

A QUESTION ANSWERING SYSTEM FOR PROJECT
MANAGEMENT APPLICATIONS

Jinxing Cheng1, Bimal Kumar2 and Kincho H. Law3

ABSTRACT

The usage of computer applications in the construction industry has steadily increased over
the years, as has the complexity of many software applications. It is difficult for project
personnel to become familiar with these ever-increasingly complex tools. Furthermore, the
causes of many practical problems, such as project delays or escalating costs, are often not
obvious from the outputs of these tools. A question answering system can potentially provide
a means to directly extracting answers from these computer outputs. This paper examines
various issues involved in building such a question answering system. In particular, emerging
industry standards, such as ifcXML, are adopted as the knowledge representation format, and
thus alleviate the manual effort to build a knowledge base. We explore the mechanisms of
utilizing information in the knowledge base for question understanding. A prototype question
answering system has been built and tested to illustrate the potential usefulness of such a
system for project management applications.

KEYWORDS

Question Answering, XQuery, ifcXML, Knowledge Representation

1 PhD Student, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305-

4020, email: cjx@stanford.edu
2 Professor, School of the Built and Natural Environment, Glasgow Caledonian University, UK, email:

b.kumar@gcal.ac.uk
3 Professor, Civil and Environmental Engineering Department, Stanford University, Stanford, CA 94305-

4020, email: law@cive.stanford.edu

1. INTRODUCTION

Natural language processing technologies have been used in many applications. Examples
include database access (Woods 1973, Pereira 1983), machine translation (Vasconcellos and
Leon 1985), data extraction from text (Jacobs and Rau 1990), information retrieval (Baeza-
Yates and Ribeiro-Neto 1999), and text categorization/summarization (Hovy and Lin 1999).
In the case of construction projects, one can think of applications for almost all of these areas.

In this paper, we focus on the use of NLP technologies to help answer questions based on
semi-structured data generated from project management tools. This application is closely
related to research in data extraction from text and database access. A combination of
information retrieval and NLP technologies can provide a powerful tool in all sorts of ways.
For example, a project manager may use various software tools for scheduling, cost
estimating, and reporting purposes. However, to discover the reasons why certain activities
delay a project or escalate the project costs, human expertise and efforts are still needed to
manually examine the outputs from these tools. Using NLP technologies it may be possible to
convert natural questions into query expressions, so that such information can be obtained
from the software outputs. Data from various tools can be extracted, converted into structured
or semi-structured formats, and even stored into a database. The query results on semi-
structured data will be used to generate answers (again using NLP) which may not have been
obvious from the initial outputs of the software programs.

The main objective of this work is to develop a framework for an NLP based system for
extracting useful information from semi-structured pieces of text. This framework is
implemented as a prototype system containing knowledge and information from the domain
of construction project management. Marked up using domain specific ontology standards,
such as ifcXML (Liebich 2001), the semi-structured texts consist of the outputs from various
computer applications used in a construction project. It is hoped that the prototype system
will be able to extract useful information from these semi-structured texts, which would
otherwise not be obvious or possible to obtain directly from these applications. The
framework developed in this system is being implemented as a QA (question answering)
system that can assist project personnel in making inferences about the project, based on
information obtained from various project management tools.

There have been many efforts in developing question answering systems. For instance,
efforts have been made to develop natural language interfaces to databases. Androutsopoulos
et al. (1995) discussed various methods and solutions available in translating natural
questions to database queries. Although some solutions seem promising in a narrowly defined
domain, it is difficult to apply these technologies to construction projects, where database
interfaces are not typically supported by the application software. As another example,
Callison-Burch and Shilane (2000) developed a question answering system to query

information about a family tree. This system used the Knowledge Interchange Format (KIF)
(Genesereth and Fikes 1992) files as the knowledge representation system, and used a Java-
based Theorem Prover (JTP) (Frank 1999) to infer answers. To develop such a system, a
knowledge base needs to be created manually, which makes it difficult to generalize the
system to other domain areas. Even within the same domain, this system may not scale well
over a number of individual projects, since a knowledge base needs to be created manually
for each project. Zajac (2001) used a more general ontology-based semantic approach for
question answering. Both the questions and source texts are parsed into semantic expressions.
However, this approach assumes that the source texts are expressed in natural sentences, from
which semantic information can be extracted; thus it cannot be directly applied into the
project management domain, where information is stored in various internal formats, usually
either in plain text files or in semi-structured data files. Our work aims to develop a question
answering system, which is scalable over different projects and considers the characteristics
of construction project information. Specifically, we plan to take advantage of current
development of query languages for XML data and the industry-based ontology standards.

The main contribution of this work is in the area of using non-document based retrieval of
information by combining information from multiple sources, which is mainly accomplished
by utilizing domain-specific ontologies in ifcXML. The fact that we use NLP techniques to
convert questions into formal pattern matching language means that our work also has
important implications for User Interfaces in engineering domain software. Most of the effort
in NLP so far has been in the area of interacting with documents in natural sentences; this
work, however, takes into account domain-specific issues, which makes it much more
relevant and effective (Diekema et al. 2003). The lessons and experiences gained from work
on domain-independent fact based questions do not necessarily ensure an effective QA
system in specialized domains (Diekema et al. 2000) such as project management.

This paper is organized as follows. Section 2 briefly reviews related technologies, such as
IFC/ifcXML, XML query languages and engines, POS tagging and chart parsing tools, and
WordNet, which are employed to develop the question answering system. Section 3 discusses
the issues of knowledge representation and organization. Section 4 describes the process of
parsing and understanding questions; we discuss in detail how to utilize the ifcXML schema
and existing ifcXML files in the knowledge base to help understand questions. In Sections 5
and 6, we briefly discuss how to search for answers in the knowledge base and how to
generate answers, respectively. Section 7 describes the prototype framework and system
implementation. An example demonstration of the system is presented in Section 8. Finally,
Section 9 summarizes the status of the current development and discusses future work.

2. RELATED TECHNOLOGIES

Many recent and current developments, such as ontology standards, query languages,
language parsers and information retrieval, can be employed to build a question answering
system. In this work, various technologies are used, including XQuery (W3C 2001), GNU
Kawa’s Qexo (Brothner 1998), a POS tagging tool (Schröder 2002), a chart parsing tool
(Klein and Manning 2001a) and WordNet (Fellbaum and Miller 1998). The following briefly
describe these related technologies.

2.1. IFC AND IFCXML

IFC (Industry Foundation Classes) (IAI 1997) is a data representation standard for defining
product data for architectural and construction applications. Recently, IFC has also been
extended to support data exchange for cost estimation and project management (Froese et al.
1999). In brief, based on the EXPRESS language, IFC is designed to exchange data among
Architecture, Engineering, Construction and Facilities Management (AEC/FM) applications.

XML (Extensible Markup Language) is a meta-markup language that consists of a set of
rules for creating semantic tags used to describe data (Young 2001). XML provides a
mechanism to describe an object as a hierarchy of elements. Due to the popularity of XML,
many efforts have been invested in proposing XML schemas as ontology standards in the
construction and manufacturing industry as well as for business applications. An effort has
been made to translate IFC/EXPRESS source files into XML format, called ifcXML (Liebich
2001). The translation takes place in two steps: First, the IFC/EXPRESS source is translated
into the raw ifcXML schema, which enables the exchange of IFC data in XML formats. The
raw schema is further optimized into more native XML schema. In short, ifcXML not only
deals with geometry and product data, but also supports life-cycle project information,
including architecture, HVAC, construction and facility management (Liebich 2001).

2.2. XML QUERY LANGUAGE

XML query languages are designed to query information from XML files. Many XML query
languages are available, such as XQL (Robie 1999), XML-QL (W3C 1998), LOREL
(Abiteboul et al. 1997), Xpath (W3C 1999), and XQuery (W3C 2001). The query capability
of XQL is limited at its current state, while the research on LOREL is no longer active. In
contrast, XQuery, based on XML-QL and Xpath, is a full-featured query language and is
emerging as a standard. Our initial investigation shows that XQuery is an appropriate
language for our prototype implementation of a question answering system.

XQuery (W3C 2001) is an XML query language jointly defined by the XML Query
Working Group and the XSL Working Group and is designed to be applicable to all types of
XML data sources. XQuery uses a syntax similar to SQL. For example, the following XQuery

sentence can be utilized to query the start date of the activity ELPV (Eng Layout & Physical
Ver_n):

for $ws in document("tuto.xml")//WorkSchedule
where $ws/@identifier = "ELPV"
return $ws/@startTime

2.3. XML QUERY ENGINE

Although XQuery is still in its W3C Working Draft version, many vendors have implemented
XQuery, such as Xquench (SourceForge 2002), XQEngine (FatDog 2002), Galax (Siméon
2001), and GNU Kawa Qexo (Brothner 1998). In this work, we employ the GNU Kawa Qexo
as the query engine because of its high performance and easy usage, as well as its open
source.

Qexo is an open source project and a partial implementation of the XML Query language
from GNU Kawa (Brothner 1998). There are two ways to use Qexo. Qexo can be used in an
interactive environment, in which users can input query sentences at the command line. In
addition, Qexo can also compile XQuery sentences into Java byte codes, which significantly
improves the query efficiency. In this work, the latter approach is adopted; XQuery
expressions are compiled into Java byte codes to automate the process of answer searching.

2.4. POS TAGGING AND CHART PARSING TOOLS

Part-Of-Speech (POS) tagging is designed to label each word in a sentence with its
appropriate part of speech. For instance, the word “finish” in the sentence, “When did the
project finish?” should be labeled as a verb. There are many POS tagging tools available. This
work employs ICOPOST (Schröder 2002), which is a set of free POS taggers written in the C
language.

A grammar parser is used to recognize the structure and organization of words in a
sentence. Among many available grammar parsers is a context-free grammar parser, which
assumes that phrases with the same part of speech can be interchangeable regardless of the
specific context. In this research, we have used the context-free grammar chart parser
developed at Stanford University (Klein and Manning 2001a). The chart parser takes a
grammar file and a lexicon file. All possible parses, together with the best parses based on the
probability analysis, will be output as the parsing results.

2.5. WORDNET

Developed by the Cognitive Science Laboratory at Princeton University (Fellbaum and Miller
1998), WordNet is a lexical reference system, in which words are organized into synonym
sets. WordNet can be used online; it can also be installed and used on different platforms,
including Microsoft Windows and Unix environments. WordNet can help a question

answering system to identify synonyms. For example, verbs “start” and “begin” will be
recognized as synonyms by WordNet. The synonym information can be used to help match a
question with an appropriate rule, as we will discuss in Section 4.4.

3. KNOWLEDGE REPRESENTATION AND ORGANIZATION

3.1. KNOWLEDGE REPRESENTATION USING IFCXML

Knowledge representation is crucial in building a question answering system. Ideally, the
knowledge base should be automatically built, based on the existing information in the
domain. In the project management domain, project information in various applications is
usually stored in different internal formats. In previous work, wrappers have been built to
retrieve project information from various sources and convert the information into standard
formats (Cheng and Law 2002, Cheng et al. 2002). Many ontology standards exist in the
A/E/C domain, such as STEP and IFC/ifcXML. These ontology standards provide standard
terms and, often, relationships among the terms. In this research, we use ifcXML as the
knowledge representation format. Project information from various applications can be
extracted and translated into ifcXML files.

In the prototype application, we focus on the project management domain; thus, only a
small portion of the ifcXML schema is used. Specifically, in the ifcXML schema, the
WorkSchedule element holds the overall scheduling information, such as the start time and
duration, while the ScheduleTimeControl element holds further descriptions of scheduling
information, such as actualStart, earlyStart, lateStart and scheduleStart. The RelSequence
element, on the other hand, is used to express the dependency relationships among activities.

3.2. ADVANTAGES AND LIMITATIONS OF IFCXML AS KNOWLEDGE REPRESENTATION

FORMAT

IfcXML is emerging as an industry standard and has many advantages for being adopted as a
knowledge representation format. First, ifcXML provides many of the terms and relationships
commonly used in project management applications (Liebich 2001). In addition, ifcXML
provides XML-based schemas, which are easy for querying and transferring on the Internet.
Second, as discussed earlier, there are many existing tools that can be used to parse and query
XML data. Finally, ifcXML has the power to model data from various project management
applications, which include not only product data but also process and activity information.

The ifcXML schema is translated from the IFC/EXPRESS source (Liebich 2001). IFC
was initially designed for exchanging graphic data among CAD applications. The initial
intent clearly was capturing information related to product models. However, many efforts
have recently been invested in extending IFC to model project information throughout the

entire building life-cycle. In particular, IFC 3.0 will significantly extend the coverage of the
models in construction project management (IAI 2002).

One concern in using ifcXML is that the translation of IFC to ifcXML is not a one-to-one
mapping. Information can be lost during the translation process. The information loss,
however, is insignificant and does not hinder the objective for research prototyping.
Furthermore, the system can easily accommodate new terms and relationships as they become
available in the ifcXML schema.

3.3. KNOWLEDGE ORGANIZATION

As the size of a knowledge base grows, it is necessary to partition the knowledge base into
smaller chunks. These chucks are called knowledge modules, each of which addresses a sub-
problem of the overall problem domain (Dym and Levitt 1991). Generally, the main issues
that need to be considered when organizing a knowledge base are:

• What needs to be represented in the knowledge base? This issue is related to the
content of the knowledge base.

• How should we represent the content that needs to be represented? That is, an
approach must be selected to organize the knowledge, and formalisms (like rules,
frames, semantic nets, objects or a combination of these etc.) should be used.

For project management applications, the knowledge base can be organized as a set of
knowledge modules, each representing a sub-domain, such as schedule, cost, organizational
model, etc. Meta-knowledge (i.e. knowledge about knowledge) is then defined to guide the
processing of the facts encoded in the knowledge base; in other words, the meta-knowledge
can help a question answering engine search for relevant information. In this work, the meta-
knowledge is encoded as sets of patterns, which serve as the indices to different knowledge
modules. When a question is posed, these patterns are used to identify the relevant
knowledge modules from which to retrieve the answer. Figure 1 shows a schematic
representation of the knowledge base. A project contains information from several sub-
disciplines, each of which usually comes from a corresponding project management
application. Moreover, within a sub-discipline, information about different stages of the
project can be stored in the knowledge base.

Knowledge Base

Schedule Cost Resource

09/01/2001

06/01/2001

03/01/2001

......

Figure 1: A Context Tree For Knowledge Organization

4. PARSING AND UNDERSTANDING NATURAL QUESTIONS

Understanding natural questions is rather difficult for computer applications, partly due to the
fact that there can be too many variations of natural language questions. Even if we limit our
research to a small predefined domain, for instance, the project scheduling domain, there are
still significant variations of possible questions, such as:

1. When did the PouringConcrete activity start?
2. Why should the PouringConcrete activity start before ErectingBeams?
3. Which subcontractor submitted scheduling changes yesterday?

Although all these questions are (1) syntactically correct; (2) semantically sound; and (3)
within the project scheduling domain, not all of these questions can be answered from the
knowledge base. For example, we may not have information for questions 2 and 3 in our
ifcXML files. For a practical question answering system, questions from users can be either
syntactically incorrect, semantically unsound, or both.

4.1. ANALYZING IFCXML TREES

The ifcXML schema can be utilized to facilitate the understanding of questions. Using the
information in the schema, we can predict what kind of questions we can answer. We can
safely ignore the questions with no answers in the knowledge base; in other words, we do not
need to understand the exact meanings of many questions that we cannot answer from the
existing knowledge. A preliminary analysis of such questions may be enough to discard them.
For example, for the question “How many governors of California have been democrats
during the past 50 years?” after a preliminary analysis, we know that no rule in the
knowledge base matches this question; thus, there is no need to further analyze the exact
meaning of the question.

To utilize the ifcXML schema, the first step is to analyze the tree structures of ifcXML
files. We have developed a Java program, which can analyze all the elements, attributes, and

relationships in the ifcXML files. Based on the analysis, we can predict possible questions
that we can answer and express the questions as rules. Each rule contains one relation word
and several parameters, such as the rules (duration activity) and (finish activity). The rule
(duration activity) means that an activity lasts a specific number of days, while the rule (finish
activity) specifies the finish date of the activity. Usually, the first word in the rule specifies
the relation, while the remaining words represent the parameters of the rule. Figure 2 shows
part of the tree structure of the ifcXML schema about project scheduling. The leaf nodes are
attributes, while all other nodes are elements.

Root
(ifcXML-2x_Final)

Project WorkSchedule
Group

Task
Group

RelSequence
Group

WorkSchedule Task RelSequence

id

startDate

description relatingProcess

...id

duration ...
Figure 2: Tree Structure of IfcXML Files

According to the tree structure, there are several types of questions that the system should be
able to answer, for example:

• Questions inquiring the attribute value of an element
• Questions asking which element has certain attribute value
• Questions involving several elements in the ifcXML tree structures

The first two types of questions are relatively straightforward. Using a leaf node (attribute)
and its parent node (element), we can produce rules for possible questions of the first type.
For instance, after analyzing tree structures of the ifcXML schema, we can automatically
generate rules, such as (startDate Project) and (duration WorkShedule). The rule (startDate
Project) means that we can answer questions such as “What is the start date of the project?”
However, this automatic analysis is not perfect. For example, in ifcXML, we use the element
WorkSchedule to represent the schedule information for an activity; in practice, however,
people usually ask about the duration of an activity instead of a WorkSchedule. That is, we
should use (duration activity) instead of (duration WorkSchedule).

The third type of questions, on the other hand, is quite complex. We first need to
determine the relationships among different elements. Based on the relationships, we then
need to predict possible questions that we can answer and generate the corresponding rules
for the questions. Again, these automatically generated rules need to be examined manually
by experts. One sample rule is (description (hasDuration number)). For this rule, the possible
question is to inquire the description of an activity with a specific duration. The (hasDuration
number) will return an activity name, which will then be used to obtain the activity
description. The manual work involved in generating rules is worth the effort. Since ifcXML
files for different projects have the same XML tree structure, we only need to manually
examine these rules once. These rules can then be used for a variety of construction projects.

4.2. TAGGING QUESTIONS

The Part-Of-Speech (POS) tagger is used to provide POS information for individual words.
For example, using the POS tagger, we can find out whether a word is a noun or verb. The
POS information can be used to help understand the meanings of words. In particular, it can
help us identify whether or not a word is a potential relation word or a parameter in a rule.

Questions need to be processed before we can tag them. In particular, we need to separate
the words and punctuation marks in the questions. The following examples show some
sample tagging results:

 When WRB will MD activity NN ID100 NN start NN ? .

 How WRB many JJ successors NNS does VBZ activity NN ELPV NNP have VBP ?

 When WRB will MD ELPV NNP end VB ? .

Here NN (NN, NNS or NNP) represents a noun, VB (VB, VBZ or VBP) represents a verb,
WRB represents a wh-adverb, JJ represents an adjective, and MD represents a modal word.
We can see that the POS tagger does not always provide the correct POS information. For
example, it tags the word “start” in the first sentence as a noun, which is actually a verb.
Nonetheless, the POS information provides a good basis for understanding questions.

4.3. PARSING QUESTIONS

We use a context-free grammar chart parser for parsing questions. To use the chart parser, we
first need to create both a grammar file and a lexicon file. While it is possible to write a
grammar file for questions in the project management domain, it is a tedious, if not an
impossible task, to create a lexicon file for all possible questions, since the lexicon file must
contain all the words which can appear in the questions.

We can extract a grammar file from the Penn Treebank, a human-annotated corpus
consisting of over 4.5 million words of American English (Marcus et al. 1993). However, the
extracted grammar file is huge, while most of the grammar rules are not useful for questions.

The size of grammar rules will significantly affect the parsing process. On the other hand, a
much smaller grammar file is possible for questions within a small domain. As a result, a
grammar file for questions in the project management domain is developed. Figure 3 shows
part of the grammar file, which is largely based on a heuristic observation. As an example, the
grammar rule “S -> WRB MD NP VP ? %%0.1” indicates that a question sentence can be
rewritten into a wh-adverb, a modal verb, a noun phrase, and a verb phrase. The grammar rule
“NP -> NNS %%0.1” indicates that a noun phrase can be rewritten as a singular noun, in
which the number 0.1 represents the probability that a noun phrase will be rewritten as a
singular noun. The probability values are not used by the context-free chart parser in this
work; rather, these values are provided to conform to the required format, since other
probabilistic context-free grammar parsers need these probability values.

S -> WRB MD NP VP ? %%0.1
S -> WP MD NP VP ? %%0.1
NP -> NN %%0.1
NP -> NNS %%0.1
NP -> NNP %%0.1
VP -> VB %%0.1
VP -> VBD %%0.1

 ……

Figure 3: Grammar File for the System

For the lexicon file, we can also extract lexicons from the Penn Treebank. Developed by the
Stanford Natural Language Process Group, the standalone program ExtractPTBRules (Klein
and Manning 2001b) can be used to extract lexicon files from a collection of the Penn
Treebank sentences. However, even if we extract lexicons from a large collection of
documents, many words in the questions may still not be included in the lexicon file; as a
result, the chart parser will have difficulties in parsing the question.

A simple but effective approach is to utilize the POS tagging results. We can dynamically
generate a lexicon file based on the tagging results. Obviously, all words in the question will
appear in the lexicon file. Assuming that the question is syntactically correct, the chart parser
will always find a parse for a question. Figure 4 illustrates this approach.

Natural Question

Lexicon File

Grammar File

Parse
Information

POS
Information

Trigram
Tagger

Chart
Parser

 Figure 4: Tagging and Parsing Questions

Once the grammar and lexicon files are ready, we can use the chart parser to parse the
questions. All possible parses, together with their corresponding probability values, will be
generated. In addition, the best parse is also available. Figure 5 illustrates the process of
generating a lexicon file for the question, while Figure 6 shows the parsing results of an
example question.

Question:
When did ELPV begin ?

POS:
When WRB did VBD ELPV NNP begin VB ? .

Lexicon File:
WRB -> When %%0.1
VBD -> did %%0.1
NN -> ELPV %%0.1
VB -> begin %%0.1
? -> ? %%0.1

Figure 5: Preparing A Lexicon File

WRB VBD NP

NNP

VP

VBWhen did

ELPV begin

?

?

S

Figure 6: Parse Tree of A Sample Question

4.4. ANALYZING CONCEPTS AND MATCHING RULES

In this project, ifcXML is used as the knowledge representation format. Useful information
can be obtained from ifcXML files before we actually start processing questions. For
example, we can parse ifcXML files and store all activity names on a list. Later when the
system encounters a question, it can search the list; if a word is found on the activity list, it is
a strong indication that this word represents an activity name. Thus, this approach
significantly helps the system understand questions.

Earlier, we discussed possible questions that we can answer from the knowledge base, and
how to express them in rules. We also discussed how to obtain the POS and parsing
information for the questions. Based on the information above, we can analyze the concepts
in the questions and match the questions with corresponding rules. Usually, the most
important words for understanding questions are the question words, the nouns and the verbs.

• Question words, such as when, what, how and does, determine the type of the
question; in addition, these words also imply what kind of answers users expect.

• Nouns usually correspond to object names, such as activity names, in ifcXML files.
Sometimes, nouns can also be used to express relations in the rules. For example, in
the following question:

What is the start date of Sim_Gates?

The noun phrase “start date” corresponds to the relation “start” in the rule (start
activity).

• Verbs usually imply the rule to which a question should be categorized. For instance,
in the following sentence:
When does the task Sim_Gates end?

The verb “end” is a strong indication that this sentence should be categorized into the
rule (end activity), while the word “Sim_Gates” corresponds to the activity parameter
in the rule.

In addition, WordNet is used to categorize synonyms into the correct rules. For example, to
ask the start date of an activity, we may use either start or begin. Using WordNet, we can
categorize both situations into the rule (start activity).

Rule matching is based on probability scores. Based on the concept analysis, we can
match a question with a set of possible rules. The probability scores will be calculated for
each question and rule pair. The rule with the maximum probability score will be chosen as
the correct rule to generate XQuery expressions if the maximum score exceeds the threshold
value set in the system. Otherwise, no matching will be assumed by the system, which will
lead to an answer like “No answer can be found from the current knowledge base.” In
particular, the following information is used in calculating the probability scores:

• Relation words, which include the meaning and number of relation words. For
example, the relation word “begin” in a question will match the word “start” in
the rule (start activity); thus, this rule will likely have a high probability score.

• Object names, which include the type and number of object names. The number of
tasks and actors in a question is important in matching the question with possible
rules.

5. SEARCHING FOR ANSWERS IN THE KNOWLEDGE BASE

To search for answers in the knowledge base, we need to translate questions into XQuery
expressions, which can then be directly executed on the knowledge base. Translating
questions into XQuery expressions is not a trivial task. Therefore, a Java program has been
developed to analyze the tree structure of ifcXML files and generate rules for possible
questions; meanwhile, the Java program also produces XQuery expressions for each rule. For
example, the rule (duration activity) will be translated into the following XQuery expressions:

for $ws in document("$xmlfile1")//WorkSchedule
where $ws/@identifier = "$1"
return $ws/@duration

There are two parameters in the XQuery expressions. The first parameter $xmlfile1 appears in
most rules; it represents one of the ifcXML files in the current project. The second parameter
$1 corresponds to the activity name in the rule.

When a question is parsed, it is categorized into a rule, based on the syntactic and
semantic information of the question. As an example, the question “What is the duration of
the task Sim_Gates?” will be categorized into the rule (duration activity), where the value of

the parameter activity is Sim_Gates. Suppose the corresponding ifcXML file in the current
project is p3_tuto.xml, the following XQuery expressions will be generated for this question:

for $ws in document("p3_tuto.xml")//WorkSchedule
where $ws/@identifier = "Sim_Gates"
return $ws/@duration

The XQuery expressions are then compiled into Java byte codes by the Qexo query engine.
Finally, the generated codes are used to search the knowledge base for the answer.

6. ANSWER GENERATION

The answer generator first needs to parse the query results from the query engine. In addition,
it needs to consider different types of questions. For instance, for a wh-question, a question
with specific information is usually expected. For a how many question, on the other hand, we
should give a specific number. In contrast, for a yes or no question, a yes or no answer is
usually sufficient. In most cases, for a wh-question, if the XQuery engine cannot find any
result, it is adequate to provide an answer such as “Sorry, we cannot find the answer in the
knowledge base.” In the current prototype, we provide only short answers to most questions,
for example:

Ask QACPM> when will the task STF terminate?
……
QACPM Ans> 1/4/99

Alternatively, we can provide an answer in full sentences, such as “STF will terminate on
1/4/99.” This approach, however, increases the implementation complexity without providing
additional information. Rather, using a short answer, such as “1/4/99,” is sufficient in most
cases.

7. SYSTEM FRAMEWORK AND IMPLEMENTATION

A question answering system usually includes the following components: knowledge
representation, question understanding, answer searching, and answer generation. Figure 7
illustrates the overall framework of our system. As shown in Figure 7, ifcXML is used to
represent knowledge, while the XML query engine is employed for information query. In the
first and most critical step, the system parses and understands the natural language questions.
Natural language questions are then converted into XQuery expressions, which are executed
by the XQuery engine. The query results are finally utilized by the generator to produce
answers.

Natural
Questions

XML Query Engine

Answers

Knowledge Base
(ifcXML files)

Primavera P3

Wrapper Wrapper Wrapper

NLP
Generator

NLP
Parser

Translate
to XQuery

Invoking Engine

MS Project Vite SimVision
Figure 7: System Framework

Information in the knowledge base comes from various sources, such as Primavera Project
PlannerTM(P3), Microsoft ProjectTM, and Vite SimVisionTM. In addition to the wrappers to
communicate with various software applications, the invoking engine is also needed to call
the various wrappers.

The invoking mechanism is illustrated in Figure 8. Java socket communication is used as
the protocol between ifcXML wrappers and the invoking engine. A communication agent,
which includes an event listener, an event dispatcher, and a data mapper, is implemented for
each ifcXML wrapper. The communication server is employed together with the invoking
engine.

ifcXML Wraper

Invoking Engine

Data Flow

Control Flow

Communication Server

Event
Listener

Data
Mapper

Event
Dispatcher

Event
Listener

Event
Dispatcher

Data
Mapper

Communication Agent

Java Socket Communication

Computer Application
(P3, MS Project or Vite)

Figure 8: Invoking Framework

The messages in the system include control messages and data messages. Control messages
are typically small in size, such as invoking and termination requests. However, data
messages, such as the project scheduling information and organization information, are
usually bigger in size. The event listener is responsible for receiving control messages, while
the event dispatcher is used to send out control messages. The data mapper, in contrast, is
responsible for sending and receiving data messages.

The detailed question answering process is illustrated in Figure 9. The rule generation
process involves manual examination; however, this examination can be done by the experts
in advance. At runtime, the system will first tag and parse the question using existing NLP
tools. The result is the basis for further analysis. In particular, the object names in the ifcXML
files can be used to help understand questions. In addition, the rules generated from XML
trees and manual examination can also be used to help understand questions. Based on the
analysis, we can match the question against potential rules. If no match is found, there is
probably no answer for the question based on the existing knowledge. Otherwise, the system
will do further analysis and generate answers.

ifcXML
schema ifcXML files

Analyze Tree to
Predict Possible
Question Types

Extract Object
Names (task,

actor, etc.)Manual
Examination

Rules

Natural Questions

Question
Understanding

Match Rule ?

Genertaing Xquery
Expression

Answer Generation

No Answer

NLP Processing
(Tagging, Parsing)

Synonym Analysis
(Wordnet, etc.)

Invoke XQuery
Engine

 Yes No

Figure 9: Detailed Process of the Question Answering System

The prototype system is developed in Java. Various Java classes have been developed for
different tasks, such as tagging questions and checking synonyms. The external programs,
including XQuery engine and WordNet, are invoked via Java system calls, and results from
these external programs are stored either in temporary files or Java InputStreams.

8. SAMPLE DEMONSTRATION

8.1 EXAMPLE PROJECT USED IN THE RESEARCH

In this project, we test our prototype system on a chip design project, which is a tutorial
example in Vite SimVisionTM (Vite 2000). The project involves both the design and the
foundry staff to accelerate the design and construction of a new chip. The goal of the project
is to design and fabricate a chip set for a new Personal Digital Assistant (PDA) product
within a tight schedule. There are 12 activities in this project. Among the 12 activities are
three milestone activities: “Start Project,” “Ship Tapes to Foundry” and “Fab, Test and
Deliver.” The activity “Design_Coordination” maintains the overall control of the project.

Figure 10 shows the Gantt Chart of the Project in Primavera P3, where activities on the
critical path are shown in dark color (red). Detailed scheduling information, such as the start
dates, durations and finish dates of individual activities, is available in Primavera P3. In
addition, dependency relationships among these activities are also included. A wrapper is

developed to retrieve information from Primavera Project PlannerTM (P3) and convert it into
an ifcXML file (Cheng and Law 2002, Cheng et al. 2002).

Figure 10. The Gant Chart of the Chip Design Project in Primavera P3

Figure 11 show the resulting ifcXML file from Primavera Project PlannerTM. In this example,
the scheduling information is expressed using WorkSchedule, Task and RelSequence
elements. In particular, a Task element in ifcXML maps to an activity in a project schedule.
The WorkSchedule element is associated with the corresponding activity by using the same
identifier as its identifier attribute. Similarly, the RelSequence element, which depicts the
dependency relationships among activities, is associated with the predecessor and successor
activities through its ‘relatedProcess’ and ‘relatingProcess’ attributes.

<WorkScheduleGroup>

<WorkSchedule identifier="ID100" duration="18.0" freeFloat="0.0"
totalFloat="0.0" startTime="11/17/1998" finishTime="12/10/1998"/>

</WorkScheduleGroup>
<TasksGroup>

<Task taskid="ID100" description="Assemble and verify_RTL"/>
<Task taskid="ID700" description="FullChipSynth"/>

</TasksGroup>
<RelSequenceGroup>

<RelSequence id="depend0" relatingProcess="ID100"
relatedProcess="ID170" timeLag="0.0"
sequenceType="after-start"/>

</RelSequenceGroup>

Figure 11: Generated Sample ifcXML File from Primavera P3

Figure 12 shows the chip design project in Vite SimVisionTM. Actors and supervision
relationships are shown in the top half of the display, while activities and dependency
relationships are shown in the bottom half. Various aspects of the project, such as
supervision, task assignment, communication and rework information, are represented using
links in different colors in Vite SimVisionTM. Again, a wrapper is used to retrieve the

organization information from Vite SimVisionTM and convert it into the corresponding
ifcXML file. To represent the information in Vite SimVisionTM, extensions are introduced in
ifcXML. For example, we introduce the Rework element, which is not included in the current
ifcXML schema, to represent the rework information among activities. The XML structure,
<Rework id="REW100" relatingTask="WVSB" relatedTask="PCAFP" />, indicates that the
failure of the task WVSB (“Write-Verify-Synth_B1RTL”) will lead to the rework of the task
PCAFP (“Partition Chip and Floor Planning”).

Figure 12: The Chip Design Project in Vite SimVision

8.2 WORKING SCENARIO

When invoked, the system first initializes and displays the welcome messages. First, users can
choose to load any project in the database. The following command loads the TUTO project
into the runtime environment:

Ask QACPM> load tuto
Currently, the project tuto has been loaded
There are 2 ifcxml files about the project :p3_tuto.xml, vite_tuto.xml

The ifcXML files will then be analyzed by the system, i.e., to extract object names. Once the
program has finished the initialization process, it is ready to answer questions. The program
first analyzes questions and converts them into XQuery expressions. The XQuery engine then
executes the XQuery expressions based on the current knowledge base. The XQuery results
are then parsed and presented to the user.

The system can answer various questions about project schedule, such as the start date,
end date, duration, successors, and predecessors of an activity. The system will ignore the
tense of the question. In addition, WordNet is used to identify synonyms. For example, in the
following question, the system will give the same answer if we use the word “start” instead of
“begin.”

Ask QACPM> when did Design_Coordination start?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule
where $ws/@identifier = "DC"
return $ws/@startTime
XQuery Results:
 startTime="10/19/1998"
QACPM Ans> 10/19/1998
Ask QACPM> what is the duration of the task Generate Test Vectors?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule
where $ws/@identifier = "GTV"
return $ws/@duration
XQuery Results:
 duration="2.0"
QACPM Ans> 2.0
Ask QACPM> which activity succeeds Sim_Gates?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//RelSequence
where $ws/@relatingProcess = "SG"
return $ws/@relatedProcess
XQuery Results:
 relatedProcess="GTV"
QACPM Ans> Generate Test Vectors

It is also possible to ask other questions about the project, such as task assignment,
supervision, cost, task uncertainty, and other information. Example usages are shown below:

Ask QACPM> who is responsible for Develop Specification?
Convert to XQuery expressions ...
for $ts in document("vite_tuto.xml")//RelAssignsTasks
where $ts/@relatingTask = "DS"
return $ts/@relatedActor
XQuery Results:
 relatedActor="HPM"
QACPM Ans> HW Project Manager
Ask QACPM> what is the hourly cost of Foundry layout engineer?
Convert to XQuery expressions ...
for $ws in document("vite_tuto.xml")//Actor
where $ws/@id = "FLE"
return $ws/@salary

XQuery Results:
 salary="50.00"
QACPM Ans> 50.00
Ask QACPM> which task does sim_Gates need to communicate with?
Convert to XQuery expressions ...
for $cs in document("vite_tuto.xml")//Communication
where $cs/@relatedTask = "sim_Gates"
return $cs/@relatingTask
XQuery Results:
 relatingTask="DC"
QACPM Ans> Design_Coordination

In addition, the system can answer more complex questions by combining the information
from Primavera Project PlannerTM and Vite SimVisionTM. For example, to answer the first
question “which actors are involved with tasks on the critical path?” the system searches
from the Vite ifcXML file for task assignment information and searches from the Primavera
P3 file for critical path information.

Ask QACPM> which actors are involved with tasks on the critical path?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $rs in document("vite_tuto.xml")//RelAssignsTasks
where $ws/@identifier = $rs/@relatingTask and $ws/@freeFloat="0.0"
return $rs/@relatedActor
XQuery Results:
 relatedActor="FT" relatedActor="LDT" relatedActor="HPM" relatedActor="FLE"
 relatedActor="LDT" relatedActor="FT" relatedActor="CA"
QACPM Ans> Foundry test
Logic design team
HW Project Manager
Foundry layout engineer
Logic design team
Foundry test
Chip Architect
Ask QACPM> which tasks on the critical path has the highest uncertainty?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $ts in document("vite_tuto.xml")//Task
where $ws/@identifier = $ts/@taskid and $ws/@freeFloat="0.0" and $ts/@uncertainty="high"
return $ws/@identifier
XQuery Results:
 identifier="DS"
QACPM Ans> Develop Specification
Ask QACPM> when does the activity with highest priority start?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $ts in document("vite_tuto.xml")//Task

where $ws/@identifier = $ts/@taskid and $ts/@priority = "high"
return $ws/@startTime
XQuery Results:
startTime="9/18/1998"
QACPM Ans> 9/18/1998

8.3 ANALYSIS OF THE RESULT

There are two basic approaches to evaluating a question answering system: on-line and off-
line evaluations (Breck et al. 1999). For on-line evaluations, system answers are judged by
humans, while the answers in off-line evaluations are scored by an evaluation program
against standard references.

In this research, the prototype system was tested on a selected set of questions in the
project management domain. The system has been tested on the chip design project as well as
a few residential building projects and demonstrates reasonable accuracy. However, the
evaluation results depend on the selection of test questions as well as human judgement. The
types, complexities, and ranges of questions, the human judgements on generated answers,
the documents in the knowledge base, and other factors can all affect the performance of the
system.

A standard evaluation program can save significant efforts in assessing a question
answering system. However, since the results from project management tools are often stored
in various internal formats, current evaluation programs cannot be directly applied in this
research due to the characteristics of the project management domain. For example, Qaviar,
an experimental evaluation program developed at the MITRE Corporation, judges the
response using human generated answer keys and focuses on the Text REtrieval Conference
(TREC) context (Breck et al. 2000). E-Rater, an evaluation system developed at ETS, is used
to score essay questions of TOEFL takers (Burstein et al. 1998).

9. CONCLUSIONS

In this paper, we have presented a prototype question answering system in the project
management domain. IfcXML is used as the knowledge representation format, while GNU
Kawa Qexo is employed as the query engine. Once rules are generated from the ifcXML
schema and examined by experts, the system requires no extra human involvement in
building the knowledge base for individual project; thus, it can be easily adapted to different
projects in the same domain. Information from the knowledge base, together with the
syntactic and semantic analysis, is used for understanding natural questions. This approach
can significantly help understand natural questions.

If the system can be extended to handheld devices, it would provide significant benefits
for project management. For example, many construction projects are geographically distant
from one another. As a result, many handheld devices, such as Palm Pilots and Pocket PCs,

are often used by project members on construction sites. These handheld devices, however,
cannot run most project management applications, such as Vite SimVisonTM, Primavera
Project PlannerTM and 4D Viewer, due to their small amount of memory and sub-optimal
displays. A question answering system, on the other hand, requires little memory or
displaying abilities on the client device. With a question answering system available, on-site
personnel can simply input the question and get the information back using handheld devices.

Although this system has demonstrated the potential applications for NLP in project
management, further research questions remain to be explored. The grammar used for the
chart parser in this project is based on a heuristic approach and may not be complete. Thus,
the chart parser may not be able to provide parse information for some types of questions,
possibly resulting in incorrectly answers being generated. A more complete grammatical
analysis of various questions may be necessary for a more robust system. In addition, further
tests need to be performed to validate the prototype approach, for example, to include other
application tools.

10. ACKNOWLEDGEMENTS

This work is partially sponsored by a Stanford Graduate Fellowship and the Product
Engineering Program at NIST. The Product Engineering Program gets its support from the
NIST’s SIMA (Systems Integration for manufacturing Applications) program and the
DARPA’s Radeo Program. No approval or endorsement of any commercial product by the
National Institute of Standards and Technology or by Stanford University is intended or
implied. The second author would like to thank UK’s Royal Academy of Engineering for the
financial support provided to carry out this work.

REFERENCES
Abiteboul, S., Quass, D., McHugh, J., Widom, J., and Wiener, J. (1997), “The Lorel Query

Language for Semistructured Data.” International Journal on Digital Libraries, Vol. 1,
No. 1, pp. 68-88.

Androutsopoulos, I., Ritchie, G. D., and Thanisch, P. (1995), “Natural Language Interfaces to
Databases -- An Introduction.” Journal of Natural Language Engineering, Vol. 1, No. 1,
pp. 29-81.

Baeza-Yates, R., and Ribeiro-Neto, B. (1999), Modern Information Retrieval. Addison
Wesley Ltd.

Brothner, P. (1998), "Kawa: Compiling Scheme to Java." Lisp Users Conference, Berkeley,
CA. <http://sources.redhat.com/kawa/papers/KawaLisp98-html/index.html> (December
2002).

Burstein, J., Kukich, K., Wolff, S., Lu, C., and Chodorow, M. (1998). “Computer Analysis of
Essays.” NCME Symposium on Automated Scoring, April 1998.

Breck, E.J., Burger, J.D., House, D., Light, M., and Mani, I. (1999). “Question answering
from large document collections.” AAAI Fall Symposium on Question Answering Systems,
North Falmouth, MA.

Breck, E.J., Burger, J.D., Ferro, L., Hirschman, L., House, D., Light, M., and Mani, I. (2000).
“How to Evaluate Your Question Answering System Every Day and Still Get Real Work
Done.” Proceedings of LREC-2000, Second International Conference on Language
Resources and Evaluation, Athens, Greece.

Callison-Burch, C., and Shilane, P. (2000), “A Natural Language Question and Answer
System.” Unpublished Manuscript, Stanford University, Stanford, CA.

Cheng, J., and Law, K.H. (2002), “Using Process Specification Language for Project
Information Exchange.” 3rd International Conference on Concurrent Engineering in
Construction, Berkeley, CA, pp. 63-74.

Cheng, J., Trivedi, P., and Law, K.H. (2002), “Ontology Mapping Between PSL and XML-
Based Standards For Project Scheduling.” 3rd International Conference on Concurrent
Engineering in Construction, Berkeley, CA, pp. 143-156.

Diekema, A. R., Yilmazel, O., Chen, J., Harwell, S., He, L., Liddy, E. D. (2003) What Do
You Mean? Finding Answers to Complex Questions. Proceedings of the 2003 AAAI
Spring Symposium: New Directions in Question Answering. Palo Alto, California.

Diekema, A. Liu, X., Chen, J., Wang, H., McCracken, N., Yilmazel, O., and Liddy,E.D.
 (2000). Question Answering : CNLP at the TREC-9 Question Answering Track.
Proceedings of the 9th Text REtrieval Conference (TREC-9). National Institute of
Standards and Technology, Gaithersburg, MD.

Dym, C.L., and Levitt, R.E. (1991), Knowledge-Based Systems In Engineering. McGraw-Hill,
Inc.

Fatdog. (2002), "XQEngine Introductory Tutorial." Fatdog Software,
<http://www.fatdog.com/tutorial.html> (December 2002).

Fellbaum, C. (Editor), and Miller, G. (Preface) (1998), WordNet: An Electronic Lexical
Database (Language, Speech, and Communication). MIT Press.

Frank, G. (1999), “A General Interface for Interaction of Special-Purpose Reasoners within a
Modular Reasoning System." Question Answering Systems, Papers from the 1999 AAAI
Fall Symposium, pp. 57-62.

Froese, T., et al. (1999). "Industry Foundation Classes for Project Management-A Trial
Implementation." ITCON, Vol. 4, pp. 17-36.

Genesereth, M.R., and Fikes, R. (1992), “Knowledge Interchange Format.” Version 3.0
Reference Manual, Computer Science Department, Stanford University, Stanford, CA.

Hovy, E., and Lin, C.Y. (1999), Automated Text Summarization in SUMMARIST. in: Mani,
I. and Maybury M. (eds) Advances in Automatic Text Summarization. MIT Press.

IAI (1997), “Industry Foundation Classes.” Specification Volumes 1-4, International Alliance
for Interoperability, Washington, DC.

IAI (2002), “Introduction to the IAI and it’s IFCs.” International Alliance for Interoperability.
< http://radsite.lbl.gov/iai/IFC_2.0/iai/index.htm> (December 2002).

Jacobs, P., and Rau, L. (1990), “SCISOR: extracting information from on-line news.”
Communications of the ACM, Vol. 33, No. 11, pp. 88-97.

Klein, D., and Manning, C. (2001a), “An O(n^3) Agenda-Based Chart Parser for Arbitrary
Probabilistic Context-Free Grammars.” Technical Report, Computer Science Department,
Stanford University, Stanford, CA.

Klein, D., and Manning, C. (2001b), “Parsing with Treebank Grammars : Empirical Bounds,
Theoretical Models, and the Structure of the Penn Treebank.” Proceedings of the 39th
Annual Meeting of the ACL, Toulouse, France, pp. 330-337.

Liebich, T. (2001), “XML schema language binding of EXPRESS for ifcXML.” MSG-01-
001(Rev 4), International Alliance of Interoperability.

Marcus, M.P., Santorini B., and Marcinkiewica, M.A. (1993). "Building a large annotated
corpus of English: the Penn Treebank." Computational Linguistics, Vol. 19, No.2, pp.
310-330.

Pereira, F. (1983), Logic for natural language analysis. Technical Note 275, SRI International.
Robie, J. (1999), “XQL Tutorial.” Software AG. <http://ibiblio.org/xql/xql-tutorial.html>

(April 2002).
Schröder, I. (2002), “Ingo's Collection Of POS Taggers.” <http://nats-www.informatik.uni-

hamburg.de/~ingo/icopost/> (May 2002).
Siméon, J. (2001), “Galax Implementation of XQuery.” XQuery Implementation Panel, XML

2001, Orlando. <http://db.bell-labs.com/galax/> (December 2002).
Sourceforge. (2002), “Sourceforge Xquench Project.” Open Source Development Network,

<http://sourceforge.net/projects/xquench/> (May 2002).
Vasconcellos, M., and Leon, M. (1985), “SPANAM and ENGSPAN: Machine translation at

the Pan American Health Organisation.” Computation Linguistics, Vol. 11, No. 2-3, pp.
122-136.

Vite. (2000), "SimVision Help." Vite SimVision Help Manual, Vite Corporation.
W3C (1998), “XML-QL: A Query Language for XML.” World Wide Web Consortium,

<http://www.w3.org/TR/NOTE-xml-ql/ > (April 2002).
W3C (1999), “XML Path Language (XPath) Version 1.0.” World Wide Web Consortium,

Recommendation 16.
W3C (2001), “XQuery 1.0: An XML Query Language,” W3C Working Draft 20.
Woods, W. A. (1973), Progress in Natural Language Understanding: An Application to Lunar

Geology, AFIPS Conference Proceedings, Vol. 42, pp. 441-450.
Young, M.J. (2001), Step by Step XML. Microsoft Press.

Zajac, R. (2001), "Towards Ontological Question Answering." ACL Open Domain Question
Answering Workshop, Toulouse.

	ABSTRACT
	KEYWORDS
	1. INTRODUCTION
	2. RELATED TECHNOLOGIES
	2.1. IFC and IFCXML
	2.2. XML Query Language
	2.3. XML Query Engine
	2.4. POS Tagging and Chart parsing Tools
	2.5. WordNet

	3. KNOWLEDGE REPRESENTATION AND ORGANIZATION
	3.1. Knowledge Representation using ifcXML
	3.2. Advantages and Limitations of ifcXML as knowledge representation Format
	3.3. Knowledge Organization

	4. PARSING AND UNDERSTANDING NATURAL QUESTIONS
	4.1. Analyzing ifcXML trees
	4.2. Tagging Questions
	4.3. Parsing Questions
	4.4. Analyzing concepts and Matching Rules

	5. SEARCHING FOR ANSWERS IN THE KNOWLEDGE BASE
	6. ANSWER GENERATION
	7. SYSTEM FRAMEWORK AND IMPLEMENTATION
	8. SAMPLE DEMONSTRATION
	8.1 Example Project USED in the Research
	8.2 Working Scenario
	8.3 Analysis of the result

	9. CONCLUSIONS
	10. ACKNOWLEDGEMENTS
	REFERENCES

