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SUMMARY

To limit the response of structures during external disturbances such as strong winds or large seismic
events, structural control systems can be used. In the structural engineering �eld, attention has been
shifted from active control to semi-active control systems. Unlike active control system devices, semi-
active devices are compact, have e�cient power consumption characteristics and are less expensive. As
a result, an environment of a large number of actuators and sensors will result, rendering a complex
large-scale dynamic system. Such a system is best controlled by a decentralized approach such as
market-based control (MBC). In MBC, the system is modelled as a market place of buyers and sellers
that leads to an e�cient allocation of control power. The resulting MBC solution is shown to be locally
Pareto optimal. This novel control approach is applied to three linear structural systems ranging from
a one-storey structure to a 20-storey structure, all controlled by semi-active hydraulic dampers. It is
shown that MBC is competitive in the reduction of structural responses during large seismic loadings
as compared to the centralized control approach of the linear quadratic regulation controller. Copyright
? 2002 John Wiley & Sons, Ltd.

KEY WORDS: market-based control (MBC); semi-active control; active control; decentralized structural
control; smart structures; linear quadratic regulation (LQR)

1. INTRODUCTION

To ensure safety and long-term performance, structures are designed to limit their response
to various external disturbances such as earthquakes and winds. The current state of practice
attains these limits through the use of lateral resisting systems and in some instances with
base isolation systems. In the past decade, new and promising control systems have been
designed and implemented as an alternative means of limiting structural responses during
strong wind and earthquake loads. The control systems designed to date can be broadly
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classi�ed into two categories: active and semi-active. Active control systems are those that
employ large actuators that directly input forces into the structure in an attempt to limit
structural de�ections. While such systems can be viewed as great achievements, they do
su�er from some technological and economic limitations. In response to these limitations,
semi-active control systems have emerged. In a semi-active system, devices are used to change
the damping or sti�ness properties of a structure, thereby indirectly removing energy from
the system. Semi-active control systems hold great promise since they can be e�ectively
used during large seismic events, are small in size, consume less power than their active
counterparts, and are less expensive to fabricate [1].
A common semi-active control device used to date is the variable hydraulic damper. One

example is the semi-active hydraulic damper (SHD), designed by Kajima Corporation, Japan.
This damper can modify its damping coe�cient in real time through the opening or closing
of an ori�ce valve connecting two adjacent hydraulic chambers. The end result is a control
device that can yield a maximum control force of 1000 kN using only 70 W of power.
Kurata et al. have recently implemented eight SHD dampers in a �ve-storey structure in
Shizuoka, Japan [2]. Other semi-active device mechanisms exist such as controllable �uid
dampers and controllable friction dampers. In particular, Spencer et al. have designed and
tested a controllable magnetorheological �uid damper that controls its damping coe�cient by
changing a magnetic �eld surrounding the damper’s �uid chamber [3].
If the current trend of evolution continues with semi-active device shape factors shrinking

and power consumption characteristics improving, it is likely that structural control systems of
the future will employ large numbers of control devices. In the �eld of structural monitoring,
new and innovative low-cost wireless sensors are emerging, as illustrated by Lynch et al. and
Straser, that will allow control systems to employ more sensors for system state feedback
[4; 5]. For such a large-scale complex system, the orthodox approach of using a central
computer responsible for the control of the entire system will become less desirable. Another
inherent di�culty associated with the widely used centralized controller approach is that one
controller represents a single point of failure in the system.
One approach to handling complex control systems is to use a decentralized control system

[6]. The attainable bene�ts of using decentralized control are high system performance in
light of system uncertainty, greater stability robustness, improved control system performance
in non-linear systems, and system installation modularity facilitating low-cost installations,
diagnostics and module replacements [7]. Architecturally, in a centralized control system, one
central controller is used to co-ordinate the collection of state information from system sensors
and based on these measurements, determine actuation forces for control. In the decentralized
system, a central controller will no longer be necessary with control devices housing on-board
computational power to facilitate the calculation of their own control actions based on the
measurements of the system sensors. Many decentralized control techniques exist that are used
in a variety of control systems for non-structural engineering applications. Some decentralized
control methods potentially applicable to structural control include decentralized state feedback,
decentralized proportional-integral control, and degenerate control, just to name a few [6].
An immediate example of a complex system elegantly controlled in a decentralized fashion

is the free market economies. In a free market system, scarce societal resources are distributed
based on the local interactions of buyers and sellers who obey the laws of supply and demand
as set forth by Adam Smith [8]. In the free markets, what is optimally ‘controlled’ is the
price that is paid for goods and the salary workers receive for their services. The historically
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poor performance of centrally controlled economies is additional evidence of the di�culty
associated with controlling a complex marketplace.
This paper is an investigation into the development of a novel control technique termed

market-based control (MBC) for application to structural control systems. In market-based
control, the complex dynamic system is modelled as a market whose operation is akin to
�nancial markets. A scarce system resource is identi�ed and is optimally distributed in a
decentralized manner. Researchers have investigated the use of MBC techniques to micro-
electro-mechanical systems (MEMS) where hundreds of actuators and sensors are employed
in system plants of high uncertainty with high likelihood of actuation failure [9]. In the area of
computer architecture, market-based control has been applied to problems of optimal resource
allocation on computer networks as well as in the time-sharing of microprocessor power for
software processes [10]. Market-based control has even been applied to systems that regulate
the �ow of �uid in tanks [11].
In this paper, the MBC approach is formulated for complex dynamic structural systems. In

the formulation, comparisons will be made to the linear quadratic regulation (LQR) control
approach that is the widely used centralized control algorithm in practice. A one-degree-of-
freedom structure controlled by an actuator will be used for illustration of the e�ectiveness
of market-based control in reducing structural responses during large seismic loadings. The
approach will also be applied to larger complex structural systems such as the �ve-storey
Kajima–Shizuoka building as well as a 20-storey steel structure, both using semi-active devices
as their primary source of control.

2. LINEAR QUADRATIC REGULATION

In designing a linear control system, the most e�ective and widely used approach is the
centralized LQR. Before beginning a discussion on the derivation of market-based control, the
LQR approach is brie�y reviewed. Let us �rst consider a structural system whose equation
of motion in state space form is

•
X (t)=AX (t) + BU (t) +DW (t) (1)

The state of the system, X (t), contains the displacement and velocity response terms of the
system. The system is externally loaded by a dynamic disturbance, W (t), and controlled
by control forces, U (t). The matrices, B and D, respectively, represent the location of the
system actuators and external loads. The eigenvalues of the system matrix, A, characterize
the uncontrolled dynamic response of the system. When plotted on the complex plane, these
eigenvalues, often termed poles of the system, will all fall in the left half side of the plane if
the dynamic system is stable. The right half side of the complex plane represents instability,
such that if any system pole is located there, the entire system is dynamically unstable.
Graphically, the natural frequency and damping coe�cient of each mode of the system can
be determined from the location of the poles in the complex plane. The absolute distance from
the pole to the origin is the natural frequency of that pole’s mode while the sine of the angle
between the pole and the positive imaginary axis is the damping ratio of the mode. Figure 1
depicts the graphical relationship between a system pole and its corresponding modal natural
frequency and damping ratio.
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Figure 1. The relationship between system poles and the corresponding
modal frequency and damping ratio.

To improve the response of a system subjected to external disturbances, the poles of the
system can be moved to more desirable locations on the complex plane. While many pole
placement techniques exist, LQR has emerged as a reliable systematic guide to pole placement
that allows for the weighting of control response against control e�ort.
The LQR method provides an optimal control solution through the minimization of a cost

function that encapsulates the system’s control objectives. The cost function, J , contains two
control objectives; the minimization of structural response, Y (t), and the minimization of the
input control forces, U (t), required to attain those responses with a weighting matrix, R,
which is included to vary the proportional emphasis between the two terms.

J=
∫ ∞

0
(Y TY +U TRU ) dt (2)

The regulated response vector, Y (t), can be representative of any structural response as long as
it can be written as a function of the system state, X (t), with C representing the transformation
from the full system state.

Y (t)=CX (t) (3)

Therefore, we are a�orded more �exibility in choosing the desired structural response to be
controlled. For example, inter-storey drifts can now be a control objective rather than trying
to indirectly control drifts by controlling absolute structural displacements. As a result, the
cost function can be written in terms of the state vector where Q=CTC.

J=
∫ ∞

0
(X TQX +U TRU ) dt (4)

To ensure that a minimum of the cost function can be found, the weighting matrices, Q and
R, must both be positive de�nite. The positive de�nite criterion guarantees that the surface of
the cost function is upward convex. Furthermore, the quadratic form of the cost function is
necessary to avoid the minimum point existing as a cusp point and thus unobtainable.
The result of the minimization of the cost function is a static gain matrix, K , that when

multiplied by the full state of the system, X (t), yields the optimal control force vector.

U (t)=−R−1BTPX (t)=−KX (t) (5)
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Figure 2. In�uence of the system cost function on closed-loop pole locations.

The Ricatti matrix, P, represents the solution of the algebraic Ricatti equation that results in
the minimization procedure.

PA+ ATP +Q − PBR−1BTP=0 (6)

Substituting Equation (5) into Equation (1), a revised state equation of the system can now
be expressed as

•
X (t)= (A− BK)X (t) +DW (t) (7)

The new pole locations of the closed-loop system are the eigenvalues of the modi�ed system
matrix, A′=A − BK . Key to understanding the location of the closed-loop poles is the un-
derstanding of the in�uence of the individual terms of the LQR cost function. The route the
migrating poles take from their initial uncontrolled position to their LQR closed-loop loca-
tions is dependent on the variable, Y (t), chosen to be regulated [12]. If Y (t) is equal to the
vector of displacements of the system nodes, the poles will migrate in a manner consistent
to increased system sti�ness. Increased system sti�ness is synonymous with poles migrating
outward as shown in Figure 2(a). On the other hand, if the regulated response is system
velocities, the resulting control solution will cause poles to migrate consistent with increased
system damping. Poles rotating about the origin towards the negative real axis is consistent
with increased system damping, as shown in Figure 2(b). A combination of displacement
and velocity in the regulation variable would result in a pole migration pattern that would
be in�uenced by both increased system sti�ness and damping. How far the �nal poles result
on these generalized trajectory paths is dependent upon the weighting matrix R. If R is near
in�nity, the poles will not move since this makes control e�ort expensive. As R decreases
towards 0, control becomes inexpensive and poles result in positions far from their open-loop
positions.
As illustrated by Equation (5), the calculation of the control forces for the system requires

the full state, X (t), at each time step. In practice, a centralized controller is used to take
measurements from the system sensors, assemble the state vector, and calculate the control
commands for the control devices.
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The limitations of the LQR controller should be noted. In particular, the optimality of the
LQR solution is dependent upon the assumption of a linear system. Application in structures
excited by large seismic events, the assumption of system linearity is invalid. For use in
non-linear systems, the non-linearity of the structure has to be modelled in the analysis and
an additional control loop is designed for the control system that cancels the system non-
linearities. Another inherent weakness of the LQR method is its heavy dependence upon
the assumption of perfect knowledge of the system. If the model used in the design of the
controller is incorrect, the LQR solution is no longer optimal and could even be destabilizing.

3. FORMULATION OF MARKET-BASED CONTROL

3.1. Overview

Structures excited by large external disturbances are complex systems characterized by high
dimensionality, non-linear behaviour and signi�cant plant uncertainty. Introducing a large num-
ber of control devices and measuring system responses from hundreds of sensors, a large
information network emerges rendering the control problem even more complex. The control
task at hand cannot be solved by simply using faster computers [13]. Rather, new ideas are
needed for decomposing the overall system down to independent sub-systems that can be
handled locally by decentralized controllers. The control devices in a decentralized system
act as independent decision makers in a global system. The goal of the system is to allocate
system resources (i.e. input device power) in a distributed and e�cient manner.
A strong parallel exists between the operational goal of a decentralized control system

and the free market economies. Both seek to attain an e�cient distribution of scarce system
resources. In the case of an economic market, goods and services serve as the scarce resource
while power is the scarce resource in a control system. Using the rules observed in a free
market for the operation of control devices in a control system, MBC emerges as a viable
control technique. Market-based control is a multi-objective optimal control technique that
exploits the e�ciencies of a marketplace for determining the allocation of power in a control
system.
Control devices and power sources represent agents in the marketplace of power. In particu-

lar, control devices would represent the buyers while the power sources used to supply power
to the system represent the market sellers. In a decentralized sense, individual sellers seek to
maximize their pro�ts while buyers desire to maximize the utility attained through purchasing
power. Associated with each seller of power is a cost function, JS , that is a function of the
amount of power produced, PS , and the price of power, p, at each time step. The seller’s
cost function is a representation of the amount of pro�t the seller obtains when selling power
at the market price. Likewise, for each buyer there is an associated cost function, JB, that
is a function of the system response of the buyer’s subsystem, Y (t)j, the amount of power
sought, PB, and the price of power, p. For the buyer, this cost function is also termed the
buyer’s utility function since it represents the amount of utility a buyer derives by purchasing
an amount of power.
In a decentralized fashion, each individual buyer and seller seeks to maximize their asso-

ciated cost functions at each time increment of the system.
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Figure 3. Overview of the MBC system’s control objectives.

max JS1(PS1; p)
max JS2(PS2; p)
...
max JB1(PB1; Y (t)1; p)
max JB2(PB2; Y (t)2; p)
...

(8)

The system is constrained by the conservation of total energy in the system where the m
system buyers purchase all the power produced by the system’s n suppliers.

n∑
i=1
PSi=

m∑
j=1
PBj (9)

Each buyer’s utility function is maximized with respect to power to determine the demand
function of the buying agent. For the selling agents, the cost function is also maximized
with respect to power to derive the seller’s supply function. However, for an e�cient global
solution to result, the maximization process of each agent is constrained by the optimization of
all the other ongoing system agents. The marketplace facilitates the simultaneous optimization
of all the constraining cost functions of the market agents.
The marketplace aggregates the demand functions of the individual buyers to obtain the

demand function of the market. In a likewise manner, the market aggregates the supply
functions of the sellers to determine the market’s supply function. At each point in time,
the demand function and supply function of the market share a point where they intercept.
This equilibrium point represents the state of competitive equilibrium of the system that sets
the equilibrium price of power. Such a solution is an optimal solution in the multi-objective
optimization sense. Economists classically term this optimal condition as Pareto optimal [14].
At this Pareto optimal equilibrium point, each agent in the economy is doing as well as it
can given the action of all other system agents. No agent can do better without adversely
a�ecting the bene�t of another agent. With the price set, each buyer purchases power that is
in turn used to apply control forces to the system. Figure 3 serves as an illustration of the
role the marketplace plays in the determination of system control forces, U (t).
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3.2. Single-degree-of-freedom derivation

First, a single-degree-of-freedom system is considered in the derivation of the demand and
supply functions of the system. Later, these simpli�ed functions are extended with minimal
modi�cation to their multiple-degree-of-freedom form.
There do not exist strict rules on the form of the control devices’ demand functions. In

this study, the demand functions of the market’s buyers are designed to be directly in�uenced
by two factors: the price of power and the response of the structure to extreme disturbances.
Consistent with consumers in a market, when the price of power is low, system control
devices are inclined to purchase more power at the market price. On the other hand, when
the price of power rises, devices will purchase less. This implies a decreasing demand function
for increasing power cost. The demand function designed will also be directly in�uenced by
structural responses so that when the response of a structure increases, so will the demand of
the control devices. While many forms can be chosen (linear, parabolic, exponential, etc.), a
linear demand function is proposed for this study because of its simplicity. For a linear demand
function, the slope and y-axis intercept of the function are su�cient to fully characterize the
function. A negative slope will ensure that for rising costs, power demand will decrease.

PDEMAND =−|f(x; •x)|p+ |g(x; •x)| (10)

The slope and intercept point of a device’s demand function, f and g, will vary with the
displacement and velocity of the control device’s node. An absolute value is taken of the
functions relating system response to slope and intercept since these values must be positive
in the form shown in Equation (10). When the structure’s displacement and velocity increase,
it is natural to expect the demand for power to grow proportionally. Allowing the y-axis
intercept to increase with increasing structural responses can attain an increase in demand.
Likewise, reducing the demand function’s slope also attains increased demand. The demand
function’s slope and y-intercept take the following form:

f(x;
•
x)=

1

Tx +Q
•
x

(11)

g(x;
•
x)=Rx + S

•
x (12)

where T;Q; R, and S, represent the various constants used for tuning the market-based con-
troller. Assuming a linear supply function, Figure 4 depicts how the selection of the demand
function’s intercept and slope in�uence the growth of the demand function.
When the price of power increases, system sellers will produce more to reap greater rev-

enues. As a result, a linear supply function is selected that increases with an increase in the
price of power. When the price of power is zero, no producer can gain revenue and therefore
no power is produced. This observation requires the supply function to intercept the origin as
depicted in Figure 4. The slope of the supply function is chosen to be the constant 1=�.

PSUPPLY =
1
�
p (13)

For a single-degree-of-freedom system, the point of competitive equilibrium is where the
supply and demand functions intersect. For the selected supply and demand functions, the
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Figure 4. The behaviour of the buying agent’s demand function.

resulting equilibrium price of power can be found by equating Equations (10) and (13).
Using this equilibrium price, the amount of power purchased by the control device can be
determined using Equation (10). The control force, U , is proportional to the amount of power
purchased by the proportionality constant, K .

U=K

(
|Rx + S •

x |
|Tx +Q •

x |+ �
Tx +

|Rx + S •
x |

|Tx +Q •
x |+ �

Q
•
x

)
(14)

The resulting control force is quite di�erent in form to that obtained from an LQR analysis.
The control law from LQR is linear while for market-based control, the control law of Equa-
tion (14) is non-linear. The coe�cients of the displacement and velocity terms of the control
law for the MBC approach vary in relation to the structural response. This causes a constant
movement in the closed-loop system poles. This is in contrast to the �xed pole locations of
the LQR control law.

3.3. Market-based control of a single-degree-of-freedom structure

To illustrate the e�ectiveness of the MBC method, a single-degree-of-freedom system is con-
sidered. A linear lumped mass shear model of a one-storey structure is considered subjected to
the unscaled El Centro (1940, NS) seismic disturbance. Both an LQR and MBC algorithm are
implemented for comparison of control system performance. The structure’s natural period is
0:5 s with a mass of 158 000 kg and a sti�ness of 25 000 kN=m. The structure’s damping ratio
is assumed to be 5%. For this illustrative structure, no speci�c type of control device (active
nor semi-active) is speci�ed in order to allow the designed LQR and MBC controllers to im-
plement control forces without concern to device limitations. However, a maximum allowable
control force of 1000 kN is imposed on the system actuator.
The uncontrolled response of the structure exhibits a maximum absolute displacement of

4:43cm. First, an LQR controller is designed and implemented. For the design of the controller,
the weighting matrix, Q, was selected with a weighting only on the velocity term of the state
vector to cause an increase of damping of the system. The weighting term on actuation e�ort,
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Figure 5. Time history response of controlled SDOF structure due to El Centro (NS, 1940).

Figure 6. The migration of system eigenvalues due to the LQR and MBC controllers.

R, was varied until the actuator exceeded its capacity. They are given as

Q=
[
0 0
0 1

]
and R=1× 10−13 (15)

The result was the static control gain G=[−1:1257× 106; 2:8255× 106] that when imple-
mented, reduced the maximum absolute displacement to 1:51 cm. Figure 5 shows the time
history response of the controlled structure subjected to the El Centro earthquake. As seen in
Figure 6, the result of the LQR controller is the relocation of the system’s open-loop eigen-
values to new locations in the left half side of the complex plane. The new locations have
increased damping (0.79) with the original natural frequency held constant.
Next, a market-based controller was implemented in the system. The goal of the MBC

controller was to attain the same level of response reduction as the LQR controller. The
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control system designer is free to determine how to select the weighting terms of the market
functions. For example, selection of the controller’s weighting terms, Q; R; S; T , and �, could
be made from a detailed parameter study of the controlled response of the system to various
seismic records under a plethora of di�erent weighting terms. However, for this study, the
weighting terms are chosen based on engineering judgment of the expected response of the
system. To maintain a perspective of how the market mechanism is operating, the weighting
terms are selected to normalize the slope and intercept of the demand function at the root
mean square values of the uncontrolled system response. This way, large incomprehensible
values of power and price do not cloud our visibility of the market’s operation. The root
mean square value of the uncontrolled response is a convenient normalizing point due to its
representation of energy contained in the uncontrolled system.
Considering the response of the uncontrolled structure, the root mean square of the system’s

uncontrolled displacement and velocity is 0:01 m and 0:12 m=s, respectively. Scaling these
values to 1, the scaling factors on displacement and velocity are 100 and 8, respectively.
These scaling factors serve as our starting point for the values of T and Q, except that Q is
increased to 12 to represent an increased importance placed on system velocities. The slope
of the supply function, �, is set to 1. To allow for signi�cant variation of the coe�cients
of the displacement and velocity terms of Equation (14), R and S are both selected to be 1.
With the weighting factors of the market de�ned, the control weighting term, K , is to be
determined. The actual price of power and the amount purchased based upon the supply and
demand functions of the system, will both be ¡1. Therefore, K is varied until desired control
results are attained. A scaling factor of 2:2× 106 is selected for K . The result is a reduction
of system displacement to a maximum absolute displacement of 1:50 cm. Figure 5 shows
the time history response of the system with an MBC controller. The results for the single-
degree-of-freedom system clearly indicate that a controller based on the MBC approach is as
e�ective as an LQR controller when properly designed.
Figure 6 is an illustration of the migration pattern of the system eigenvalues due to the

MBC controller. Di�erent from the LQR’s static closed loop pole locations, the eigenval-
ues of the MBC controlled system change with system response measurements. If struc-
tural responses are large, the poles migrate further to the left side of the complex plane.
The trajectory pattern is consistent with the weighting terms chosen. We select the weight
on state response, Q, to weight system velocities more than displacements. The result is
a trajectory that is consistent with greater damping during large system responses with a
small increase in the natural frequency of the system. If only increased damping was desired
as seen in the LQR controller, then the weighting term on displacement, T , should be set
to 0.
While the performance of the two systems are quite similar, does one control methodology

require more control e�ort than the other? In consideration of this question, the absolute
value of the control force of each controller is added in time. As shown in Figure 7, a
plot of the accumulated control e�ort of both controllers reveal that for the single-degree-of-
freedom system, the MBC controller attains the same control performance with 40% less total
control e�ort. The reduced control e�ort of the market-based controller can be attributed to the
adaptive nature of the controller’s feedback coe�cients shown in Equation (14). When system
responses become large, the feedback coe�cients of the market-based controller increase,
giving greater control e�ort when needed. This contrasts with the �xed gain of the LQR
controller.
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3.4. Multi-degree-of-freedom derivation

While the results from the single-degree-of-freedom system are evidence of the merits of the
MBC algorithm, it represents a simpli�cation since the realistic application of MBC is in
large-scale systems. In this section, the basic laws of supply and demand developed for the
single-degree-of-freedom system are extended to multiple-degree-of-freedom systems.
In large-scale systems of multiple control devices acting in the role of buyers and system

power sources representing market sellers, a true marketplace appears. Not considered in the
discussion of the single-degree-of-freedom case, but necessary in an environment of multiple
buyers and sellers, the concept of wealth is introduced. Each buying agent of the system has
an allocation of wealth, Wi, with the subscript i denoting the ith agent of the market. Total
wealth in the system, WTOTAL, is maintained constant.

WTOTAL =
m∑
i=1

Wi (16)

The demand function of each agent will be in�uenced by the amount of wealth the agent
possesses. If a buying agent possesses a large amount of saved wealth, then its demand for
power would naturally increase, just as a�uent consumers spend more than destitute ones
in a real economy. To depict this, the demand function used in the single-degree-of-freedom
system is augmented with the agent’s wealth in the following manner:

PDi =

(
−
∣∣∣∣∣ 1

Txi +Q
•
xi

∣∣∣∣∣p+ |Rxi + S •
xi |
)
Wi (17)

For the selling agents of the system, they are not permitted to maintain corporate wealth.
Therefore, no modi�cation is necessary of the supply functions of the sellers. As a result,
they distribute the money they make back to the market buyers. Each buyer receives an
equal share of the total pro�t made by the market sellers, regardless of the amount of power
purchased by that buyer. This is analogous to the pay of corporate workers who are also
consumers in the marketplace.
The total market demand at each time step is determined by aggregating the demand func-

tions of all m buying agents of the market. In a similar fashion, the supply functions of
the system’s n selling agents are aggregated to form a global market supply function. The
competitive equilibrium price of power is obtained from the point where the demand of the

Copyright ? 2002 John Wiley & Sons, Ltd. Earthquake Engng Struct. Dyn. 2002; 31:1855–1877



MARKET-BASED CONTROL OF LINEAR STRUCTURAL SYSTEMS 1867

market equals supply. The result is the equilibrium price of power at each time step.

peq =
∑m

i=1Wi|Rxi + S
•
xi |

n=�+
∑m

i=1Wi=|Txi +Q
•
xi |

(18)

Again, T;Q; R, and S, are weighting terms of the system buyers’ demand functions while � is
the inverse proportionality constant of the sellers’ supply function. Once the market price is
established, each control device will only buy power if the market price at that time step does
not exceed its wealth. Once all actuators have purchased power, the amount paid is subtracted
from their total wealth.

3.5. Stability of the control solution

Stability is de�ned by a system’s tendency to grow or decay in response to an input disturbance
to the system. If the response decays, the system is considered stable. However, if the response
grows in time, then the system is de�ned as unstable. The stability of a dynamic system is
characterized by the location of the system poles in the complex plane. Given the existence of
at least one pole in the right half part of the complex plane, the system is considered unstable
and will exhibit growing system response to input disturbances. If all poles are located in
the left half part of the complex plane, the system is stable. Various tests for linear system
stability exists such as the Routh’s stability criterion and the Nyquist stability criterion [15].
For the LQR controller, closed-loop system stability is guaranteed if two criteria are met: (a)

if the system matrix, A, and the control location matrix, B, of Equation (1) are a controllable
pair; and (b) R and Q of Equation (4) are both positive de�nite [12]. The controllability
criterion ensures that the controller has in�uence on all modes, particularly unstable modes,
of the system. The positive de�nite criteria on R allows for control e�ort to have a positive
e�ect on the cost function, J , while the positive de�nite criterion on Q provides penalty on
system responses, particularly unstable responses.
Unlike the LQR controller, the current controller derived in the MBC method has not

been shown to be mathematically stable in closed form. Further work is needed to consider
the limitations of the controller with regard to stability concerns. However, when applied in
systems that utilize semi-active control devices, stability is less of a concern since the devices
do not add mechanical energy directly to the system and therefore the system is bounded-input
bounded-output (BIBO) stable [16].

4. MULTIPLE-DEGREE-OF-FREEDOM ANALYSIS

Market based control is applied to two multiple-degree-of-freedom systems. The �rst structure
considered is the Kajima–Shizuoka Building recently constructed in Shizuoka, Japan [2]. The
structure is a �ve-storey steel structure employing eight semi-active hydraulic dampers (SHD)
on the �rst four stories of the structure. The second system is a hypothetical 20-storey steel
structure employing a total of 48 SHD dampers distributed throughout the structure. In sim-
plifying the analysis, each structure is modelled as a lumped mass shear model permitted to
sustain elastic deformations. A rigorous analysis of response was not the desired goal of this
study, in which case the second order inelastic response of the structural components would
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Figure 8. Application of the Kajima SHD.
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Figure 9. Acceleration response spectra of the seismic disturbances used (damping ratio 5%).

have to be considered. Rather, our concern is in evaluating the e�ectiveness of the MBC
solution within a linear system. Only major reductions of displacements are sought from the
uncontrolled to the controlled response of the linear structures utilizing an LQR and MBC
controller. However, as will be seen, the responses of both structures utilizing control are
within their elastic limits.
In both structural systems, SHD variable dampers are used as the primary control devices.

Typically, the SHD damper is installed between the low point of a sti� K-brace and the �oor.
Given a command control force, the SHD calculates the damping coe�cient by dividing the
command force by the relative velocity between the two �oors to which the SHD is connected.
If the relative velocity between the two �oors where an SHD is attached is in an opposite
direction as the desired control force, then the control force is applied. If the response is in
the same direction, no control force is applied and the damper is set to a default minimum
value. Figure 8 illustrates the installation of the SHD control device and lists the operational
properties of the damper.
Given the �exibility of the K-brace, the SHD damper and the brace are coupled and analysed

as one Maxwell damping element [17]. A Maxwell element is a dashpot and spring in series
whose force response, p(t), is characterized by a second-order di�erentiable equation.

•
p(t)+

ke�
cSHD

p(t)= ke�
•
x(t) (19)
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The combined sti�ness of the SHD damper in series with the brace represents the e�ective
sti�ness, ke� , of the Maxwell element.
To evaluate the e�ectiveness of the MBC strategy, two far �eld earthquake records and one

near �eld earthquake record are used. El Centro (1940 NS) and Taft (1952 NS) represent
the far �eld records while Northridge (1994 NS—Sylmar County Hospital) is the near �eld
record selected. All three earthquakes are scaled so that their maximum absolute velocities
are 50 cm=s. The peak ground acceleration of the three scaled earthquake records are 3.07,
1.53, and 8:27 m=s2, respectively. The acceleration response spectra of the input earthquakes
are shown in Figure 9.

5. NUMERICAL SIMULATION OF THE SHIZUOKA FIVE-STOREY STRUCTURE

The Kajima–Shizuoka Building is a �ve-storey steel structure roughly 19 m in height. With
plan dimensions of 11:8 m by 24 m, the structure has signi�cant �exibility in the direction
of its short plan dimension [2]. As a result, the designed lateral resisting system for this
structure’s direction is augmented with a total of eight semi-hydraulic dampers upon the �rst
four �oors of the structure. Two SHD dampers are used per �oor, all placed at the apex
of K-braces. The associated sti�ness of the K-braces are chosen to ensure deformation is
dominated by the dampers resulting in better performance when the dampers are controlled as
compared to using them in a passive capacity. The sti�ness of the K-braces on the �rst �oor
are 438 kN=mm each while the sti�ness of all braces upon the second through fourth storey
are 565 kN=mm. Figure 10 shows the structural details of the Kajima–Shizuoka Building as
well as the location of all SHD devices. The periods of the �ve modes of response for the
structure are 0.99, 0.35, 0.22, 0.17 and 0:15 s.
The intent of the design engineers was to e�ectively reduce structural displacements by

operating the system’s SHD dampers through a centralized control system. Kurata et al. has

Figure 10. Kajima–Shizuoka Building.
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designed and implemented an LQR strategy for the Kajima–Shizuoka Building and has shown
its e�ectiveness in attaining the control objective of reducing inter-storey drifts [2]. In this
study, a market-based controller will be designed and implemented. To assess the bene�ts
of the decentralized MBC controller, a centralized LQR controller will also be utilized in
controlling the Kajima–Shizuoka building. Both controllers will be designed with respect to
their performance during the scaled El Centro seismic disturbance. Once implemented, the
control systems are analysed during the scaled Taft and Northridge records.
The design of an MBC controller is considered �rst. Its design is dependent upon the

prudent selection of the weighting coe�cients of the supply and demand functions depicted
in Equations (13) and (17). Drawing on the success of the selection process used for the
single-degree-of-freedom system, the weighting terms of the supply and demand functions
are selected in a similar fashion. First, given that the �fth storey displacement and veloc-
ity response of the uncontrolled system is greatest, they are considered in the tuning of the
weighting terms. Under the scaled El Centro disturbance, the root mean square of the uncon-
trolled �fth storey displacement and velocity time histories are determined to be 0:07 m and
0:34 m=s. The root mean square values will be used to determine the weighting terms of the
demand function’s slope, Q and T . To scale the root mean square values to 1, the weighting
term on the slope function’s displacement and velocity are about 14 and 3, respectively. This
will in e�ect set the slope of the demand function to 1 for the root mean square response
of the �fth storey. However, to give more emphasis to the control system’s velocity solution
versus letting the control system be dependent upon increasing system sti�ness, the Q term
is increased by three fold to 9. Considering the weighting terms of the demand function’s
intercept, R and S, they are scaled to give an intercept of 1 for the root mean square values
of displacement and sti�ness. A weight of 8 is given to R and a weight of 2 to S. The slope
of the supply function is set to one. The conversion factor between power and control force,
K , is used to tune the system to ideal performance. The following summarizes the MBC
controller’s weighting terms:

R=8; S=2; T=15; Q=10; �=1; K =1× 105 (20)

Given the dominance of the �rst mode of response of the system, maximum structural re-
sponses under disturbances are assumed to increase with increasing height of the structure.
To give buying agents in the upper stories more initial wealth to which to purchase power
from the system sellers, the following initial wealth distribution is used:

W1 = 100; W2 = 150; W3 = 300; W4 = 400; W5 = 0 (no control device) (21)

Roughly speaking, the Pareto optimal price of competitive equilibrium of the system that
results will be centered close to 1. In light of this fact, the values of the initial wealth for
the buyers are chosen such that the buyers will not deplete their wealth too quickly during a
seismic disturbance.
For the design of the LQR controller, the weighting matrix on state response, Q, is selected

with the objective of reducing system velocity responses. The weighting on control, R, is
increased to a point of actuation saturation. The following summarizes the weighting matrices
used to derive the LQR gain matrix, K , of Equation (5):

Q=[[0] [I ]] and R=1× 10−13[I ] (22)
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Figure 11. Control applied to the Kajima–Shizuoka Building—LQR versus MBC.

As can be seen in Figure 11, the reduction of both maximum absolute displacements and
maximum inter-storey drifts are quite signi�cant for both the LQR and MBC controller when
compared to the uncontrolled and passively controlled response. In comparing the performance
of the MBC and LQR controllers, it can be safely concluded that both yield similar reductions
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Figure 12. Time history of the Pareto optimal solution of the MBC system.
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Figure 13. Accumulated control e�ort of Kajima–Shizuoka LQR and MBC controllers.

of structural response. In the instance of the Taft and Northridge earthquakes, the MBC
controller is marginally better while for the El Centro record, the LQR controller is marginally
better.
In considering the market mechanism, it is interesting to consider the variation of the Pareto

optimal solution with respect to time. To do so, let us consider the variation in the market
price of power shown in Figure 12 for the El Centro analysis. Clearly, a strong relationship
exists between the equilibrium price of power and the input ground motion to the structure. As
the structural responses of the system increase with respect to the input ground acceleration,
the demand for control power increases. Given the �xed nature of the supply function, the
result is an increase in the equilibrium price of power. Therefore, the behaviour of the Pareto
optimal price depicted in Figure 12 is consistent with the expected market response for the
input system disturbance.
Again, the total control e�ort of the control system is considered to ensure that the MBC

controller is not using excessive amounts of control energy to remain competitive with the
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LQR solution. As seen in Figure 13, the MBC controller is using approximately 25% more
control e�ort during all three seismic disturbances. With a di�erent approach to tuning the
MBC market function’s coe�cients, the control e�ort of the MBC could be reduced.

6. NUMERICAL SIMULATION OF A 20-STOREY LARGE-SCALE STRUCTURE

To illustrate the e�ectiveness of the MBC method, a larger structural system is considered. In
particular, the 20-storey steel structure depicted in Figure 14 is selected. A total of 48 SHD
control devices are distributed through out the structure to resist seismic disturbances in the
lateral direction. Four SHD dampers are used upon each of the �rst six �oors, two per �oor
for the 7th to the 16th �oor while the upper four �oors only have one variable damper per
�oor. This distribution should be su�cient in reducing the uncontrolled lateral response of the
structure during large-scale earthquakes. Given the size of the structure and the large number
of system control devices in use, the associated bene�ts of pursuing a decentralized control
approach makes MBC a prudent choice.
Again, the top storey response is considered in the determination of the weighting

coe�cients used in the MBC controller design. The root mean square displacement of the
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Figure 14. Twenty-Storey steel structure for analysis.
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Figure 15. Control applied to the 20-storey structure—LQR versus MBC.

uncontrolled response to the El Centro seismic record is determined to be 0:1353m while the
root mean square velocity of the top storey is 0:3195m=s. As a result, T and Q, are initially
chosen to be 8 and 3, respectively. To emphasize that the controller increases damping instead
of sti�ness, the Q term is increased to 6. To normalize the intercept of the demand function
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Figure 16. Accumulated control e�ort of 20-storey structure using LQR and MBC controllers.

to the root mean square values of displacement and velocity, the R and S weights are chosen
to be 4.5 and 1.5, respectively. Again, the slope of the supply function is �xed to 1. K is
varied until two control goals are attained: desirable control results are obtained and control
e�ort of the MBC controller is within 5% of the LQR controller. The resulting weighting
terms are presented in Equation (23).

R=4:5; S=1:5; T=8; Q=6; �=1; K =2× 105 (23)

For the design of the LQR controller, the weighting matrices selected are similar to those
used in the LQR controller design in the previous Shizuoka building example.

Q=[[0] [I ]] and R=1× 10−14[I ] (24)

Figure 15 depicts the e�ectiveness of the LQR and MBC controllers. As can be seen from
the results, the responses obtained from both controllers are again nearly identical. They are
both e�ective in reducing the response of the structure by as much as 50% for some �oors
of the system.
Not only has the selected gain, K , attained suitable performance levels, but, as shown in

Figure 16, it has also been correctly tuned to keep the MBC control e�ort within 5% of
the LQR control e�ort. For both the El Centro and Taft seismic records, the LQR controller
requires as much as 3% more e�ort than the MBC controller. For the Northridge disturbance,
the control e�orts of both controllers are within 1% of each other.
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7. CONCLUSION

This paper has presented the formulation and implementation of market-based control in struc-
tural systems. It has been shown that the control technique can successfully limit the response
of structures during large seismic events. In particular, the MBC solution was applied to two
BIBO-stable structures that were controlled by semi-active control devices. In comparison to
the widely used LQR centralized controller, the decentralized MBC controller was shown to
be just as e�ective and in some instances marginally better. The success of the MBC con-
trollers in comparison to the LQR controllers is evidence of the Pareto optimal solution the
MBC market attains.
The merits of MBC are evident and as a result, MBC represents one potential alternative

to the centralized LQR solution typically used in structural control systems. Instances where
MBC controllers are potentially applicable are in large-scale complex systems that render
themselves di�cult to control with a centralized controller. The decentralized MBC method is
partially suited for control systems that employ a wireless monitoring system. To date, struc-
tural monitoring systems used for control are designed around the architecture of the control
system. However, new and innovative wireless monitoring systems are being developed. The
low installation costs and high reliability associated with these systems could be a strong
catalyst in their adoption. In wireless monitoring systems, a linear relationship exists between
the distance information is transmitted and the power used for transmission. The inherent
power costs associated with inter-sensor communication makes for easy incorporation into
the market-based control pricing structure. As a result, the optimal control law will not only
consider actuation power but also sensor power costs. A control technique such as MBC can
be designed around the sensing system ushering in a new sensor-centric approach to control
system design. Future work will include how MBC performs in comparison to other compet-
ing decentralized control techniques which could further provide some insights in improving
the MBC approach.
In conclusion, a framework of controlling a structure in a decentralized fashion has been

proposed. While the linear demand and supply functions chosen are e�ective and allow for
an easy interpretation of the control problem, they are by no means the only form demand
and supply functions can take. Furthermore, the method used in choosing the weighting terms
within the demand and supply function can be made more consistent with a physical under-
standing of the system plant. Extension of the MBC control technique could include a means
of adaptive market functions to account for actuation failures, changes in the plant properties,
and failure within the monitoring system. For this study, the systems considered were linear
in response. Further studies are needed in the application of the MBC technique in highly
non-linear structural systems. The application of MBC to non-linear systems is currently being
investigated.
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