
1 INTRODUCTION

1.1 Complex IT Systems and Infrastructure
Management

While huge advances has been made in simplifying
the development on distributed enterprise IT infra-
structures, managing these infrastructures still re-
mains a daunting task. The lack of management tools
in this space coupled with the increasing dependence
on the availability of these systems is causing sig-
nificant resources to be put into managing these in-
frastructures once developed and there is a pressing
need to address the space of IT infrastructure man-
agement and QoS.

 Complexity has been the number one issue for
managing a large enterprise IT infrastructure [6].
Across all industries, more than 40% of all invest-
ments in information technology are used just trying
to get technologies to work together. In other words,
almost half the investment goes for things that don’t
directly drive business value.

1.2 Managing IT and its Infrastructure Systems

One of the most urgent things for managing enter-
prise and manufactory IT is to know the IT system
itself. Based on this information, we can then discuss
the possibility of a more automatic management
paradigm. The one of the fundamental steps for
achieving the ambitious goal is to find the model
that can describe the IT system. Once we establish a
proper model, we can use it for

1. monitoring the real-time system,
2. better trouble shooting the system,
3. estimating the reliability of the system, and

Towards An Automatic IT Infrastructure Management Paradigm for
Manufactory and Enterprise

Jie Wang
Stanford University, CA, U.S.A.

ABSTRACT: Mission critical manufactory and en-
terprise IT infrastructure and on-line Internet ser-
vices require 24x7 availability and usually have an
agreed Service Level Agreements (SLA) around its
services offering. Currently, most enterprise and
manufactory IT datacenters experience severe prob-
lems managing the large N tier, networked envi-
ronments that these mission critical systems run on.
Most of these problems arise from the complexity
of the infrastructure (containing many moving
parts) itself rather than building the applications.
Maintainability of the IT system for long-term op-
erational efficiency is largely missing. On the other
hand, new IT technologies aiming at automating the
deployment and maintenance of IT infrastructure
are emerging. One promising technology is that of
autonomic computing where the IT infrastructure
and its components are self-configuring, self-
healing, self-optimizing and self-protecting and
thus free of the management complexity to a large
degree.

 This paper proposes a management model for en-
terprise IT infrastructure using self-managing para-
digm for enterprise IT system and then describes
the procedure for using the model as the basis for
providing realistic Quality of Service (QoS) and
SLA for IT infrastructure services. We also suggest
this autonomic infrastructure management model be
applied to the management of complex manufactur-
ing systems, including the management of the en-
hanced agile/lean/integration and configurable
manufacturing systems.

Key Words: autonomic computing enterprise IT IT
infrastructure topology based model SLA QoS IT
management paradigm agile manufacturing

4. calculating the QoS and SLA based on the
reliability.

 This paper focuses on the issues for establishing
the IT infrastructure model and for estimating the re-
liability of the infrastructure system. In addition, we
will discuss the methodology for building up rational
QoS and SLA based on the reliability of the underly-
ing systems and infrastructures.

2 SELF-MANAGEMENT PARADIGM FOR IT
INFRASTRUCTURE

2.1 Current Research Topics

The IBM autonomic computing manifesto presents
us a new hope, as well as a grand challenge, to de-
velop and deploy systems and software that can run
themselves, can adapt to varying circumstances and
can operate robustly under the damaged conditions
and degradation. In reality, IBM’s vision is an amal-
gam of analogies from biology. The primary analogy
is to self-regulating control systems that maintain
steady state. It also draws on ideas that relates to the
immune system. While research for these analogies
begin to draw more attentions [9], building software
that is aware of its own behavior, its surrounding
context, and the control and interaction among com-
ponents is extremely difficult.

 To address the challenges, current research on
autonomic computing has been focused on the fol-
lowing several major areas:

(1) Autonomic computing techniques and self-

healing systems architecture: using princi-
ples learned from biologic system, adaptive
system, etc for designing autonomic systems.
The rational for using biological system shows
as follow: since human efforts to design and
engineer self-healing systems prove limited
success, some researchers [8] argue that the
concept and process in the broader biological
cell programs the and strategies they use to
robustly accomplish complex tasks such as de-
velopment, healing and regeneration should be
investigated for building new model for auto-
nomic computing environment. The second re-
search topic in this area focuses on reflection
and self-awareness in self-healing systems and
the Meta model for integrating and controlling
the system components [2]. The third research
topic studies the over-all architecture and archi-

tecture requirement for a self-healing system
[7,10].

(2) Multiagent systems for automatic detection
and self-organization. Using multiagent tech-
nique and the related artificial intelligence (AI)
principles for building autonomic systems [1].
The focus there is to demonstrate that by build-
ing a general purpose multiagent system for
autonomic system environment, one is able to
better deal with software system management,
including event processing, performance moni-
toring using adaptive thresholds, system health
monitoring using hierarchies of fuzzy rules, and
time-series prediction for service-level agree-
ment management using neural networks. The
next step for the research is to add the support
for integrated method for encoding and reason-
ing about IT infrastructure using information
modeling and representation, knowledge infer-
ence and sharing.

(3) Recovery-Oriented Computing (ROC) [5,11]
and software rejuvenation [13]. Research in
those areas focus on the modeling of system
failures and the most feasible and economical
way for a recovery from the failures in a real
scenario IT infrastructure operational environ-
ment. While ROC concentrating on Mean Time
to Repair (MTTR) for a system recovery, soft-
ware rejuvenation approach focuses on a
Markov process model for inspection based
preventive maintenance in operational software
systems. These researches are helpful for un-
derstanding the fast recovery for a current It in-
frastructure, but don’t provide fundamental
methodology for dealing with the mechanisms
for architecting autonomic computing..

(4) New approaches for automatic IT infra-
structure management [12]. Improving the
current infrastructure software management
tools and bringing them to a level that the tools
can organize the IT infrastructure operation
around the business service need and IT users
can monitor the business processes, not the
complex of the IT system itself. While most re-
searches in this area are still focusing on the
theoretical and experimental aspects, the auto-
matic IT infrastructure management research
has set up a goal for business service purposes
and commercial development.

3 TOPOLOGY BASED MODELING FOR IT
INFRASTRUCTURE

The starting point for self-managing for IT system is
to know oneself and so determining the topology of
the IT applications first defines a natural progres-
sion. One cannot deploy an IT application without
having an idea of the different static parts of it and
how they are packaged. One cannot automatically
monitor an IT system not having the dynamic picture
of the application components and any root cause
isolation needs the relationships between compo-
nents in order to be accurate. To this purpose, we
therefore define topology as the combination of the
static description of the application's components
and the relationships that exist between these com-
ponents. All applications have 2 parts to them: (1)
Infrastructure, and (2) Application entities. And the
model for IT infrastructure needs to include entities
for the above two parts and their relations.

 More specifically, a model for infrastructure can
in turn be considered to consist of 3 tiers as follows:
(1) Network Tier: This consists of devices such as
switches, routers and load balancers along with fire-
walls that divide the network into multiple subnets
and “firewall zones”. (2) Systems Tier: The systems
tier provides the computing infrastructure for the
software and consists of the compute servers along
with the operating system. (3) Applications Infra-
structure Tier: This tier provides the software “con-
tainers” in which application components execute.
We can think of any number of container types to
house the corresponding type of application entity.
For example: a data base container will house appli-
cation schemas, stored procedures, a web container
will host content and dynamic components etc.

 Modeling application entities should take into ac-
count the following considerations. Most distributed
multi-tier applications also have a well-defined ar-
chitectural structure to them. They consist of thin
clients attaching to computing tiers that are sets of
cooperating processes accessing a set of DB proc-
esses at the back end. The more interesting parts of
the application are the "middle" tiers and the
backend since, by definition; thin clients don't have
the meat to them to bear management. There is yet
another angle to this – an application or a set of co-
operating applications offer “services” to its users. A
service can be considered to be a set of related trans-
actions. Examples can include web services such as
that of ordering on an eCommerce site.

4 ESTIMATING THE RELIABILITY OF IT
APPLICATIONS AND INFRASTRUCTURES

The reliability of an IT infrastructure can be esti-
mated based on the underlying infrastructure model.
As a first step, we should establish a reliability
model for the IT infrastructure. The model reflects
the following intuitive system feature:

• In general, the reliability of a system de-
creases as the complexity of the system in-
crease.

• If there is a single point of failure in the sys-
tem, the system cannot be more stable than
that component.

• Redundancy enhances reliability.
• However, redundant components may be

prone to fail at the same time because the
failure may have the same cause.

 The reliability estimation method includes the fol-
lowing four steps, which can be summarized as:

• Mapping the system as a graph.
• Determining the critical graph for outage.
• Assessing the reliability of basic modules.
• Computing the system reliability.

5 USING RELIABILITY MODEL FOR QOS AND
SLA

Corporate IT infrastructures have become key re-
positories of business information needed by em-
ployees and clients across the enterprise and through
the Internet. Companies also rely on the existence of
network-based IT services for their businesses, run-
ning mission critical applications for ERP, CRM,
eCommerce, and more. Quality of service (QoS) so-
lutions can help enterprises cope with the unprece-
dented demands on management of their IT infra-
structures.

 There are basically two approaches to deliver
QoS. One is to create business service requirements
that need a very high IT infrastructure reliability. For
this approach, we calculate the current reliability of
the infrastructure and if it cannot support the busi-
ness requirements, we need to make a predication,
which is based on simulations of reliability model
for planned infrastructures, for an acceptable IT in-
frastructure to fulfill the requirements. The second
approach is to dispense with the current IT infra-
structure, based on the calculation of the best capa-
bility and usage of the infrastructure using the reli-
ability model, to prioritize the business requirements
and maximize the business service offering. Both

approaches need the information of the reliability
model for the IT infrastructure. In summary, we are
able to estimate QoS based on the reliability model
for IT infrastructure.

 After we understand the available QoS for the in-
frastructure, we can establish SLA for the IT service.
SLA monitoring and enforcement become increas-
ingly important in an IT service environment. By us-
ing the predications obtained from a reliability
model and the estimated QoS, we can set up the
foundation for supporting SLA of the service offer-
ings. By using SLA, enterprise IT applications and
services may be subscribed dynamically and on-
demand based on the business requirements and pri-
orities.

 As a result, for economic and practical reasons,
we should use the model based IT management
paradigm to arrive at an automated process for both
the service itself as well as the SLA management
system that measures and monitors the QoS parame-
ters, checks the agreed-upon service levels, and re-
ports violations to the authorized parties involved in
the SLA management process.

6 SUMMARY

In summary, the field of self-managing systems is
only now coming of age and distributed systems
such as those built on middleware tend to be com-
plex and are not easy to manage. We present a to-
pology based model for modeling IT infrastructure.
We believe that a formal model for IT systems is the
first step of being able to build self managing sys-
tems.

 Based on the model, a better self-management of
the IT systems can be achieved. From IT service
view point, the model offers the basis for estimating
QoS and SLA for the service offerings. From eco-
nomical view point, the model provides a foundation
for mitigating the business losses due to infrastruc-
ture failures.

 We believe that the proposed infrastructure sys-
tems management paradigm can be applied to the
management of other complex manufacturing sys-
tems such as the enhanced agile/lean/integration and
configurable manufacturing systems. We hope that
through the collaboration with experts and profes-
sionals in industrial and manufacturing systems en-
gineering domains, we will be able to employ this
methodology to improve the quality, reliability, and
sustainability of complex manufacturing systems.

REFERENCES

[1] Bigus, J. P., et al., “A Toolkit for Building Multiagent
AutonomicSystems”,
http://www.research.ibm.com/journal/sj/413/bigus.html,
2002.

[2] Blair, G., et al., “Reflection, Self-Awareness and Self-

Healing in OpenORB”, ACM WOSS, Charleston, SC , 9-
14, Nov., 2002.

[3] Dabrowshi, C. and Mills, K., “Understanding Self-healing

in Service-Discovery Systems”, ACM WOSS, Charleston,
SC, USA., 15-20, Nov., 2002.

[4] Dashofy E. M.m et al., “Towards Architecture-based Self-

Healing Systems”, ACM WOSS, Charleston, SC, USA.,
21-26, Nov., 2002.

[5] Fox A. and Patterson, D., “When Does Fast Recovery

Trump High Reliability?”, Proceedings of the EASY 2002,
San Jose, CA, October 2002.

[6] Ganek, A., “A letter from Vice President, Autononomic

Computing, Alan Ganek”, http://www-
3.ibm.com/autonomic/letter.shtml, 2002.

[7] Garlan, D. and Schmerl, B., “Model-based Adaptation for

Self-Healing Systems”, ACM WOSS, Charleston, SC,
USA., 27-32, Nov., 2002.

[8] George S., et al., “A Biologically Inspired Programming

Model for Self-Healing Systems”, ACM WOSS, Charles-
ton, SC, USA., 102-104, Nov., 2002.

[9] IBM paper-1: “IBM autonomic computing challenges note:

academic focus article: challenges”,
http://www.research.ibm.com/autonomic/academic/challeng
es.html, 2002.

[10] Mikic-Rakic, M., et al., “Architectural Style Requirements

for Self-Healing Systems”, ACM WOSS, Charleston, SC,
USA., 49-54, Nov., 2002.

[11] Patterson, D., et al., “Recovery Oriented Computing

(ROC): Motivation, Definition, Techniques, and Case Stud-
ies”, In Proceedings of the UC Berkeley Computer Science
Technical Report UCB/CSD-02-1175, Berkeley, CA,
March 2002.

[12] Tivoli software, “Autonomic Computing: The Value of

Self Managing Systems”,
http://www.tivoli.com/news/features/oct2002/autonomic.ht
ml, 2002.

[13] Vaidyanathan, K., Selvamuthu, D., and Trivedi, K. S.,

“Analysis of Inspection-Based Preventive Maintenance in
Operational Software Systems”, Intl. Symposium on Reli-
able Distributed Systems, SRDS 2002, Osaka, Japan, Octo-
ber 2002.

