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ABSTRACT 
 
When designing a control system for structural control, the 
Linear Quadratic Regulation (LQR) approach is usually 
taken.  While this centralized control approach optimally 
controls structural deflections during earthquakes, it is not 
well suited for systems employing a large number of 
sensors and actuators.   As an alternative to LQR, a 
market-based control system is proposed.  Market-based 
control is a decentralized solution that models the control 
system around a scarce commodity such as power.  The 
laws of supply and demand are employed to determine the 
semi-optimal control solution.  In both a one and multiple- 
degree-of-freedom system, market-based control is shown 
to yield structural response reductions comparable to 
those obtained from the LQR solution. 
 
 
NOMENCLATURE 
 
{x}  state-space response of the structure 
[F]  state-space system matrix 
[G],[L]  location matrix of actuators and loading 
{d},{v}  displacement and velocity vectors 
J  LQR cost function 
{y}  regulated response vector 
[R]  cost function weighting matrix 
[P]  Riccati matrix 
[K], [KD]  continuous and discrete control gain matrix 
P  amount of power bought or sold 
p  transaction price of power 
K, αααα  market-base control weighting terms 
ββββ  inverse of the supply function slope 
ρρρρ  supplier profit 
Wi device wealth 
{u} control force vector 
T,Q,R,S market-based control weighting terms 
 
 
1.  INTRODUCTION 
 
Earthquakes represent one of the most potent naturally 
occurring load for structures.  While many options are 

available for designing structures to withstand moderate to 
large earthquakes, the nascent field of structural control 
has attracted a significant amount of interest by 
researchers and practitioners alike.  Early efforts in 
structural control focused primarily upon active systems.  
In an active control system, large actuators are employed 
to limit structural deflections by applying forces to a 
structure directly.  In 1989, the Kyobashi Seiwa Building in 
Tokyo, Japan was constructed using an active mass 
damper making it the first building in the world to use 
active structural control [1].   While the Kyobashi Seiwa 
building represents a major achievement for the structural 
engineering community, it has revealed that active-type 
structural control systems suffer from some technological 
and economic limitations.   
 
In response to these inherent limitations, a new semi-
active control paradigm has emerged.  In this new type of 
control system, forces are not applied directly, but rather 
indirectly, to the structure since control devices are used 
to only change the stiffness or damping properties of the 
structure.  With small energy consumption characteristics, 
compact sizes and greater degree of reliability, semi-
active control devices represent a cost effective solution 
for limiting structural deflections during large earthquakes 
[2].  Furthermore, because semi-active control devices do 
not input energy directly into the system, the devices do 
not have the ability to destabilize the structure as can be 
shown using bounded-input bounded-output (BIBO) 
system theory.      
 
One popular type of semi-active control device is the semi-
active variable damper.  Typically, variable dampers are 
located within a lateral resisting frame of a structure 
through placement at the apex of K-braces.  The defining 
characteristic of the variable damper is that its damping 
coefficient can be changed during an earthquake 
excitation thereby indirectly introducing control forces into 
the system.  At least two types of variable dampers have 
emerged in recent years that employ different types of 
mechanisms to change their damping coefficients.  There 
is the Semi-Active Hydraulic Damper (SHD) designed by 
Kajima Corporation, which changes its damping coefficient 



by varying the orifice opening between adjacent chambers 
of a hydraulic damper.  Such a device can deliver a 
maximum damping force of 1000 kN using 70 watts of 
power.   Eight SHD semi-active devices have recently 
been installed in the five-story Kajima-Shizuoka Building in 
Shizuoka, Japan [3].   
 
The second type of variable damper is the 
magnetorheological damper being developed at Notre 
Dame University.  This damper changes its coefficient of 
damping when a magnetic field around the damper’s 
piston causes a change in the viscosity of internal 
hydraulic fluid.   This variable damper can deliver a 
maximum damping force of 200 kN using only 20 to 50 
watts of power [4].       
 
The evolutionary trend of semi-active devices suggest that 
in time, the shape factor of the devices will become 
significantly smaller, their capital cost will be reduced and 
their energy consumption characteristics will be improved.  
Engineers will have the opportunity to deploy large 
quantities of semi-active devices throughout a single 
structure.  However, the result is a large-scale control 
problem entailing hundreds of control devices and 
sensors.   
 
The large-scale control problem presents new research 
challenges.  Presently, a centralized control system such 
as Linear Quadratic Regulation (LQR) is used.  In such a 
system, accelerometers measuring structural responses 
communicate their readings to a central controller who 
would then communicate control commands to system 
actuators.  The centralized control system will no longer 
be a prudent design decision for numerous reasons.  First, 
communication between a central controller and a large 
number of sensors and actuators will require more 
expensive and faster computers.  Furthermore, a single 
controller represents a single point of failure that can 
potentially render the control system ineffective if it goes 
offline.   As an alternative, decentralized control methods 
could prove valuable for the control of structures that 
employ large numbers of control devices [5].  In the 
decentralized control approach, a central controller will no 
longer be used to regulate the structure during an 
excitation since each semi-active device will have on-
board computational means for formulating a semi-
optimized control solution.  By decentralizing the control 
solution, the control algorithm can become less reliant on 
derived models of the structure.  This should lead to 
robust control during the instances of device or structural 
failure.   
 
 
2. LINEAR QUADRATIC REGULATION THEORY 
 
For structural control design, a structure is often idealized 
as a lumped mass shear model.  In such a model, each 
rigid floor represents a degree of freedom of the system 
that can translate laterally.  The state-space 
representation of the dynamic response of a controlled 
structure to an external loading can be written as    
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where x(t) represents the state of the system.  This state 
vector is generally a column vector of system 
displacements and velocities.  The matrix [F] is termed the 
system matrix while [G] and [L] are the actuator and 
excitation location matrices, respectively.  The system 
matrix, [F], encapsulates the uncontrolled dynamic 
response characteristics of the system.  By transforming 
the system matrix from the time domain to the complex 
domain, a graphical representation of the system’s 
complex roots can be obtained.   Plotting these roots, or 
rather “poles” of the system, on the complex plane, the 
modal properties such as natural frequency, ωn, and ratio 
of critical damping, ξ, can be graphically observed.  
Furthermore, the complex plane serves as a guide for the 
system’s stability since the left hand side of the complex 
plane would represent a stable system while poles on the 
right hand side would imply an unstable system. 
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Figure 1 – System Poles on the Complex Plane 
 
The intent behind introducing control to the structure via 
the [G]{u(t)} term of Equation (1), is to initiate migration of 
the system poles to desired locations in the left half plane 
on the system.  While numerous techniques exist in the 
control literature for pole placement, one widely used 
technique is LQR because it is an optimal control 
technique that weighs the improved response of the 
structure to the actuation effort required to attain it.  In 
LQR, a cost function, J, weighing system response to 
actuation input is minimized to find the optimal control 
solution.   
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Any system response of interest can be regulated (driven 
to zero) using LQR by representing this response variable 
as {y(t)}.  The relative weighting between the response 
vector, {y(t)}, and actuator effort, {u(t)}, is represented by 
the positive definite matrix [R].  The criterion of positive 
definiteness is necessary to ensure that a surface 
representing the cost function, J, is upward convex with a 
global minimum point defined [6].    
 
The minimum of the cost function is found by adjoining the 
cost function, J, and the constraining equation of motion of 
the system (Equation 1) with a time dependent Lagrange 
multiplier, λ(t).  Neglecting the loading imposed upon the 
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system and assuming the multiplier is proportional to the 
state vector by the Riccati matrix, [P], 
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an algebraic solution exists for the Riccati equation that 
gives the optimal control solution, {u(t)}.  The solution is 
proportional to the state of the system by matrix [K].   
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The new pole locations of the system employing the LQR 
controller are the eigenvalues of the augmented state 
matrix, [F’] = [F-GK].  The pole locations of the final 
closed-loop system are dependent upon the form of the 
cost function, J.  The variable used to regulate, {y(t)}, 
usually influences the pole migration trajectory while the 
weighting matrix, [R] influences how far the poles will 
migrate along their trajectory paths.  For example, let us 
consider a single-degree-of-freedom system whose 
system poles are a conjugate pair in the left half side of 
the complex plane.  If the variable for regulation is simply 
displacement, {y(t)} = {d(t)}, the final form of the control 
solution [K] will have a dominant non-zero term for the 
displacement portion of {x(t)} and a relatively small non-
zero term for the velocity, {v(t)}, portion.  This result is 
equivalent to an increase in the system stiffness and 
suggests a pole migration trajectory in the complex plane 
depicted in Figure 2(a).  The final location of poles is 
dependent upon the value of [R] selected.   If the 
weighting term is near infinity, the relative cost of actuation 
is so high that no control is used in the optimal solution.  
As [R] decreases, more and more control is used.  If [R] is 
zero, the final system poles would migrate to infinity.   
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Figure 2 – Effects of Weighting [R] on Locus of 
System Roots – (a) {y(t)} = {d(t)}  (b) {y(t)} = {v(t)} 

 
Likewise, if the variable of regulation is the velocity 
response of the system, the gain matrix, [K], would have a 
small term associated with {d(t)} and a large one 
associated with {v(t)}.  This is equivalent to increased 
damping in the system as can be seen in Figure 2(b).   A 
combination of {d(t)} and {v(t)} in the regulation variable 
would result in a pole migration pattern that would be a 
combination of the two patterns depicted in Figure 2.   
 

 
3. SEMI-ACTIVE STRUCTURAL CONTROL   
 
For the remaining portion of this paper, our discussion will 
be limited to structural control systems employing semi-
active control devices.  In particular, a semi-active control 
device similar to Kajima’s SHD device will be used.  
Typically, the SHD is installed between the low point of a 
stiff K-Brace and the floor.  Given a command control 
force, the SHD calculates the damping coefficient by 
dividing the command force by the relative velocity 
between the two floors to which the SHD is connected.   
 

SHD
u(t)

vREL(t)

 
 

Figure 3 – Installation of a Semi-Active SHD Damper 
 
If the relative velocity between the two floors that the SHD 
connects has an opposite direction as the desired control 
force, then the control force is applied by the SHD.  If the 
relative velocity is in the same direction, no control force 
can be applied and the damper is set to its minimum 
damping coefficient.  Given that the control device is 
attached to the floor above through a flexible K-brace, the 
SHD and brace are modeled as one Maxwell damping 
element in which a dashpot and spring are connected in 
series.  Some of the properties associated with the SHD 
device are summarized in Table 1 [3]. 
 

Maximum Control Force 1000 kN 
Maximum Displacement +/- 6 cm 

Stiffness of SHD 400,000 kN/m 
Maximum Damping Coefficient 200,000 kN-s/m 
Minimum Damping Coefficient 1,000 kN-s/m 

Maximum Shaft Velocity 25 cm/s 
Weight 1300 kg 

 
Table 1 – SHD Specifications 

 
 
4. OVERVIEW OF MARKET-BASED CONTROL  
 
In observing free capitalistic markets, it is evident that 
through the individual intentions of both consumers and 
sellers alike, an efficient means of societal resource 
allocation exists.  The complex laws of supply and 
demand, first set forth by Adam Smith in 1776, are the 
fundamental building blocks in determining the equilibrium 
price of goods in a decentralized economy.  What the 
market is excellent at “controlling” is the price we pay for 
goods and the salary we receive for our services.  A free 
market optimally controls the prices of all goods and 
services.  The historically poor performance of centralized 
economies is evidence of the difficulty associated with 
centrally controlling a market.     
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Borrowing the concept of a marketplace for application in 
a control system is rather new to the field of control.  
Investigations have been made into the use of market-
based control techniques in the field of MEM’s (micro-
electrical machines) where hundreds of actuators and 
sensors are employed in a system of high plant 
uncertainty and potential actuation and sensor failure [7].  
One area that market-based control has made significant 
advances is in the area of computer resource allocation 
(i.e., memory, network traffic, and processor time) [8]. 
  
A structure employing a large number of sensors and 
actuators can be modeled as a market place that centers 
around the buying and selling of the scarce resource of 
power.  The cost efficiency of any structural control system 
is indirectly proportional to the consumption of power the 
system requires.  If a system consumes less power, it 
represents a more cost efficient solution.  Therefore, 
allowing actuators to enter a market place for purchasing 
power, the local interaction of the system’s actuators can 
potentially attain an efficient global control system that can 
adequately control a structure’s deflections while at the 
same time use power in an efficient manner.  Techniques 
like LQR guarantee an optimal solution whereas the 
market-based method makes no such promises.  
However, the market-based control solution can be viewed 
as semi-optimal.   
    
Since there is no central authority imposing rigidity to the 
system infrastructure, market-based control systems are 
easily expandable and maintainable.  Furthermore, 
tolerances for model uncertainty would be higher in a 
market based system than in a classical centrally 
controlled system.  All of these benefits make market-
based control an attractive option to be considered for 
structural control where information about the plant 
(structure) is not always known with a high degree of 
certainty or when use of a central controller has its 
technological and economic limitations.   
 
 
5. MARKET-BASED CONTROL FOR A ONE-

DEGREE-OF-FREEDOM SEMI-ACTIVE CONTROL 
SYSTEM 

 
Let us consider a simple one-degree-of-freedom structure 
controlled by an SHD device.   Since the system has only 
one actuator, it does not represent a large-scale economy 
or marketplace.  Nonetheless, the single-degree-of-
freedom system is ideal to formulate mathematically the 
laws of supply and demand.   
 
The scarce commodity of interest in the system is power, 
P.  The SHD devices need power to successfully limit the 
deflections of the structure.  The control force applied to 
the structure by each damper will be directly proportional 
to the amount of power purchased by each device.  Each 
actuator will have an opportunity to purchase at the 
market’s equilibrium price, p.  When the price of power is 
high relative to the actuator’s overall wealth, it is inclined 
to purchase less.  In the opposite case of inexpensive 
power, the actuators will purchase more.  This verbal 
explanation of device demand can be graphically 

represented in many ways (e.g. a straight line, parabola, 
etc).  For simplicity, a simple linear demand function is 
proposed.  The only restriction that is faced when 
proposing demand functions is that when structural 
response is high (high displacement and high velocity) it is 
expected that more power will be demanded.  For a linear 
demand function, the slope and P-axis intercept are 
sufficient to fully characterize the function.  Both properties 
are proposed to be a function of the structure’s 
displacement and velocity.   
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When the structure’s displacement and velocity grow, it is 
natural to expect the demand for power to grow 
proportionally.  To represent the growth in demand, it is 
proposed that the intercept and slope of the demand 
function take on the following form.   
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Figure 4 depicts how the selection of the demand 
function‘s intercept and slope influence the growth of 
demand for large structural responses.  
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Figure 4 - Growth of Demand and Control Force to 

Large System Responses 
 

For the law of supply, each producer of power (i.e., semi-
active device battery) seeks to maximize profits 
associated with selling power to the system buyers.  The 
profit, ρ, obtained by the producer is proportional to the 
power sold to the device, P, and is a function of the cost of 
power production, C, which is assumed to be proportional 
to the square of the power produced:  ρ = pP - C = pP - 
βP2.  Profit is maximized with respect to power, resulting in 
a linear supply function. 
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The equilibrium price of power at each time step is 
determined by finding the point where supply equals 
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demand.  For the selected supply and demand functions, 
the resulting control force can be found. 
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The control solution of the market-based control method is 
quite similar to the control solution obtained from the LQR 
approach.  In the market-based solution, the coefficients of 
the displacement and velocity terms vary in response to 
the system’s response.  In LQR, the coefficients are static.     
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To observe the performance of the proposed market-
based control method, an analysis is performed upon a 
single-degree-of-freedom structure controlled by an SHD 
device during a large seismic excitation.  In an attempt to 
properly scale a single-degree-of-freedom system to the 
SHD device, the mass and stiffness of the structure are 
selected to be 200,000 kg and 20,000 kN/m respectively.  
This results in a natural period of 0.628 seconds.  Viscous 
damping of the structure is assumed to be roughly 2% of 
critical damping.  The seismic excitation of interest in this 
analysis is the unscaled record of El Centro, 1940.   
 
The properties of the SHDs used in this analysis are the 
same as those shown in Table 1.  The stiffness of the K-
brace is selected to be roughly 15,580 kN/m.   While 
outside the scope of this study, it can been shown that the 
choice of effective stiffness of the K-brace is important in 
the performance of the control system relative to the 
performance of the SHD when set to its maximum 
damping coefficient.  When the ratio of SHD bracing 
stiffness to lateral structural stiffness, also known as the 
stiffness rate, is high, the damper operated by the control 
system will not perform better than when the damper is 
fixed at its maximum damping value.  When the stiffness 
rate is low, as is typical of SHD installations in high rise 
structures, the controlled damper will perform better than 
the damper fixed at its maximum damping coefficient.  The 
value selected for this study is considered a moderately 
low stiffness rate and therefore it can be expected that the 
control system will outperform the static damper set to its 
maximum damping value of 20,000 kN-s/m. 
          
First, the structural response is measured with the 
structure employing no SHD device, an SHD set at a fixed 
damping value of 1,000 kN-s/m and an SHD set at its 
maximum permissible value of 200,000 kN-s/m.  The 
responses of the three runs are shown in Figure 5.  Of 
particular interest is the maximum displacement of the 
one-degree-of-freedom structure.  For the structure 
employing no semi-active control device, the maximum 
displacement is 4.3 cm.  When one SHD device is 
installed and set at its minimum damping coefficient, the 
maximum structural displacement is reduced to 2.8 cm.  If 
the SHD’s damping coefficient is set at its maximum 

damping coefficient, displacement can be further reduced 
to 2.4 cm.   
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Figure 5 – Single DOF System Response – No SHD 
Installed, Minimum Damping, Maximum Damping 

   
 
The LQR control solution is determined after selecting the 
appropriate [Q] and [R] weighting matrices.   One of the 
primary goals of the control solution is to minimize 
structural deflections in order to keep structural 
displacements within an elastic limit.  To reflect this goal, 
the diagonal element of [Q] associated with displacement 
is selected to be significantly larger than the element 
associated with velocity.     
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The resulting discrete LQR gain is found to be [KD] = [-
2.2x108  -9.7x106].  With the LQR solution commanding 
the SHD, the structural response of the single-degree-of-
freedom structure is reduced to a maximum displacement 
of 2.17 cm. 
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Figure 6 – Single DOF System Response  - LQR 
Control Solution 

 
The market-based control method is also implemented on 
the system.  The tuning parameters associated with the 
demand and supply functions, K, α, and β, need to be 
judiciously selected to obtain control results competitive 
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with LQR.   After a rigorous search for near optimum 
values of the parameters, the following are obtained: K = -
2190, α = 4.42 x 10-4, and β = 1x10-6. 
 
The results of the structure’s response to the El Centro 
record under market-based control is nearly the same as 
that obtained in the LQR method.  For the market-based 
method, the maximum story displacement is 2.20 cm 
compared to LQR’s 2.17 cm as seen in Figure 7.  This 
result is expected due to the similarities between the final 
form of the control force equations for both the market-
based and LQR controllers. 
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Figure 7 – Single DOF System Response  - Market-
Based Control Solution 

 
As previously discussed, the location of system poles can 
give incredible insight to the system response properties.  
For the LQR solution, the system poles move from their 
uncontrolled location to a fixed location of greater natural 
frequency, ωn and damping ratio, ξ.  In contrast, for the 
market-based method, the form of the equation of the 
control force suggests that the poles have a tendency to 
migrate over time around some fixed point as shown in 
Figure 8. 
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Figure 8 – Pole Locations of (a) LQR and (b) Market 

  
 
6. MARKET-BASED CONTROL FOR A MULTI-

DEGREE-OF-FREEDOM SEMI-ACTIVE CONTROL 
SYSTEM 

 
While the results from the market-based controller of the 
one-degree-of-freedom system are nearly equal to those 
of the LQR controller, the true test of the method comes 
from its application in a multiple-degree-of-freedom 
system.  In such a system, the meaning of a market has 
significantly more substance than in its one-degree-of-
freedom counterpart.  The system’s multiple actuators will 
form the marketplace’s buying population while the power 
distribution system will form the sellers.  Each actuator will 

be provided with an amount of fictitious wealth, Wi, with 
which it can buy power at the market price.  Actuator 
wealth, not present in the original single-degree-of-
freedom system formulation, will have some influence on 
the demand function.  With more relative wealth, a buyer 
is inclined to buy more power.   
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The equilibrium price will be determined by finding the 
point where the function representing the summation of 
the individual demands of the actuators equals the 
summation of the seller’s supply functions (total of n 
sellers in the system).   
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Once the market price is established, each actuator will 
only buy power if the market price at that time step does 
not exceed its wealth.  Once all actuators have purchased 
power, the money is subtracted from each buyer’s wealth 
and distributed evenly through out the system to each 
actuator, regardless of whether the actuator purchased 
power at that step or not.    Similar to the previous single-
degree-of-freedom system, the control force is 
proportional to the power purchased.    
 
Kajima has completed construction of the Kajima 
Shizuoka Building, the first building in the world to employ 
a semi-active variable damper control system for large 
earthquakes [3].  The Shizuoka building is a five-story 
steel frame structure that has two different SHD devices 
upon each of its first four floors.  The different SHD 
dampers are connected to the lateral steel frame through 
a steel K-brace located on the two exterior sides of the 
structure. Taking the published properties of the Shizuoka 
structure, a lumped mass shear model was made for 
analysis as shown in Figure 9.  In Figure 9, all stiffness 
properties shown are representative of the summation of 
stiffness per story.   
 
For this particular system, three different earthquake 
excitations are considered.  In particular the El Centro 
(1940), Loma Prieta (Stanford-SLAC), and Northridge  
(Canoga Park) ground motion records are selected with 
each record scaled to a maximum peak ground velocity of 
60 cm/s.  This is necessary to roughly ensure some 
uniformity in the maximum input energy to each structure.   
 
Again, the market-based control solution is implemented 
and compared to both the uncontrolled structural response 
and response of the system with the SHDs set at their 
minimum damping coefficients.   For the multi-degree-of-
freedom system, maximum story drifts are used as the 
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response characteristic of comparison since this is a good 
indicator of the structural elastic displacements.   
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Figure 9 – Model of the Kajima-Shizuoka Building 
 
 
As can be seen by the results presented in Figure 10, the 
market-based method is successful in reducing story 
displacements by more than 50%.  Due to the absence of 
an SHD device on the fifth story of the structure, this 
story’s deflection does not experience any reduction in its 
drift.     
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Figure 10 – Story Drift Response to Market Based 

Control 
 
 
7.  CONCLUSION 
  
The market-based control method has been illustrated to 
be an effective control technique for limiting structural 
deflections during earthquakes.  For the one-degree-of-
freedom system, the market-based method yields results 
nearly identical to the LQR results.  For the Shizuoka 

multi-degree-of-freedom, significant story drift reductions 
were attained with market-based control.   
 
While these results represent a significant advancement of 
the market-based control method, more work is needed to 
render it a self-reliant decentralized control solution.  One 
area of future investigation is how to allow the system to 
tune the current weighting parameters of the demand 
function (R,S,T,Q) which would make the approach model 
independent and adaptable over time.   Furthermore, a 
means of inter-device communication must be developed 
to eliminate the need of the central controller; for example, 
using a hierarchical data aggregation model.   
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