
An Interactive Service Customization Model

Jian Caoa*, Jie Wangb, Kincho Lawb, Shensheng Zhanga, Minglu Lia

a Department of Computer Science, Shanghai Jiaotong University,

200030, Shanghai, P. R. China
b Department of Civil and Environment Engineering, Stanford University,

Stanford, CA 94305, U.S.A

Abstract: Mass customization has become one of the key strategies for a service provider to differentiate

itself from its competitors in a highly segmented global service market. This paper proposes an interactive service

customization model to support individual service offering for customers. In this model, not only that the content

of an activity is customizable, but the process model can also be constructed dynamically according to the

customer’s requirements. Based on goal ontology, the on-demand customer requirements are transformed into a

high-level service process model. Process components, which are building blocks for reusable standardized service

processes, are designed to support on-demand process composition. The customer can incrementally define the

customized service process through a series of operations, including activation of goal decomposition, reusable

component selection, and process composition. In this paper, we first discuss the key requirements of the service

customization problem. We then present in detail a knowledge based customizable service process model and the

accompanying customization method. Finally we demonstrate the feasibility of the our approach through a case

study of the well-known travel planning problem and present a prototype system that enables users to interactively

organize a satisfying travel plan.

Keywords: Service Customization; Service Process; Goal Ontology; Process Component

1. Introduction

Internet has grown beyond being an information-sharing platform and is fast becoming a
business transaction platform by providing resource-sharing functions through the interactions
between the consumers and the providers of Web services. From the IT perspective, a Web service
is a kind of self-described and self-contained component that can be discovered and invoked to
provide certain functions through the network. Web service technologies, such as WSDL (W3C,
2001), UDDI (OASIS, 2002) and SOAP (W3C, 2003), are among the most active research topics
both in academia and business areas. The business transaction model based on Web services
challenges the assumption that the Internet is just as an additional channel, and it’s impact on
business is mainly to increase the speed of existing production processes (Giacomo, 2001).

The Web services offered by the Internet can bring profits to service providers, in a way very
similar to traditional service companies. As a provider of services, albeit through Internet or other
traditional channels, business strategy is the key to success. One important business strategy is
mass customization that can potentially differentiate one company from others in a highly
competitive and segmented market. Mass customization, which was originated in marketing,
requires providing a customer with customized products and services but without exceeding the

*Corresponding Author. Tel.: 86-21-62933536; Fax.: 86-21-62933536; Email: cao-jian@cs.sjtu.edu.cn
Address: Department of Computer Science &Technology, Shanghai Jiaotong University, 1954, Huashan Road,
Shanghai, 200030, P.R.China

 1

mailto:cao-jian@cs.sjtu.edu.cn

price of comparable standard products (Duray et al., 2000). Although mass customization may
appear to be mainly for the manufacturing enterprise for delivering manufactured products to
customers, this business strategy is also important for service providers. For example, a research
conducted by IBM Malaysia’s services department shows that there are three important factors
affecting on their adoption of mass customization (Perters and Saidin, 2000):
(1) Heterogeneity of market demands
(2) Customers’ demands of fast and varied response to their needs
(3) Competition from other related enterprise

Furthermore, it is predicted that in the next few years mass customized services will generate
more revenue than either one-of-a-kind or on-the-rack services. Obviously, Web service providers
will face similar challenges. The basic requirements to provide mass customization capability in
service offering include supports for flexible business processes, organizational structures and
enterprise resources. This paper focuses on the development of an interactive service
customization model that can enhance the flexibility of Web service providing process.

Current technologies support three basic ways of using Web service, as illustrated in Figure 1:
1) Individual Web Service Invocation
(Figure 1 (a))

Web Service

(c)

Service
Process

Web Service

………..

(b)

(a)

Composed
Web Service

Some standards such as WSUI (WSUI
Working Group, 2002) provide the
interface through which a customer can
make use of a Web service directly. When
a single Web service does not meet the
requirements of the customer, manual
efforts are needed to compose and
coordinate multiple Web services, which
could be difficult if not impossible for the
customer. This model may work for
simple applications, for example, weather
forecast or map services.

Fig. 1. Different Interaction Modes between a

Customer and Services

2) Composed Web Services Invocation (Figure 1 (b))
It is possible to compose multiple Web services to provide a high level service to the customer.

Typically, composed Web services and their relationships are explicitly defined in the high level
service for specific applications (Srivastava and Koehler, 2003). The process and services are
rigidly defined and are difficult to customize.
3) Service Process Invocation (Figure 1 (c))

Another alternative is to define a service process model consisting of activities and the
requirements of the supporting Web services (Sivashanmugam et al, 2003). Instead of binding
Web services to the activities statically, only the requirements for the Web services are defined as
activities’ contents. Appropriate Web services are discovered and invoked dynamically during run
time. In this model, although the Web services are selected according to the requirements the
structure of the process is predefined and only limited customization capabilities are allowed.

The objective of this work is to develop a process and service model that has the flexibility to
support mass customization. The proposed service customization model allows customization of
not only the content of the activity, but also the structure of the service process, which is built

 2

dynamically according to the customers’ requirements. Based on goal ontology, the customer’s
requirements are transformed into an abstract service process in which the process components,
which are some reusable standardized service processes, serve as building blocks to support
process composition. The customer can define the entire customized service process through goal
decomposition, process composition and process component reuse.

This paper is organized as follows. Section 2 discusses the key requirements of the service
customization problem. Section 3 presents a knowledge based customizable service process model.
Customization of a service is discussed in details in Section 4. Section 5 describes a demonstration
system. Section 6 discusses related works and, finally, Section 7 briefly summarizes the paper and
points out several directions for future works.

2. Basic Requirements

We use travel plan as a case study to delineate some of the basic requirements for service
customization. The travel plan has been used as a case study by many researchers (Orriëns et al.,
2003; Srivastava and Koehler, 2003). Although the travel plan problem appears to be relatively
simple, it contains most of the perspectives of a service process and reveals many difficulties in
the service customization problem.

Several tasks are involved when making a travel plan. First, a customer needs to decide on how
to go to the destination and return from there and select the means for transportation. The
customer may then need to reserve for a hotel and, occasionally, book a taxi or a shuttle bus for
transportation from the airport (or train station) to the hotel or from the hotel to the airport (or train
station). At first glance, the planning process may appear to be quite simple, however, multiple
scenarios could happen. For example, the customer can choose to travel by train or by airplane. If
by airplane, the customer needs to select a flight. Given a specific flight, there are also multiple
ways to book the ticket. For example, the customer may prefer to book the flight directly or search
and inquire for the most suitable schedule. For a specific travel plan, hotel reservation may depend
on overnight stay or other conditions, such as locations and convenience. In addition, foreign
travels may also require a visa. In short, many alternatives exist and decisions are involved when
planning for a travel.

One important observation in the travel plan problem is how many of these variations are not
known a priori to the service provider at the beginning of service offering. The challenge is to
design an end-user friendly information system that can satisfy customers’ requirements. The most
important requirements are:
1) Satisfy diverse customer requirements with predefined system models

To develop a service process model that can meet all kinds of customer’s needs is difficult if not
impossible. There are two basic approaches to develop a general framework to handle the diverse
various service processes. The first approach is based on generalization and the other is to
integrate and compose small models. Generalization provides abstract process models to support a
broad range of scenarios. An abstract process model can be transformed to support useful
scenarios through specialization. General process patterns (abstract process models) exist within a
domain as well as across different domains (Malone, 2003). For example, when making
reservation for a train ticket or a flight ticket, the customer may need to inquire about the ticket
information, select one and then book it. In addition to generalization, a process model should
support composition such that individual processes can compose a more complex process model.

 3

That is, a set of reusable process unit models should be maintained. Generalization and
composition provide many possibilities to satisfy diverse customer’s requirements while keeping
the technical complexity at an acceptable level.
2) Integrate system knowledge and customer’s personal knowledge

Providing services is a knowledge intensive task. It must contain different levels of organized
knowledge about a specific domain. For example, while a ticket booking process model must
include the knowledge about booking a ticket, different ticket booking process models with
knowledge about alternative solutions to satisfy different requirements must also exist. From the
system perspectives, these process models contain explicit knowledge about ticket reservation.
However, there is also implicit knowledge that stay in a customer’s mind, which is difficult to
model in advance. For example, should a customer reserve first a departure ticket or a return ticket?
This scenario depends on the need of the customer. Whether the customer should rent a car or
book a taxi at the destination airport is also implicit information that may not be known in advance.
Therefore, the IT system framework must provide a dynamically means to integrate system
knowledge and customer’s personal knowledge.
3) Allow dynamic refinement on process model

In order to make the process model flexible and customizable, the relationships among the
activities of a reusable abstract process model should be loosely defined. The customer should be
allowed to incrementally add dependencies to the activities of an executing process model. For
example, the customer may add a new ordering relationship between the activities for reserving a
departure ticket and reserving a return ticket. The customer may also want to connect the data
from one activity to another, for example to link the results of reserving a departure ticket to the
activity for booking a car rental. Sub-processes may also be included in the model on demand. For
example, upon finding that booking a foreign flight requires a visa, a sub-process of visa
application should be added to the process. Flexible process representation and execution are
needed to support incremental refinements of the executing process model.

The service customization model described in the paper attempts to address these three basic
requirements.

3. A Knowledge-based Customizable Service Process Model

To handle diverse customers requirements, a knowledge-based customizable service process
model, which is composed of domain ontology, goal ontology and process components as depicted
in Figure 2, is proposed.

Use

Use Use

Realized _by

Process Component

Goal Ontology Domain Ontology

Fig. 2. A Knowledge-based Customizable Service Process Model

 4

3.1 Domain Ontology
In order to provide an interface with unambiguous and consistent representations to the

customers and to support reasoning within the service process customization, the concepts
employed in the service process model should be formalized and be shared across the sub-models.
Formal ontology is one approach to specify content-specific agreements for a variety of
knowledge-sharing activities. Ontology is an explicit specification of a conceptualization and its
importance has been well recognized (Gruber, 1993; Guarino, 1998). Domain ontology defines a
set of concepts and their formats for a specific domain application. For example, Figure 3 shows
parts of domain ontology for a travel plan problem, where concepts include ticket, time and hotel
etc. The domain ontology is structured as a set of individual generalization hierarchy terminology
trees, with the more abstract concepts of the ontology forming the root terms of which other terms
are specified. Each term of the hierarchy may be associated with a number of named attributes.
Attributes are specified with an attribute name and type. Examples of built-in primitive types
include Boolean, string, byte, integer, and real number. The complex types can be terms defined in
other term trees. Attributes of a term are inherited by all of its children, which may have additional
attributes.

If a term a is inherited from a term b, a specializes b and it is denoted as a∈SPt(b). Accordingly,
b generalizes a and it is denoted as b∈GEt(a). The relationships of specialization (or
generalization) are transitive. For example, if c∈ SPt (a) and a∈SPt(b), then c∈SPt (b).

Ticket (cost: Integer, dept: Departure Time, arrt: Arrival Time) Time (t: Time) Travel Date (t: Date)

Address (add: String)

Departure-Ticket

Return-Ticket Flight Ticket (fliO: Flight)

……

Travel (depd: Departure Date, retd: Return Date,

 depc: City, desc: City)

Hotel (cos: Integer, add: Address, star: Integer)

Return Date Departure Date Arrival Time Departure Time

Train Station

Location (name: String)

TrainTravel (num: String, dept: Departure Time, arrt: Arrival Time,

deps: Departure Station, arrs: Arrival Station)

Foreign Flight Domestic Flight

Flight (num: String, com: String,

dept: Departure Time, arrt: Arrival Time,

depa: Departure Airport, arra: Arrival Airport)

Transportation Reservation (loc: Location, stat: Time)

Taxi Reservation (des: Address)Car Rental (endt: Time)

Visa (visanum: String) Passport(passportnum: String)

Airport

Destination City Origin City

City (citn: String)

Train Ticket (trao: TrainTravel)

Arrival Station Departure Airport Departure Station Arrival Airport

Fig. 3. Partial Domain Ontology for the Travel Plan Problem

3.2 Goal Ontology

In order to allow the customers customizing their service processes, goal ontology is provided
as a high level knowledge.

Human action follows specific goals, i.e., targets, intentions and purposes, for their
activities. Goal is a high level concept and the relationships among goals represent the domain

 5

knowledge. A specific goal can be achieved by different methods. The concept of goal has
different meanings in different contexts. In requirement engineering, a goal is defined as
“something that some stakeholder hopes to achieve in the future ”(Rolland and Ben, 1998). On the
other hand, if we design and implement a system, the goal would be to offer certain services by
using this system. The former is called a requirement goal and the latter an operation goal. A
requirement goal g is achieved by using those methods that have operation goals supporting g.

Rolland et al. formalized a goal structure for requirements engineering (Rolland et al., 1998). In
their structure, a goal has a verb and a set of parameters. These parameters include target, direction,
way, beneficiary, referent, quality, location and time. Although the goal structure is well defined,
some of the parameters such as direction, beneficiary and referent are not applicable to the
service-providing domain.

In the proposed goal ontology model, depicted in Figure 4, a goal g is expressed as a clause
with a verb, a target, ways and qualities. For a goal, there must exist a verb v∈VE (a verb set) and
a target t∈TA (a target set) expressed in domain ontology. The target designates an entity affected
by the goal. The verb and target of a goal g can be obtained by the two functions verb and target,
respectively. Another component of a goal is way, which is represented by a set of parameters
whose values specify the means to satisfy a goal. More specifically, quality, which is represented
by a set of indices, defines a mechanism to be used to evaluate the degree of satisfaction for the
goal.

Goal

Verb Target Way Quality

Parameter

1

0..1
1

0..1 1
1

1

1..* 1..*

Index

1

Fig. 4. The Goal Structure

For each parameter pi of a goal with verb(g)=v and target(g)=t, pv(pi, g) is a function to obtain
the value domain for pi of g and pi (g) is a function to obtain the value of the parameter pi of goal g.
A parameter set can be defined for a verb v and any goal whose verb is v will inherit these
parameters. For example, a parameter called ByCompany is defined for verb Inquiry, and then goal
Inquiry (Ticket) will inherit the parameter ByCompany.

The relationships among goals can be categorized in vertical and horizontal dimensions. In the
vertical dimension, the relationships defined between the high-level goals and the lower level
goals include specialization and decomposition.
1) Specialization Relationship

If realizing another goal g2 can satisfy a goal g1, then we call g2 specialize g1 and denote it as
g2∈SPg(g1). Accordingly, we can call g1 generalize g2 and denote it as g1∈GEg(g2).

If verb (g1) is different from verb (g2) then their specialization relationship should be defined
explicitly. If verb (g1)= verb(g2), then specialization relationship can be determined using the
following reasoning mechanisms:

 6

Partial Order:

Obtain (Ticket) → Reserve (Hotel)

Apply (Visa Number) → Obtain (Ticket)
Obtain (Ticket) → Reserve (Transportation

Reservation)

Plan (Travel)

Reserve (Hotel) Reserve

(Transportation Reservation)

Apply (Visa Number) Obtain (Ticket)

Obtain (Ticket) Reserve (Transportation Reservation)

Reserve (Departure Ticket) Rental (Car Rent) Reserve (Taxi Reservation) Reserve (Return Ticket)

Decomposed-to Specialized-by

Fig. 5. Goal Relationships for Travel Plan

Given two sets A and B, for ∀a∈A, we have a∈B, or ∃b∈B and a∈SPt(b), then A⊆SPs(B) (A
specializes B).
Suppose a goal g, where verb(g)=v and target(g)=t with parameter set P=(p1, p2,…, pn) and a
goal g’, where verb(g’)=v and target(g)=t’ with parameter set P’=(p1, p2,…, pn,…, pm). If t’
∈SPt(t) or t’=t, and for ∀pv(pi, g’), pv(pi, g’) ⊆SPs(pv(pi, g)), then g’ specializes g. For example,
Reserve (Train Ticket) ∈SPg(Reserve(Ticket)).

2) Decomposition Relationship
A goal g can be decomposed into several sub-goals G’={g1, g2, …, gm} and each sub-goal

gi=SubOf(g) (i=1, 2, …, m) will contribute to the partial fulfillment of g. In order to avoid
confusion for concepts, verb(gi) must be different from verb(g). For the goal g, a sub-goal gi can
be optional or indispensable.

In the horizontal dimension, there are two types of relationship that can be defined among the
sub-goals of g:
1) Ordering Relationship

If g1 and g2 are two sub-goals, and g1 must be fulfilled before g2, then g1 is said to have
precedence over g2 and is denoted as g1→g2.

2) Dependency Relationship:
 AND(g1, g2): If g1 should be satisfied, then g2 should also be satisfied and visa versa.
 XOR(g1, g2): Either g1 or g2 is selected to be satisfied.

Figure 5 shows the goal relationships defined for the travel plan problem.

3.3 An Event-Condition-Action Rule based Process Model and Process Component

A process can be regarded as an approach to satisfy certain goals, which are defined by a set of
activities, ordering constraints and the data exchange among the activities. It can be either abstract
or concrete. An abstract process represents a process pattern, which can be instantiated into a
concrete process to fit for a specific context. For a high level abstract goal, different processes are
selected and composed together.

The process component pc, which is used to model a reusable process unit, can be represented
by <gp, pm, Ip, Op>, where gp is an operation goal, pm is a process model, Ip and Op are input
objects and output objects, respectively. The functions goal and process are defined as follows:

 7

goal: PC→G
process: PC→Pm

where PC is the set of process components, G is the set of goals and Pm is the set of process
models. The function goal(pci) gives the goal gi associated with pci, and the function process (pci)
gives the process model pmi associated with pci.

3.3.1 Event-Condition-Action Rule and Process Model

A process model can be specified using different languages, for example, XPDL (WfMC, 2000),
BPEL4WS (IBM, 2003) or BPML (BPMI, 2001), with differences in their syntax and expressive
power. Comparisons of these different languages can be found in some papers (van der Aalst,
2002; Peltz, 2003). This work describes a process model using event-condition-action (ECA) rules.
It allows customers to incrementally and interactively change the executing process model.

An ECA rule can be defined as Reca=<e, Con, Ac>, where e is an event to trigger the rule, Con is
the condition set to reflect the status of the system and environment, and Ac is the action set. An
ECA rule states that if e happens and the condition set Con is satisfied then the rule will be fired
and all the actions of Ac are executed. An ECA
rule can also be denoted as: e8

On e If Con Then Ac

e10 e9 e7

e6 e5 e4

e3 e2
W

e1

A T

C E R
Events can be composed using the following

simple operators:
1) AND: e1 AND e2 implies that both e1 and e2

must happen.
2) OR: e1 OR e2 implies that at least one of e1

and e2 happen.
3) PRE: e1 PRE e2 implies e1 happens before e2. Fig. 6. The State Transition Chart of Activity
4) REP: REP e1 n implies e1 happens and repeats

n times.
Based on these simple operators, more complex operators can be defined. For example:

ALL: ALL (e1, e2,… , en)=e1 AND e2 AND … AND en
A process model is defined as PM=<At, RA>, where At is the activity set of a process; RA

represents relationships among the activities. RA=DF∪LF, where DF and LF are respectively data
flow set and the logic ordering relationships (or control flows) among the activities. DF and LF
are both represented using ECA rules.

An activity can be in one of the following states: waiting (W), ready (R), executing (E),
completed (C), overtime (T) and aborted (A). When an activity changes its state from one to
another, an atomic event happens. Figure 6 shows the state transition chart of an activity. ECA
rules can be used to represent the state transitions in an activity. The rule to transform the state of
an activity from “waiting” to “ready” is called triggering rule for the activity.

The content of each activity in a process model can be specified by an operation, a process
component or a requirement goal. The operation can be a predefined action (for example, data
format transformation), an application invocation, a service invocation, or a task performed by
human. For example, in a “Reserve (Ticket)” process model shown in Figure 7, the activity a2 will
display the query results to the customer and the customer then selects one from the results. In the
case that a specific process component is defined as the content of an activity, when the state of

 8

the activity is changed to “Ready”, the process component will be instantiated as a sub-process of
this activity.

The content of an activity can also be set to another requirement goal, which guides the
underlying system and the customer to choose a process component during run time. For example,
in Figure 7, activity a1 defines a goal to inquire
about the ticket information. If there are several
activities whose contents are defined as
different goals, semantic relationships among
these activities are defined as constraints among
targets, parameters of different goals. For
example in Figure 7, the goal of a1 is g1:
Inquire (Ticket) and the goal of a3 is g2: Book
(Ticket). The semantic relationships between
these two goals can be:

Target (g1)=Target (g2)
ByCompany (g1)=FromCompany (g2)

These two semantic relationships impose the
constraints that the types of ticket and
companies should be the same for these two
goals. When g1 is specialized by instantiating
the target object and parameter values after the
process has been started, g2 will be specialized
accordingly based on the semantic
relationships.

So far the ECA rule based process model has
been introduced. In the model, activities are
activated by the ECA rules, and their
relationships are not defined explicitly. By
adding or modifying ECA rules, the process can be built and refined incrementally. ECA rule
based process model also has strong expressive powers. All patterns used in defining a workflow
can be expressed in terms of ECA rules.

CanNotFind=True

Data Flow

Control Flow

<OR, ALL>

<AND, XOR>

<AND, ALL>

Result

a4

a3
Selected=True

Ticket
Set

Ticket

goal
a2

End

Display2

Display1

“Book (Ticket)”

“Inquire (Ticket)”
a1
goal

Continue=True

Start

Fig.7. A Process Model for “Reserve (Ticket)”

3.3.2 The Process Graph for Process Component Modeling

Designing a new process model by explicitly writing ECA rules is quite cumbersome. Hence,
the process graph is introduced to facilitate the design of process components. An example of a
process graph is shown in Figure 7. The solid arrow represents control flow and the dashed line
represents data flow. In the process graph, each control flow corresponds to an event. The purpose
of introducing the logic nodes is for the composition of events. When the source of a control flow
is an activity, the corresponding event of this flow is one of state changing events of the activity. If
the source of a control flow is a logic node, then its corresponding event e will be determined
according to the types of logic node itself.

Suppose {e1, e2, …, em} are the events corresponding to the control flows that are introduced
into this logic node:

 If the type of the logic node is <AND, ALL>, then e=e1 AND e2 AND … AND em, ;

 9

 If the type of the logic node is <OR, ALL>, then e=e1 OR e2 OR…OR em,
 If the type of the logic node is <AND, XOR>, then the outputting control flow corresponds to

the event indicating the satisfying state of the condition related to this node. An ECA rule will
be added to map the satisfying state of the condition to a new event e:

On e1 AND e2 AND … AND em
If Condition=True
Then RaiseEvent(e)

Where action RaiseEvent(e) generates an atomic event e to indicate that the condition is
satisfied.

It is easy to convert a process graph into an ECA rule set. For example, the process model
shown in Figure 7 can be translated into the ECA rule set as shown in Table 1.

Table 1 ECA rules for the Process Shown in Figure 7

Activity Set: Start, a1, a2, a3, a4, End

Control Flows:

On EndOf(Start) OR e1 Then Initialize(a1)

On EndOf(a1) Then Initialize (a2)

On EndOf(a2) If Continue=True Then RaiseEvent (e1)

On EndOf(a2) If Selected=True Then RaiseEvent (e2)

On EndOf(a2) If CanNotFind=True Then RaiseEvent (e3)

On e2 Then Initialize (a3)

On EndOf(a3) Then Initialize(a4)

On EndOf(a4) OR e3 Then Initialize(End)

Data Flows:

On EndOf(a1) Then InputData(Ticket Set, a2)

On EndOf(e2) Then InputData(Ticket, a3)

On EndOf(a3) Then InputData(Result, a4)
EndOf(): event indicating an activity status changing from “executing” to “completed”

Initialize(): Turn the state of an activity from “waiting” to “ready”

InputData(): Input a data object to an activity

3.3.3 The Process Component for Service Invocation

In the service customization model, a Web
service invocation is treated as a standardized
process component. The general structure of
this process component is depicted in Figure 8.
Wrapping Web service invocation into a
process component helps resolve several
important problems:
(1) Semantic Description: Since it has been

wrapped into a process component, the
operation goal is added as its semantic
description.

(2) Semantic Discrepancy: In the process
component, input data is transformed into
a strongly typed data that a Web service
employs, and the result is transformed into
a specific format of a specific system.

Success=False Success=True

Error Message
a4

Data Transform
a3

a2

End

Start

Service
Invocation

Data Transform
a1

(3) Quality of Service: Only trusted Web
services can be wrapped into process
components. Exception handlings are also
added to the process component to deal

Fig.8. The Process Component for Service Invocation

 10

with the requirements of quality of service.
With the model of customizable service process introduced, the next section describes the

mechanism of how to customize a service process, i.e., the key technologies to support service
customization.

4. The Service Customization Method

In order to make the best use of a set of models available within a service offering system to
provide multiple functions to satisfy customers’ needs, the knowledge contained within the system
needs to be integrated with the implicit knowledge of customers. To achieve this goal, the
common approach to passively answer customer’s requests does not work. Instead, a mechanism
that utilizes an interface to allow a customer to define and change the service process interactively
should be provided. To better illustrate this approach, the method for implementing the customer
interface is first introduced. Then the process engine and the methods supporting the choice of
appropriate process components are discussed.

4.1 The Customer Interface for Service Customization

The customer interface for service customization is composed of a set of operations as shown in
Figure 9. More specifically, the following operations are provided:

Goal Ontology
Activity List

Process
Component

Library Process Model Generated
from Goal Ontology

Process Engine

Customized Process Model

Customer Interface

Global Data

Fig. 9. The Service Customization Method

 O1: Sub-Goals Selection: since a goal is decomposed into sub-goals, the sub-goals can be
selected based on customers’ requirements;

 O2: Goal Specialization: the customer can specialize a goal to express more specific
requirements;

 O3: Process Component Choice: the customer can search and choose a process component
for a goal interactively;

 O4: Data Input: the customer can input data that is needed by processes or activities;
 O5: Data Mapping: the customer can map data for activities to a global data format or visa

versa;
 O6: Control Flow Modeling: the customer can add control flows among activities;
 O7: Activity Information Access: the customer can obtain activity information from activity

 11

lists;
 O8: Activity Execution: the customer can execute a concrete activity.
There are two activity lists maintained within the interface. One list, denoted by ALw, stores

activities with the state ”waiting”, and the other list denoted by ALr, stores the activities with state
“ready”. If the state of an activity is “ready”, it means that this activity can be executed once the
required input data objects are available. If the state of the activity is “waiting”, it means that the
activity cannot be executed because none of its triggering rules has been fired.

The method for service customization is illustrated using the travel plan example. A customer
initializes a new service process by picking a goal, for example Plan (Travel). Since the goal Plan
(Travel) is abstract and needs to be decomposed into sub-goals, the customer makes a choice from
these sub-goals, for examples, Obtain (Ticket), Reserve (Hotel) and Reserve (Transportation
Reservation). The selected goals should not have any conflicts with dependency relationships
defined. After the customer selects the sub-goals, as denoted here by the set G= {Obtain (Ticket),
Reserve (Hotel), Reserve (Transportation Reservation)}. The partial orders among these sub-goals
can also be obtained, as denoted by the set P={Obtain (Ticket)-> Reserve (Transportation
Reservation), Reserve (Ticket)-> Reserve (Hotel)}>. These sub-goals and their ordering
relationships are transformed into an ECA rule-based process model. Firstly, each goal gi∈G is
mapped into an activity ai. Then for each ordering relationship gi→gj in P, an ECA rule can be
generated as follows:

R: On EndOf(ai) Then Initialize(aj).
If another ordering relationship gk→gj exists, then R is changed into:

R: On EndOf(ai) AND EndOf(ak) Then Initialize(aj)
In short <G, P> is transformed into a process model <A, LF>, where for the travel plan example,
we have:

A={a1: Obtain (Ticket), a2: Reserve (Hotel), a3: Reserve (Transportation Reservation)}

LF={On EndOf(a1) Then Initialize(a2),

On EndOf(a1) Then Initialize(a3)}

The customer can add control flows to the process model interactively. Since the process model
is based on ECA rules, a new ordering relationship can easily be added for the activities: after
selecting an activity from ALw, the customer chooses one event from the event list as the
triggering event for the activity or edit the event expression of the triggering rules for the activity.
For example, if the customer wants to define an ordering relationship, reserving transportation
after making hotel reservation, the triggering rule of a3 can be changed to:

On EndOf(a1) AND EndOf(a2) Then Initialize(a3)
In the activity set A, some activities, for example a2 and a3, will be triggered by ECA rules

defined, while others cannot be triggered because the knowledge contained within the process
framework may not be enough to automatically trigger them. The customer should start those
activities, for example a1. These activities are appended into ALr and the activities that will be
triggered using ECA rules are added into ALw. For the example, a1 is added into ALr and the other
two activities a2 and a3 are added into ALw.

The customer selects an activity from ALr, say a1, which becomes a goal according to it’s
content. Since this goal is decomposed into two sub-goals in the goal ontology, i.e., Reserve
(Departure Ticket) and Reserve (Return Ticket) respectively. A sub-process model P1: <A1, LF1>
for activity a1 is built following the steps described earlier. Since none of the ordering

 12

relationships are defined between these two goals, LF1 is null. For ∀a1i∈A1, a1 becomes a1i’s
parent, a1i is a1’s child and this relationship is denoted as a1=Parent (a1i). a1 is also called a
complex activity. The service process is now structured hierarchically. The activities of A1 will be
added to ALr or ALw; in the example, they will be added to ALr.

If the content of an activity selected from ALr is a goal and this goal can’t be decomposed
further according to the goal ontology, then a process component should be selected for it, for
example, activity a11: Reserve (Departure Ticket). The details for how to select an appropriate
process component will be discussed at section 4.3. For now, suppose the selected process
component is pc1 as depicted in Figure 7, then the content of a11 will be changed to pc1.

In order to execute the process instance instantiated from pc1, a local data object set is built for
this instance. The customer should set up the mapping relationships between the local data objects
and the global data objects. According to the domain ontology, for each local data object, the
customer only needs to select one from a list of global data objects with the same type to set the
mapping relationships.

During the mapping process for the input data objects, the customer can encounter one of
following three cases:

 All input data is available;
 Some input data is missing, but the data can be provided by the customer;
 The customer cannot provide the missing data without carrying out other activities.
The third case suggests that another process needs to be executed because of the lack of enough

available information resources for the current process and goal. For example, the customer, who
needs to book a foreign flight ticket, may also need a visa. The system should find a process
component that helps the customer apply for the visa. The component is easy to find since the data
has already been defined within each process component. Suppose the process component is pc2,
an activity (suppose it is denoted as a4) whose content is pc2 will then be added into ALr. Since
activity a11 has to wait for the data from a4, then a11 can be moved into ALw and its state is
changed to “waiting”. A triggering rule is added:

On EndOf(a4) Then Initialize(a11)
For each activity in ALw, if its goal has ordering relationships with the newly added goal goal(pc2)
according to the goal ontology, the triggering rules should also be updated.

4.2 The Process Engine for Event-Condition-Action based Process Model

As shown in Section 4.1, instead of defining a process model in advance, the customer
dynamically refines the executing process model interactively. As the process is executing,
customer no longer deals with the whole process model, but works primarily with the sub-models,
which consist of the activities that are in the activity lists and their relationships. The process
engine should continue to update the process model and eliminate the activities that have been
executed. Updating the process model can improve the customizability of the service process and
also reduces the complexity of process customization and composition tasks.

This process model can be updated by rewriting the ECA rules. The rule rewriting method is
based on the idea that an event expression can be simplified (reduced) as the events have been
executed and thus can be removed from the expression.

For example, for an ECA rule:
On EndOf(a1) AND EndOf(a2) Then Initialize(a3)

 13

If a1 has been executed, then the value of event EndOf(a1) can be set to True. The rule can now be
simplified as:

On EndOf(a2) Then Initialize(a3)
The rules for rewriting event expressions are shown in Table 2. In the table, E denotes a

composite event and e1 is an event included in the event expression of E.
Table 2 Reduction Rules for Event Expression

1. E/e1=E，if e1∉E 4. (e1 PRE e2)/ e1= e2

2. (e1 AND e2)/ e1= e2 5. (e2 PRE e1)/ e1=False

3. (e1 OR e2)/ e1=True 6. REP e1 n/ e1=REP e1(n-1)

As an example, for e=(e1 AND e2)PRE（e3 OR e4）, if e1，e2，e3 and e4 have happened in a

successive order, then:
After e1 happened, e=e2 PRE (e3 OR e4)
After e2 happened, e=e3 OR e4
After e3 happened, e becomes True

Atomic Event
Monitor

ECA Rule
Rewriting

Event
E

E

E

E

E

E
Event

Record
Process
Model

 Activated

Activity

Fig.10. The Executing Mechanism of the Process Engine

Figure 10 shows how the process engine works. When an atomic event occurs, the process
engine will detect and record the event with the atomic event monitor. The event and its results for
related composite events will also be detected and recorded. ECA rules are rewritten accordingly
to update the process model. When an ECA rule is triggered, the related activity will have it’s state
changed into “ready” and be activated. As an activated activity is executed, a new event occurs.

It can be observed that the proposed engine executes a process based on an event-triggering
mode so that it still works when the process model is not completely defined.

4.3 Process Component Search Strategy

When customizing a process, another key issue is the search strategy for the process
components, which are the basic building blocks for the process composition. For a goal that
cannot be further divided into sub-goals, the tasks of its process components are executed to
satisfy the goal. For a goal denoted by g, all the process components whose operation goals

 14

specialize g should be found. If no eligible process components are found, set target (g) ∈GEt
(target (g)) so that g is replaced by g’ with the assumption that a process component for the
generalized object will also be fit for the specialized object. For g’, a new search is then started for
g’. This procedure continues until a set of eligible process components are found.

For the travel plan example, suppose there are not any process components that are found to
satisfy the goal Reserve(Departure Ticket), then the
search is to find the process components whose operation
goals specialize the goal Reserve (Ticket) since
Ticket∈GEt (Departure Ticket). Figure 7 already shows
one candidate process component with the operational
goal Reserve (Ticket) By(“Inquire First”), which allows
the customer to input query conditions and to select one
ticket from the results. The process can iterate repeatedly
until satisfying result is obtained. Figure 11 shows an
alternative process component with operational goal
Reserve (Ticket) By(“Book Directly”), the customer can
book the train or flight directly with known information.
Since there are only two process components for choice
so that it is quite easy to make a decision. If the customer
does not know any information, the process component
shown in Figure 7 will be selected.

Failed=
False and C

ontinue=
True Failed=False and

Continue=False

Result

a2

End

Start

Display

“Book (Ticket)”
a1

goal

Fig.11. Another Process Component
for “Reserve (Ticket)”

1) A Decision Tree Model for Process Component Choice

It is difficult for the customer to make a choice when many process components are resulted
from a search. For example, in the process model shown in Figure 7, the task of the first activity is
to select a process component for it’s goal Inquire (Ticket). For this goal, a set of process
components that can specialize it are found but they have different values of targets and
parameters defined in the way of the goal structure. Suppose the following operation goals of
process components are found:

 Inquire (Train Ticket) ByCompany (Company A)
 Inquire (Train Ticket) ByCompany (Company B)
 Inquire (Flight Ticket) ByLocation (Airport) ByCompany (Company C)
 Inquire (Flight Ticket) ByLocation (City) ByCompany (Company C)
 Inquire (Flight Ticket) ByLocation(City) ByCompany (Company D)
The customer now is facing to make a

decision to select from these choices. A
decision tree based model can be
employed to help making selection
among the process components. Figure
12 shows an example of a decision tree
model for selecting a process component
for the goal Inquire (Ticket). In this
decision tree, the decision choices are
classified by targets and common

Inquire (Ticket)

Train Ticket Flight Ticket

ByCompany

By City By Airport

ByCompany

…… ……

…… ……

ByLocation

Target

ByCompany

Fig.12. A Decision Tree Model Example

 15

parameters defined in the way of the goal structure.

2) A Quality Measurement Model for Decision Making

Another issue in the decision-making is how to make a proper decision when traversing through
a decision tree. For example, which type of ticket should the customer reserve, train ticket or flight
ticket? How to select a company from hundreds of travel agencies? It is difficult to develop a
pre-defined procedure within a travel planning system that can make an optimized decision for
each customer. The issues is to what degree can decision supports be provided for a particular
customer?

A quality measurement model is proposed to help the customer to make decisions. For a goal g,
the target can have different values and the parameters of the way can also have different values.
Utility functions can be defined for target and parameters. The utility function for a parameter can
be defined as cfi: IS× pv(pi, g)→[0,100], where IS is the index set of g, pv(pi, g) stands for the
value domain of parameter pi of g. The definition of the utility function for target is similar and it
is denoted as cf0. The utility value represents the quality of each index.

Given a goal, the quality values for a target and a parameter can be measured respectively by:

)))(,((
1

0

1

0 ∑
∑=

=

⋅=
n

i
in

k
k

i gtargetIcf
w

w
QoG

and

∑
∑=

=

⋅=
n

i
jijn

k
k

i
j gpIcf

w

w
QoG

1

1

)))(,((

where n represents the total number of indexes for the target or a specific parameter and wi ∈[1,10]
is the weight given to the index Ii according to the customers’ preferences. For example, suppose
the index set of Inquire (Ticket) is {Time, Cost, Comfort, Easy to Operate}. Now the customer is
making a choice between different values of the target, for traveling by train or flight. Assume the
utility values are given as follows:

For g1=Inquire (Train Ticket):
cf0 (Time, Train Ticket)=30, cf0 (Cost, Train Ticket)=90, cf0 (Comfort, Train Ticket)= 40, cf0
(Easy to Operate, Train Ticket)=80
For g2=Inquire (Flight Ticket):
cf0 (Time, Flight Ticket)=90, cf0 (Cost, Flight Ticket)=20, cf0 (Comfort, Flight Ticket)=70, cf0
(Easy to Operate, Flight Ticket)=50

Furthermore, let the weights assigned to indexes are 9, 2, 6 and 1 respectively. The quality values
are thus obtained as QoG=42.7 for g1 and QoG=73.3 for g2. The system suggests the customer to
choose Inquire (Flight Ticket).

As we pointed out in Section 2, the knowledge contained within the system is not always
sufficient for satisfying all the customers’ decision support requirements. Therefore, the results
obtained from the quality measurement can only serve as a reference for the customer. In practice,
it may be possible to add more indices and define more complex utility functions based on the
history of service offerings and other information. For example, a utility function man be used to
calculate the index based on the travel time needed. Although such utility function may provide
more accurate measurement for the quality, it may also add more complexity to the system.

 16

5. Service Customization Center (SCC): A Prototype System for Supporting Service

Customization
We have developed a prototype system that includes several tools and a hypothetical Service

Customization Center (SCC) to support service customization based on the methodology
discussed in this paper. Protégé is used for domain and goal ontology modeling. It is an
open-source, Java tool that provides an extensible architecture for the creation of customized
knowledge-based applications (SMI, 2002). In the view of Protégé, an ontology is a formal
explicit description of concepts in a domain of discourse (classes, sometimes called concepts),
properties of each concept describing various features and attributes of the concept (slots,
sometimes called roles or properties), and restrictions on slots (facets, sometimes called role
restrictions). In the prototype system, we define the domain ontology and goal ontology in Protégé.
The ontology together with a set of individual instances of classes constitute the knowledge base
of SCC. SCC accesses domain ontology and goal ontology through the APIs provided by Protégé.
Figure 13 shows the definition of domain ontology and goal ontology for travel planning in
Protégé.

Fig.13. Ontology Modeling using Protege

Figure 14 shows a process component-modeling tool for the prototype system. This tool is
flexible and easy to use. It supports the drag and drop operations to draw the process graph. It is
composed of a navigation tree to show the hierarchical structure of all the entities in the process
(left panel), and a composition panel for the ECA rule based workflows (right panel) as shown in
Figure 14. To assist the user to compose a complex process model, a validation mechanism is
supported. The validation mechanism can verify the input information on the spot. A special event
algorithm is implemented to deal with the validation of model when transforming the graphical
representation into ECA rules. The process component designed by the tool is stored in a database

 17

Fig.14. Process Component Modeling

and it can be loaded from the database into the current running process. The process model shown
in Figure 14 represents “Reserve (Ticket)” process that is introduced in Section 3.3.1.

If currently existing service solutions cannot support the required service customization, a new
service must be generated and wrapped into a process component in our model, as described in
Section 3.3.3. In order to fulfill this task in the prototype system, a tool was developed. When a
new service needs to be attached, its address of the WSDL in UDDI is entered so that its input and
output of the method can be explicitly obtained through the UDDI. Specifically, the parameter

Fig.15. A Tool for Defining Web Services as Process Component

 18

types of input and output can be obtained through parsing the WSDL file; then the transforming
rules among these parameters and domain ontology are defined in XSLT format; lastly the goal
description and QoS description are added so that the new service transformed into a basic process
component in the system. Figure 15 shows the procedure for utilizing this tool to add a new
service for inquiring train ticket information.

SCC is Web-style interface for the customer and is developed using JAVA JSP language and
deployed with Jakarta Tomcat 5.0. Figure 16 (a) shows an interface for the customer to select
multiple sub-goals of a travel plan. In this case, the customer chooses applying Visa, obtaining
ticket and reserving hotel. These sub-goals and their relationships are transformed into a top-level
service process model. Figure 16 (b) shows that the customer is defining ordering relationships
among the activities. The customer can select events from an event list and compose them into an
event expression of the ECA rules for the selected activity. In this case, the customer adds an ECA
rule that defines the process of reserving a departure ticket ahead of reserving a return ticket.

(b) Order Relationship Modeling

(a) Sub-Goal Choice

(c) Process Component Choice

Fig.16. A Demo Service Customization Center

 19

Figure 16(c) shows a process component choice interface for the customer. The scores are
calculated based on the weights assigned to the indices by the customer, utility values of the
targets and the parameters. Figure 16(c) lists utility values of three process components for goal
Inquire (Ticket). For two different targets, i.e., train ticket and flight ticket, the utility values are 42
and 73 respectively. Thus the customer will prefer to inquire flight ticket. Furthermore, the utility
values for “ByLocation” of the two process components for inquiring flight ticket are 80 and 60,
respectively. Therefore the second process component can be chosen.

We also tested the prototype system in a more complex bus manufacturing case. For a
bus-manufacturing firm, delivering customizable product is very important for maintaining its
competitive advantage in today’s market. When a customer order is accepted, the enterprise will
compose different services that are provided by different partners, such as engine vendors, part
manufacturers and the shipping company. The domain ontology and goal ontology are much more
complex than travel planning problem.

Although our system provides interactive service customization functionalities, which are not
supported by other systems yet, we find that we need to implement extra components to build this
system for such complex applications. For example, for a prototype system for supporting user
defined on-demand bus ordering, we have to implement an input ontology and to define web
services as process components for the system. Since ontology only needs to be entered once, it is
not a critical problem and it is possible to obtain them from some public ontology library, such as
the web site at http://www.daml.org/ontologies/. Currently, defining a Web service as a process
component is conducted manually. It is a daunting task for a system maintainer to maintain the
system when there are a large amount of Web services that need to be defined as components. It is
possible to search Web services and translate them to process components automatically or
semi-automatically in some limited areas.

6. Related Works

The most popular standards for building processes using Web service composition are
BPEL4WS (IBM, 2003), BPML (BPMI, 2001) and DAML-S (Ankolenkar, 2002). BPEL4WS and
BPML aim at abstracting the service references in the process from actual service
implementations. This helps in selecting a correct service implementation for each activity during
process deployment (deployment-time binding) or execution (execution-time binding). However,
the present process composition standards like BPEL and BPML are inadequate for semantically
representing the activity components of a process. The DAML-based Web Service Ontology
(DAML-S) (Ankolenkar, 2002) is an initiative to provide an ontology markup language expressive
enough to semantically represent capabilities and properties of Web services. DAML-S is based
on DAML+OIL and the aim is to discover, invoke, compose, and monitor Web services. It can be
used to define ontology appropriate for declaring and describing services using a set of basic
classes and properties. However, DAML-S itself is not a solution for the service customization
problem.

Various investigations to provide adaptability of service processes have been initiated. For
example, eFlow from HP laboratories models composite service as a graph, which defines service
nodes, event nodes or decision nodes (Casati et al., 2002). The eFlow engine offers the facility of
being able to plug in new service offerings and enables adaptiveness. A Web Services Modeling
Framework (WSMF) has been proposed to enable flexible and scalable e-commerce using Web

 20

Services (Fensel and Bussler, 2002). It advocates using semantic Web techniques to deal with the
problems of heterogeneity and scalability in e-commerce. MWSCF (METEOR-S Web Service
Composition Framework) allows user to semantically define each activity involved in a process
(Sivashanmugam et al., 2003). Each activity in the process can be specified using a Web service
implementation, Web service interface, or semantic activity template. When the activity is
specified as a semantic activity template, the activity requirements are given as the semantics of
the inputs/outputs (IO) along with the functional semantics of the activity being specified.

Planning and reasoning originated in AI research has been investigated and applied in service
composition. For example, Aiello et al. presented a way to compose e-Services based on planning
under uncertainty and constraint satisfaction techniques, and a request language for specifying
client goals was proposed (Aiello et al., 2002). McIlraith and Son addressed the composition of
e-Services by using the Situation Calculus-based programming language CONGOLOG and more
specifically, component e-Services were represented as CONGOLOG programs, while the client’s
needs were specified through suitable forms of constraints (McIlraith and Son, 2002).

The service customization model described in this paper differs from the works above in that
the model can configure not only the content of an activity, but also the whole process structure
according to the customer’s requirements. The model is not based on planning theory, since we
believe customer’s needs are often subjective and implicit, and therefore, it’s very difficult to
specify complete requirements in advance. The model emphasizes on integrating system
knowledge and customer’s knowledge.

Kim and Gil introduced a framework for interactive composition of services that assists users in
sketching their requirements by analyzing the semantic description of the service (Kim and Gil,
2004). An analysis tool was developed to help users create complete and correct compositions of
Web services. They believe that users may only have high-level or partial incomplete description
of the desired outcome or the initial state, so it may be hard to directly apply automatic approaches
that require explicit goal representations. Their basic ideas are quite similar to our model. The
difference is that instead of letting the user design the process freely, we provide goal ontology,
process components and decision models to guide the user through the service process creation.
Furthermore, the process model is based on ECA rules so that it can support executing partially
defined process more efficiently.

This work is also closely related to the research of adaptive workflow or dynamic workflow. To
enhance the expressive power of workflow model, providing operations to revise the model
dynamically (Heimann et al., 1996; Reichert and Dadam, 1998) and designing exception handling
mechanism (Chiu et al., 1998) are two main methods for improving the adaptability of workflow.
We find most systems can’t provide different process models for different customers needs as our
model does.

Some researchers adopt planning theory to generate customized workflow models. For example,
Chun et al. introduced a system that can achieve customized generation of workflows by
specifying governmental regulations (Chun et al., 2002). PLMflow is a dynamic workflow system
that is capable of supporting non-deterministic processes such as those found in collaborative
product design scenarios (Liangzhao et al., 2002). Its workflow is constructed based on business
rule inferences. The advantage and disadvantage of this method are considered the same as those
using planning to compose service.

Chung et al. investigated the use of ontology, agents and knowledge based planning techniques

 21

to provide support for adaptive workflow or flexible workflow management, especially in the area
of new product development within the chemical industries (Chung et al., 2003). They provided a
plan library to support process reuse, which was similar to our process component library. In our
model, besides providing process component library to support process reuse, goal ontology and a
decision support model are provided to facilitate reuse of components. We also allow customers to
revise the process interactively and incrementally.

7. Conclusions and Future Works

Mass customization refers to the ability of providing customized products or services through
flexible processes and at reasonably low cost with high quality. In light of new capabilities
brought by Web service, customers will soon be able to directly input and interact with service
providers. The providers will have to respond to a variety of requirements from customers with
certain constraints from business or relevant perspectives. In this paper, a model is proposed to
deal with the challenges of service customization. In the model, system knowledge and customer’s
knowledge are integrated. Customized service process can be created interactively based on
domain ontology, goal ontology and a process component library.

So far we have developed some tools to support this model. The future works include but are
not be limited to:
(1) to design more rational structure to represent complex way for a goal. Current model

represents the way in a goal as a set of unrelated parameters and is not sufficient for complex
problems.

(2) to investigate how to acquire knowledge from customer behaviors. For example, in our current
model, the decision tree model is predefined for all customers. We believe specific decision
tree can be built dynamically by mining customer behaviors.

(3) to develop more tools to fully support the model proposed in the paper.

Acknowledgements:
This research is supported by grand project (No.03dz15027) of the Science and Technology
Commission of Shanghai Municipality. This work is also partly supported by "SEC E-Institute:
Shanghai High Institutions Grid", Chinese high technology development plan
(No.2004AA104340), Chinese Semantic Grid project and Chinese NSF project (No.60473092).
This work was partially conducted while the first author was visiting Stanford University.

References:
Aiello M., Papazoglou, M., Yang, J., 2002, A Request Language for Web-Services Based on Planning and

Constraint Satisfaction, Lecture Notes in Computer Sciences, 2444, 76-85

Ankolenkar, A., Burstein M., 2002, DAML-S: Web Service Description for the Semantic Web, Lecture Notes in

Computer Science, 2342, 348-363

BPMI, 2001, Business Process Modeling Language, Available from http://www.bpmi.org/specifications.esp,

2001.8

Casati, F., Ilnicki, S., Jin, L.J., 2002, Adaptive and Dynamic Service Composition in eFlow, Technical Report,

HPL-200039, Software Technology Laboratory, Palo Alto, USA, Available from

http://www.uddi.org/pubs/wsdlbestpractices.pdf, 2002.3

Chiu, D., Li, Q., Karlapalem, K., 1998, Exception Handling with Workflow Evolution in ADOME-WFMS: A

 22

http://www.informatik.uni-trier.de/~ley/db/conf/tes/tes2002.html

Taxonomy and Resolution Techniques, CSCW'98 Workshop on Adaptive Workflow Systems , Seattle,

Washington, Available from http://ccs.mit.edu/klein/cscw98/paper16, 1998.11

Chun, S., Atluri, V., Adam, N., 2002, Dynamic Composition of Workflows for Customized eGovernment Service

Delivery, Proceedings of The Second National Conference on Digital Government, LA, CA, Available from

http://www.digitalgovernment.org/library/library/pdf/chun.pdf, 2002.5

Chung, P.W.H., Cheunga, L., Stader, J., 2003, Knowledge-based Process Management—an Approach to Handling

Adaptive Workflow, Knowledge-Based Systems, 16 (3), 149–160

Duray, R, Ward, P.T., Milligan, G.W., Berry, W.L., 2000, Approaches to Mass Customization: Configurations and

Empirical Validation, Journal of Operations Management, 18, 605-625

Fensel, D., Bussler, C., 2002, The Web Service Modeling Framework WSMF, Electronic Commerce Research and

Applications, 1(2), 113-137

Giacomo, P., Giuliano D. V., Leonid M., 2001, Dynamic Service Aggregation in Electronic Marketplaces,

Computer Networks: The International Journal of Computer and Telecommunications Networking, 37(2),

95-109

Gruber, T. R., 1993, A Translation Approach to Portable Ontology, Knowledge Acquisition, 5(2), 199-220

Guarino, N.. 1998, Formal Ontology and Information Systems. Proceedings of Formal Ontology and Information

Systems, Trento, Italy, IOS Press, Amsterdam, 1998, pp.3-15.

Heimann, P., Joeris, G., Krapp, C.A., Westfechtel, B., 1996, DYNAMITE: Dynamic Task Nets for Software

Process Management, Proc. 18th Int. Conf. Software Engineering, Berlin , Germany, pp.331-341, 1996.3

IBM, 2003, Business Process Execution Language for Web Services, Version 1.1, ftp://www6.software.ibm.com/

software / developer /library/ws-bpel11.pdf, 2003.5

Liangzhao, Z., David, F., Henry, C., JunJang, J., 2002, PLMflow–Dynamic Business Process Composition and

Execution by Rule Inference, Lecture Notes in Computer Science, 2444, 141-15

Kim, J., Gil, Y., 2004, Towards Interactive Composition of Semantic Web Services, 2004 AAAI Spring

Symposium, Technical Report SS-04-06, Available from http:// www.isi.edu /ikcap / scec/papers/

AAAI-Symp-04-Kim-Gil. pdf, 2004.6

Malone, T.W., Crowston, K., Herman, G.A., 2003, Organizing Business Knowledge: The MIT Process Handbook,

Edited by Cambridge, MA: MIT Press

McIlraith, S., Son, T., 2002, Adapting Golog for Composition of Semantic Web Services, Proceeding of the

International Conference on the Principles of Knowledge Representation and Reasoning (KRR'02), 2002.4, pp

482-496.

OASIS, 2002, UDDI Version 2.04 API, Available from http://uddi.org/pubs/ ProgrammersAPI-V2.04

-Published-20020719.pdf, 2002.7

Orriëns, B., Yang, J., Papazoglou, M. P., 2003, A Framework for Business Rule Driven Service Composition,

Lecture Notes in Computer Science, 2819, 14-27

Peltz C., 2003, Web Service Orchestration: a Review of Emerging Technologies, Tools and Standards, Available

from http://devresource.hp.com/drc/ technical_white_papers/ WSOrch/ WSOrchestration.pdf, 2003.1

Peters, L. D., Saidin, H., 2000, IT and the Mass Customization of Services: the Challenge of Implementation,

International Journal of Information Management, 20(2), 103-119

Reichert, M., Dadam, P., 1998, ADEPTflex-Supporting Dynamic Changes of Workflows Without Losing Control,

Journal of Intelligent Information Systems, 10(2), 93-129

Rolland, C., Ben Achour, C., 1998, Guiding the Construction of Textual Use Case Specifications, Data &

Knowledge Engineering Journal, 25(1-2), 125-160

Rolland, C., Souveyet, C., Ben Achour, C., 1998, Guiding Goal Modeling Using Scenarios, IEEE Transaction on

 23

http://elsevier.lib.sjtu.edu.cn/cgi-bin/sciserv.pl?collection=journals&journal=15674223&issue=v01i0002
http://www.isi.edu /ikcap /

Software Engineering, 24(12), 1055-1071

Sivashanmugam, K., Miller, J., Sheth, A., Verma, K., 2003, Framework for Semantic Web Process Composition,

Technical Report 03-008, LSDIS Lab, Dept of Computer Science, UGA. Available from

http://lsdis.cs.uga.edu/lib/download/TR03-008.pdf, 2003.6

Srivastava, B., Koehler, J., 2003, Web Service Composition - Current Solutions and Open Problems, Proceedings

of ICAPS'03 Workshop on Planning for Web Services, 2003. 6, Trento, Italy, pp28-35

SMI, 2002, SMI Report, The Evolution of Protégé: An Environment for Knowledge-Based Systems Development,

SMI-2002-0943, Available from http://www.smi.stanford.edu/pubs/SMI_Reports/SMI-2002-0943.pdf, 2002.9

van der Aalst, W.M.P., Dumas M., ter Hofstede, A.H.M., Wohed, P., 2002, Pattern Based Analysis of BPML (and

WSCI), QUT Technical Report, FIT-TR-2002-05, Queensland University of Technology, Brisbane, Available

from http://xml.coverpages.org/Aalst-BPML.pdf , 2002.5

W3C, 2001, Web Service Description Language (WSDL) 1.1, Available from http://www.w3.org/TR/wsdl, 2001

W3C, 2003, Simple Object Access Protocol, Available from http://www.w3.org/tr/soap12

WfMC, 2000, Interoperability Wf-XML Binding, Available from

http://www.wfmc.org/standards/docs/Wf-XML-1.0.pdf, 2000.8

WSUI Working Group, 2002, WSUI Executive White Paper, Available from

http://www.wsui.org/doc/WSUI-wp.pdf

Biography:
Jian Cao
Dr. Jian Cao received his Ph.D degree from Nanjing University of Science & Technology in 2000.
He is currently Associate Professor of the Department of Computer Science& Technology at
Shanghai Jiaotong University. His main research topics include service computing, cooperative
information system and software engineering. He has published more than fifty papers.

Jie Wang
Dr. Jie Wang received his Ph.D degree from Stanford University and he is currently a consulting
faculty at Stanford University. Dr. Jie Wang conducts research in engineering and environmental
informatics and knowledge management for sustainable development. He has also worked for a
number of companies and government agencies including Collation, Inc., EDS, Loudcloud, Inc,
Stanford University ITSS, Instantis, Inc., First Union Bank, Department of Energy, and NOAA.

Kincho Law
Prof. Kincho Law received his Ph.D. degree from Carnegie-Mellon University in 1981. He is
currently Professor of Civil and Environment Engineering at Stanford University. Professor Law’s
professional and research interests focus on the application of advanced computing principles and
techniques to structural and facility engineering. His work has dealt with various aspects of
computational science and engineering, computer aided-design, regulatory and engineering
information management, and engineering enterprise integration.

Shensheng Zhang
Prof. Shensheng Zhang received his Ph.D degree from Stanford University in 1988. He is
currently Professor of the Department of Computer Science& Technology at Shanghai Jiaotong

 24

 25

University. His main research topics include distributed computing, agent, virtual reality and
software engineering. He is the Director of Computer Integration Technology Lab at Shanghai
Jiaotong University

Minglu Li
Prof. Minglu Li received his Ph.D degree from Shanghai Jiaotong University in 1996. He is
currently Professor of Department of Computer Science& Technology at Shanghai Jiaotong
University. His main research topics include grid computing, image processing, and e-commerce.
He is the Director of IBM-SJTU Grid Research Center at Shanghai Jiaotong University.

	Table 2 Reduction Rules for Event Expression

