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ABSTRACT 
 

A low-cost wireless sensing unit for installation in structural monitoring systems 
is proposed.  To eliminate the high cost of installing cables widely used in 
conventional systems, each wireless sensing unit includes wireless radios for reliable 
communication of response measurements.  With wireless radios consuming large 
amounts of power, battery preservation can be achieved by limiting the use of the 
wireless channel.  This study explores two approaches to reducing the power demands 
of the wireless sensing unit.  First, embedded engineering analyses are carried out by 
the sensing unit’s computational core to avoid transmission of long time-history 
records.  Various engineering algorithms are encoded and executed using structural 
response data to illustrate the power saved in local data interrogation.  Second, 
lossless data compression using Huffman coding is employed to reduce the size of 
data packets wirelessly transmitted. 

 
 

INTRODUCTION 
 
A structural monitoring system is an important engineering tool that provides 

detailed measurement of structural responses originating from ambient and external 
disturbances.  A large number of structures in the United States, especially those 
located in zones of high seismic activity, have been instrumented with structural 
monitoring systems.  The California Department of Transportation (Caltrans) has 
instrumented many of the state’s medium- and long-span bridges while the United 
States Geological Survey has instrumented many federal structures in the western 
United States [1, 2].   

To date, the majority of monitoring systems are of conventional designs with 
cables employed for communication between system sensors and centralized data 
servers.  While cables represent a reliable means of transferring data within the 
monitoring system, the installation of extensive cabling in structures can be expensive.  
In total, the cost of the monitoring system (including equipment and labor) can exceed 
$4,000 per channel with 12-channel installations costing well over $50,000, 
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installation alone representing 50% of the total system cost [2].   
Most recently, emerging technologies have found their way to the structural 

monitoring domain resulting in alternatives to conventional cable-based systems.  To 
drive installation costs low, Straser and Kiremidjian first proposed the use of wireless 
communications in lieu of cables in a structural monitoring system [3].  Lynch et al. 
have extended their work by designing an advanced wireless sensing unit with 
sufficient computational power to carry-out embedded engineering algorithms on 
measurement data in near real-time [4].  Various validation tests of a wireless 
monitoring system built from wireless sensing units have been performed using 
laboratory and field structures.  For example, the Alamosa Canyon Bridge in New 
Mexico has been widely used for performance comparison of wireless and 
conventional cable-based systems [5].   

Conventional monitoring systems deliver electrical power to remote sensors 
through the same cables used for data communication.  Unlike conventional systems, 
wireless structural monitoring systems have no convenient form of power delivery.  
Portable power sources, such as batteries, are likely candidates for wireless sensor 
networks, but with finite operational life spans they are a limited resource.  Ideally, 
battery lives on the order of years are sought for wireless sensing units that are 
installed in large-scale civil structures.  Optimization of the power consumption 
characteristics of a wireless structural monitoring system can be addressed at multiple 
levels in the system design.  First, wireless sensing units with low energy demands 
can be designed; many researchers are currently exploring this option [6].  The 
optimal usage of battery sources can also be addressed at the system architecture 
level.  Kottapalli et al. have designed a two-tiered wireless structural monitoring 
system with low-power radios used within spatially compact sensor subnets and high-
power radios reserved for long-range communications between subnets [7]. 

This paper explores the design of a low-power wireless sensing unit intended for 
installation in structural monitoring systems.  Fabricated from off-the-shelf 
components, the units are low-cost and rich in functional features.  To preserve the life 
of portable batteries coupled with the wireless sensing unit, two power saving 
measures are considered.  First, because the wireless modem requires large amounts 
of power for its operation, transmission of time-histories is avoided and embedded 
engineering analyses are locally executed by the unit’s computational core.  Various 
analyses are considered including determination of primary modal frequencies and 
computational components of a two-tiered statistical time-series damage detection 
method.  With analysis results transmitted in lieu of raw time-histories, significant 
gains in energy-efficiency will be attained.  Second, when wireless transmission of 
time-histories is required, lossless data compression using Huffman coding is 
considered for reduction of wireless radio usage. 
 
 
DESIGN OF A WIRELESS SENSING AND ACTUATION UNIT 

 
The cornerstone element of the proposed wireless structural monitoring system is 

the wireless sensing unit.  As such, the capabilities of the entire wireless monitoring 
system depend upon the functionality of the unit design.  As presented in Figure 1, the 
design of the unit can be divided into four functional subsystems: sensor interface, 
computational core, wireless communications, and actuation interface.   



Data can be collected simultaneously from multiple sensors attached to the 
sensing interface.  In total, the interface provides three sensing channels with one 
channel dedicated to the collection of data from analog sensors and two additional 
channels for digital sensors.  With the growth of microelectromechanical system 
(MEMS) fabrication, digital sensors that modulate their readings on square-wave 
signals are becoming increasingly popular.  For the conversion of analog sensor 
readings to digital forms, a single-channel 16-bit analog-to-digital converter (A/D) is 
included in the interface.  The interface can sample sensor data as high as 100 kHz.   

The core of the wireless sensing unit contains the computational power necessary 
for unit operation and for execution of embedded analyses.  To create a core that is 
both low-power and capable of executing data interrogation algorithms, a two-
microcontroller design is pursued.  General operation of the wireless sensing unit, 
such as acquisition and storage of sensor data and packaging of information for 
wireless transmission, is the primary role of the Atmel AVR AT90S8515 low-power 
microcontroller.  The AVR microcontroller is an 8-bit architecture processor that 
draws 8 mA of current when powered by a 5 V source.   With internal memory 
limited, sophisticated data interrogation tasks would be difficult to embed in the AVR 
microcontroller.  As a result, a second microcontroller, the Motorola MPC555 
PowerPC, is selected solely for execution of embedded engineering analyses.  The 32-
bit MPC555 is chosen because it has ample internal program memory and floating-
point calculations are internally performed by hardware.  A drawback of the MPC555 
is that it draws 110 mA of current when powered at 3.3 V.  Due to MPC555 
consuming more power than AVR, the MPC555 is ordinarily kept off.  When 
engineering analyses are required for execution, the MPC555 is powered on by the 
AVR and turned off after their completion.  By partitioning the functional tasks of the 
core between two microcontrollers, each has been chosen to best fit their respective 
roles.   

A low-power wireless radio is sought with communication ranges capable of 
accommodating sensor nodal distances of over 300 ft.  The Proxim RangeLAN2 7911 
wireless modem, operating on the 2.4 GHz FCC unlicensed band, is chosen.  Using a 
1 dBi omni-directional antenna, open space ranges of 1,000 ft. can be attained [8].  
When installed in the interior of heavily constructed buildings, the range of the radio 
is reduced to approximately 500 ft.  To attain its large communication range, the 
wireless radio consumes a large amount of power.  When internally powered by 5 V, 
the wireless modem draws 190 mA of current during transmission and reception of 
data; when idle, the modem draws 60 mA of current. 

Figure 1.  Design of the proposed wireless sensing and actuation unit 
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The success of active sensing diagnostics for the detection damage in structures 
has prompted the addition of an actuation interface in the wireless sensing unit design 
[9].  Through the actuation interface, actuators such as piezoelectric pads embedded in 
or mounted upon structural members, can be commanded using a 12-bit digital-to-
analog converter (D/A).  A Texas Instruments DAC7624 is chosen for integration 
with the wireless sensing unit as a single channel actuation interface.  The DAC7624 
can output voltage signals between + 2.5 V and can be driven at 2 MHz.       
 
 
EMBEDDED ENGINEERING ANALYSES FOR POWER-EFFECIENCY 

 
The amount of energy the wireless sensing unit will require from a portable power 

supply, such as from a battery, is a focus of this study.  The energy consumed by the 
unit will be experimentally measured using two 7.5 V battery sources.  First, an 
alkaline battery pack constructed from Energizer AA E91 battery cells is considered.  
Second, lithium-based battery cells of high energy density are considered by 
constructing a battery pack from Energizer AA L91 battery cells.  The wireless 
sensing unit is turned on and the electrical current drawn from the battery packs 
measured using a current meter.  Based on the measured current draws, the life 
expectancy of the battery packs can be calculated from engineering design charts 
provided by the battery manufacturer.  Table 1 summarizes the expected operational 
life of the batteries when continuously drained based on the currents measured.  It 
should be noted that values listed in Table 1 are conservative because when installed 
in a structure use of the unit would be duty-cycled.  If batteries are intermittently used, 
cell chemistries are provided time to re-attain equilibrium thus resulting in extended 
lives.   

 Based on these findings, the wireless modem consumes the largest amount of 
battery energy.  To preserve battery life, use of the modem should be minimized by 
limiting the amount of data wirelessly transmitted.  The computational core of the 
wireless sensing unit will be used to process time-history data with pertinent results 
transmitted in lieu of time-history records.  When the wireless sensing unit executes 
an embedded analysis, the MPC555 microcontroller is used.  The power of the 
MPC555 is the rate of energy consumed from the unit power source.  When drawing 
110 mA at 3.3 V, the power of the MPC555 is 363 mW.  Similarly, the RangeLAN2 
radio consumes 190 mA at 5 V which is 950 mW of power.  Clearly, the MPC555 is 
2.6 times more power efficient than the wireless radio.  To determine the total amount 
of energy saved, the time needed to perform embedded analyses needs to be 
calculated.   The time for transmission of the raw time-history record can be 
calculated based on the radio serial baud rate (19,200 bit per second).  As long as the 
time of execution of the analysis is faster than 2.6 times the time of transmission, 
battery energy will be saved and a longer battery life can be expected.  

Operational State Circuit Internal Energizer L91 Energizer E91 
 (mA) (V) (hours) (hours) 

AVR On/MPC Off 8 5 500 300 
AVR On/MPC On 160 5/3.3 15 5 
RangeLAN Active 190 5 13 4 
RangeLAN Sleep 60 5 40 25 

TABLE 1. DURATION OF BATTERY SOURCES FOR VARIOUS OPERATIONAL STATES 



A large assortment of embedded analyses can be encoded in the wireless sensing 
unit core.  In particular, algorithms pertaining to system identification and damage 
detection seem most attractive for immediate implementation.  To assess the energy 
saved by the sensing unit by locally processing data, two algorithms are tested; a fast 
Fourier transform (FFT) and an algorithm for fitting auto-regressive time-series 
models.   Representation of measurement data in the frequency-domain is necessary 
for determination of structural modal properties.  Time-history data can be 
transformed to the frequency domain through the use of Fourier transforms.  
However, the FFT has been invented to reduce computational complexities associated 
with Fourier transforms.  For this study, the Cooley-Tukey version of the FFT is 
embedded in the wireless sensing unit for local execution [10].   

Many researchers are exploring the development of reliable algorithms for 
detection of damage in structural systems.  Sohn et al. has proposed the application of 
pattern recognition methods to the damage detection problem [11].  Their approach 
uses the coefficients of auto-regressive (AR) and auto-regressive with exogenous 
inputs (ARX) models as feature vectors for classification (damage or undamaged).  A 
database of AR-ARX model pairs is populated using models fit to ambient response 
data corresponding to the structure in an undamaged state.  Future AR-ARX models 
obtained from the structure in an unknown state (damaged or undamaged) are 
compared to this database.  Feature vectors that represent statistical outliers to the 
database designate potential damage in the structure.   

Assuming the structural response to be stationary, an auto-regressive (AR) process 
model fits discrete measurement data to a set of linear coefficients weighing past time-
history observations: 
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The response of the structure at sample index, k, as denoted by yk, is a function of p 
previous observations of the system response, plus, a residual error term, rk.  Weights 
on the previous observations of yk-i are denoted by the bi coefficients.  For calculation 
of the coefficients by the wireless sensing unit, Burg’s approach to solving the Yule-
Walker equations is chosen because it is proven to be more stable compared to least-
squares by avoiding matrix inversions [10].  

 
 

ILLUSTRATION OF LOCAL DATA INTERROGATION 
 
The performance of the wireless sensing unit has been validated in the laboratory 

and field using an assortment of structures including the Alamosa Canyon Bridge in 
New Mexico [5].  Response data collected during these previous validation tests will 
be used to determine the amount of energy saved by the local processing of data.  The 
time necessary for the MPC555 to fully calculate the modal frequencies and AR 
coefficients is measured.  Based on the measured execution times, the energy 
consumed by the MPC555 as compared to the amount of energy required to 
wirelessly transmit the initial raw time-history records will be compared.     The 
computation time of the embedded algorithms will depend upon the complexity of the 
analysis.  For example, the computational complexity of the Cooley-Tukey FFT is of 
order O(NlogN) where N is the length of the initial time-history record.  To verify this 



relationship, FFT’s corresponding to different record lengths will be performed and 
the number of coefficients and time-history lengths will be varied during execution of 
the AR model fitting algorithm.   

Table 2 presents the time associated with each analysis and the energy saved.  
Clearly, the computational efficiency of the embedded FFT and transmission of modal 
frequencies as compared to transmission of the time-history record provides a major 
energy savings of over 98%.  Calculation of AR coefficients is more complex and 
requires external memory for temporary data storage resulting in longer execution 
times.  Hence, the energy saved is not as impressive as for the FFT, but major savings 
of over 50% are still experienced.  Clearly, end-users of wireless sensing units should 
be cognizant of the execution times of their analyses, but on average, significant 
savings will be experienced by local data interrogation.   
 
 
LOSSLESS DATA COMPRESSION – HUFFMAN CODING 

 
Compression methods can be used for the reduction of data size by exploiting 

natural internal structures of data.  Morse code serves as an early example of data 
compression with common letters like “e” represented by short Morse symbols and 
scarcely used letters like “z” by longer symbols.  Compression algorithms generally 
fall in two broad classes: lossless and lossy compression.  Lossless compression, often 
used in medical imaging applications, guarantees the integrity of the data without 
distortion.  In contrast, lossy compression reduces data with reasonable distortions but 
can achieve higher compression rates.  Similar to medical imaging, there is a low 
tolerance for distortion in structural response data resulting in only lossless 
compression considered for inclusion in the wireless sensing unit. 

Numerous lossless compression techniques can be considered.  The 
computationally inexpensive compression technique, known as Huffman coding, is 
selected for implementation [12].  Lossless Huffman coding exploits statistical 
relationships in the data to pair short symbols to data values with high probability and 
long symbols to those with low probability of occurrence.  For example, if the 16-bit 
integer value “2342” was the most commonly occurring data sample, a short 1-bit 
symbol can be given to it, such as “0”.  Next, if “2455” is the next most common 
symbol, it might be given the 2-bit symbol “10”.  Hence, provided the probability 
mass density of the data, a compact binary representation of variable length can be 

Analysis Length  
of 

Record 

Time of 
MPC555 

Calculation 

Energy 
Consumed 
MPC555 

Time for 
Wireless 

Transmission 

Energy 
Consumed 

Radio 

Energy 
Saved 

 N (sec) (J) (sec) (J) (%) 
FFT 1024 0.0418 0.0152 1.7067 1.6213 99.062 
FFT 2048 0.0903 0.0328 3.4133 3.2426 98.988 
FFT 4096 0.1935 0.0702 6.8267 6.4854 98.917 

AR (10 Coef) 2000 1.3859 0.5031 3.3333 3.1666 84.112 
AR (20 Coef) 2000 2.8164 1.0224 3.3333 3.1666 67.713 
AR (30 Coef) 2000 4.2420 1.5398 3.3333 3.1666 51.374 
AR (10 Coef) 4000 2.7746 1.0072 6.6667 6.3333 84.097 
AR (20 Coef) 4000 5.6431 2.0484 6.6667 6.3333 67.657 
AR (30 Coef) 4000 8.5068 3.0879 6.6667 6.3333 51.243 

TABLE 2. ENERGY ANALYSIS OF DATA INTERROGATION VERSUS TRANMISSION 



used for compressed coding.  Prior to generation of a Huffman lookup table, inherent 
structures in data can be exploited for better compression of greater compression rates.  
The structure in the data can be described by transformation of the initial record using 
a de-correlation transform.  Many transforms could serve as suitable candidates, but 
Wavelet Transforms (WT) will be used in this study.  WT have also been used in 
damage detection methods, hence a shared WT software module in the wireless 
sensing unit could be used for both damage detection and data compression.  The 
complete compression process, including decompression, is presented in Figure 2.   

This study will concentrate upon the illustration of using Huffman coding for 
compression of data for wireless transmission and will consider variations in the type 
of response data considered.  Structural response data acquired from a 5 degree-of-
freedom laboratory test structure that can be excited at its base by a shaking table is 
considered in this study [5].  The top-story acceleration response of the structure to 
sweeping sinusoidal and white noise inputs are recorded by the wireless sensing unit 
using an effective 12-bit A/D converter.  The sweeping sinusoidal input has a constant 
displacement amplitude envelope of 0.075 in. and a linearly varying frequency of 0.25 
to 3 Hz over 60 sec.  The white noise input record has zero mean and a displacement 
standard deviation of 0.05 in.   

 Table 3 summarizes the performance of lossless compression and the amount of 
energy saved having compressed data using the MPC555 and wirelessly transmitting 
the compressed record.  To illustrate the importance of de-correlation of response data 
prior to Huffman coding, compression is performed with and without WT for de-
correlation.  In all cases considered, compression rates better than 80% have been 
achieved.  For the case of the sweep excitation input, a compression rate of 61% was 
achieved after the initial record is de-correlated using WT.  If the record is not de-
correlated and internal statistical structures are not exploited in the creation of the 
Huffman coding lookup table, compression rates of approximately 71% can still be 
attained.  Due to the structural response from a white noise excitation also being fairly 
white, the response lacks an inherent structure that the de-correlation transform can 
leverage for compression.  As a result, negligible reductions in the compression rate 
are experienced when WT are employed on white response records.  Since time 
required by the MPC555 to compress data is negligible, the compression rate reflects 
the energy saved by the wireless radio in transmitting the compressed record.   

Excitation 
Type 

De-
correlation 

A/D 
Resolution 

Total 
Record Size 

Compressed 
Record Size 

Compress 
Rate 

Energy 
Saved 

  (bits) (bytes) (bytes) (%) (%) 
Sweep None 12 1024 733 71.58 71.58 
Sweep Wavelets 12 1024 626 61.17 61.17 
White None 12 1024 795 77.60 77.60 
White Wavelets 12 1024 791 77.25 77.25 

Huffman
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Table

Data Data

Wireless Transmission

Compressed Data for Huffman
Lookup
Table
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De-
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De-
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Transform

Wireless Sensing Unit Wireless Sensing Unit

Figure 2.  Huffman compression of sensor data using wireless sensing units 

TABLE 3. COMPRESSION OF STRUCTURAL RESPONSE DATA USING HUFFMAN CODING 



CONCLUSIONS 
 
The design of a wireless sensing unit for structural monitoring has been 

presented.  A major innovation of the proposed unit is the computational capabilities 
of its core.  The core’s microcontrollers facilitate localized processing of raw time-
history data prior to transmission in the wireless network.  Distributing computational 
power throughout the sensor network in this manner attains high energy efficiency 
thereby preserving portable battery operational lives.  The study has focused upon 
illustration of these energy-efficiencies by performing local data interrogation tasks 
such as the FFT and Burg’s method for determination of AR model coefficients.  
Local execution of the FFT saved upwards of 98% of battery energy while AR model 
fitting varied from 50 to 84% energy saved.  Lossless data compression has also been 
presented as a means of further preserving battery power by reducing the size of time-
history records prior to transmission.  Huffman coding and data de-correlation using 
Wavelet Transforms has been shown to compress time-history records to 61% of their 
original size thereby saving additional battery energy.  
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