
 
 
 
 

1 

Algorithms for time synchronization of wireless structural 
monitoring sensors 

 
 

Ying Lei, Anne S. Kiremidjian∗ ,†, K. Krishnan Nair, Jerome P. Lynch and Kincho H. Law 

John A. Blume Earthquake Engineering Center 

Department of Civil and Environmental Engineering, Stanford University, CA 94305, U.S.A. 

 
 

SUMMARY 

Dense networks of wireless structural health monitoring systems can effectively remove the 

disadvantages associated with current wire-based sparse sensing systems.  However, 

recorded data sets may have relative time-delays due to interference in radio transmission or 

inherent internal sensor clock errors.  For structural system identification and damage 

detection purposes, sensor data require that they are time synchronized. The need for time 

synchronization of sensor data is illustrated through series of test on asynchronous data sets. 

Results from the identification of structural modal parameters show that frequencies and 

damping ratios are not influenced by the asynchronous data; however, the error in 

identifying structural mode shapes can be significant. The results from these tests are 

summarized in the Appendix.   

The objective of this paper is to present algorithms for measurement data 

synchronization. Two algorithms are proposed for this purpose.  The first algorithm is 

applicable when the input signal to a structure can be measured.  Time-delay between an 
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output measurement and the input is identified based on an ARX (auto-regressive model 

with exogenous input) model for the input-output pair recordings.  The second algorithm can 

be used for a structure subject to ambient excitation, where the excitation cannot be 

measured.  An ARMAV (auto-regressive moving average vector) model is constructed from 

two output signals and the time-delay between them is evaluated.  The proposed algorithms 

are verified with simulation data and recorded seismic response data from multi-story 

buildings.  The influence of noise on the time-delay estimates is also assessed. 

KEY WORDS: Synchronization; time series analysis; wireless sensors; system 

identification; structural health monitoring 

1. INTRODUCTION 

There exists a clear need to monitor the health of large civil engineering structures over their 

operational lives and when subjected to extreme events such as earthquakes, hurricanes or 

blasts.  Difficulties with installation and maintenance of current wired monitoring systems 

have led to the development of low-cost (less than $1,000 per sensing unit) wireless sensors 

for the health monitoring of civil structures [1-3].  Wireless sensors, however, may trigger at 

different times, thus data from sensors may not have the same initial time stamp.  

Furthermore, the transmission of the data may be delayed due to blockage of the signal or 

interference from other wireless devices that may be operating in the neighborhood of the 

system.  Recent wireless sensor network designs [4] ensure that data loss is at a minimum; 

however, time delay in signal arrival at the data collection point cannot be prevented.  In 

addition, there may be time-delays in the signal due to inherent clock errors.  The objective 

of this paper is to present algorithms for synchronization of data that trigger at different 
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times by the sensors.  Two algorithms are presented for data synchronization.  

Synchronization due to blockage of the signal is currently under investigation and will be 

addressed in subsequent papers.  The need for synchronization is illustrated through 

applications to structural modal parameter identification analysis. The results from these 

analyses are presented in the Appendix. 

Until recently, recorded data used to provide insight into the performance of structures 

have come from cable connected sensors that use a common trigger. Structural modal 

parameters are estimated from these data using system identification algorithms [5-9]. 

Furthermore, methods for structural damage detection have been proposed based on changes 

of structural modal parameters, such as natural frequencies, damping ratios, mode shapes or 

mode shape curvatures [10-12].  With wireless systems, however, the trigger time can be 

different and the data from the various sensors may need to be synchronized in order to 

perform system identification and damage detection.  In order to illustrate the need for 

synchronization, the influence of asynchronous data on identification results of structural 

modal parameters is investigated and presented in the Appendix.  For this purpose, the ARX 

model [7-9] and the natural excitation technique (NExT) [15-16] are also summarized in the 

Appendix. The results from the application of these models show that modal frequencies and 

damping are not affected; however, mode shapes are significantly changed if the data are not 

synchronized.  Thus, the focus of this paper is on the development of time synchronization 

algorithms. 

Time synchronization of signals has been developed for other applications [13-14], but 

not for wireless structural health monitoring purposes.  In this paper,  two algorithms are 

developed that can be used for synchronizing data in wireless sensor networks.  The first 
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algorithm can be used when the input to a structure is measured.  The input signal serves as 

the reference signal, and each output signal is synchronized with the input signal.  The 

second algorithm treats asynchronous output measurements from a structure under ambient 

excitation, for which the input signal is not measured and is not typically known.  One of the 

output signals in this case is taken as the reference signal and all remaining signals are 

synchronized with the reference signal. The structure is assumed to behave linearly and the 

signals are stationary.   

The time synchronization algorithms are tested with signals that have time delays that 

are either smaller or larger than the sampling rates.  Several numerical examples of 

simulated and recorded seismic response data from multi-story buildings are used to 

demonstrate and verify the proposed algorithms for data synchronization.  As the noise to 

signal ratio in the ambient vibration data may be quite high in many civil infrastructure 

applications, the effect of noise on the measured data and their synchronization is also 

considered herein.   

2. TIME SYNCHRONIZATION ALGORITHM FOR INPUT-OUTPUT PAIR 

OF RECORDINGS 

The first proposed algorithm assumes that the excitation and response signals are both 

measured. Thus, the input signal is selected as the reference signal.  In general, the output 

signals recorded by wireless sensing units may have time-delay relative to the reference 

signal.  The set of asynchronous input and output signals can be represented as follows: 
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where )(txg  is the acceleration input and )(ty j  is the jth acceleration output (j = 1, 2,…, 

M), M is the number of sensing units recording output signals.  The objective is to 

synchronize all output data with the input record. 

2.1 Time Synchronization algorithm 

The ARX model constructed from the above asynchronous data is 
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When jτ  is a multiple of the sampling interval ∆, Eq.(2) can be rewritten as  
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where 

 jmm tt τ−=′  and ∆τ /knkn j−′=′′  (4) 

To obtain synchronous data, Eq. (3) has to be equivalent to Eq. (A-1) as defined in the 

Appendix.  Comparing Eq. (3) with Eq. (A-1), it can be observed that the only difference 

between the two equations is the value of the time-delay between the input and output 

signals.  When  

 nkkn =′′  and ∆τ /nk'nk j+=  (5) 
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Thus, analytically, Eq.(3) is equivalent to Eq.(A-1).  Therefore, Eq. (3) is the equation of 

an ARX model constructed from synchronous input-output data but with a time-delay value 

other than the nk value given in Eq.(A-1).  The model parameters (ai, bi, na, nb and nk) in the 

ARX model given by Eq.(A-1) are obtained by minimizing the model error. Thus, the 

proposed synchronization algorithm is based on the minimization process as described in the 

following paragraphs. 

The ARX model for the input gx  and output jy  at discrete-time point jmt τ−  is 

expressed as 
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When 0τ j > , Eq. (6) can be written as 

 )t()iknt(xb  )it(ya)t(y jmj
nb

k

'
jmgi

na

i
jmjijmj τε∆∆τ∆ττ

01
−+−′−−=−−+− ∑

=
∑
=

 (7) 

where 

 ∆ )∆/τfix(ττ   ;  )∆/τfix( j
'

j −=+=′ jjnkkn  (8) 

in which )∆/τfix( j  rounds off the element ∆/τ j  to the nearest integer.  The value of 'nk  

takes into account the part of the time-delay, which is a multiple of the sampling interval, 

whereas the value of 'τ j  includes the remainder part of the time-delay as shown in Eq.(8).   

Once the values of )τ( jmj ty −  and )τ( '
jmg tx −  are recorded, the model orders na, nb 

and the time-delay 'nk  are determined by observing the variation of ∑ − )τ(ε2
jmj t  with all 
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possible combinations of na, nb and 'nk .  Using the Akaike's information theoretic criterion 

(AIC) or the Rissanen's minimum description length criterion (MDL), the optimal values of 

na, nb and 'nk  are chosen such that they give a minimum estimation error [7-9].  Therefore, 

the selected optimal ARX model, which is a realistic approximation of the actual system, has 

minimum model estimation error when the recorded input and output or two output 

measurements are synchronized.   

However, data generated by wireless structural monitoring sensors are asynchronous as 

expressed by Eq. (1).  The value of 'τ j  is not known and the excitation values )τ( '
jmg tx −  

are not recorded.  To estimate the value of '
jτ , the values of the input signal at shifted time 

instances can be evaluated by a spline interpolation yielding the following set of input data 

  )τ(  ....., , )τ(  ),τ( 00201 −−− Nggg txtxtx  (9) 

where 0τ  is the value of the time shift.  With different values of 0τ , a set of shifted input 

signals is obtained. 

Then, each shifted input signal is paired with one of the output signals jy  to construct an 

ARX model, which is given as 
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where )ττ(ε 0jmj t −  is the prediction error of the model with a given value of 0τ .  Two 

vectors, β and θ, are defined as follows 
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where superscript T denotes a transpose.  Eq.(6) then can be rewritten as 

 )ττ(ε )τ,τ( )τ( 00 jmjjm
T

jmj ttty −+−=− θβ  (13) 

For a given value of 0τ , the total error )τ ( 0θV , defined as the sum of the squares of 

model errors at all measurement times, is given by 
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where nk'nbnann += ),max(  

 The total error expressed by Eq.(14) is minimized to obtain the coefficients of the 

ARX model θ̂  [7-8].  Then the synchronization error for different values of 0τ is taken to 

correspond to the point where )τ ( 0θV  is at it minimum given by  

 )τ (min)τ( 00 θ
θ

Ve j =  (15) 

where ‘min’ is defined as the minimum value of the function.   

Eq. (10) is equivalent to Eq.(7) when '
0 jττ =  and thus, the optimal model parameters na, 

nb and 'nk  give the minimum estimation error.  Therefore, 0τ  is estimated by observing the 

variation of )( 0τje  for a range of 0τ  values.  The value of 0τ  that minimizes )τ(e 0j  is 

taken as the estimated value of the time-delay in recording the output jy (t) relative to the 



 
 
 
 

9 

input signal gx (t), i.e., 
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where ‘arg’ gives the argument of the function.  Then, the corresponding shifted input signal, 

given by Eq.(9), is synchronous with the output signal jy (t) when shifted by 0τ  as defined 

by Eq.(16).   

In the case 0τ <j  (non causal shift), the starting data point of the input signal gx  for the 

time synchronization should be chosen such that the output has a time-delay with respect to 

the input signal.  Subsequently, the time synchronization reduces to the former case when 

0τ >j .   

Similarly, all other output signals can be synchronized with the input signal using the 

above algorithm.  Finally, structural mode shapes can be identified after all effective 

participating factors are estimated according to Eqs.(A-6) and (A-10) as discussed in the 

Appendix.  It is important to note that the estimated value of nk’ includes both the effects of 

nk and τj.  Thus, once we have obtained the synchronized models (which are characterized 

by the model orders, na and nb, the coefficients ai, bi and the time delay nk’), the system 

identification can be performed successfully.  These are further illustrated by the following 

examples. 

2.2 Example application 

2.2.1. A 3-story shear building under a sweep sine ground excitation 

In order to illustrate the algorithm, first a simple example is developed.  For this purpose, the 
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3-story shear building described by Clough and Penzien [22] is used.  A sweep sine 

excitation is applied to the base of the structure.  The ground excitation gx (t) is defined 

 t)t](2π3.0sin[)( +=txg  (17) 

The excitation has constant amplitude of 1 in/s2 with a linearly varying frequency of 0.3 

to 6.3 Hz over 40 seconds.  The floor acceleration responses recorded by wireless sensing 

units at the first, second and third floors have time-delays of 2.002sec, 4.804sec and 

6.005sec respectively relative to the input signal.  These asynchronous data are generated by 

numerical simulation.  The sampling time is equal to 0.01sec.  

Each acceleration response data are paired with the shifted input to apply the proposed 

algorithm.  Based on the criteria of optimal model order for ARX models [7-8], the model 

parameters of the ARX model for the first, second and third floor acceleration response 

paired with the input are selected as 8== nbna  and 'nk =200, 'nk =480 and 'nk =600 

respectively.  Figs. 1(a)-1(c) illustrate the variations of )τ( 01e , )τ( 02e  and )τ( 03e  for a 

range of 0τ  values.  From these figures, the value of 'τ j  can be evaluated by the minimizing 

arguments of )τ( 0je  (j = 1, 2, 3) as described by Eq. (16).  Then the time-delays of the three 

floor acceleration response data relative to the ground excitation signal can be identified as 

described by Eq. (8).  These values are found to be identical to the time-delays introduced in 

the response signals pointing to the accuracy of the synchronization. 

After the output signal is synchronized with the input signal, the corresponding effective 

modal participation factor is evaluated according to Eq.(A-10).  Structural mode shapes are 

identified after the effective participating factors have been estimated.  These identified 
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mode shapes are normalized with respect to the 3rd floor and are given as 
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Comparison of the true and identified values of mode shapes shows that the 

identification of the mode shapes is accurate (to the second or third decimal) using the data 

synchronized by the proposed algorithm. 

2.2.2 The 3-story shear building under El Centro earthquake excitation 

In the second case study, the time synchronization algorithm is applied to the same 3-story 

building under the 1940 El Centro N-S earthquake loading with PGA=0.3g.  The recorded 

floor acceleration response at the first, second and third floors are assumed to have time-

delays of 5.004sec, 4.009sec and 7.006sec respectively, relative to the input signal.  These 

are generated numerically with sampling interval equal to 0.02sec.  Using the Akaike's 

information theoretic criterion (AIC) or the Rissanen's minimum description length criterion 

(MDL), na, nb are selected as 8== nbna  and 'nk  equal to 250, 200 and 350 in ARX 

models for first, second and third floor acceleration responses coupled with the excitation 

respectively.  Figs. 2(a)-2(c) illustrate the variations of )τ( 01e , )τ( 02e  and )τ( 03e  for a 

range of 0τ  values.  From these figures, the value of 'τ j  can be evaluated and the time-
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delays of the three floor acceleration response data relative to the ground excitation signal 

can be estimated by Eq. (16).  In order to comply with the stationarity assumption, only the 

strong motion portion of the record is selected for analysis.  The response signals are 

generated without introducing any damage to the structure preserving the assumption of 

stationary behavior.  For response signals resulting from nonlinear behavior, the tail of the 

input and output signals can potentially be used for synchronization purposes where the 

structure is likely to be behaving linearly and the signal will have relatively stationary 

behavior.  These assumptions are currently under investigation and the results from the 

analyses will be reported in the subsequent papers. (Rewrite this portion)  

2.2.3 Recorded accelerograms of a 18-story commercial building subject to Loma Prieta 

earthquake 

The time synchronization algorithm is also demonstrated for the strong-motion 

accelerograms recorded in an 18-story commercial building in San Francisco subject to the 

1989 Loma Prieta earthquake.  The data were provided by the California Geological 

Survey’s (CGS) Strong Motion Instrumentation Program (SMIP) (formerly Division of 

Mines and Geology, California Department of Conservation, 

ftp://ftp.consrv.ca.gov/pub/dmg/csmip/).  The basement of the building is excited by one 

vertical and two horizontal ground motions.  Under the condition that the three components 

of excitations recorded at the basement ( gx1 , gx2 , gx3 ) are synchronized, the above time-

synchronization algorithm can be extended to a multi-input, single-output case.  The ARX 

model for input-output data in Eq.(10) is rewritten as 
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where nb1, b1k, nb2, b2k, and nb3, b3k are orders and coefficients of the first, second and third 

exogenous input, respectively.  A common time delay kn ′  for all three inputs is assumed 

here.  Analogously, it can be shown that the relative time-delay value of jτ  can still be 

evaluated by minimizing )τ( 0je  as described by Eq.(16).  To obtain asynchronous 

acceleration response data sets of the building, recorded accelerograms are artificially shifted 

to produce asynchronous data with constant time-delays.  The structure is assumed to have 

sustained no damage, thus remaining in the linear range for the duration of the earthquake.  

The proposed time synchronization algorithm is then applied to treat the asynchronous data 

sets.  In this numerical example, the original data-sampling interval is 0.02sec, one recorded 

horizontal component of accelerograms at the 7th floor and another recorded horizontal 

component of accelerograms at the 12th floor are shifted so they have time-delays of 2.8sec 

and 3.4sec relative to the basement excitations, respectively.  Using the Akaike's information 

theoretic criterion (AIC) or the Rissanen's minimum description length criterion (MDL), the 

optimal model values in the ARX model for the 7th floor response and basement excitation 

is 16=na , 16321 === nbnbnb , 140=′kn , and they become 18=na , 

18321 === nbnbnb , 170=′kn  in the ARX model for the 12th floor response and 

basement excitation.  These kn ′  values indicate that the 7th floor and 12th floor responses 

have time-delay value of sec8.2sec02.0140 =×  and sec4.3sec02.0170 =×  respectively 

relative to the basement excitation.  The results again show the accuracy of the time 
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synchronization algorithm. 

3. TIME SYNCHRONIZATION ALGORITHM FOR OUTPUT 

RECORDINGS 

When a structure is subject to ambient excitation, the inputs to the structures cannot be 

measured. Typically only output signals are recorded by the wireless sensing units 

instrumented at different locations of the structure.  One of the measured output signals ry  

is chosen as the reference signal.  The remaining measured acceleration responses have time-

delays in recording data relative to the reference signal.  Thus, the following asynchronous 

output data are recorded 
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where jrτ  is the unknown time-delay of the recorded output jy  relative to the reference 

signal ry . 

For structures under ambient excitation, auto-regressive moving average vector 

(ARMAV) models have been applied for system identification of structures [23-25].  These 

models only use time series of output signals, without the requirement of excitation 

measurement.  The excitation is assumed to be a stationary Gaussian white noise.  A time 

synchronization algorithm for output signals based on the ARMAV models is proposed. 

3.1 Time synchronization algorithm 

The values of the reference signal at shifted time instants are also evaluated by spline 
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interpolation to yield the following data 

  )τ(  ....., , )τ(  ),τ( 00201 −−− Nrrr tytyty  (20) 

where 0τ  is the value of time shift.  With different values of 0τ , a set of shifted reference 

signals is obtained. 

An ARMAV model can be constructed from a shifted reference signal and another 

output jy  by  

 Nnnknknn
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where p and q are the orders of the AR (auto-regressive) and MA (moving average) 

components respectively, ak and bk are 22 ×  matrices of the AR and MA coefficients and N 

is the number of points in the records.  { } T
jrjr nnn  ]τ[y],τ[y ][ 0 −−=y  and 

{ } Tnunun   ],2[],,1[ ][ =u  are vectors of a pair of output signals and stationary zero-mean 

Gaussian white noise processes respectively.  The same ARMAV model in the state space 

can be rewritten as 

 
][  ][

][ ]1[ ][
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yCy
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where ][ny  and ][nu are vectors in the state space of dimension 2p, A and B are 2p2p ×  

dimensional matrices containing the coefficients of AR and MA, respectively, and C is the 

observation matrix [23-24].  

Parameters of the ARMAV models are estimated by the prediction error method [24-25].  

The vector θ is defined as  
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qp ],...,,,...,[ 21021 bbb,baaa=θ  (23) 

The prediction error vector ]τ,[ 0θε n  of the ARMAV model under a given value of 0τ  

can be expressed as 

 ][ˆ][]τ,[ 0 nnn yy −=θε  (24) 

where ][ny  is the vector of actual measured output values and ][ˆ ny  denotes the predicted 

value by the ARMAV model [25].  With a given value of 0τ , θ̂  can be obtained as the 

minimum point of a criterion function )τ( 0θV .  The criterion function )τ( 0θV  is given as 

[24-25] 
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The minimum value of the criterion function under a given value of 0τ , )τ( 0jrw is 

defined as  

 )τ(min)τ( 00 θ
θ

Vw jr =  (26) 

The variation of )τ( 0jrw  for a range of 0τ  values is observed.  The value of 0τ , which 

gives the minimum value of )τ( 0jrw , is taken as the estimated value of the time-delay in 

recording the selected output jy  relative to the reference signal ry , i.e., 
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Subsequently, the shifted reference signal, given by Eq.(20), with 0τ  defined by Eq.(27), 
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is synchronous with the output ( )ty j .  After obtaining the two synchronous output data, the 

corresponding modal elements of the structure Φ can be extracted from the eigen-vector 

matrix L of matrix A as [24] 

 L C=Φ  (28) 

Alternately, other output measurements can be synchronized with the reference signal 

and structural mode shapes can be identified when there are as many measurements of the 

output as the number of the degrees of freedom considered in the analysis. 

3.2. Example application 

A 4-story 2-bay by 2-bay shear building under ambient wind loading at each floor in the y-

direction is considered to demonstrate the application of the proposed algorithm.  This is one 

of the cases in the benchmark problem proposed by the ASCE Task Group on structural 

health monitoring [26] as shown in Fig.3.  More information on the benchmark problem can 

be obtained from the web site: http://wusceel.cive.wustl.edu/asce.shm/benchmarks.htm.  

It is assumed that the measured acceleration data from the wireless sensing units at the 

first, second and third floors have time-delays of 2.6sec, 1.5sec and 0.9sec respectively 

relative to the measured acceleration response of the fourth floor.  These data are generated 

by the MATLAB program provided by the ASCE Task Group.  The sampling interval of the 

output data is 0.01sec.  Ambient vibration measurements are likely to be affected by high 

noise.  Hence, while performing system identification, the model should account for any 

noise in the data to obtain the correct modal parameters.  In this paper, a band-limited 

Gaussian white noise process is used to model the noise and study its effects on the 
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synchronization algorithm.  The ratio of the root mean square (rms) value of the noise to the 

rms value of the fourth floor acceleration is 10% (noise to the largest signal ratio).  The 

synchronization algorithm is applied to the noisy asynchronous data in order to estimate the 

accuracy of the time delay estimates.  Acceleration response signal of the fourth floor is 

chosen as the reference signal.  Figs. 4(a)-4(c) illustrate the variations of )τ( 04jw  (j = 1, 2, 

3) for a range of 0τ  values.  From the values of 0τ , which produce the minimum values of 

)τ( 04jw , the time-delays in recording acceleration response data relative to the reference 

signal are evaluated accurately. 

After obtaining the synchronous output data, the structural mode shapes in the y-

direction can be identified using Eq.(28).  The identified mode shapes normalized with 

respect to the 4-th floor have the following amplitudes 
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and the following phase angles (in degrees) are estimated as 
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The true values of mode shapes are 
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Comparison of the true and identified values of mode shapes shows that the 

identification of the mode shapes is satisfactory using the data synchronized by the proposed 

algorithm. 

4. CONCLUSIONS 

In this paper, two time synchronization algorithms are proposed to treat recorded 

asynchronous data for the purpose of accurate structural parameter identification and damage 

detection. Synchronization of signals is particularly important for the newly developed 

wireless sensor networks. The two algorithms estimate the time-delay by minimizing the 

model error associated with the ARX or ARMAV models.  The first algorithm can be used 

when the input to a structure is measured.  Output data are synchronized with the input data 

based on the ARX models for the input-output pairs.  The algorithm is simple and its validity 

has been tested by several numerical examples of simulated and recorded seismic response 

data of buildings.  Time-delays in recording output measurements relative to the measured 

ground input can be accurately evaluated as long as the numerical error due to interpolation 

of signals is small.  The algorithm is illustrated with two examples. 

The second algorithm can synchronize recorded outputs from structures under ambient 

excitation, where the input is unknown.  It is based on the ARMAV model for a pair of 

output data, which requires more numerical effort in comparison to the first algorithm.  The 
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presence of noise in the ambient vibration data does not appear to affect the synchronization 

accuracy.  Simulation data from the benchmark building proposed by the ASCE Task Group 

on structural health monitoring show that the second algorithm can also accurately 

synchronize output measurements.  The preliminary analysis and the proposed algorithms 

are valid for stationary signals from linear systems.  The effect of damage to structures and 

thus nonlinear behavior is currently under investigation and will be reported in subsequent 

papers. 

The influence of asynchronous data on the identification of structural modal parameters 

is investigated and the results are presented in the Appendix that follows.  It is shown that 

the identification of structural frequencies and damping ratios are not affected by the 

asynchronous data; however, the structural mode shapes are affected by the relative time-

delay in recording the data. An analytical formulation is presented for the error in the 

identified structural mode shapes.  

5. APPENDIX - EFFECTS OF TIME-DELAYS ON SYSTEM 

IDENTIFICATION 

5.1 Structures with recorded single input 

5.1.1. ARX model from synchronous input-output data 

When a structure is excited by a recorded ground excitation ( )txg , auto-regressive models 

with exogenous input (ARX) have been used for system identification [7-9].  If the input 

( )txg  and the output signals ( )Mjty j ,...,2,1 )( =  of the structure are recorded 
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synchronously, an ARX model can be used to construct the input-output relationship in the 

discrete-time domain by the following equation 

 Nmtinktxbityaty mj

nb

i
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==
1    )()(  )()(

01
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where ∆ is the sampling interval, M is the number of sensing units in the recording output 

signals, N is the number of points of recorded stationary data, na and ai are the order and 

coefficients of the AR terms (auto-regressive) respectively, nb and bi  are the order and 

coefficients of the exogenous input respectively, ∆⋅nk  is the time delay, in terms of the 

sampling interval ∆, between the input gx (t) and output )(ty j , and )( mj tε  is the prediction 

error of the model.  It is important to note that nk would still be present in the case of 

synchronous data, which is a result of delay due to wave travel time and not due to delay to 

instrument recording.   

The transfer function of the discrete system described by Eq.(A-1) is  
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where ∆sez =  and s denotes the complex Laplace transform operator. 

For nanb ≤ , the transfer function in Eq.(A-2) can be rewritten in the following form by 

using partial fraction expansions (if nanb > , first a polynomial division is done and then a 

partial fraction expansion is made) 
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where pi is the pole of the transform function Hj(z), which is determined by the roots of the 

denominator of Hj(z), and ri denotes the residue of the transfer function Hj(z) corresponding 

to the ith pole [7-8]. 

For a real system, the poles must be complex-conjugate pairs.  To determine the 

contribution of each mode to the response, pairs of terms corresponding to pairs of complex-

conjugate poles in Eq.(A-3) are combined together.  Then, Eq.(A-3) is rewritten as 
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where, the superscript * denotes the complex conjugate. 

For a structure with proportional damping, the continuous frequency transfer function 

between the ground excitation and the acceleration output at point j is well known [7-8].  If 

the signal has a time delay of nk.∆ relative to the excitation, the transfer function can be 

derived as follows: 
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where n is the number of modes in the structure, ωi = ith modal frequency, ζi = ith modal 

damping ratio, ( ) 1 2
iiii i ζζωλ −+−= , φji = jth component of the ith modal vector φi, Γ i is 

the participating factor of the ith mode and cji is the effective participating factor of the ith 

mode at point j [17] defined as follows:  
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where M is the mass matrix of the structure and I is a unit column vector. 
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Eq.(A-4) and Eq.(A-5) are similar except that Eq.(A-4) is in the discrete-time domain 

while Eq.(A-5) is in the continuous-frequency domain.  Based on the zero-order-hold 

equivalence technique [7, 18-19], the equivalent discrete-time transfer function of the 

continuous form can be derived as 
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By comparing Eq.(A-7) to Eq.(A-4), the following equalities are obtained 
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 From Eq.(A-8), structural modal frequency ωi and modal damping ratio ζi can be calculated 

as 
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where  denotes the modulus of the corresponding complex value.  The effective 

participating factor cji can be obtained by from Eq.(A-8) and is given below 
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To determine the mode shapes of the structure, it is necessary to have as many 

measurements of the output as the degrees of freedom considered.  Based on the definition of 

the effective participating factor cji as shown in Eq.(A-6), the mode shapes of the structure 

can be identified. 
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5.1.2. ARX model from asynchronous input-output data 

When the excitation to a structure is measured, the excitation signal is selected as a reference 

signal.  As discussed before, output signals recorded by wireless sensing units might have 

time-delays relative to the reference signal resulting in asynchronous data.  If the jth 

acceleration output )(ˆ ty j  has a time-delay of jτ  relative to the input gx , the ARX model in 

Eq.(A-1) is modified for the asynchronous output )(ˆ ty j  and input ( )txg  as 
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where )τt(y)t(ŷ jmjmj −= . 

The corresponding transfer function is  
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and it can be expanded into partial fractions analogous to Eq.(A-4) as [5] 

  
)()(

 )(ˆ
2/

1
*

*//

∑
=

∆−∆−













−
+

−
=

na

i i

i

i

i
j

pz

rz

pz

rz
zH

jj ττ

 (A-13) 

By comparing Eq.(A-13) with Eq.(A-4), it is noted that denominator of the transfer 

function is not influenced by the time-delay jτ .  Thus, modal frequencies and damping 

ratios, determined from the roots of the denominator, pi, as described by Eq.(A-9), are not 

influenced by the time-delay.  However, the numerator of the transfer function depends on 

jτ .  From Eqs.(A-13) and (A-10), the amplitude of the effective participating factor jiĉ  
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(identified from the asynchronous data) is given by 
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From Eq.(A-9), it can be derived that 

 jiij epi
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The ratio of two components of a modal vector can be calculated from the ratio of the 

corresponding effective participating factors.  Based on the definition of the effective 

participating factor cji as shown by Eq.(A-6), the ratio of the two components in the ith mode 

vector is changed as  

 rjjr
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where jiφ̂ , riφ̂  are the two components of the ith modal vector iφ̂  identified from the 

asynchronous data, jiφ , riφ  are the corresponding components identified from the 

synchronous data, and τjr is the time-delay of the jth output )(ˆ ty j  relative to the rth output 

)(ˆ tyr . 

Thus, identification of structural frequencies and damping ratios are not influenced by 

the asynchronous data but the structural mode shapes are influenced by the relative time-

delay in recording the data.  Absolute quantities such as structural frequencies and damping 

ratios can be determined from a single output measured at a location that is not a node of 

structural modes.  However, a relative quantity, such as a component of the modal vector 

depends on a pair of output measurements, where time synchronization of the two 

measurements is necessary. 
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Finally, the same results can be derived analogously to the cases where a structure is 

excited by a measured input at a point on the structure and/or the structural has non-

proportional damping [7-8].  

5.2. Structures under ambient excitation 

When a structure is subject to ambient excitation, the inputs to the structure are unknown.  

For stationary uncorrelated force inputs, it can be shown by the natural excitation technique 

(NExT) [15-16] that the cross-correlation between two synchronous acceleration data ry (t) 

and jy (t) has the following expression 
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where riA  and jiθ  are constants [15-16]. 

To extract modal parameters, ry (t) is fixed.  By treating the cross correlation function in 

Eq.(A-16) as output from the free vibration decay, various techniques [5, 20-21] can be used 

to identify the modal frequency 
i

ω , modal damping ratio 
i

ζ  and ratios of the modal 

elements. 

When wireless accelerometers are placed throughout the structure, one of the measured 

output signals ry (t) is chosen as the reference signal.  The remaining signals are presumed 

to have time-delays relative to the reference signal.  If the jth output recorded by the wireless 

sensing unit has time-delay of jrτ  relative to reference signal, the cross correlation function 

)τ(ˆ
jrR  between these two asynchronous output measurements can be derived based on 

Eq.(A-16) as 
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where jŷ (t) is the jth acceleration output recorded by the wireless sensing unit, and 

 jriiejiji
τωζφ=φ̂  (A-18) 

Analogously, modal frequencies 
i

ω , modal damping ratios 
i

ζ  and ratios of the modal 

elements can be identified from the above cross correlation function.  By comparing Eq.(A-

17) with Eq.(A-16), it is seen that the identification results of the modal frequency ωi and 

modal damping ratio 
i

ζ  are not influenced by the time-delay in the measurements, but the 

ratios of modal elements are influenced by the time-delays as expressed by Eq.(A-15).  
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Figures 1(a)-a(c): Variation of errors )(e 01 τ , )(e 02 τ  and )(e 03 τ  with 0τ  under a 

sweep sine ground excitation 
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Figures 2(a)-2(c): Variation of errors )(e 01 τ , )(e 02 τ  and )(e 03 τ  with 0τ  under El 

Centro earthquake excitation  
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Figure 3 The benchmark building under ambient excitation in y-direction [26] 
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Figures 4(a)-4(c): Variation of errors )(w 014 τ , )(w 024 τ  and )(w 034 τ  with 0τ  of the 

benchmark problem 
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