events generate="all"/>
 <provide partnerLink="client">
 <service name="Stocked_Subcon:Stocked_SubconService" port="Stocked_SubconPort"/>
 </provide>
 <invoke partnerLink="client">
 <service name="Stocked_Subcon:Stocked_SubconCallbackService"
 port="Stocked_SubconCallbackPort"/>
 </invoke>
 <invoke partnerLink="Sub_P1_4">
 <service name="Sub_S1_4:Sub_S1_4Service" port="Sub_S1_4Port"/> </invoke>
 <invoke partnerLink="Sub_P2_4">
 <service name="Sub_P2_4:Sub_P2_4Service" port="Sub_P2_4Port"/> </invoke>
 <invoke partnerLink="Sub_P4_4">
 <service name="Sub_P4_4:Sub_P4_4Service" port="Sub_P4_4Port"/> </invoke>
 <invoke partnerLink="Sub_S1_1">
 <service name="Sub_S1_1:Sub_S1_1Service" port="Sub_S1_1Port"/> </invoke>
 <invoke partnerLink="Sub_S1_2">
 <service name="Sub_S1_2:Sub_S1_2Service" port="Sub_S1_2Port"/> </invoke>
 <invoke partnerLink="Sub_S1_3">
 <service name="Sub_S1_3:Sub_S1_3Service" port="Sub_S1_3Port"/> </invoke>
 <invoke partnerLink="Sub_S1_4">
 <service name="Sub_S1_4:Sub_S1_4Service" port="Sub_S1_4Port"/> </invoke>
 <invoke partnerLink="Sub_D1_8">
 <service name="Sub_D1_8:Sub_D1_8Service" port="Sub_D1_8Port"/> </invoke>
 <invoke partnerLink="Sub_D1_11">
 <service name="Sub_D1_11:Sub_D1_11Service" port="Sub_D1_11Port"/> </invoke>
 <invoke partnerLink="Sub_D1_12">
 <service name="Sub_D1_12:Sub_D1_12Service" port="Sub_D1_12Port"/> </invoke>
 </process>
</deploy>

Figure 3.36: Deployment descriptor of the “Subcontractor” role in the Level 3 model for

stocked standard products

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 126

<deploy xmlns="http://www.apache.org/ode/schemas/dd/2007/03"
xmlns:Manu_D2_2="http://localhost:8080/service/process/Manu_D2_2"
xmlns:axis2="http://ws.apache.org/axis2">
 <process name="Manu_D2_2:Manu_D2_2">
 <active>true</active>
 <process-events generate="all"/>
 <provide partnerLink="client">
 <service name="Manu_D2_2:Manu_D2_2Service" port="Manu_D2_2Port"/> </provide>
 <invoke partnerLink="client">
 <service name="Manu_D2_2:Manu_D2_2CallbackService" port="Manu_D2_2CallbackPort"/>
 </invoke>
 <invoke partnerLink="Inventory">
 <service name="axis2:InventoryService" port="InventoryServiceSOAP11port_http"/>
 </invoke>
 <invoke partnerLink="CycleTime">
 <service name="axis2:CycleTimeService" port="CycleTimeServiceSOAP11port_http"/>
 </invoke>
 <invoke partnerLink="MaterialOrder">
 <service name="axis2:MaterialOrderService"
 port="MaterialOrderServiceSOAP11port_http"/> </invoke>
 <invoke partnerLink="Production">
 <service name="production:production" port="productionSOAP"/>
 </invoke>
 <invoke partnerLink="Message">
 <service name="axis2:MessageService" port="MessageServiceSOAP11port_http"/>
 </invoke>
 </process>
</deploy>

Figure 3.37: Deployment descriptor of the Level 4 model for the process “Manu D2.2

Receive, Configure, Enter & Validate Order”

3.5 Scenario Demonstration

This section demonstrates the construction supply chain performance measurement

system that is developed for the student center construction project using the system

development framework presented in Section 3.4. The framework leverages the SCOR

models developed in Section 3.3. The scenario is based on the data set obtained from the

construction project, but the names of the companies are modified for privacy and

proprietary reasons. The first step of the system application is company registration. The

submittals from the subcontractors provide the general contractor with information about

the suppliers of every product. At the beginning of the system application, the general

contractor added the names of the distributors and manufacturers for each subcontractor

using an online form in the system (Figure 3.38). Modification and removal of the names

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 127

are also allowed through the online form. The subcontractors then initiated the SCOR

process for any product when they started procurement according to their schedules.

Figure 3.38: General contractor registering the distributors and manufacturers

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 128

The system offers a product-based tracking of the supply chain status at the SCOR Level

3. The start time and finish time for each invocation of SCOR Level 3 processes were

recorded in the system. The general contractor and subcontractors can log in the system

and check the current status of any products they have procured (Figure 3.39). Execution

history of the SCOR Level 3 processes is recorded and stored in the back-end database

for each product. In addition, contractors can also share the SCOR status records with

the members along their supply chains as well as other project participants. For instance,

the electrical subcontractor has shared its information of the electrical components to the

general contractor for supply chain visibility. The information was also shared with the

mechanical subcontractor and the plumbing subcontractor because there were many

overlaps of the MEP activities in the project. The sharing settings can be adjusted by the

contractors who own the information.

Figure 3.39: SCOR status checking in SC Collaborator

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 129

Figure 3.40: Supply chain performance monitoring in SC Collaborator

The key supply chain performance metrics used in this case scenario are listed in Table

3.5. The developed performance measurement system shows the values of the

performance metrics for each manufacturer, distributor, and contractor (Figure 3.40).

This information helps the contractors compare their business partners, evaluate their

supply chains, and identify bottlenecks and underperformed portions along their supply

chains. The information may also indicate performance improvement or deterioration

and offer guidelines for future supplier selection and project scheduling. In Figure 3.40,

the values of average cycle times were obtained from the schedules provided by the

contractors and suppliers. However, it should be pointed out that the companies did not

keep track of the numbers of products received on-time, with correct documentation and

in perfect condition, days per schedule change, quantity per shipment, and documentation

Relatively long time for
procurement preparation

Some products were not
delivered in perfect condition

Products were delivered on-
time, but some with incorrect
shipping document

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 130

accuracy in the construction project. The value ranges shown in Figure 3.40 were based

on the estimations provided by the companies.

For instance, as illustrated in Figure 3.40, only about 85% of the products that the

electrical subcontractor purchased from the distributor International Electric were

delivered in perfect condition. Perfect condition of an item means that the item meets

specification, has correct configuration, is undamaged, is accepted by the customer, is

faultlessly installed, and is not returned for repair or replacement. Imperfect condition

can be caused by poor transportation conditions, lack of communication between the

customer and the supplier, and incorrect documentations, etc. In this case, the

subcontractor and the distributor may need to find the causes and prevent further

problems.

Figure 3.40 also shows that all of the products the electrical subcontractor purchased

from the distributor International Electric were delivered on time as scheduled.

However, only nearly 95% of the received products came with correct shipping

documents, which may lead to confusion of the electrical subcontractor. The problem

should have been revealed and improved in the project or even in future collaborations.

In addition, the time that the electrical subcontractor generally spent on planning the

procurement process was relatively long compared to the duration of the whole sourcing

process. It could be difficult and subjective to draw conclusions on the length of the

planning time, but the performance measure points out a potential aspect that the

subcontractor can pay attention to and improve in the future.

3.6 Summary

This chapter demonstrates the modeling of construction supply chains using the Supply

Chain Operations Reference (SCOR) modeling framework. The mechanical, electrical

and plumbing (MEP) supply chains of a student center construction project have been

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 131

studied retrospectively and used as a case example. In the MEP supply chains we

studied, three major types of the construction supply chains were observed – stocked

standard products, make-to-order standard / configurable products, and custom products.

The three types of supply chains in the student center construction project are modeled

through the Level 2, Level 3, and Level 4 modeling of the SCOR framework. SCOR

Level 2 models describe the buyer-supplier interactions along supply chains. SCOR

Level 3 models specify the material flows and information flows among the Level 3

process elements involved in the supply chains. The implementation details of Level 3

process elements are captured in the SCOR Level 4 models. The SCOR Level 3 and

Level 4 models are represented in BPMN standard, which is a reader-friendly open

standard for process modeling.

This chapter also presents a model-based service oriented framework to develop a

construction supply chain performance monitoring system. The system development

framework consists of construction supply chain network, process modeling and

definition, performance metrics selection, and process execution. The framework

leverages open standards (BPMN, BPEL, WSDL, and SOAP), open source software (SC

Collaborator, MySQL, Liferay Portal, Apache Tomcat, Apache ODE, Axis2 framework,

Struts framework, and Hibernate framework), and the SCOR modeling framework. The

SCOR Level 3 and Level 4 models developed in the first part of this chapter are reused as

the baseline in the system design phase. Performance metrics are then determined in a

process-based approach for each Level 3 supply chain process element. For system

implementation, the Level 3 and Level 4 BPMN models are converted into BPEL files,

which are completed with the aid of an open source BPEL editing tool. The BPEL files

are finally incorporated in the service oriented SC Collaborator system that is presented

in Chapter 2. The modified SCOR-based SC Collaborator system allows product-based

supply chain tracking and organization-based performance monitoring, which are

demonstrated in Section 3.5.

CHAPTER 3. SUPPLY CHAIN MODELING AND MONITORING 132

The system development framework presented in this chapter uses the SCOR models as

the backbone. However, the framework is applicable to other supply chain models or

process maps. In addition, the system developed in this research is not limited to only

MEP supply chains in construction projects of medium scale. In a project of larger scale,

the supply chain relationships may be more complex because subcontractors may

subcontract some parts of their jobs to other companies. This results in layers of

subcontractors each of which is associated with its supply chains with different trading

partners. In this case, modifications of the structures and layouts in the SC Collaborator

system are needed to meet the actual project needs. However, the system in general can

be applied to various types of construction supply chains and to projects of various sizes.

Chapter 4

Distributed SC Collaborator Network

4.1 Introduction

In current collaborative systems, data and documents are commonly stored, managed, and

shared in a centralized manner because it facilitates data management and reduces the

possibility of data inconsistency. However, information sharing and application

integration may be hindered in such centralized systems because some project

participants may be reluctant to share information with other participants who do not

have direct business relationship. Sharing of information requires mutual trust, which is

often difficult to establish among participants in construction projects due to the

temporary project-based business relationships. The SC Collaborator system presented in

Chapter 2 is a centralized portal system with a single shared database. Despite the

security and access control capability of the portal-based system, supply chain members

may still be uncomfortable to provide proprietary information for sharing in a system that

non-trading partners can physically connect to.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 134

The ownership problem of the shared information is also a common issue for centralized

collaborative systems. In a construction project, systems for information and document

sharing are commonly installed and hosted in machines that are managed by the general

contractor. Contractors and suppliers that do not have direct business relationship with

the general contractor may hesitate to provide their information and documents to the

general contractor for hosting. Sometimes third party companies are employed to host

and manage the collaborative systems throughout a project. When the project is

completed, however, how to handle the shared information and documents and who has

the rights to own them are often ambiguous and controversial. In addition, companies

only have a limited control on the shared data if they are hosted by a third party.

These privacy and ownership problems can be alleviated by separating a centralized

system into a distributed network of systems. In such a distributed network, individual

project members own and manage their information and applications and, at the same

time, share the information and applications with designated project partners at specific

time period. Whenever the project finishes or the trading relationship ends, project

members can terminate the connections of other project participants to their systems. In

this way, people may feel more secure of their proprietary assets and become more

willing to share their information, system operations and services.

Establishing a framework for the distributed network is a non-trivial task. Security and

information consistency among distributed systems should be maintained. Concurrency

and sequencing of the connections across the systems should be facilitated. In this

chapter, we will discuss these technical issues and present a distributed network of

service oriented portal-based systems.

This chapter is organized as follows. Section 4.2 shows the communication between

distributed SC Collaborator systems. Section 4.3 discusses the security protection

provided for the service units deployed in a SC Collaborator system. Section 4.4 presents

the measures in SC Collaborator to ensure information consistency among service units

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 135

in distributed SC Collaborator system. Section 4.5 demonstrates the distributed SC

Collaborator network with a procurement scenario and a rescheduling scenario.

4.2 Distributed SC Collaborator Network

Architecture

Figure 4.1 shows the schematic representation of a centralized SC Collaborator system

and a distributed SC Collaborator network. In the distributed network architecture, each

organization has its own database and SC Collaborator system. Each individual SC

Collaborator system can act as an intranet and content management system internally,

while at the same time allows information exchange and sharing over the web. As

illustrated in Figure 4.1, a centralized SC Collaborator system is conventionally used to

integrate loosely coupled applications and to share information among project

participants from different organizations. The database and the SC Collaborator system

are hosted by either one organization or a third party company. With the centralized

architecture, individual organizations may hesitate to upload and share their sensitive

information depending on their level of trust. On the contrary, for the distributed network

architecture as shown in Figure 4.1, the storage and ownership of information are

distributed among enterprises and users. They can grant the rights to view or access their

own proprietary data and documents to particular collaborating partners for a specific

period of time. The distributed systems thus provide better control of the shared

information. With the distributed network architecture, enterprises may become more

willing to coordinate and share their proprietary information.

The communication between individual SC Collaborator systems is achieved using

standardized web service technologies and languages. As illustrated in Figure 4.2, the

business implementation core supports the invocation of web services through

standardized SOAP. The Apache Axis2 framework allows information, applications, and

operations to be exposed and deployed as web services. The deployed functionalities are

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 136

described using standardized WSDL language for discovery and invocation. The

connectivity between separate SC Collaborator portal systems can be easily created as

long as the address of the deployed web services is given.

Figure 4.1: Centralized SC Collaborator system versus distributed SC Collaborator

network

General
Contractor WSDL

Axis2Struts

Portal

Business core S
ec

ur
ity

Subcontractors

WSDL

Axis2 Struts

Portal

Business core

Se
cu

ri
ty

Suppliers
WSDL

Axis2 Struts

Portal

Business core

S
ec

ur
ity

SOAP

SOAP

SOAP

BPEL

BPEL

Suppliers
WSDL

Axis2Struts

Portal

Business core S
ec

ur
ity

BPEL

BPEL

SOAP

SOAP

Figure 4.2: System architecture for communications among individual SC Collaborator

systems

Deployed
web

services

SC
Collaborator

Enterprises A B C

Users

DB

A B C

Centralized Distributed

DB DB

DB

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 137

4.3 Service Security

Security and information consistency are the key issues that a distributed collaborative

system network needs to tackle. Security can be performed on the data layer and/or the

networking layer. In the former approach, data is manipulated by security functions in

the applications before being transmitted from a sender to a receiver. In the latter

approach, security is provided by the communication network protocol such as Secure

Sockets Layer (SSL). In SC Collaborator, the former approach is adopted and we have

developed a layer for access control for the internally deployed web service units.

The web service units can be exposed in a secure way. Each web service unit is treated

as a resource with separate permission information, which is stored at the back-end

database. Successful authentication with correct user ID and password is required to

invoke the service units for data retrieval and application operations. The user ID and

password share the same profile with the accounts in SC Collaborator. In other words,

the system administrator can manage the access rights to the deployed web services by

managing the accounts in SC Collaborator using the administrator portlet. The access

rights are established or removed when the corresponding SC Collaborator account is

created or deleted. This ensures a consistent access control to the portal system as well as

the exposed functionalities.

Since the portal user interface keeps track of the user information after a user logs in the

system, the application portlet units can obtain the user identification and check the

profiles assigned to the user before invoking web service units in a different SC

Collaborator system. The associations between users and external service unit profiles

are managed by system administrators and are hidden from the front-end user

perspective. The functions to change and to query the associations are deployed as an

internal web service unit. Each SC Collaborator system also provides a password

protected page for system administrator to check the service operations available for a

particular profile, as illustrated in Figure 4.3.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 138

Figure 4.3: Password protected web page allowing users with successful authentication to

view available web service units

Successful
authentication

Unsuccessful
authentication

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 139

4.4 Information Consistency

Information consistency is a major issue for collaborations among distributed information

sources. In a construction project, for example, project participants may have different

copies of the design documents circulating among each other. If the design documents

are managed in a centralized system, different participants are guaranteed to obtain the

same version of the documents if they connect to the system at the same time. On the

contrary, if participants are allowed to obtain a design document from multiple sources,

the document that a participant obtains may have a different version from the document

obtained by another participant. Therefore, although information and documents are

stored and managed in different locations in a distributed SC Collaborator network, they

are referenced from a single source in order to maintain consistency. For example, the

project schedule is solely provided by the general contractor while the work schedule

information is offered by the subcontractors.

To maintain information consistency among distributed information sources, a business

process service should be designed to act as a discrete transaction and to achieve the

ACID properties (i.e. atomicity, consistency, isolation, and durability) [69]. The ACID

properties provide requirements on concurrency and fault-handling behavior of a service.

For atomicity, a service performs as a single logical unit and ensures that either all or

none of its components are executed when the service terminates. For consistency, a

service either creates a new valid state of data, or rolls back and restores to a state

satisfying the consistency rules on the data. For isolation, other operations cannot access

or see the data in an intermediate state during the processing of a service. For durability,

a service saves the committed data so that changes in the data persist once the user has

been notified of success of service completion.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 140

4.4.1 Consistency Issues in Distributed System Networks

A composite process service requires invocation to distributed service components over

the network and is vulnerable to network connection failures. Furthermore, a composite

process service usually has limited control on the component services which are located

and managed in different systems. Therefore, it is challenging for a composite process

service in a distributed system network to achieve the ACID properties.

Consider a business process service that changes the project schedule and updates the

work schedules of individual contractors. This service is invoked when project managers

submit a new proposed project schedule with revised task starting dates. In this example,

contractors do not share their full work schedules because they may be involved in other

projects. Instead, the contractors distribute the work schedule information as web service

units “Work Schedule Service” that allow business partners to inquire their availability in

a specific time period. Figure 4.4 shows the Java implementation class of the operations

“checkAvailability” and “changeTaskDates” in the service unit Work Schedule Service.

As illustrated in Figure 4.4, the “checkAvailability” operation receives input parameters

of a starting date and a finishing date and checks the number of task events in the work

schedule in the time period between the two dates. If there is no task event in the time

period, the “checkAvailability” operation returns a “true” value; otherwise, a value of

false is returned. The “changeTaskDates” operation receives a task number, a starting

date, a finishing date, and task information. The operation then removes all the task

events labeled with the input task number, and adds new task events in the time period

between the input starting date and finishing date.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 141

public class WorkScheduleService {
public availabilityType checkAvailability (String start, String finish, String taskId,
String requestedBy) {
 availabilityType output = new availabilityType();
 try { Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT count(eventId) FROM calevent WHERE
 startDate>='"+start+"' AND startDate<='"+finish+"' AND title NOT LIKE
 '"+taskId+" -'");
 rs.next();
 SimpleDateFormat dbDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 if (dbDateFormat.parse(finish).getTime()>=dbDateFormat.parse(start).getTime() &&
 rs.getInt(1)==0) output.available=true;
 else output.available=false;
 } catch (Exception e) {
 } return output;
}

public void changeTaskDates(String newStart, String newFinish, String taskId, String
title, String description, String requestedBy) {
 try { Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();
 ArrayList<String> eventIds = new ArrayList<String>();
 ResultSet rs = stmt.executeQuery("SELECT eventId FROM calevent WHERE title like '"+
 taskId+" -'");
 while (rs.next()) eventIds.add(rs.getString("eventId"));
 for (int i = 0; i < eventIds.size(); i++) {
 stmt.execute("DELETE FROM calevent WHERE eventId='"+eventIds.get(i)+"'");
 stmt.execute("DELETE FROM resource_ WHERE codeId='3503' AND
 primKey='"+eventIds.get(i)+"'");
 }
 SimpleDateFormat dbDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 if (dbDateFormat.parse(newFinish).getTime()>=dbDateFormat.parse(newStart).getTime())
 { Calendar calendar1 = Calendar.getInstance();
 calendar1.setTime(dbDateFormat.parse(newStart));
 int eventId = 15000; int resourceId = 44800;
 rs = stmt.executeQuery("SELECT max(eventId) FROM calevent");
 if (rs.next()) eventId = rs.getInt(1)+1;
 rs = stmt.executeQuery("SELECT max(resourceId) FROM resource_");
 if (rs.next()) resourceId = rs.getInt(1)+1;
 while (! newFinish.equals(dbDateFormat.format(calendar1.getTime()))) {
 stmt.execute("INSERT INTO calevent VALUES ('"+ eventId+ "','14901','10095',
 '10112','Jack Cheng',now(),now(),'"+taskId+" - "+title+"','"+description+" -
 "+requestedBy+"','"+ dbDateFormat.format(calendar1.getTime())+
 "','"+dbDateFormat.format(calendar1.getTime())+ " 23:59:59',24,0,1,0,'site-
 work',0,'','none',300000,300000);");
 stmt.execute("INSERT INTO resource_ VALUES ('"+resourceId+"','3503','"+
 eventId+"');");
 calendar1.add(Calendar.DATE, 1); eventId++; resourceId++;
 }
 stmt.execute("INSERT INTO calevent VALUES ('"+eventId+"','14901','10095',
 '10112','Jack Cheng',now(),now(),'"+taskId+" - "+title+"','"+description+" -
 "+requestedBy+"','"+dbDateFormat.format(calendar1.getTime())+"','"+
 dbDateFormat.format(calendar1.getTime())+" 23:59:59',24,0,1,0,'site-
 work',0,'','none',300000,300000);");
 stmt.execute("INSERT INTO resource_ VALUES ('"+resourceId+"','3503','"+
 eventId+"');");
 }
 } catch (Exception e) {
} }
}

Figure 4.4: Java implementation class of the service unit Work Schedule Service

Find the number of tasks
in a specific time period

Available if there is no task in the time period
and the time period length is positive

Obtain the task events
associated with the specific task

Delete the task events

Add a task event for
each day, and register
the event in the system

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 142

Figure 4.5: Business service that changes project schedule and updates individual

distributed work schedules

As illustrated in Figure 4.5, the process service that changes a project schedule first

invokes the distributed Work Schedule Service units deployed by individual contractors

to check their work availability. If the new project schedule satisfies the work schedules

of all the contractors, the process service updates the project schedule residing in the

system, and modifies the individual work schedules using the service operation

“changeTaskDates” in individual Work Schedule Service units. Otherwise, the project

schedule and work schedules are not changed.

Consider a simple case scenario that swaps the schedules of two tasks performed by

different contractors. Task 1 is performed from September 14, 2009 to September 18,

2009 by Subcontractor 1 while Task 2 is performed from September 21, 2009 to

September 25, 2009 by Subcontractor 2. The pseudo code of the processes executed by

the schedule changing process is shown in Figure 4.6. Figure 4.7 shows the BPEL

process that changes the project schedule as well as the work schedules of

Subcontractor 1 and Subcontractor 2. The process invokes the “checkAvailability”

operation of Subcontractor 1 and checks its availability from September 21 to

September 25. The process also invokes the “checkAvailability” operation of

Contractor 1
WSDL

Contractor 2

Contractor N

:
:

WSDL

WSDL

1. Check contractors’
availability through
their work schedules

Work
schedule Project schedule

2. Continue if new
schedule satisfies all
contractors’ work schedule

3. Change
project schedule

4. Change contractors’
 work schedules

5. Return
notifications

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 143

Subcontractor 2 and checks its availability from September 14 to September 18. If both

service operations return a “true” value, the process changes the project schedule using

the operation “changeTaskSchedule” of Project Schedule Service residing on the general

contractor’s system. The process then modifies the distributed work schedules of both

subcontractors using the operation “changeTaskDates” of Work Schedule Service units.

Service invocation sometimes fails due to program bugs in the service unit, failure of the

system the service unit is deployed, or connection failure of the network. In this

example, if the last activity that changes the work schedule of Subcontractor 2 fails, as

indicated in Figure 4.6, Task 2 will be scheduled from September 14 to September 18 in

the project schedule but scheduled from September 21 to September 25 in the work

schedule of Subcontractor 2. The mistake may not be discovered until September 14,

which is too late for Subcontractor 2 and the general contractor to accommodate.

Furthermore, ACID properties of the BPEL process that changes the project schedule are

violated in this situation. Atomicity is not satisfied because only parts of the process

have been executed. Consistency is also violated as the consistency requirement between

the project schedule and the work schedules is not met. Durability is not fulfilled since

there is no logging and the schedule change is committed from the project manager’s

view while the service fails to complete.

Subcon(Task i) = responsible subcontractor of Task i

Check work schedule service of Subcon(Task 1) for feasibility of
new Task 1
Check work schedule service of Subcon(Task 2) for feasibility of
new Task 2

If feasibility check passes for all tasks
 Change project schedule for new Task 1 and Task 2
 Change work schedule of Subcon(Task 1) for new Task 1
 Change work schedule of Subcon(Task 2) for new Task 2
End

Figure 4.6: Pseudo code of the schedule changing business service

Failure

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 144

<bpel:process name="ChangeScheduleService"
 targetNamespace="http://localhost:8080/service/process/ChangeScheduleService"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable"
 xmlns:ns="http://ws.apache.org/axis2">

<bpel:import location="ChangeScheduleServiceArtifacts.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/" />

<bpel:partnerLinks>
 <bpel:partnerLink name="client" partnerLinkType="tns:ChangeScheduleService"
 myRole="ChangeScheduleServiceProvider" />
 <bpel:partnerLink name="WorkSchedule1" partnerLinkType="tns:WorkSchedulePLT"
 partnerRole="ServiceProvider"></bpel:partnerLink>
 <bpel:partnerLink name="WorkSchedule2" partnerLinkType="tns:WorkSchedule2PLT"
 partnerRole="ServiceProvider"></bpel:partnerLink>
 <bpel:partnerLink name="ProjectSchedule" partnerLinkType="tns:ProjectSchedulePLT"
 partnerRole="ServiceProvider"></bpel:partnerLink>
</bpel:partnerLinks>

<bpel:variables>
 <bpel:variable name="input" messageType="tns:ChangeScheduleServiceRequestMessage"/>
 <bpel:variable name="output" messageType="tns:ChangeScheduleServiceResponseMessage"/>
 <bpel:variable name="WorkSchedule1Response"
messageType="ns:checkAvailabilityResponse"/>
 <bpel:variable name="WorkSchedule1Request" messageType="ns:checkAvailabilityRequest"/>
<bpel:variable name="ProjectScheduleRequest"
messageType="ns:changeTaskScheduleRequest"/>
<bpel:variable name="WorkSchedule1Response1" messageType="ns:changeTaskDatesResponse"/>
<bpel:variable name="WorkSchedule1Request1" messageType="ns:changeTaskDatesRequest"/>
</bpel:variables>

<bpel:sequence name="main">
 <bpel:receive name="receiveInput" partnerLink="client"
 portType="tns:ChangeScheduleService" operation="process" variable="input"
 createInstance="yes"/>
 <bpel:flow name="Check work schedules">
 <bpel:invoke name="Check work schedule 1" partnerLink="WorkSchedule1"
 operation="checkAvailability" portType="ns:WorkScheduleService2PortType"
 inputVariable="WorkSchedule1Request" outputVariable="WorkSchedule1Response"/>
 <bpel:invoke name="Check work schedule 2" partnerLink="WorkSchedule2"
 operation="checkAvailability" portType="ns:WorkScheduleService2PortType"
 inputVariable="WorkSchedule1Request" outputVariable="WorkSchedule1Response"/>
 </bpel:flow>
 <bpel:if name="If">
 <bpel:sequence name="Modify schedules">
 <bpel:invoke name="Change project schedule" partnerLink="ProjectSchedule"
 operation="changeTaskSchedule" portType="ns:ProjectScheduleServicePortType"
 inputVariable="ProjectScheduleRequest"/>
 <bpel:invoke name="Change work schedule 1" partnerLink="WorkSchedule1"
 operation="changeTaskDates" portType="ns:WorkScheduleService2PortType"
 inputVariable="WorkSchedule1Request1" outputVariable="WorkSchedule1Response1"/>
 <bpel:invoke name="Change work schedule 2" partnerLink="WorkSchedule2"
 operation="changeTaskDates" portType="ns:WorkScheduleService2PortType"
 inputVariable="WorkSchedule1Request1" outputVariable="WorkSchedule1Response1"/>
 </bpel:sequence>
 </bpel:if>
 <bpel:reply name="replyOutput" partnerLink="client"
 portType="tns:ChangeScheduleService" operation="process" variable="output" />
</bpel:sequence>
</bpel:process>

Figure 4.7: The BPEL process that changes a project schedule

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 145

4.4.2 Implementation in SC Collaborator

To maintain the ACID properties in a distributed SC Collaborator network, three

modifications are made to the system framework:

• Modification of web service units so that transaction service operations return a

response message that contains information about their roll-back operations.

Modification of data service operations is not required because they only provide

data without making changes to any underlying data.

• Creation of a Process-in-Progress (PIP) table in the back-end database to keep

records of the on-going processes in the system. There are three service

operations on the PIP table – (1) an operation that adds the specifications of the

invoked service operations and the information about roll-back operations to the

PIP table for temporary storage, (2) an operation that removes all the PIP records

of a particular process after process completion, and (3) an operation that reads

the PIP records and undoes the changes made by web service units invoked in the

process. These operations are wrapped and deployed as service operations

“addRecord”, “removeRecord” and “restoreState” respectively in a web service

unit PIP Service, which BPEL processes can easily invoke and execute. Figure

4.8 shows the Java implementation class of the PIP Service. As illustrated in

Figure 4.8, the operation “restoreState” receives a BPEL process identification

number and extracts all the PIP records that are related to the process and contain

a value of “Return” in the Notes column. For every extracted record, the specified

roll-back service operation is invoked to undo the modifications previously made

in the process. A notification is returned when all the roll-back service operations

are successfully called.

• Modification of the BPEL process unit so that every invocation of transaction

service operation is enclosed in a BPEL scope activity that contains elements for

logging and fault handling.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 146

public class PIPService {

public String addRecord(String processId, String targetNamespace, String serviceName,
String serviceLocation, String operation, String parameters, String notes) {
... }

public String removeRecord(String processId) {
... }

public String restoreState(String processId) {
 String notification = "Error";
 try {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();

 ResultSet rs = stmt.executeQuery("SELECT recordId, time, targetNamespace,
 serviceName, serviceLocation, operation, parameters, notes FROM PIP WHERE
 processId=\'"+processId+"\' ORDER BY recordId desc");
 ServiceClient serviceClient = new ServiceClient();
 while (rs.next()) {
 String targetNamespace = rs.getString("targetNamespace");
 String serviceName = rs.getString("serviceName");
 String serviceLocation = rs.getString("serviceLocation");
 String operation = rs.getString("operation");
 String parameters = rs.getString("parameters");
 String notes = rs.getString("notes");

 if (notes.equals("Return") && !targetNamespace.equals("") &&
 !serviceName.equals("") && !serviceLocation.equals("") &&
 !operation.equals("")) {
 OMFactory fac = OMAbstractFactory.getOMFactory();
 OMNamespace omNs = fac.createOMNamespace(targetNamespace, "eig");
 OMElement payload = fac.createOMElement(serviceName, omNs);
 String[] elements = parameters.split("!");
 OMElement value;
 for (int i = 0; i < elements.length; i++) {
 value = fac.createOMElement(elements[i].split(":")[0].trim(), omNs);
 value.setText(elements[i].split(":")[1].trim());
 payload.addChild(value);
 }

 serviceClient = new ServiceClient();
 Options options = new Options();
 options.setTo(new EndpointReference(serviceLocation));
 options.setAction(operation);
 serviceClient.setOptions(options);
 serviceClient.sendRobust(payload);
 }
 }

 serviceClient.cleanup();
 conn.close();
 notification = "Success";

 } catch (Exception e) {
 } return notification;
}
}

Figure 4.8: Java implementation class of the service unit PIP Service

Obtain all the
PIP records for
a particular
process

Invoke service
units to restore
the original state

Returns a notification when all the
service units are successfully
restored

Service operations

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 147

Figure 4.9: Maintaining information consistency in a distributed SC Collaborator network

With these three system modifications, information consistency is maintained among

distributed SC Collaborator systems, as illustrated in Figure 4.9. Before a web service

unit is invoked in a BPEL process, its service specification information (i.e. target

namespace, service name, service location, operations, parameter names, and parameter

values) is stored through the operation “addRecord” of PIP Service unit. The BPEL

business process then invokes the web service unit and provides the parameter values.

The web service unit is modified and returns a notification which contains information

about the operation to roll back the modifications made by the service unit.

If the BPEL process receives a notification from the invoked service unit, it means that

the service invocation is successful. The BPEL process then extracts the roll-back

information from the notification and enters it into the PIP table. Otherwise, the fault

handling component in the BPEL process will be triggered. The fault handler invokes the

operation “restoreState” in PIP Service unit to undo the modifications previously made

by the BPEL process.

Scope in BPEL

Logging

Service

invocation

Web
service

unit

Record Time Process Name-
space Service name Service

location Operation Parameters Notes

… … … … … … … … …
3 … Sch94 http://... changeTaskDates http://... changeTaskDates […] Sent
4 … Sch94 http://... changeTaskDates http://... changeTaskDates […] Return

… … … … … … … … …
New
parameter
values

Old parameter values
Roll back operation

Notification
processing

Fault
handling

1

2
3

4b Web service unit

Web service unit

Web service unit 4a

5a 6a

Database

Process-in-Progress (PIP) Table

PIP Service unit restoreState

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 148

Consider the simple scenario that swaps the schedules of two tasks, Task 1 and Task 2.

Three system modifications are performed as follows.

• The implementations of the service units Work Schedule Service and Project

Schedule Service are modified to return roll-back information in a response

message. Figure 4.10 shows the Java implementation class of the modified Work

Schedule Service. To roll back a change of task schedule, an operation that

changes the task schedule back to its original value is needed. Therefore, the

operation “changeTaskDates” of Work Schedule Service is the roll-back

operation of itself. As illustrated in Figure 4.10, the modified service operation

“changeTaskDates” obtains the old task schedule information before making

changes to the data. The old task schedule information and the service

specification of the operation “changeTaskDates” are returned in the response

message, in a data structure of “notificationType” as described in Figure 4.11.

• PIP table is created in the back-end database and the corresponding PIP Service

unit is deployed in the SC Collaborator system of the general contractor.

• The BPEL process that changes a project schedule is modified. The invoke

activities “Change project schedule”, “Change work schedule 1” and “Change

work schedule 2” are enclosed in separate scope activities because the operation

“changeTaskSchedule” of Project Schedule Service and the operation

“changeTaskDates” of Work Schedule Service are transaction service operations.

The activity “Change work schedule 2” is a simple BPEL invoke activity in the

original BPEL process, as highlighted in Figure 4.7. As illustrated in Figure 4.12,

the activity is enclosed in a scope in the new BPEL process. Before the activity is

performed, the operation “addRecord” of the PIP Service is invoked to record the

input parameters of the activity “Change work schedule 2.” If the activity is

successfully performed, the operation “addRecord” is called again to record the

roll-back information returned. Otherwise, the operation “restoreState” of PIP

Service is called to undo all the changes previously done by the BPEL process.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 149

public notificationType changeTaskDates(String newStart, String newFinish, String
taskId, String title, String description, String requestedBy) {
 notificationType output = new notificationType();
 output.notes = "Error";
 try { Class.forName("com.mysql.jdbc.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:mysql://localhost:3306/portal","","");
 Statement stmt = conn.createStatement();
 SimpleDateFormat dbDateFormat = new SimpleDateFormat("yyyy-MM-dd");
 SimpleDateFormat dbDateFormat2 = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss ");
 ResultSet rs = stmt.executeQuery("SELECT title, description, startDate FROM calevent
 WHERE title like '"+taskId+" -' ORDER BY startDate asc");
 String title2 = ""; String description2 = ""; String start = ""; String finish = "";
 if (rs.next()) {
 title2 = rs.getString("title").replace(taskId+" - ", "");
 description2 = rs.getString("description").replace(" - "+requestedBy, "");
 start = dbDateFormat.format(dbDateFormat2.parse(rs.getString("startDate")));
 finish = start;
 }
 while (rs.next())
 finish = dbDateFormat.format(dbDateFormat2.parse(rs.getString("startDate")));
 ArrayList<String> eventIds = new ArrayList<String>();
 rs = stmt.executeQuery("SELECT eventId FROM calevent WHERE title like '"+taskId+" -
 '");
 while (rs.next()) eventIds.add(rs.getString("eventId"));
 for (int i = 0; i < eventIds.size(); i++) {
 stmt.execute("DELETE FROM calevent WHERE eventId='"+eventIds.get(i)+"'");
 stmt.execute("DELETE FROM resource_ WHERE codeId='3503' AND
 primKey='"+eventIds.get(i)+"'");
 }
 if (dbDateFormat.parse(newFinish).getTime()>=dbDateFormat.parse(newStart).getTime())
 { Calendar calendar1 = Calendar.getInstance();
 calendar1.setTime(dbDateFormat.parse(newStart));
 int eventId = 15000; int resourceId = 44800;
 rs = stmt.executeQuery("SELECT max(eventId) FROM calevent");
 if (rs.next()) eventId = rs.getInt(1)+1;
 rs = stmt.executeQuery("SELECT max(resourceId) FROM resource_");
 if (rs.next()) resourceId = rs.getInt(1)+1;
 while (! newFinish.equals(dbDateFormat.format(calendar1.getTime()))) {
 stmt.execute("INSERT INTO calevent VALUES ('"+eventId+"','14901','10095',
 '10112','Jack Cheng',now(),now(),'"+taskId+" - "+title+"','"+description+" -
 "+requestedBy+"','"+dbDateFormat.format(calendar1.getTime())+"','"+
 dbDateFormat.format(calendar1.getTime())+" 23:59:59',24,0,1,0,'site-
 work',0,'','none', 300000,300000);");
 stmt.execute("INSERT INTO resource_ VALUES ('"+resourceId+"','3503','"+
 eventId+"');");
 calendar1.add(Calendar.DATE, 1); eventId++; resourceId++;
 }
 :
 }
 output.notes = "Success";
 output.targetNamespace = "http://ws.apache.org/axis2";
 output.serviceName = "changeTaskDates";
 output.serviceLocation = "WorkScheduleService2";
 output.operation = "changeTaskDates";
 output.params = "start:" + start + "!finish:" + finish + "!taskId:" + tasked +
 "!title:" + title2 + "!description:" + description2 + "!requestedBy:" +
 requestedBy;
 } catch (Exception e) {
 } return output;
}

Figure 4.10: Java implementation class of the modified Work Schedule Service

It will be changed to
“Success” at the end

Obtain the original state of information

Obtain the associated task events

Add a task event for
each day, and register
the event in the system

Assign the original
state of information to
the output response

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 150

public class notificationType {

 String notes = "";
 String targetNamespace = "";
 String serviceName = "";
 String serviceLocation = "";
 String operation = "";
 String params = "";

 public String getNotes() {
 return notes; }
 public void setNotes(String notes) {
 this.notes = notes;}
 public String getTargetNamespace() {
 return targetNamespace; }
 :
]

Figure 4.11: Java class for data type “notificationType”

<bpel:scope name="Scope">

<bpel:sequence>
 <bpel:invoke name="addRecord" partnerLink="PIP" operation="addRecord"
 portType="ns:PIPServicePortType" inputVariable="PIPRequest1"
 outputVariable="PIPResponse1" />
 <bpel:invoke name="Change work schedule 2" partnerLink="WorkSchedule2"
 operation="changeTaskDates" portType="ns:WorkScheduleService2PortType"
 inputVariable="WorkSchedule1Request1"
 outputVariable="WorkSchedule1Response1"/>
<bpel:invoke name="addRecord" partnerLink="PIP" operation="addRecord"
 portType="ns:PIPServicePortType" inputVariable="PIPRequest2"
 outputVariable="PIPResponse2" />
</bpel:sequence>

<bpel:variables>
 <bpel:variable name="PIPResponse" messageType="ns:addRecordResponse"/>
 <bpel:variable name="PIPRequest" messageType="ns:addRecordRequest"/>
 <bpel:variable name="PIPResponse1" messageType="ns:addRecordResponse"/>
 <bpel:variable name="PIPRequest1" messageType="ns:addRecordRequest"/>
 <bpel:variable name="PIPResponse2" messageType="ns:removeRecordResponse"/>
 <bpel:variable name="PIPRequest2" messageType="ns:removeRecordRequest"/>
</bpel:variables>

<bpel:faultHandlers> <bpel:catch>
 <bpel:invoke name="restoreState" partnerLink="PIP" operation="restoreState"
 portType="ns:PIPServicePortType" inputVariable="PIPRequest"
 outputVariable="PIPResponse" />
</bpel:catch> </bpel:faultHandlers>

</bpel:scope>

Figure 4.12: BPEL codes showing activity “Change work schedule 2” in a scope

Information
for rollback

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 151

With the modifications described above, information consistency can be maintained even

though the activity “Change work schedule 2” fails unexpectedly. Figure 4.13 depicts the

situation when all the distributed service units are invoked successfully in the BPEL

process. The activity “Change project schedule” adds a PIP record, invokes the operation

“changeTaskSchedule” of the Project Schedule Service unit in the local system, obtains

the roll-back information returned from the service operation “changeTaskSchedule,” and

enters the information in the PIP table. The activity “Change work schedule 1” then adds

a PIP record, invokes the operation “changeTaskDates” of the Work Schedule Service

unit in the SC Collaborator system hosted by Subcontractor 1, obtains the roll-back

information which includes the old work schedule data, and enters the information in the

back-end PIP table. The activity “Change work schedule 2” interacts with the Work

Schedule Service unit of Subcontractor 2 and the PIP Service unit in the local system

similarly. Finally, the PIP records for the BPEL process are removed by calling the

operation “removeRecord” of the PIP Service unit.

Figure 4.13: Interactions in distributed SC Collaborator network when the BPEL process

that changes a project schedule completes successfully

Subcontractor 1
Work Schedule

Service unit

Subcontractor 2

Work Schedule
Service unit

PIP Table

General Contractor

PIP Service unit

BPEL process Project Schedule
Service unit

end

start

check

Invoke
(change-
TaskSchedule)

Return

addRecord

removeRecord

Web services
units

DB

addRecord

addRecord

1

2

3

45 8

Invoke
(changeTaskDates)

6

Return 7

9 12Invoke
(changeTaskDates)

Return

10

11 13

newStart=“2009-09-21”
newFinish=“2009-09-25”
taskId=“2038
title=“…”

params= “newStart:2009-
09-14!newFinish:2009-09-
18!taskId=2038!title:…”

Change proj
schedule

Change work
schedule 1

Change work
schedule 2

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 152

Figure 4.14: Interactions in distributed SC Collaborator network when the activity

“Change work schedule 2” fails

Consider the situation that the activity “Change work schedule 2” fails, probably due to

system failure of Subcontractor 2 or deployment problem of the Work Schedule Service

unit, as illustrated in Figure 4.14. The BPEL process does not receive a response

message from the Work Schedule Service unit of Subcontractor 2, resulting in a fault

message for the service invocation in the activity “Change work schedule 2.” The BPEL

process catches the fault message and invokes the operation “restoreState” of the PIP

Service unit. The operation “restoreState” then invokes the service operations

“changeTaskDates” of Subcontractor 1 and “changeTaskSchedule” of the local system

with the old schedule information to restore the original state of the project schedule and

work schedules.

Among the four ACID requirements in a distributed network of systems, service

atomicity is achieved because the BPEL process unit performs as a single logical unit and

either all or none of its components are executed when the process terminates.

Consistency is also achieved because the original valid states of the schedules are

restored at the end. Moreover, durability is fulfilled since the PIP records can be played

back to recreate the system states right before a failure.

Subcontractor 1
Work Schedule

Service unit

Subcontractor 2

Work Schedule
Service unit

PIP Table

General Contractor

PIP Service unit

BPEL process Project Schedule
Service unit

end

start

check

Invoke
(change-
TaskSchedule)

Return

addRecord

Web services
units

DB

addRecord

1

2

3

45 8

Invoke
(changeTaskDates)

6

Return 7

Invoke
(changeTaskDates)

Return

10

11

newStart=“2009-09-21”
newFinish=“2009-09-25”
taskId=“2038”
title=“…”

params= “newStart:2009-
09-14!newFinish:2009-09-
18!taskId=2038!title:…”

Invoke
(change-
TaskSchedule)

14

addRecord
9

12
restoreState

Invoke
(changeTaskDates)

13

newStart=“2009-09-14”
newFinish=“2009-09-18”
taskId=“2038”
title=“…”

Change proj
schedule

Change work
schedule 1

Change work
schedule 2

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 153

4.5 Scenario Demonstration on the Distributed SC

Collaborator Network

In this section, a three-storey residential building as shown in Figure 4.15 is used as a

case scenario to demonstrate the implementation of a distributed SC Collaborator

network. In the project, the capacity of the building was expanded from 24 to 46 rooms.

In this scenario, the general contractor is responsible for windows and doors installation.

There are three subcontractors of interest, which are responsible for installation of wall

façades, room interiors, and mechanical, electrical and plumbing components (Figure

4.16). The general contractor, subcontractors, and suppliers have their own SC

Collaborator systems running and collaborating with each other. The first demonstration

is a procurement example between contractors and suppliers while the second

demonstration shows a project-wide collaboration for a material delivery delay.

Figure 4.15: 3D model of the three-storey residential building

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 154

Figure 4.16: Organizations involved in the example scenario

4.5.1 E-Procurement

The benefits of electronic procurement have been discussed in Section 2.6.1. In the

demonstration in Section 2.6.1, e-Procurement is performed in a centralized manner in

SC Collaborator. Documents such as purchase orders of different suppliers are stored

and shared together in a single database. This is not practical in a real supply chain

application because many suppliers are willing to share their purchase orders and detailed

product information with their direct trading partners only. Purchase orders contain

suppliers’ price information and delivery decisions. Suppliers may be able to deduce the

pricing strategy and inventory management techniques of competitors from their

purchase orders. A construction project may involve multiple suppliers that provide

similar products and/or services. As opposed to a centralized system, a distributed

system network can promote collaboration and information sharing among supply chain

members.

GenCon
[General contractor]

Anderson
[Window]

Petom
[Window/door]

Apex Wall
[Wall facade]

Kent Interiors
[Drywall]

Rivab
[Wall supplier]

Cedar MEP
[Mechanical,
electrical &
plumbing]

Suppliers Subcontractors

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 155

In this demonstration example, the general contractor GenCon uses Autodesk ADT

program as the interface for project management. The CAD program is implemented

with a database which stores the building information models of every design. In a

model-based CAD framework, each design object (e.g. door, window, and slab) is

associated with information related to the product, the supplier, the corresponding task,

and so on. An ADT plug-in SpecifiCAD developed by CADalytic Media, Inc. is

leveraged to interact with the design objects in an ADT drawing and to retrieve the

underlying building information. The plug-in displays web pages written in Java Service

Pages (JSP) language which can connect to databases using Java Database Connectivity

(JDBC) and to web services using standardized SOAP. As shown in Figure 4.17, when

GenCon selects a window object in the 3D model of the residential building, the project

information including its price and supplier information is displayed in the plug-in.

Figure 4.17: Original product information of the selected window

Supplier: Petom

Product Name:
200 Series Tilt-Wash
Double-Hung Windows

Price: $350

Autodesk ADT CADalytic SpecifiCAD

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 156

Suppliers may offer different prices and discounts to different customers. In this

scenario, suppliers provide customized catalogs to their partners through standardized

web services protocol. When GenCon selects a window object in Autodesk ADT and

clicks the “Catalog” tab in SpecifiCAD interface, the server connects to the extranet of

supplier partners and searches their catalogs with keyword “window” and the product

name. As illustrated in Figure 4.18, three supplier partners return results with hyperlinks

directing to the company websites. GenCon can refer to the product websites and

replace the existing window object in the drawing with the ones shown in the search

results by simply clicking the “Apply” button. As demonstrated in Figure 4.18, the

supplier Anderson in the example scenario sells the same window product but at a

cheaper price than the original one. GenCon therefore replaces the window object and

the product model information at the back-end is updated instantaneously (Figure 4.19).

GenCon’s SC Collaborator shares the same company database with the model-based

CAD program. When the architectural design is finalized, the purchasing officers of

GenCon can log in their SC Collaborator system and submit electronic purchase orders

to various suppliers (Figure 4.20). The suppliers use different SC Collaborator systems

to manage and respond their received purchase orders (Figure 4.21).

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 157

Figure 4.18: Inquiry to window supplier partners

Figure 4.19: Updated product information of the selected window

Information obtained
from Extranet via
Web services

Supplier:
Anderson

Product Name:
200 Series Tilt-Wash
Double-Hung Windows

Price: $278

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 158

Figure 4.20: E-Procurement by contractor using its SC Collaborator system

Building
Information

1

2

3

4

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 159

Figure 4.21: Supplier managing and responding received purchase orders using its SC

Collabroator system

4.5.2 Responding to Material Delivery Delay

This example demonstrates the collaboration and chain reactions among general

contractor, subcontractors, and suppliers to respond to delivery problem of a key

material. In this example, as illustrated in Figure 4.22, schedule information is

distributed among general contractor, subcontractors, and suppliers in a distributed SC

Collaborator network. The general contractor and the subcontractors keep their on-site

work schedules internally. The general contractor also provides the project schedule to

all the subcontractors. The suppliers manage their production and delivery schedules in

their own systems. These schedule information are wrapped and delivered as individual

web service units in separate SC Collaborator systems. The general contractor,

subcontractors, and suppliers can share schedule information to designated participants

21

3

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 160

through standardized web services protocol. In this way, organizations have full control

on their information and become more willing to share it with other supply chain

members in a construction project.

As an example, the window supplier Anderson reports a material delivery delay for 10

days to its customer, GenCon. The delayed window components are used for the task

“13.3.3 Third Floor Windows,” which starts on April 10, 2009. The task dependency

related to the task “13.3.3 Third Floor Windows” is illustrated in Figure 4.23. A delay of

the task affects the task “13.1.3 Third Floor Façade” performed by subcontractor Apex

and “14.3 Drywall & Taping” performed by subcontractor Kent, which in turn affects

more succeeding tasks. In this case, tasks performed by subcontractors Apex, Kent and

Cedar are influenced.

Figure 4.22: Flowchart for coordinating material delivery delay by supplier Anderson

GenCon (GC)
- Project schedule
- Work schedule

Cedar (Subcon)
- Work schedule

Kent (Subcon)
- Work schedule

Apex (Subcon)
- Work schedule

Anderson (Supplier)
- Production schedule
- Delivery schedule

SC
Collaborator

Petom (Supplier)
- Production schedule
- Delivery schedule

Rivab (Supplier)
- Production schedule
- Delivery schedule

SC
Collaborator

SC
Collaborator

SC
Collaborator

SC
Collaborator

SC
Collaborator

SC
Collaborator

1

2

2

2

3

3

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 161

Figure 4.23: Originial project schedule

…

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 162

GenCon generates multiple alternative project schedules, which are displayed in the

application portlet unit for changing the project schedule as shown in Figure 4.24. The

tasks which need to be changed are indicated on the “Status” column in the display.

GenCon can make the changes described in the alternative project schedule by simply

clicking the “Apply” button in the portlet unit. The button triggers a BPEL process unit

that changes the project schedule and the distributed work schedules of the affected

subcontractors, which is illustrated in Figure 4.25. The process unit connects to the

affected subcontractors (Apex, Kent and Cedar in this case), and checks their

availability for each modified tasks by invoking the operation “checkAvailability” of the

Work Schedule Service unit in their systems. If a “true” value is returned for all the

modified tasks, the operation “changeTaskDates” is invoked for each task. When the

process completes, the BPEL process invokes the operation “removeRecord” of PIP

Service to clear its PIP records.

After the change of project schedule is confirmed, GenCon and other subcontractors

could change the target delivery date of other materials corresponding to the task

postponed. The changes of target delivery date of other materials propagate to GenCon’s

suppliers who may adjust their production and planned delivery date accordingly.

Maintenance of information consistency is tested in this example. When GenCon

invokes the BPEL process unit that changes the project schedule and the work schedules

of Apex, Kent and Cedar, the SC Collaborator system of Kent is shut down for testing

purpose. When invoking the “checkAvailability” operation of the Work Schedule

Service unit in Kent’s SC Collaborator system, the service operation returns a SOAP

response message describing a connection fault, as illustrated in Figure 4.26, which is

captured in the BPEL process. Since the BPEL process does not obtain a “true” value for

all the modified tasks, it terminates without changing the project schedule and work

schedules. Information consistency is achieved.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 163

Figure 4.24: Application portlet unit in general contractor’s layout that displays

alternative project schedules

…

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 164

<bpel:process name="ChangeScheduleService2"
 targetNamespace="http://localhost:8080/service/processes/ChangeScheduleService2"
 xmlns:bpel="http://docs.oasis-open.org/wsbpel/2.0/process/executable">
<bpel:import location="ChangeScheduleService2Artifacts.wsdl"
 importType="http://schemas.xmlsoap.org/wsdl/" />
<bpel:partnerLinks>
 <bpel:partnerLink name="WorkScheduleApex" partnerLinkType="tns:WorkSchedulePLT"
 partnerRole="ServiceProvider" />
 :
 <bpel:partnerLink name="PIP" partnerLinkType="tns:PIPPLT"
 partnerRole="ServiceProvider" />
</bpel:partnerLinks>
<bpel:variables> ... </bpel:variables>
<bpel:sequence name="main">
 <bpel:receive name="receiveInput" partnerLink="client"
 portType="tns:ChangeScheduleService2" operation="process" variable="input" />
 <bpel:forEach parallel="no" counterName="Counter" name="ForEach">
 <bpel:scope> <bpel:sequence>
 <bpel:if name="Select contractor">
 <bpel:invoke name="Check availability Apex" partnerLink="WorkScheduleApex"
 operation="checkAvailability" portType="ns:WorkScheduleService2ApexPortType"
 inputVariable="WorkScheduleApexRequest" outputVariable="WorkScheduleApexResponse"/>
 <bpel:elseif>
 <bpel:invoke name="Check availability Kent" partnerLink="WorkScheduleKent"
 operation="checkAvailability" portType="ns:WorkScheduleService2KentPortType"
 inputVariable="WorkScheduleKentRequest" outputVariable="WorkScheduleKentResponse"/>
 </bpel:elseif> <bpel:elseif>
 <bpel:invoke name="Check availability Cedar" partnerLink="WorkScheduleCedar"
 operation="checkAvailability" portType="ns:WorkScheduleService2CedarPortType"
 inputVariable="WorkScheduleCedarRequest" outputVariable="WorkScheduleCedarResponse"/>
 </bpel:elseif> </bpel:if>
 </bpel:sequence>
 <bpel:variables>
 <bpel:variable name="WorkScheduleApexResponse"
 messageType="ns:checkAvailabilityResponse"/>
 :
 </bpel:variables> </bpel:scope> </bpel:forEach>
 <bpel:if name="If">
 <bpel:sequence> <bpel:scope name="Scope"> <bpel:sequence>
 <bpel:invoke name="add Record" partnerLink="PIP" operation="addRecord"
 portType="ns:PIPServicePortType" />
 <bpel:invoke name="Change project schedule" partnerLink="ProjectSchedule"
 operation="changeTaskSchedule" portType="ns:ProjectScheduleServicePortType"
 inputVariable="ProjectScheduleRequest" />
 <bpel:invoke name="addRecord" partnerLink="PIP" operation="addRecord"
 portType="ns:PIPServicePortType" />
 </bpel:sequence>
 <bpel:variables> ... </bpel:variables>
 <bpel:faultHandlers> <bpel:catch> ... </bpel:catch> </bpel:faultHandlers>
 </bpel:scope>
 <bpel:forEach parallel="no" counterName="Counter" name="ForEach1"> <bpel:scope>
 <bpel:if name="Select contractor"> <bpel:sequence> <bpel:scope name="Scope">
 :
 <bpel:invoke name="Change work schedule Apex" partnerLink="WorkScheduleApex"
 operation="changeTaskDates" portType="ns:WorkScheduleService2ApexPortType" />
 </bpel:scope> </bpel:sequence> <bpel:elseif> ...
 </bpel:elseif> </bpel:if> </bpel:scope> </bpel:forEach> </bpel:sequence> </bpel:if>
 <bpel:invoke name="removeRecord" partnerLink="PIP" operation="removeRecord"
 portType="ns:PIPServicePortType" />
 <bpel:reply name="replyOutput" partnerLink="client"
 portType="tns:ChangeScheduleService2" operation="process" variable="output" />
</bpel:sequence>
</bpel:process>

Figure 4.25: BPEL process that changes the project schedule and the distributed work

schedules in the scenario demonstration

Checks the availability of
Apex, Kent and Cedar for
each modified task

Changes the project
schedule

Changes the distributed
work schedules

Removes PIP records

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 165

<?xml version='1.0' encoding='UTF-8'?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <soapenv:Fault>
 <faultcode>soapenv:Client</faultcode>
 <faultstring>
 The service cannot be found for the endpoint reference (EPR)
 http://171.67.80.70:8080/service/processes/WorkScheduleService
 </faultstring>
 <detail> <Exception>
 org.apache.axis2.AxisFault: The service cannot be found for the endpoint
 reference (EPR)
 http://171.67.80.70:8080/service/processes/WorkScheduleService
 at org.apache.axis2.engine.DispatchPhase.checkPostConditions
 (DispatchPhase.java:62)
 :
 at java.lang.Thread.run(Thread.java:595)
 </Exception> </detail>
 </soapenv:Fault>
 </soapenv:Body>
</soapenv:Envelope>

Figure 4.26: SOAP response message showing the connection fault when invoking the

Work Schedule Service unit located in Kent’s system

For further testing, the service operation “changeTaskDates” is removed from the Java

implementation class of Work Schedule Service for subcontractor Kent. The Work

Schedule Service unit is deployed again in Kent’s SC Collaborator system. When

GenCon invokes the BPEL process that changes the project schedule and work

schedules, the same SOAP fault response message as shown in Figure 4.26 is captured at

the BPEL activity “Change work schedule.” Since the activity is enclosed in a scope that

contains logging and fault handling functionalities supported by the PIP Service unit,

changes made to the project schedule and the work schedules of Apex and Cedar are

rolled back and the old schedule information is restored. As a result, the schedule

information described in the project schedule and the work schedules of Apex, Kent and

Cedar are consistent even though a service invocation failure occurs in the BPEL

process.

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 166

4.6 Summary

Current collaborative systems are mostly centralized. Business partners upload

information and documents to a single system and share with other companies. However,

this kind of collaboration does not satisfy the need in a supply chain setting. Since

supply chain management integrates members from suppliers’ suppliers to customers’

customers, companies who do not have direct business relationships are involved in the

same supply chain. Although most collaborative systems for supply chain management

provide security control to the information and applications shared in the systems, some

companies do not feel comfortable to share proprietary and privacy information and

documents in those systems. In addition, there are often debates on who has the rights to

host the systems and to keep the shared information. This chapter presents a distributed

network of service oriented collaborator systems which aim to tackle these problems.

In a distributed SC Collaborator network, companies can own and manage their

information, documents and applications in their own system, and share them with

designated partners at a specific time. The communications among distributed SC

Collaborator are supported by leveraging standardized web services technologies and

protocols. Since the internal information, applications, and system operations of the SC

Collaborator system are wrapped and deployed in individual web service units, they can

be exposed to other SC Collaborator system for invocation through the SOAP, WSDL,

and BPEL standards.

Security and information consistency are key issues for distributed collaborative systems.

The security of web service units is managed by the authentication capability provided by

the portal system interface in SC Collaborator. This chapter mainly discusses the system

architecture to maintain information consistency among distributed systems. It is

achieved by the specific design of the back-end database support, the web service units,

and the BPEL process services. The database is leveraged for logging of running process

services. The web service units return information for roll-back upon successful

CHAPTER 4. DISTRIBUTED SC COLLABORATOR NETWORK 167

invocation. The process services leverage the fault handling functionality of BPEL

standard to roll back in case of service failures. This chapter also demonstrates the

distributed SC Collaborator network for procurement and task rescheduling among

distributed systems of general contractor, subcontractors, and suppliers. Inconsistency

consistency among distributed SC Collaborator systems is also successfully tested.

Chapter 5

Conclusions and Future Works

Importance of supply chain integration and collaboration has been shown in many

industry sectors. However, the construction industry is one of the least integrated among

all major industries. The current technologies and tools for supply chain integration such

as enterprise resource planning (ERP) systems are designed for construction supply

chains, which are highly fragmented and unstable project-based in nature. This thesis

presents a system framework that addresses the requirements for managing and

integrating construction supply chains. This chapter provides a summary of the thesis,

discusses the main contributions of the thesis, and describes some future research

directions.

5.1 Summary of Research

With the proliferation of the Internet and the increasingly maturity of web services

standards, the adoption of service oriented architecture (SOA) with open source

technologies is a desirable computing model to support construction supply chain

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 169

management due to its flexibility and low cost. This thesis presents a prototype service

oriented collaborative system framework, namely SC Collaborator (Supply Chain

Collaborator), that was designed and developed to facilitate integration, collaboration,

and monitoring of construction supply chains in a flexible manner. The implementation

of SC Collaborator leverages web services and portal technologies, open standards, and

open source packages. The SC Collaborator framework consists of a database support

and four layers of integrated functionalities – a communication layer, a portal interface

layer, a business applications layer, and an extensible computing layer. The

communication layer provides a communication channel for users to access the system.

The portal interface layer serves as a secure and customizable user interface. The

business applications layer implements SOA and integrates information, applications and

services in a flexible and reusable manner. Internal information sources, application

functionalities, and system operations are wrapped and deployed into individual web

service units on this layer. The extensible computing layer may include databases,

software applications, and web services that the business applications layer can integrate

externally. The framework is tested and demonstrated in a procurement scenario and a

project rescheduling example.

This thesis demonstrates the modeling of construction supply chains and proposes the

incorporation of supply chain models in a service oriented system framework.

Specifically, the Supply Chain Operations Reference (SCOR) framework developed by

Supply Chain Council is used to model the network structure and processes in

construction supply chains. The mechanical, electrical and plumbing (MEP) supply

chains in a student center construction project has been studied and used as the case

example. Information and documents have been collected and interviews with the

general contractor, subcontractors, and suppliers have been conducted in the study. The

MEP supply chains models developed using the SCOR framework are then utilized to

build a supply chain performance monitoring system. This is achieved by wrapping each

SCOR Level 3 and Level 4 models into individual web service units, which can be

integrated and orchestrated in the service oriented SC Collaborator framework. The

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 170

development and implementation details of the SCOR-based performance monitoring

system are included in this thesis.

The SC Collaborator framework is further extended to support collaboration among

distributed SC Collaborator systems. Currently, supply chain members collaborate and

share information and operations in a centralized manner. In this way, members only

have a limited control on the information they share and the ownership of the shared

information is controversial. Project participants that do not have direct business

partnership may be reluctant to expose and share sensitive and proprietary information

with each other. This thesis thus introduces a distributed SC Collaborator network.

Communication between SC Collaborator systems is achieved through standardized web

services protocol. System modifications are made to ensure information consistency

among distributed SC Collaborator systems. Web service units are modified to return

roll-back operation information whereas BPEL processes are changed to perform logging

and fault handling for every invocation of transaction service operations. In addition,

service invocations of on-going processes are recorded at the back-end database. In this

way, consistency among distributed SC Collaborator systems can be maintained

regardless of network failures or service failures. The distributed SC Collaborator

network is tested with a case scenario of a completed expansion project of a three-storey

residential building.

5.2 Research Contributions

Integration of information and applications is one of the keys to effective supply chain

management. This thesis investigates and demonstrates the use of service oriented

architecture, web services and portal technologies, and open source tools to develop a

prototype service oriented framework that can facilitate integration and collaboration

among supply chain members. The framework supports flexible system reconfiguration

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 171

and integeration of scattered information and application operations, system alignment

based on supply chain configuration, and distributed network of collaborative systems.

The thesis also demonstrates the modeling and performance monitoring of construction

supply chains. Four major contributions are made in this thesis:

• Incorporation of supply chain models in a collaborative system framework:

This thesis proposes and demonstrates the integration of supply chain models and

web services technology in a service oriented SC Collaborator system framework.

The Supply Chain Operations Reference (SCOR) modeling framework is

employed to model and monitor construction supply chains in this research. The

SCOR framework is widely used to model supply chain network structures and

operations for strategic planning purposes. The SCOR framework is seldom

leveraged for the design and implementation of information systems for supply

chain management and collaboration. The resulting SCOR-based SC

Collaborator framework allows flexible alignment with supply chain

configuration and modular modification of the system.

• Distributed network of collaborative systems: In current collaborative systems,

members share information, documents, and operations in a centralized manner.

This thesis proposes a distributed network of collaborative systems that allows

users to fully control the data and operations they share and promotes information

sharing among supply chain members. This thesis presents a distributed SC

Collaborator network which is based on standardized web services technologies,

and addresses the information consistency issues among the distributed SC

Collaborator systems.

• A collaborative system framework that is designed for construction supply

chain management: A collaborative system that is designed to manage

construction supply chains needs (1) ease of installation and configuration, (2)

low cost, (3) ease to be connected and integrated, (4) ability to integrate external

systems and information, and (5) customizable access to information and

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 172

applications. Current solutions do not fulfill all of these requirements. To

demonstrate a SCOR-based system and a distributed network of collaborative

systems, a prototype service oriented system framework SC Collaborator is

developed. Leveraging web services and portal technologies, open source tools,

and open standards in system implementation, the SC Collaborator framework is

designed according to the five system requirements and is desirable for

construction supply chain collaboration and management. The system framework

is tested and validated through various case scenarios.

• Modeling and performance monitoring of construction supply chains: The

planning and management of supply chains require properly specifying the

participating members, identifying the relationships among them, and monitoring

their performance. However, there is no formal methodology that models and

represents the supply chain networks and operations in the construction industry.

Study on the performance monitoring of construction supply chains is also

lacking. This thesis employs the Supply Chain Operations Reference (SCOR)

modeling framework to model and monitor construction supply chains. The

mechanical, electrical and plumbing (MEP) supply chains in a student center

construction project has been studied and modeled using the SCOR framework as

a case example in this thesis. The development of a performance monitoring

platform for the MEP supply chains is also illustrated.

5.3 Future Directions

This section describes the limitations of this research and how they can be addressed in

future research.

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 173

5.3.1 Ontology Based Systems

Supply chain members may use different representations to describe the same piece of

information. Web Services Description Language (WSDL) documents specify the data

structures and data types of the elements in the request and response messages of each

web service operation. Based on WSDL, the prototype SC Collaborator framework

enables integration of information, applications, and services with different

representations. However, supply chain members may use the same terminology to

describe different concepts or use different terminology to describe the same concepts,

due to the differences in their domains and perspectives. The specifications in WSDL

documents do not provide the semantics of the data being exchanged between partners.

Misunderstanding and misinterpretation of the data may be resulted. Ontologies could be

used to describe the data semantics and to serve as a terminological basis for information

interoperability. In a system framework that is supported by both WSDL documents and

ontologies, information, applications and services can be syntactically and semantically

integrated and interoperated.

5.3.2 Extending the Research Scope on Modeling

The three configurations of MEP supply chains described in Chapter 3 are based on our

study of a student center construction project. The MEP supply chains in other

construction projects may have different configurations in terms of organizations and

business operations. The configuration of a supply chain may be affected by factors such

as the common practice of the supply chain members, the scale and budget of the project,

and the type of the construction. Further study of the MEP processes in other

construction projects may be needed to validate the generality of the three supply chain

configurations described. Moreover, the research can be extended to other kinds of

processes in a construction project, for example, steel erection and window installation to

study the supply chains involved in these processes, to model them using the SCOR

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 174

framework, and to build a performance monitoring system for these supply chains using

the framework we presented in this thesis. By extending the scope of our research, we

hope to test the developed methodology and framework and to enhance their usability.

We may also integrate the SCOR models with the existing construction process maps to

better reflect the structure and configuration in construction supply chains.

5.3.3 Application Programming Interface for SC

Collaborator

Many system and applications offer an application programming interface (API) that

enables software programs to connect to and interact with them. APIs define how other

software can make calls to or request services from them. Software programs can

interact with the SC Collaborator system through web services protocol. With successful

authentication, users can view the names of the web service units and their service

operations that are available for invocation. The list of web service units is also

hyperlinked to individual WSDL documents, which describe the service specification that

users can refer to when calling the service operations. However, SC Collaborator does

not provide a description of the behaviors and relationship of the web service units. In

the future, the behaviors and dependency of the service units and their operations will be

specified and documented. An interface that allows users to view and search the detailed

documentation should also be provided.

5.3.4 Evaluation of SC Collaborator Using TAM

Although the SC Collaborator framework has been tested and demonstrated using various

example scenarios, the value and deficiency of the framework is not evaluated and

analyzed in this thesis. Technology acceptance model (TAM) [30] can be adopted to

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 175

Figure 5.1: Technology acceptance model (TAM) [30]

evaluate SC Collaborator in terms of perceived usefulness and perceived ease of use.

TAM is an information systems theory that models how users come to accept and use a

technology. As illustrated in Figure 5.1, the perceived usefulness and ease of use of a

system affect the attitude towards using the system and the behavioral intentions to use

the system, which eventually are reflected in the actual system use. To improve the value

and impact of SC Collaborator, we will demonstrate the SC Collaborator framework to

industry practitioners and gather their feedbacks on the perceived usefulness, ease of use,

and intentions to use the system. By study the feedbacks, we can prioritize the system

features and components, and determine the most value-adding improvements we can

make.

5.3.5 Applications of the GreenSCOR Framework

There have been increasing concerns on the environmental impacts of the construction

industry. In 2008, Supply Chain Council released the GreenSCOR framework [91]

which is a generic conceptual framework for measuring the total carbon footprint and

total environmental footprint in a supply chain. As illustrated in Figure 5.2, the

GreenSCOR framework considers five performance metrics – (1) carbon footprint in tons

of carbon dioxide equivalent, (2) air pollutant emissions in tons or kg, (3) liquid waste

Perceived
usefulness

Perceived
ease of use

Attitude
towards
using

Behavioral
intentions

to use

Actual
system

use

External
variables

CHAPTER 5. CONCLUSIONS AND FUTURE WORKS 176

generated in tons or kg, (4) solid waste generated in tons or kg, and (5) percentage of

solid waste that is recycled. Since the GreenSCOR framework is based on the SCOR

framework, it could be incorporated in the SCOR-based SC Collaborator to build a green

supply chain performance monitoring framework designed for the construction industry.

Further study on the GreenSCOR framework and its integration with the SCOR-based SC

Collaborator will be conducted.

Figure 5.2: The GreenSCOR framework [91]

Bibliography

[1] A. Abdelnur, E. Chien and S. Hepper. Java Specification Requests (JSR) 168:

Portlet Specification, Java Community Process, Sun Microsystems and IBM,

http://jcp.org/en/jsr/detail?id=168, 2003, accessed 15 October 2009.

[2] U. Acikalin, M. Kuruoglu, U. Isikdag and J. Underwood. "Evaluating the

Integrative Function of ERP Systems Used within the Construction Industry," In

A. Zarli and R. Scherer (Eds.), Ework and Ebusiness in Architecture, Engineering

and Construction, Taylor & Francis Group, London, pp. 245-254, 2009.

[3] H.A. Akkermans, P. Bogerd, E. Yücesan and L.N. van Wassenhove. "The Impact

of ERP on Supply Chain Management: Exploratory Findings from a European

Delphi Study," European Journal of Operational Research, 146 (2), pp. 284-301,

2003.

[4] M. Al-Mashari. "Constructs of Process Change Management in ERPContent: A

Focus on SAP R/3," In Proceedings of 2000 Americas Conference on Information

Systems, AMCIS 2000, pp. 977-980, 2000.

[5] ANSI ASC. Electronic Data Interchange X12 Standards, http://www.x12.org/,

1992, accessed 19 September 2007.

[6] Apache Software Foundation, Apache Tomcat 5.5, http://tomcat.apache.org/,

2007, accessed 21 July 2007.

BIBLIOGRAPHY 178

[7] Apache Software Foundation, Apache Axis2, http://ws.apache.org/axis2/, 2007,

accessed 18 November 2008.

[8] Apache Software Foundation, Apache Struts, http://struts.apache.org, 2008,

accessed 28 June 2008.

[9] Apache Software Foundation, Apache Orchestration Director Engine (ODE),

http://ode.apache.org/, 2008, accessed 18 March 2009.

[10] BEA Systems, IBM, Microsoft, SAP and Siebel Systems. Business Process

Execution Language for Web Services (BPEL4WS), Version 1.1,

ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf, 2003,

accessed October 18, 2006.

[11] B. Becerik. "A Review on Past, Present and Future of Web Based Project

Management & Collaboration Tools and Their Adoption by the US AEC

Industry," International Journal of IT in Architecture, Engineering and

Construction, 2 (3), pp. 233-248, 2004.

[12] B. Benatallah, M. Dumas and Q.Z. Sheng. "Facilitating the Rapid Development

and Scalable Orchestration of Composite Web Services," Distributed and Parallel

Databases, 17 (1), pp. 5-37, 2005.

[13] D. Besemer, P. Butterworth, L. Clément, J. Green, H. Ramachandra, J. Schneider

and H. Vandervoort. An Implementor's Guide to Service Oriented Architecture -

Getting It Right, Westminster Promotions, USA, 2008.

[14] P. Bingi, M.K. Sharma and J.K. Godla. "Critical Issues Affecting an ERP

Implementation," In J.M. Myerson (Ed.), Enterprise Systems Integration,

Auerbach Publications, CPC Press, pp. 425-438, 2001.

BIBLIOGRAPHY 179

[15] U.S. Bititci, A.S. Carrie and L. McDevitt. "Integrated Performance Measurement

Systems: A Development Guide," International Journal of Operations and

Production Management, 17, pp. 522-535, 1997.

[16] D. Bowersox, D. Closs and T. Stank. "How to Master Cross-Enterprise

Collaboration," Supply Chain Management Review, 7 (4), pp. 18-29, 2003.

[17] G. Briscoe and A. Dainty. "Construction Supply Chain Integration: An Elusive

Goal," Supply Chain Management: An International Journal, 10 (4), pp. 319-326,

2005.

[18] Bureau of Economic Analysis. Gross Domestic Product (GDP) by Industry 1998-

2008 NAICS Data, US Department of Commerce,

http://www.bea.gov/industry/xls/GDPbyInd_VA_NAICS_1998-2008.xls, 2009,

accessed 07 September 2009.

[19] S.L. Chan and N.N. Leung. "Prototype Web-Based Construction Project

Management System," Journal of Construction Engineering and Management,

130, pp. 935-943, 2004.

[20] H.M. Chen and H.C. Tien. "Application of Peer-to-Peer Network for Real-Time

Online Collaborative Computer-Aided Design," Journal of Computing in Civil

Engineering, 21, pp. 112-121, 2007.

[21] J. Cheng. A Simulation Access Language and Framework with Applications to

Project Management, Ph.D. Thesis, Department of Civil and Environmental

Engineering, Stanford University, Stanford, CA, 2004.

[22] S.O. Cheung, H.C.H. Suen and K.K.W. Cheung. "PPMS: A Web-Based

Construction Project Performance Monitoring System," Automation in

Construction, 13 (3), pp. 361-376, 2004.

BIBLIOGRAPHY 180

[23] M. Christopher and H. Lee. "Mitigating Supply Chain Risk through Improved

Confidence," International Journal of Physical Distribution & Logistics

Management, 34 (5), pp. 388-396, 2004.

[24] B. Chung, M.J. Skibniewski and Y.H. Kwak. "Developing ERP Systems Success

Model for the Construction Industry," Journal of Construction Engineering and

Management, 135 (3), pp. 207-216, 2009.

[25] B.Y. Chung, M.J. Skibniewski, H.C. Lucas and Y.H. Kwak. "Analyzing

Enterprise Resource Planning System Implementation Success Factors in the

Engineering–Construction Industry," Journal of Computing in Civil Engineering,

22 (6), pp. 373-382, 2008.

[26] A. Cox. "A Research Agenda for Supply Chain and Business Management

Thinking," Supply Chain Management: An International Journal, 4 (4), pp. 209-

211, 1999.

[27] A.R.J. Dainty, G.H. Briscoe and S.J. Millett. "Subcontractor Perspectives on

Supply Chain Alliances," Construction Management and Economics, 19 (8), pp.

841-848, 2001.

[28] A.R.J. Dainty, G.H. Briscoe and S.J. Millett. "New Perspectives on Construction

Supply Chain Integration," Supply Chain Management: An International Journal,

6 (4), pp. 163-173, 2001.

[29] T.H. Davenport. "Putting the Enterprise into the Enterprise System," Harvard

Business Review, 76 (4), pp. 121-131, 1998.

[30] F.D. Davis. "Perceived Usefulness, Perceived Ease of Use, and User Acceptance

of Information Technology," MIS Quarterly, 13 (3), pp. 319-340, 1989.

[31] Eclipse Foundation, BPMN Modeler, Version 0.8.0,

http://www.eclipse.org/bpmn/, 2008, accessed 25 April 2009.

BIBLIOGRAPHY 181

[32] Eclipse Foundation, BPEL Visual Designer, Version 0.4.0,

http://www.eclipse.org/bpel/, 2009, accessed 25 April 2009.

[33] M.A. Emmelhainz. Electronic Data Interchange: A Total Management Guide,

Van Nostrand Reinhold Co., New York, NY, USA, 1989.

[34] A. Fearne and N. Fowler. "Efficiency Versus Effectiveness in Construction

Supply Chains: The Dangers of Lean Thinking in Isolation," Supply Chain

Management: An International Journal, 11 (4), pp. 283-287, 2006.

[35] D. Greenwood, M. Calisti, W.T. Ag and S. Zurich. "Engineering Web Service -

Agent Integration," In Proceedings of 2004 IEEE International Conference on

Systems, Man and Cybernetics, pp. 1918-1925, 2004.

[36] A. Gunasekaran and B. Kobu. "Performance Measures and Metrics in Logistics

and Supply Chain Management: A Review of Recent Literature (1995–2004) for

Research and Applications," International Journal of Production Research, 45

(12), pp. 2819-2840, 2007.

[37] A. Gunasekaran, C. Patel and R.E. McGaughey. "A Framework for Supply Chain

Performance Measurement," International Journal of Production Economics, 87

(3), pp. 333-347, 2004.

[38] A. Gunasekaran, C. Patel and E. Tirtiroglu. "Performance Measures and Metrics

in a Supply Chain Environment," International Journal of Operations and

Production Management, 21 (1), pp. 71-87, 2001.

[39] W. Hausman. "Supply Chain Performance Metrics," In T.P. Harrison, H.L. Lee

and J.J. Neale (Eds.), The Practice of Supply Chain Management: Where Theory

and Application Converge, pp. 61-73, 2004.

BIBLIOGRAPHY 182

[40] C.A. Hill and G.D. Scudder. "The Use of Electronic Data Interchange for Supply

Chain Coordination in the Food Industry," Journal of Operations Management,

20 (4), pp. 375-387, 2002.

[41] A. Horvath. "Construction Materials and the Environment," Annual Review of

Environment and Resources, 29, pp. 181-204, 2004.

[42] S.H. Huan, S.K. Sheoran and G. Wang. "A Review and Analysis of Supply Chain

Operations Reference (SCOR) Model," Supply Chain Management: An

International Journal, 9 (1), pp. 23-29, 2004.

[43] R.R.A. Issa, I. Flood and G. Caglasin. "A Survey of E-Business Implementation

in the US Construction Industry," Journal of Information Technology in

Construction, 8, pp. 15-28, 2003.

[44] M.S. Jayashankar, F.S. Stephen and M.S. Norman. "Modeling Supply Chain

Dynamics: A Multiagent Approach," Decision Sciences, 29 (3), pp. 607-632,

1998.

[45] F. Kaefer and E. Bendoly. "The Adoption of Electronic Data Interchange: A

Model and Practical Tool for Managers," Decision Support Systems, 30 (1), pp.

23-32, 2000.

[46] M. Kagioglou, R. Cooper and G. Aouad. "Performance Management in

Construction: A Conceptual Framework," Construction Management and

Economics, 19 (1), pp. 85-95, 2001.

[47] M. Kantor and J.H. Burrows. "Electronic Data Interchange (EDI)," National

Institute of Standards and Technology (NIST),

http://www.itl.nist.gov/fipspubs/fip161-2.htm, 1996, accessed 08 June 2006.

BIBLIOGRAPHY 183

[48] J.P.C. Kleijnen and M.T. Smits. "Performance Metrics in Supply Chain

Management," Journal of the Operational Research Society, 54 (5), pp. 507-514,

2003.

[49] V. Kumar, B. Maheshwari and U. Kumar. "ERP Systems Implementation: Best

Practices in Canadian Government Organizations," Government Information

Quarterly, 19 (2), pp. 147-172, 2002.

[50] V. Kumar, B. Maheshwari and U. Kumar. "An Investigation of Critical

Management Issues in ERP Implementation: Emperical Evidence from Canadian

Organizations," Technovation, 23 (10), pp. 793-807, 2003.

[51] D.M. Lambert. Supply Chain Management: Processes, Partnerships,

Performance, Supply Chain Management Institute, 2008.

[52] D.M. Lambert and M.C. Cooper. "Issues in Supply Chain Management,"

Industrial Marketing Management, 29 (1), pp. 65-83, 2000.

[53] D.M. Lambert, M.C. Cooper and J.D. Pagh. "Supply Chain Management:

Implementation Issues and Research Opportunities," International Journal of

Logistics Management, 9 (2), pp. 1-19, 1998.

[54] D.M. Lambert and T.L. Pohlen. "Supply Chain Metrics," International Journal of

Logistics Management, 12 (1), pp. 1-20, 2001.

[55] H.L. Lee and C. Billington. "Managing Supply Chain Inventory: Pitfalls and

Opportunities," Sloan Management Review, 33 (3), pp. 65-73, 1992.

[56] H.L. Lee and C. Billington. "The Evolution of Supply-Chain-Management

Models and Practice at Hewlett-Packard," Interfaces, pp. 42-63, 1995.

BIBLIOGRAPHY 184

[57] H.L. Lee, V. Padmanabhan and S. Whang. "Information Distortion in a Supply

Chain: The Bullwhip Effect," Management Science, 50 (12 Supplement), pp.

1875-1886, 2004.

[58] H.L. Lee and S. Whang. "Supply Chain Integration over the Internet," In J.

Geunes, P.M. Pardalos and H.E. Romeijn (Eds.), Supply Chain Management:

Models, Applications, and Research Directions, Springer US, pp. 3-17, 2005.

[59] F. Leymann. Web Services Flow Language (WSFL), IBM Software Group,

http://xml.coverpages.org/WSFL-Guide-200110.pdf, 2001, accessed 16 May

2009.

[60] Liferay, Liferay Open Source Enterprise Portal System, http://www.liferay.com/,

2008, accessed 21 July 2007.

[61] K. London, R. Kenley and A. Agapiou. "Theoretical Supply Chain Network

Modelling in the Building Industry," In Proceedings of Association of

Researchers in Construction Management (ARCOM) 14th Annual Conference,

pp. 369-379, 1998.

[62] P.E.D. Love, F. Edum-Fotwe and Z. Irani. "Management of Knowledge in Project

Environments," International Journal of Project Management, 21 (3), pp. 155-

156, 2003.

[63] P.E.D. Love and Z. Irani. "An Exploratory Study of Information Technology

Evaluation and Benefits Management Practices of SMEs in the Construction

Industry," Information & Management, 42 (1), pp. 227-242, 2004.

[64] E. Luening. "Can Construction Industry Rise to Online Challenge?,"

http://www.news.com/2100-1017-244233.html, 2000, accessed 10 March 2008.

BIBLIOGRAPHY 185

[65] Z. Maamar, S.K. Mostéfaoui and H. Yahyaoui. "Toward an Agent-Based and

Context-Oriented Approach for Web Services Composition," IEEE Transactions

on Knowledge and Data Engineering, 17 (5), pp. 686-697, 2005.

[66] D. Michelinakis. Open Source Content Management Systems: An Argumentative

Approach, Master Thesis, Warwick Manufacturing Group, University of

Warwick, 2004.

[67] J.U. Min. Supply Chain Visualization through Web Services Integration, Ph.D.

Thesis, Department of Civil and Environmental Engineering, Stanford University,

Stanford, CA, 2004.

[68] E.A. Morash and S.R. Clinton. "Supply Chain Integration: Customer Value

through Collaborative Closeness Versus Operational Excellence," Journal of

Marketing Theory and Practice, 6 (4), pp. 104-120, 1998.

[69] S. Mullender. Distributed Systems, Addison Wesley, 1993.

[70] F.F.H. Nah, J.L.S. Lau and J. Kuang. "Critical Factors for Successful

Implementation of Enterprise Systems," Business Process Management Journal,

7 (3), pp. 285-296, 2001.

[71] S.J. New. "The Scope of Supply Chain Management Research," Supply Chain

Management: An International Journal, 2 (1), pp. 15-22, 1997.

[72] P. Nitithamyong and M.J. Skibniewski. "Web-Based Construction Project

Management Systems: How to Make Them Successful?," Automation in

Construction, 13 (4), pp. 491-506, 2004.

[73] W. O'Brien, L. Soibelman and G. Elvin. "Collaborative Design Processes: An

Active-and Reflective-Learning Course in Multidisciplinary Collaboration,"

Journal of Construction Education, 8 (2), pp. 78-93, 2003.

BIBLIOGRAPHY 186

[74] W.J. O'Brien, K. London and R. Vrijhoef. "Construction Supply Chain Modeling:

A Research Review and Interdisciplinary Research Agenda," In Proceedings of

the 10th Annual Conference of the International Group for Lean Construction

(IGLC-10), pp. 129-148, 2002.

[75] W. O’Brien. "Construction Supply-Chains: Case Study, Integrated Cost and

Performance Analysis," In L. Alarcon (Ed.), Lean Construction, A.A. Balkema

Publishers, Rotterdam, pp. 187-222, 1997.

[76] J. Oakland and M. Marosszeky. Total Quality in the Construction Supply Chain,

Elsevier, Oxford, Great Britain, 2006.

[77] Object Management Group (OMG). Unified Modeling Language (UML), Version

2.0, http://www.uml.org/, 2005, accessed 26 January 2009.

[78] Object Management Group (OMG). Business Process Modeling Notation

(BPMN), Version 1.1, http://www.bpmn.org/Documents/BPMN_1-

1_Specification.pdf, 2008, accessed 25 April 2009.

[79] Open Source Initiative. "The Open Source Definition,"

http://www.opensource.org/docs/osd, 2007, accessed 15 September 2009.

[80] Organization for the Advancement of Structured Information Standards (OASIS).

Web Services Business Process Execution Language (WS-BPEL), Version 2.0,

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, 2007, accessed

08 April 2009.

[81] A. Rai, R. Patnayakuni and N. Seth. "Firm Performance Impacts of Digitally

Enabled Supply Chain Integration Capabilities," Management Information

Systems Quarterly, 30 (2), pp. 225-246, 2006.

[82] S.S. Rao. "Enterprise Resource Planning: Business Needs and Technologies,"

Industrial Management and Data Systems, 100 (1), pp. 81-88, 2000.

BIBLIOGRAPHY 187

[83] Red Hat, Hibernate Framework, http://www.hibernate.org, 2008, accessed 28

June 2008.

[84] RosettaNet. The RosettaNet Standard, http://www.rosettanet.org/, 1998, accessed

06 August, 2008.

[85] M.R. Sanders. "What Does E-Marketplace Buying Cost," Tech Strategy,

Forrester Research, 2001.

[86] J.J. Shi and D.W. Halpin. "Enterprise Resource Planning for Construction

Business Management," Journal of Construction Engineering and Management,

129 (2), pp. 214-221, 2003.

[87] T.M. Simatupang, A.C. Wright and R. Sridharan. "The Knowledge of

Coordination for Supply Chain Integration," Business Process Management

Journal, 8 (3), pp. 289-308, 2002.

[88] R.D. Sriram. Distributed and Integrated Collaborative Engineering Design,

Sarven Publishers, 2002.

[89] Sun Microsystems, JDBC Data Access API, 2002.

[90] Sun Microsystems, MySQL 5.0, http://www.mysql.com, 2007, accessed 21 July

2007.

[91] Supply Chain Council (SCC). Supply Chain Operations Reference (SCOR)

Model, Version 9.0, 2008.

[92] S. Thatte. XLANG: Web Services for Business Process Design, Microsoft

Corporation, http://xml.coverpages.org/XLANG-C-200106.html, 2001, accessed

18 October 2006.

BIBLIOGRAPHY 188

[93] M. Themistocleous, Z. Irani, R.M. O’Keefe and R. Paul. "ERP Problems and

Application Integration Issues: An Empirical Survey," In Proceedings of the 34th

Annual Hawaii International Conference on System Sciences, 2001.

[94] UN/CEFACT and Organization for the Advancement of Structured Information

Standards (OASIS). Electronic Business Using eXtensible Markup Language

(ebXML), Version 1.01, 2001.

[95] D.M. Upton and A. McAfee. "The Real Virtual Factory," In D. Tapscott (Ed.),

Creating Value in the Network Economy, Harvard Business School Press, pp. 69-

89, 1999.

[96] US Air Force. Integrated Computer-Aided Manufacturing (ICAM) Architecture

Part II, Vol. IV - Function Modelling Manual (IDEF0), Report AFWAL-TR-81-

4023, Air Force Materials Laboratory, Wright-Patterson AFB, Ohio 45433, 1981.

[97] US Census Bureau. Annual Value of Construction Put in Place 2002-2008,

http://www.census.gov/const/C30/total.pdf, Washington, DC, 2009, accessed 07

September 2009.

[98] A.J. Vakharia. "E-Business and Supply Chain Management," Decision Sciences,

33 (4), pp. 495-504, 2002.

[99] R. Vrijhoef and L. Koskela. "The Four Roles of Supply Chain Management in

Construction," European Journal of Purchasing and Supply Management, 6 (3-4),

pp. 169-178, 2000.

[100] World Wide Web Consortium (W3C). Web Service Choreography Interface

(WSCI), Version 1.0, http://www.w3.org/TR/wsci/, 2002, accessed 21 July 2009.

[101] World Wide Web Consortium (W3C). Web Services Conversation Language

(WSCL), Version 1.0, http://www.w3.org/TR/wscl10/, 2002, accessed 21 July

2009.

BIBLIOGRAPHY 189

[102] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP),

Version 1.2, http://www.w3.org/TR/soap12-part1/, 2003, accessed 06 March

2008.

[103] World Wide Web Consortium (W3C). Web Service Choreography Description

Language (WS-CDL), Version 1.0, http://www.w3.org/TR/2004/WD-ws-cdl-10-

20041217/, 2004, accessed 21 July 2009.

[104] World Wide Web Consortium (W3C). Web Services Description Language

(WSDL), Version 2.0, http://www.w3.org/TR/wsdl20/, 2007, accessed 28 June

2008.

[105] J.B. Yang, C.T. Wu and C.H. Tsai. "Selection of an ERP System for a

Construction Firm in Taiwan: A Case Study," Automation in Construction, 16 (6),

pp. 787-796, 2007.

[106] I. Yu, K. Kim, Y. Jung and S. Chin. "Comparable Performance Measurement

System for Construction Companies," Journal of Management in Engineering, 23

(3), pp. 131-139, 2007.

[107] Y. Zhu, R.R.A. Issa and R.F. Cox. "Web-Based Construction Document

Processing Via Malleable Frame," Journal of Computing in Civil Engineering, 15

(3), pp. 157-169, 2001.

