

A SIMULATION ACCESS LANGUAGE AND FRAMEWORK
WITH APPLICATIONS TO PROJECT MANAGEMENT

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF

CIVIL AND ENVIRONMENTAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Jinxing Cheng

August 2004

ii

 Copyright by Jinxing Cheng 2004

All Rights Reserved

iii

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

Kincho H. Law

(Principal Advisor)

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

Gio Wiederhold

I certify that I have read this dissertation and that, in my opinion, it is
fully adequate in scope and quality as a dissertation for the degree of
Doctor of Philosophy.

Hans Björnsson

Approved for the University Committee on Graduate Studies.

iv

Abstract

As computer programs become ever more complex, software development has shifted

from focusing on programming towards focusing on integration. This trend is also seen

in the design and construction industry, where there is an increasing need to integrate and

reuse commercial software tools. Although many software applications (e.g., Microsoft

Project, Microsoft Excel, the Primavera Project Planner, and AutoCAD) are commonly

available for construction engineering and project management, it remains a laborious

process to integrate and coordinate these tools to work together and to support decision

making. To name a few, the sheer volume and complexity of the tools and the

information generated by them, their scattered distribution, and the lack of

interoperability are among the challenges in integrating, coordinating, and reusing these

tools.

This thesis first discusses the potential applications of the Process Specification

Language (PSL) for project management applications. Initiated by the National Institute

of Standards and Technology (NIST), PSL is emerging as a standard exchange language

for process information in the manufacturing industry. This thesis discusses how PSL

can be used for exchanging information among project management software

applications in the construction industry. The potential applications of PSL in

consistency checking and constraint scheduling are also explored. Specifically, a formal

mechanism is proposed to perform consistency checking on project information from

v

different computer tools. Furthermore, the use of PSL for checking conformity of project

schedules to scheduling constraints is illustrated.

This thesis presents a simulation access language (SimAL) and framework for project

management applications. The SimAL language and framework integrate legacy project

management applications, coordinate different tools, manage the information flow among

them, and bring their functionalities online. The prototype of the SimAL framework has

been implemented based on PSL for data exchange and a flow-based software

composition infrastructure for software integration. Using the prototype, users can

simulate scenarios and build up new services from the existing tools.

The potential applications of the SimAL language and framework are demonstrated using

three illustrative examples. This first example illustrates the use of SimAL to incorporate

online information in project management. The second example illustrates how to use

SimAL to compare different scenarios in project management. The third example

demonstrates how to extend the functions of legacy software applications (e.g., AutoCAD

ADT and the Primavera Project Planner) by integrating them to provide new services.

Finally, this thesis presents a question answering system to query the information in

different project management applications. A prototype question answering system has

been built and tested to illustrate the potential usefulness of such a system for project

management applications.

vi

Acknowledgments

There have been a great number of truly exceptional people who contributed to my

research and social life at Stanford University.

First and foremost, I wish to express my profound gratitude to Prof. Kincho H. Law, my

advisor and mentor, for his constant support and encouragement. I am privileged to have

the opportunity to share his passion for research and his insights in life. I would like to

extend my gratitude to my dissertation reading committee, Prof. Gio Wiederhold and

Prof. Hans Björnsson, for their invaluable advice, criticism, and recommendations. I also

want to thank Prof. Ozalp Ozer for chairing my oral defense and Dr. Renate Fruchter for

serving on my defense committee on short notice.

I would like to thank my family and friends. Without their support and encouragement, I

never would have made it to Stanford. Their support over the past several years helped

sustain me through the ups and downs of conducting research work. I am very lucky to

have such a wonderful supportive family and great friends.

Many other people contributed to the development of this research. I would like to thank

Professor Bimal Kumar of Glasgow Caledonian University for his support on the

collaborative demonstration of the simulation access framework and his contribution to

the question answering system, Dr. Michael Gruninger and Dr. Ram D. Sriram of NIST

for their contribution to the PSL research work, and Dr. David Liu for his contribution to

vii

the distributed integration framework. I would also like to thank the following

companies and individuals for providing the data used in my research: Webcor Builders,

Swinerton Builders, DPR Construction Inc., and Professor Martin Fischer and his

research group at Stanford University.

I am grateful to the members of the EIG (Engineering Informatics Group), including Jun

Peng, Jerome Lynch, Jie Wang, Chuck Han, Shawn Kerrigan, Gloria Lau, Charles

Heenan, Li Zhang, Liang Zhou, Bill Labiosa, Yang Wang, Haoyi Wang, Xiaoshan Pan,

Arvind Sundararajan, and Pooja Trivedi, for helping me with various aspects of my

research and life. They make the research group truly like a home to me.

I gratefully acknowledge the financial support provided by the Center for Integrated

Facility Engineering at Stanford University, the Product Engineering Program at National

Institute of Standards and Technology, and a Stanford Graduate Fellowship.

viii

Table of Contents

Abstract iv

Acknowledgments vi

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Motivation .. 1

1.2 Research Objective... 4

1.3 Related Research .. 5

1.3.1 Data Integration and Exchange... 5

1.3.2 Software Integration and Interoperability... 9

1.4 Thesis Outline... 14

2 The Process Specification Language (PSL) for Project Management

Applications 16

2.1 Overview of PSL.. 17

2.2 Using PSL to Exchange Information among Project Management

Applications.. 21

2.2.1 Semantic Mapping between PSL and Project Management

Application Concepts.. 21

2.2.2 Wrapping Project Management Applications....................................... 27

ix

2.3 Distributed Data Integration Infrastructure .. 35

2.3.1 Translation between PSL and Database.. 36

2.3.2 Network Communication in the Distributed Integration Framework... 38

2.4 Demonstrations of Distributed Data Integration .. 39

2.4.1 Example 1: A Chip Design Scenario .. 40

2.4.2 Example 2: Mortenson Ceiling Project... 43

2.5 PSL for Consistency Checking... 46

2.5.1 Conflicts in Project Management ... 46

2.5.2 Review of Existing Approaches in Conflict Resolution....................... 47

2.5.3 Consistency Checking using PSL... 48

2.5.4 Demonstration of the Consistency Checking Prototype 51

2.5.5 Soundness and Completeness ... 56

2.5.6 Performance Analysis of Consistency Checking.................................. 58

2.6 PSL for Constraint Scheduling... 60

2.6.1 Scheduling Constraint Categorization and Expression......................... 60

2.6.2 PSL for Constraint Scheduling ... 63

2.7 Summary .. 66

3 A Simulation Access Language (SimAL) and Framework 68

3.1 Overview of the Simulation Framework .. 69

3.2 A Brief Review of FICAS.. 71

3.3 The SimAL Access Language (SimAL) .. 75

3.3.1 The Design Goal of the SimAL Language ... 75

3.3.2 The Components of the SimAL Language ... 77

3.3.2.1 Invocation Statements... 78

3.3.2.2 Operation Statements.. 79

3.3.2.3 Decision-Support Statements.. 81

3.3.2.4 Control Statements.. 83

3.4 The SimAL Language Specification and Compiler 85

3.4.1 SimAL Syntax and Definitions... 85

x

3.4.2 The SimAL Compiler ... 89

3.5 Comparison Between CLAS and SimAL... 92

3.6 The SimAL Framework.. 93

3.6.1 Project Management Applications and Wrappers 95

3.6.2 SimAL Preprocessing Engine ... 99

3.6.3 The Update and Query Engine.. 101

3.6.3.1 Translation Between PSL and ifcXML 102

3.6.3.2 Querying and Updating Information 107

3.6.4 SimAL Post-Processing Engine.. 108

3.7 Demonstration of the SimAL System .. 108

3.8 Summary .. 111

4 Simulation Framework for Project Management Applications 112

4.1 Using SimAL to Incorporate Weather Information 113

4.1.1 Expressing Weather Information in XML.. 113

4.1.2 Expressing the Knowledge of Weather Impact in XML 115

4.1.3 Processing Weather Information .. 116

4.1.4 Demonstration Example – Simulating the Impact of Weather in

Project Management ... 117

4.2 Using SimAL to Compare Schedule Recovery Options 123

4.2.1 The McDonald Housing Expansion Project 124

4.2.2 Using SimAL to Simulate and Compare Alternatives........................ 127

4.3 Using SimAL to View Construction Progress ... 133

4.4 Summary .. 139

5 A Question Answering System for Project Management Applications 140

5.1 Introduction .. 141

5.2 Related Technologies ... 143

5.2.1 XML Query Language.. 144

5.2.2 XML Query Engine .. 144

5.2.3 POS Tagging and Chart Parsing Tools ... 145

xi

5.2.4 WordNet.. 145

5.3 Knowledge Representation and Organization in QAPM 146

5.3.1 Knowledge Representation using ifcXML ... 146

5.3.2 Knowledge Organization .. 147

5.4 Parsing and Understanding Natural Questions... 149

5.4.1 Analyzing ifcXML Trees.. 149

5.4.2 Tagging Questions .. 152

5.4.3 Parsing Questions ... 152

5.4.4 Analyzing Concepts and Matching Rules... 155

5.5 Searching for Answers in the Knowledge Base ... 157

5.6 Answer Generation... 158

5.7 The Framework and Implementation of QAPM .. 159

5.8 Sample Demonstration of QAPM .. 162

5.8.1 Example Project used in the Demonstration....................................... 162

5.8.2 Working Scenario ... 165

5.8.3 Analysis of the Results ... 168

5.9 Summary and Discussions.. 169

6 Summary and Discussions 170

6.1 Summary and Contributions... 170

6.2 Future Research.. 172

6.2.1 The Process Specification Language (PSL).. 172

6.2.1.1 Exchanging Product and Process Information...................... 172

6.2.1.2 Constraint Scheduling using PSL ... 174

6.2.2 The Simulation Access Language (SimAL) and Framework 174

6.2.2.1 Decision-Support Capabilities of SimAL............................. 174

6.2.2.2 Computational Capabilities of SimAL 174

6.2.2.3 Validation and Testing.. 175

6.2.3 The Question Answering System ... 175

6.3 Conclusions .. 176

xii

Bibliography 177

xiii

List of Tables

Number Page
Table 2.1: Definitional Extensions of PSL (from [67, 81]) .. 20

Table 2.2: Mapping of Activities and Dependency Relationships.................................... 24

Table 2.3: Pros and Cons of Different Data Integration Approaches 28

Table 2.4: A Database Schema for the Project Repository... 37

Table 2.5: Soundness and Completeness of the Consistency Checking Prototype........... 57

Table 2.6: Performance Results of the Consistency Checking Prototype........................ 59

Table 3.1: Symbols in the BNF format ... 85

Table 3.2: Tokens in the SimAL Language .. 87

Table 3.3: BNF Representation of the SimAL Grammar.. 88

Table 4.1: The Comparison of Different Alternatives .. 132

xiv

List of Figures

Number Page
Figure 1.1: The Trend of Software Development (from [98]) ... 1

Figure 1.2: Applications in Construction Project Management.. 3

Figure 2.1: Core Theories of the PSL Ontology (from [67, 81]) 18

Figure 2.2: Dependency Relationships among Activities ... 23

Figure 2.3: Example Dependency of a Scheduling Chart in Primavera P3 26

Figure 2.4: Schedule and Resource Information from Primavera P3 27

Figure 2.5: PSL Expressions for the Example Chart in Primavera P3.............................. 27

Figure 2.6: PSL Wrappers... 31

Figure 2.7: The Decomposition of PSL Wrappers... 33

Figure 2.8: Exchange Information between Primavera P3 and Vite SimVision through

PSL.. 34

Figure 2.9: A Distributed Integration Infrastructure ... 36

Figure 2.10: Translation between Database and PSL ... 38

Figure 2.11: A Network Communication Framework .. 39

Figure 2.12: The Code Segment of an Event Listener .. 39

Figure 2.13: Original CPM Diagram in Vite SimVision .. 41

Figure 2.14: Sample PSL File ... 41

Figure 2.15: Original Gantt Chart in Vite SimVision ... 42

Figure 2.16: Regenerated Schedule in Primavera P3 using PSL 42

xv

Figure 2.17: Regenerated Schedule in Microsoft Project using PSL................................ 42

Figure 2.18: Original Schedule in Primavera P3... 44

Figure 2.19: Model in 4D Viewer Taken on March 25, 2001... 44

Figure 2.20: Regenerated Gantt Chart in Microsoft Project using PSL............................ 44

Figure 2.21: Updated Project Schedule in Microsoft Project.. 45

Figure 2.22: Updated Project Schedule in Primavera P3 .. 45

Figure 2.23: Updated Model in 4D Viewer Taken on March 25, 2001 45

Figure 2.24: Consistency Checking using PSL... 49

Figure 2.25: Converting PSL Expressions into Otter Input .. 50

Figure 2.26: Simplified Reasoning Process in Otter ... 50

Figure 2.27: Group 1’s Schedule in Primavera P3... 52

Figure 2.28: Group 1’s CPM Diagram.. 52

Figure 2.29: Group 2’s Schedule in Microsoft Project ... 52

Figure 2.30: Group 2’s CPM Diagram.. 53

Figure 2.31: Reasoning Results in Cyclic Dependency Relationships 54

Figure 2.32: Cycle in Dependency Relationships ... 54

Figure 2.33: Reasoning Results in Version Conflicts ... 55

Figure 2.34: An Example Schedule .. 64

Figure 2.35: The Scheduling Information Expressed in PSL .. 64

Figure 3.1: Conceptual Model of the SimAL System... 70

Figure 3.2: FICAS Architecture (from [62])... 72

Figure 3.3: Sample Code in CLAS.. 72

Figure 3.4: Comparison Between FICAS and SOAP on Local Area Network (from

[62])... 74

Figure 3.5: Example Program for Testing the SimAL Language 89

Figure 3.6: SimAL Sequence Generated from the Example Program 91

Figure 3.7: The SimAL Framework.. 94

Figure 3.8: Service Directory.. 97

Figure 3.9: The Invocation of Embedded and Standalone Services 98

xvi

Figure 3.10: An Example Event Message... 98

Figure 3.11: XML Information for Displaying Results .. 100

Figure 3.12: The Implementation of the SimAL Query and Update Engine 102

Figure 3.13: Mapping Process between PSL and XML.. 106

Figure 3.14: Sample PSL File ... 106

Figure 3.15: Sample ifcXML file.. 106

Figure 3.16: An Example SimAL Program... 110

Figure 3.17: Viewing the Schedule Changes on a Web Browser 110

Figure 3.18: Viewing the Schedule Changes in Microsoft Excel 111

Figure 4.1: Expressing Weather Information in XML.. 114

Figure 4.2: Expressing the Impact of Weather in XML.. 115

Figure 4.3: Original and Updated Schedules in PSL .. 116

Figure 4.4: Processing the Impact of Weather .. 117

Figure 4.5: The Input of the SimAL System... 118

Figure 4.6: The Workflow in the Weather Demonstration ... 119

Figure 4.7: Original Schedule in Primavera P3 .. 120

Figure 4.8: Updated Schedule in Primavera P3 .. 121

Figure 4.9: Original Backlogs in Chart ... 121

Figure 4.10: Updated Backlogs in Chart ... 122

Figure 4.11: Original Backlogs in Table... 122

Figure 4.12: Updated Backlogs in Table... 123

Figure 4.13: The 3D Model of the Project .. 124

Figure 4.14: The Detailed Schedule of the Ronald Mcdonald House Project 125

Figure 4.15: The Executive Schedule Reproduced in Primavera P3 126

Figure 4.16: Cost Estimating of the Project .. 127

Figure 4.17: Using SimAL to Simulate Schedule Recovery... 129

Figure 4.18: The Schedule Recovery Process... 130

Figure 4.19: The Result of Comparing Three Options.. 132

Figure 4.20: Update CAD Models .. 134

xvii

Figure 4.21: View the CAD Model on July 15th, 2003 on a Web Browser 135

Figure 4.22: View the CAD Model on November 20th, 2003 on a Web Browser 136

Figure 4.23: Visualize the Impact of Schedule Change .. 137

Figure 4.24: Visualize the Schedule Change on a Web Browser.................................... 138

Figure 4.25: Visualize the Results in Primavera P3.. 138

Figure 4.26: Visualize the Model Change in AutoCAD ADT.. 138

Figure 4.27: Visualize the Model Change on a Web Browser.. 139

Figure 5.1: A Context Tree For Knowledge Organization.. 148

Figure 5.2: Tree Structure of IfcXML Files.. 150

Figure 5.3: Grammar File for the System ... 153

Figure 5.4: Tagging and Parsing Questions .. 154

Figure 5.5: Preparing A Lexicon File.. 155

Figure 5.6: Parse Tree of A Sample Question... 155

Figure 5.7: The Framework of QAPM.. 160

Figure 5.8: Detailed Process of the QAPM Question Answering System...................... 161

Figure 5.9: The Gant Chart of the Chip Design Project in Primavera P3 162

Figure 5.10: Generated Sample ifcXML File from Primavera P3 163

Figure 5.11: The Chip Design Project in Vite SimVision .. 164

Figure 6.1: Typical Process Information in Project Management 173

Chapter 1

Introduction

1.1 Motivation

As computer programs become ever more complex, software development has shifted

from focusing on coding toward focusing on integration, as illustrated in Figure 1.1 [98].

In parallel to this trend, there is another shift of software development from standalone

applications toward distributed, Web-based or Web-enabled services. As a result, future

software will be based more and more on the composition and integration of existing

software components.

Coding

Integration

1970 1990 2010

Figure 1.1: The Trend of Software Development (from [98])

CHAPTER 1. INTRODUCTION 2

Let us take the project management field in the construction industry as an example.

There are many software tools (e.g., Microsoft Project, Microsoft Excel, the Primavera

Project Planner, and AutoCAD) that are commonly available for construction engineering

and project management. These standalone application tools are mature and widely

adopted. However, integrating and coordinating these tools to work together and to

support decision making remains a laborious process. As an example, resource

discrepancy occurs frequently in construction project management. When procurement is

being delayed, what options are available and which option is the most appropriate to

recover the lost time? Should human resources be added to accelerate the remaining

tasks or should extra fees be spent to expedite the delivery? What adjustments are

necessary for each option? When making a decision, we also have to consider the

potential impacts on project schedules, costs, resources, and organization. To simulate

possible impacts and to support decision making would involve using different tools. As

illustrated in Figure 1.2, one may use the Primavera Project Planner (P3) or Microsoft

Project to schedule the project, Vite SimVision to simulate project organization,

Timberline’s Precision Estimating to estimate project cost, and 4D Viewer [66] or other

CAD tools to view the models. A framework that would allow dynamically integrating

and coordinating application tools to simulate the impact of resource allocation on a

project and to review “what-if” scenarios can significantly enhance the decision-making

process.

CHAPTER 1. INTRODUCTION 3

AutoCAD
ADT

MS Project

MS EXCEL

4D Viewer

CostWorksVite
SimVision

Timberline

Primavera
P3

Desktop PC

Server

Laptop

PDA

RFI's
Submittals Online Information

(e.g., Weather Forecasting
and Price Quoting)

Figure 1.2: Applications in Construction Project Management

Among the key issues for integrating and coordinating application tools for simulation is

the issue of data and software interoperability. It is not unusual that project data is being

re-entered from one application to another. Typical engineering and project management

application tools generate large volumes of information that are not easily shared among

the applications. Project information is created from different sources in a variety of

formats. In addition, project activities are often performed and managed in a

geographically distributed fashion. For example, in a construction project, the

construction site, the regional office and the company headquarters are often located in

different cities and states. Furthermore, different tools are employed at the site and in

each office. Ubiquitous access, by means of which project and company personnel can

review project information regardless of time and location, becomes important. The

sheer volume and complexity of the tools and information, coupled with their scattered

CHAPTER 1. INTRODUCTION 4

distribution and the lack of interoperability, makes any attempt to coordinate and reuse

the tools and information a daunting task.

1.2 Research Objective

The key research question to be addressed in this thesis is:�

• How to integrate and coordinate existing COTS (commercial off-the-shelf) tools

as well as publicly available information sources to support project management

and decision making tasks.

We first address the issue of data integration among different project management tools.

We then address how to invoke and coordinate these tools for simulation. In addition, the

system needs to allow users to query and update project information in different tools and

to compare different scenarios.

The objective of this research is, thus, to develop a high-level simulation access language

and infrastructure, which would allow users to easily integrate and coordinate standalone

applications and to conduct simulation of project scenarios without the detailed

knowledge of the network communication and application software. The high-level

language should be able to invoke and transfer data among the tools and to query and

update project information. With the simulation access language and infrastructure, the

functionalities of each individual application can be extended. The users can also

choreograph the execution of the tools to potentially support workflow management and

decision making applications.

CHAPTER 1. INTRODUCTION 5

1.3 Related Research

The issues of data and software integration are not new. There have been many standards

that have been proposed for data exchange and software interoperability. To review all

previous and current approaches and developments is beyond the scope of this thesis. In

this section, we briefly summarize some of the related work.

1.3.1 Data Integration and Exchange

The need for efficient data management and exchange in computer aided building

engineering has been a subject of active research and development for quite some time

[40, 69-71]. A detailed review of data integration and exchange can be found in a recent

book by Eastman [32].

• Direct Translator: Traditionally, pre- and post-processors are developed to

translate data between two application programs using a mutually agreed upon

exchange format. The major disadvantage of using pre- and post-processors

between programs are the potentially large number of translators. To provide data

translation among n applications, n(n-1) translators have to be developed. Thus,

the direct translator approach does not scale as the number of applications

increases. Furthermore, extensive software maintenance of the translators could

be costly.

• Centralized Database: Using a common database can significantly reduce data

redundancy and the number of translators for data exchange. Each application

generates, stores and retrieves the information according to the database schema.

A centralized database has traditionally been considered to be one of the most

effective methods for achieving interoperation. There have been many research

efforts attempting to define design information about a construction project and to

CHAPTER 1. INTRODUCTION 6

store the information in a single repository [11, 30, 54-56]. Using a common

database allows easy integration of a new tool with other design tools within an

organization. The problem with this approach is that to define a common schema

for different applications, even within the same domain, can be quite difficult.

This approach also does not provide the flexibility to support collaboration among

multiple disciplines and organizations.

• Neutral File: Another approach is to develop industry-wide neutral file formats

for specific application domains. In the neutral file approach, a translator needs to

be developed for each application, so that the application can read information

from and write results to files in a standard format. Consequently, only n

translators need to be developed to provide interoperation among n applications.

Early work on neutral files focuses on the data exchange on CAD and graphical

data, such as DXF [64] and IGES [48]. As engineering companies are

increasingly seeking ways to integrate their applications, many neutral file

standards have been developed by standards organizations and industry consortia.

One major problem confronting integration of software applications stems from the

challenges of specific data formats for exchange and sharing. The International

Organization for Standardization (ISO) has been actively pursuing the development of

STEP [49]. STEP (the Standard for the Exchange of Product Model Data) is a product

data integration standard to facilitate information exchange among different applications

[37]. STEP is based on the EXPRESS language [50], which enables STEP to provide an

unambiguous, computer interpretable representation of product data. EXPRESS is a data

definition language that is used to represent the structure of data and any constraints that

may apply to the data. Examples of product models developed using STEP for the

building and construction applications include CIMsteel [41], the steel model [72], and

the roofing system [90]. Software tools are commercially available to integrate STEP

product models with databases and other application programs [87].

CHAPTER 1. INTRODUCTION 7

Another notable effort in the building and construction industry is the development by the

International Alliance of Interoperability (IAI) which aims at developing a set of industry

foundation classes (IFC) as a universal library of commonly defined objects throughout

the lifecycle of a facility, from design to operation and maintenance [46]. IFC is a data

representation standard developed specifically for defining product data for architectural

and construction applications. Based on EXPRESS, IFC is designed to exchange data

among Architecture, Engineering, Construction and Facilities Management (AEC/FM)

applications. While the earlier IFC modules focused primarily on product data, attempts

have been made to extend IFC from product modeling to support data for cost estimating

and project management purposes [39].

Recently, XML (eXtensible Markup Language) has been fast becoming a de facto

infrastructure standard for data exchange because of its extendibility, hierarchical (object)

structure and the vast support by computer software and hardware vendors. XML can be

used as an object representation format. XML includes a meta-markup language that

consists of a set of rules for creating semantic tags used to describe data [104]. Many

software programs now adopt native XML support features. Desktop applications such

as Microsoft Office and AutoCAD as well as database programs such as Microsoft SQL

2000, IBM DBMS, and Oracle support XML data. The benefits of using an XML-based

standard instead of an ASCII-based standard are that XML is (1) a published standard by

W3C.org; (2) becoming the standard meta language for data interchange across the

computer industry; (3) object-oriented (supporting advanced software development

concepts); (4) readable; and (5) extendible. Widespread adoption of XML as the

language for data exchange has led to the explosion of software tools that use and

manipulate data. In addition, a new breed of native XML-based databases has started to

emerge in the market place.

With the emerging popularity of XML, XML schemas have been proposed as ontology

standards in the building and construction industry with ifcXML [59] and aecXML [47]

being the two most popular XML schemas. IfcXML is an XML version of the IFC and is

CHAPTER 1. INTRODUCTION 8

a fairly extensive schema (with over 400 pages) designed to enable the exchange of IFC

data in an alternative XML format. In ifcXML, tags have been defined for various stages

and purposes in the project life-cycle, such as product modeling, cost estimating,

scheduling and maintenance. For example, WorkSchedule, ScheduleTimeControl, and

RelSequence elements have been defined in the project scheduling domain. AecXML is a

similar effort which was initially proposed by Bentley Systems in 1998 and is now also

part of the IAI (International Alliance of Interoperability). AecXML provides XML-

based schemas to describe information specific for data exchange among participants

involved in the design, construction, and operation of buildings, plants, infrastructure,

and facilities [47].

Current standards, such as STEP and IFC, focus on the exchange of product data. The

need to integrate software applications to support processes and activities has become

increasingly important. In project management, enterprise modeling, and manufacturing

applications, the activities and the constraints on their occurrences need to be represented.

For example, data integration occurs in business process reengineering, where enterprise

models integrate processes, organizations, goals, and customers. Even when applications

use the same terminology, they often associate different semantics with the terms. This

clash over the meaning of the terms prevents the seamless exchange of information

among the applications. Interoperability of process oriented applications must deal with

the issue of the differences in terminology and representations now found in most of the

project management and enterprise software applications. The Process Specification

Language (PSL) has been designed to facilitate correct and complete exchange of process

information among manufacturing systems [67, 80]. PSL is developed using KIF

(knowledge interchange format) [43], which is based on first-order predicate logic.

Included in these applications are scheduling, process modeling, process planning,

production planning, simulation, project management, workflow, and business process

reengineering.

CHAPTER 1. INTRODUCTION 9

In this research, we focus on the integration of project management applications and

project models. As a point of departure, PSL, an emerging international standard for

process information exchange, is adopted as the information exchange language for

project management applications and the usage of PSL is extended to illustrate the

potential of PSL for consistency checking and constraint management. Furthermore,

ifcXML is employed for the exchange of data on the product models describing a facility.

1.3.2 Software Integration and Interoperability

One issue when different participants or organizations engage in collaborative activities

is interoperability between the applications and infrastructure services within an

organization and among the collaborating parties. The heterogeneity of application tool

employed within and among engineering companies creates a demand for an

interoperability solution to achieve software integration. There have been many

approaches for developing software integration, ranging from localized integration and

client-server integration to Web-based integration and distributed integration.

• Localized Integration: The most primitive method for software integration

involves integrating software tools locally on a machine. Integration can also be

accomplished through the API (Application Protocol Interface) provided by the

application programs. An application can provide software interfaces that allow

other applications to communicate directly with the application. Examples of

software interfaces include RA (Primavera Automation Engine) in the Primavera

Project Planner and VBA (Visual Basic for Application) in Microsoft Project.

• Client-Server Integration: The client-server integration model aims at leveraging

the capabilities of typical corporate networks that consist of many low-end

computers and a few dedicated servers [57]. Typically, a project repository,

either in neutral files or a centralized database, resides on a server. All

applications communicate to the server to access the information. Most Web-

CHAPTER 1. INTRODUCTION 10

based (intranet or extranet) portals developed for construction project

management applications employ client server models. In essence, most of the

current Web-based tools focus on providing a common project repository of data

and tools.

• Distributed Integration: A distributed system integration model deals with

integrating applications on different (often heterogeneous) computers over private

or public, local or wide area networks. Examples of mechanisms that are

commonly used to support distributed applications include Remote Procedure

Call (RPC) [10], messaging [52], and distributed shared memory [43, 103].

With the continuing proliferation of the Internet and Web-based technologies, there have

been many research and development efforts to “publish” and to “support” independent

applications as Web services [78]. Conceptually, a typical Web service architecture

consists of three entities: service providers, services brokers, and service requesters [78].

• Service providers develop Web services, register them with service brokers, and

publish them on the Web.

• Service brokers act as bridges between service providers and service requesters;

they also maintain detailed lists of published Web services.

• Service requesters search the brokers’ lists, find the required services, and send

requests to the corresponding service providers.

The development of Web services is motivated by a need to represent information,

retrieve and update data, and reuse services provided by other parties over the network.

Currently, some of the features constituting Web services are as follows [18]:

• The basic principle of Web services is loose coupling; in other words,

components depend less on the implementation of the others. Web services are

not Remote Procedure Calls (RPCs) [10] or Common Object Request Broker

CHAPTER 1. INTRODUCTION 11

Architecture (CORBA) [75]. RPC is primarily designed for tightly bounded but

geographically distributed systems, while the principle behind Web services is

loose coupling. In CORBA messages are manipulated by instantiating objects;

however, document-style messages are used to communicate among Web

services.

• Web services communicate by passing messages structured in XML and packaged

according to the Simple Object Access Protocol (SOAP) [13]. XML can be used

to represent data in self-describing, platform-independent text, while SOAP

provides a simple protocol to create complex self-contained messages.

• Web services describe themselves using descriptive languages such as WSDL

(Web Services Description Language) [28] and support their own discovery using

mechanisms such as UDDI (Universal Description, Discovery and Integration)

[7].

To integrate distributed services over the Web, a data standard needs to be employed, so

that results can be reused by other applications. Network communication issues, such as

asynchronous messaging, also need to be addressed [12]. Furthermore, mechanisms for

invoking and terminating applications over the network have to be provided [62]. Many

emerging languages can assist in reusing Web services and conducting business

transactions [21]. Examples of some of the previous and current efforts are:

• XLANG, an extension of Web Service Description Language (WSDL), aims at

facilitating the orchestration of services [89]. XLANG uses WSDL to describe

the service interface of each participant. In XLANG, the basic constituents of a

process definition are actions. In addition to the inherited WSDL actions

(request/response, solicit response, one way, and notification), XLANG adds two

new actions: timeouts and exceptions. A service with a behavior represents an

interaction with other services; therefore, orchestrating services can be achieved

through sequencing the actions of the services.

CHAPTER 1. INTRODUCTION 12

• WSFL, an XML-based language, describes Web service compositions as part of a

business process definition [58]. There are two basic ways to compose Web

services using WSFL: (1) a flow model where the basic constituents are activities,

represented by nodes in a linked graph and each activity is associated with a

service provider for the execution of the process and (2) a (global) business

collaboration model to facilitate interactions between business partners.

• BPEL4WS, a product of the merger of WSFL and XLANG, provides the formal

specification of business processes and business interaction protocols [3].

BPEL4WS supports two distinct usage scenarios: implementing executable

business processes and describing non-executable abstract processes. As an

executable process implementation language, BPEL4WS is used to define a new

Web service by composing a set of existing services. For the second role,

BPEL4WS supports modeling the behavior of business protocols.

• The ebXML language is a set of specifications that enables enterprises to conduct

business over the Internet [34]. In other words, ebXML defines a framework

allowing enterprises to find each other and to conduct business based on well-

defined XML messages. BPML, a meta-language for modeling business

processes, provides an abstracted execution model for collaborative and

transactional business processes [8]. BPML represents business processes as the

interleaving of control flow, data flow, and event flow. BPML and ebXML are

complementary standards for business processes. While ebXML allows users to

specify the public interface of their business processes, BPML provides a standard

way to describe the corresponding private implementations.

• DAML-S is another ontology that has been developed to assist in automating Web

service tasks (e.g., discovery, composition, invocation, and monitoring) [5].

DAML-S defines an ontology, within the framework of the DARPA Agent

Markup Language, for Web services.

CHAPTER 1. INTRODUCTION 13

In summary, there have been many significant developments in recent years to help build

autonomous Web services. Web services have broad applications, ranging from real-time

price quoting to workflow management and enterprise application integration [18]. The

objective of this research is to extend current Web service models not only to allow

integration of business or engineering applications but also to provide facilities for

simulation using standalone and Web-based applications.

The focus of this research is to develop a simulation access language (SimAL) and

infrastructure framework for the access of project management applications to support

simulation and decision making. The effort follows closely the development of SimQL,

which consists of infrastructure environment and a descriptive language to execute and

reuse simulation results [99, 100]. The SimQL language includes a schema language and

a query language, which handle model creation and data query respectively. The SimQL

schema language allows users to register wrappers, to create models, and to update

models. Furthermore, the SimQL query language allows users to query information

based on the created models. Users can query information from the results using a SQL-

like SELECT statement. SimAL uses a Flow-based Infrastructure for Composing

Autonomous Services (FICAS) [60-62]. In FICAS, a service composition language,

CLAS (Compositional Language for Autonomous Services), which was derived from the

Composition Language for Autonomous Megamodules (CLAM) [79] has been provided

to specify and to invoke a megaservice. In addition to the primitives for invoking

services, CLAS also provides elements for asynchronous control, such as WHILELOOP,

LOCAL and BRANCH elements. SimAL modifies CLAS and extends its developments

to support simulation of engineering and project management activities.

CHAPTER 1. INTRODUCTION 14

1.4 Thesis Outline

This research aims to develop a simulation language with the necessary infrastructure that

would allow users to simulate different scenarios based on the existing project

management applications, thus helping them make decisions. Research on decision-

support in project management is not new. Our research emphasizes utilizing existing

project management tools rather than building a new predictive tool for decision support.

The objective of this research is to develop a simulation access language (SimAL) and

framework that facilitate the reuse of existing software tools. SimAL is designed as a

simple, high-level language that allows users to simulate and compare different scenarios

in project management.

The rest of this thesis is organized into the following five chapters:

• Chapter 2 explores the potential applications of the Process Specification

Language (PSL) for project management applications. This chapter first briefly

introduces PSL and discusses its major components. This chapter then elaborates

how to exchange information among project management applications using PSL.

A distributed data integration framework is proposed and implemented. Two

example projects are employed to demonstrate that information can successfully

be exchanged through the prototype system. This chapter also discusses the usage

of PSL for consistency checking and explores its applicability in constraint

scheduling. A formal mechanism to detect conflicts of project information arising

from different sources is presented. A few examples are provided to test the

approach.

• Chapter 3 elaborates the SimAL language and framework in detail. This chapter

first presents an overview of the SimAL system. The design criteria of SimAL

are elaborated, followed by the SimAL components and specifications. This

chapter then describes how to build a compiler for the SimAL language. The

CHAPTER 1. INTRODUCTION 15

SimAL framework and related implementation efforts are also discussed in this

chapter. An example is provided to demonstrate the usage and the potential of the

SimAL system.

• Chapter 4 uses three examples to demonstrate the SimAL system. The first

example illustrates how SimAL can incorporate external Web-based resources,

such as weather information, for project management applications. The second

example demonstrates that SimAL can be employed to quickly gather information

from different sources and to compare available options. The third example

illustrates the integration of CAD tools (e.g., AutoCAD) with scheduling tools

(e.g., the Primavera Project Planner and Microsoft Project).

• Chapter 5 discusses how a question answering system can provide a means of

directly extracting answers from the computer outputs of different project

management tools. This chapter examines issues involved in building such a

question answering system. Emerging industry standards, such as ifcXML, are

adopted as the knowledge representation format, and thus alleviate the manual

effort to build a knowledge base. Mechanisms of utilizing information in the

knowledge base are developed to support question understanding. A prototype

question answering system has been built and tested to illustrate the usefulness of

such a system for project management applications.

• Chapter 6 summarizes the contributions of this thesis and examines areas

important for future research.

Chapter 2

The Process Specification Language
(PSL) for Project Management
Applications

This chapter first briefly introduces the Process Specification Language (PSL), a logic-

based interchange standard. PSL was proposed by the National Institute of Standards and

Technology (NIST) to exchange manufacturing process information. While most data

exchange standards, such as STEP [49] and IAI’s IFC [46], deal primarily with product

data, PSL is designed specifically for process information [67, 80]. In this chapter, we

explore the applicability of PSL for the exchange of project management data [25].

Following the discussion of the language is an elaboration of how to exchange

information among project management applications using PSL. A distributed data

integration framework is proposed and prototyped. Two illustrative example projects are

employed to demonstrate that information can be successfully exchanged through the

prototype system.

Conflicts appear in a variety of forms, arise due to different reasons, and occur frequently

in many construction projects. It takes a great deal of time for project personnel to

resolve various conflicts. This chapter proposes a formal mechanism to detect conflicts

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 17

of project information arising from different sources. The implemented prototype has

been successfully tested on a few example projects. In addition to consistency checking,

the potential application of PSL in constraint scheduling is also explored. Large,

complex projects often involve many constraints. It usually takes a significant amount of

time for schedulers to ensure that a schedule meets all constraints. This chapter proposes

a method to express constraints in PSL and to check whether a project schedule meets

constraints. An example is provided to demonstrate that PSL has the potential to ensure

conformity of project schedules to scheduling constraints.

2.1 Overview of PSL

The Process Specification Language (PSL) has been designed to facilitate correct and

complete exchange of process information among manufacturing systems [67, 81]*.

Included in these applications are scheduling, process modeling, process and production

planning, simulation, project management, workflow, and business process

reengineering. This chapter discusses how to exchange information among distributed

project management tools using PSL. As will be discussed in Chapter 3, PSL is also

adopted as the basic data exchange language for project management applications in the

simulation access framework.

The PSL Ontology is a set of first-order theories organized into PSL-Core and a partially

ordered set of extensions. All extensions within PSL are consistent extensions of PSL-

Core, although not all extensions within PSL need be mutually consistent. Also, the core

theories need not be conservative extensions of other core theories. A particular set of

theories is grouped together to form the Outer Core; this is only a pragmatic distinction,

* PSL has been accepted as project ISO 18629 within the International Organisation of Standardisation,
and as of October 2002, part of the work is under review as a Draft International Standard. The complete
set of axioms for the PSL Ontology can be found at {http://www.mel.nist.gov/psl/psl-ontology/}.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 18

since in practice, they are needed for axiomatizing all other concepts in the PSL ontology.

The relationships among the core theories are depicted in Figure 2.1.

The purpose of PSL-Core is to axiomatize a set of intuitive semantic primitives that is

adequate for describing the fundamental concepts of manufacturing processes.

Consequently, this characterization of basic processes makes few assumptions about their

nature beyond what is needed for describing those processes, and the Core is therefore

rather weak in terms of logical expressiveness. Specifically, the Core ontology consists

of four disjoint classes: activities, activity occurrences, timepoints, and objects.

Activities may have zero or more occurrences, activity occurrences begin and end at

timepoints, and timepoints constitute a linearly ordered set with endpoints at infinity.

Objects are simply those elements that are not activities, occurrences, or timepoints.

Activity
Occurrences

Complex Activities

Atomic Activities

Subactivity Occurrence Trees

PSL-Core

Discrete State

Figure 2.1: Core Theories of the PSL Ontology (from [67, 81])

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 19

PSL-Core is not strong enough to provide definitions of the many auxiliary notions that

become necessary to describe all intuitions about manufacturing processes and project

activities. To supplement the concepts of PSL-Core, the ontology includes a set of

extended theories that introduce new terminology. These Outer Core theories provide the

logical expressiveness to axiomatize intuitions involving concepts that are not explicitly

specified in PSL-Core. The basic Outer Core theories include Occurrence Trees, Discrete

States, Subactivities, Atomic Activities, Complex Activities, and Activity Occurrences.

An Occurrence Tree is the set of all discrete sequences of activity occurrences. Discrete

States denote states and their relationships to activities. Subactivities are defined to

represent an ordering for aggregations of activities. Atomic Activities are defined to

capture concurrent aggregation of primitive activities. Complex Activities characterize

complex activities and the relationship between occurrences of an activity and

occurrences of its subactivities. Activity Occurrences ensure that complex activity

occurrences correspond to branches of activity trees. The remaining core theories in the

PSL Ontology include: Subactivity Occurrence Ordering (axiomatizing different partial

orderings over subactivity occurrence), Iterated Occurrence Ordering (axioms necessary

for defining iterated activities), Duration (augmenting PSL-Core with a metric over the

timeline), and Resource Requirements (which specify the conditions that must be

satisfied by any object that is a resource for an activity).

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 20

Table 2.1: Definitional Extensions of PSL (from [67, 81])

Definitional
Extensions

Core Theories Example Concepts

• Activity Extensions • Complex Activities • Deterministic/nondetermini
stic activities

• Concurrent activities
• Partially ordered activities

• Temporal and State
Extensions

• Complex Activities
• Discrete States

• Preconditions
• Effects
• Conditional activities
• Triggered activities

• Activity Ordering
and Duration
Extensions

• Subactivity Occurrence
Ordering

• Iterated Occurrence
Ordering

• Duration

• Complex sequences and
branching

• Iterated activities
• Duration-based constraints

• Resource Role
Extensions

• Resource Requirements • Reusable, consumable,
renewable, and deteriorating
resources

There is a further distinction between core theories and definitional extensions. Core

theories introduce primitive concepts, while all terminology introduced in a definitional

extension has conservative definitions using the terminology of the core theories. The

definitional extensions are grouped into parts according to the core theories that are

required for their definitions. Table 2.1 gives an overview of these groups together with

example concepts that are defined in the extensions. The definitional extensions in a

group contain definitions that are conservative with respect to the specified core theories;

for example, all concepts in the Temporal and State Extensions have conservative

definitions with respect to both the Complex Activities and Discrete States theories.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 21

2.2 Using PSL to Exchange Information among
Project Management Applications

To exchange information using PSL, wrappers for individual applications need to be

implemented, so that they are PSL compliant. Section 2.2.1 first discusses semantic

mapping between PSL and project management application concepts, an important step

in wrapping applications. Section 2.2.2 then elaborates on how to develop wrappers for

different project management tools.

2.2.1 Semantic Mapping between PSL and Project

Management Application Concepts

PSL was designed to exchange process information among manufacturing applications.

In a pilot implementation at NIST, PSL was successfully used to exchange manufacturing

process information between the IDEF3-based ProCAP and the C++ based ILOG

Scheduler [80]. Although PSL was initially created mainly for the manufacturing

industry, the core theories can be extended to construction project management and

scheduling applications.

In our research, we first selected a typical project management tool, the Primavera

Project Planner (P3), as the benchmark application to help define the core concepts for

construction project management. Primavera P3 is a software tool for organizing,

planning, and managing activities, projects, and resources. The following discussion

focuses on the semantic mapping between Primavera P3 and PSL.

To achieve interoperability using PSL, semantic mapping is needed for various reasons.

First, the same term may have different meanings in different applications and universes

of discourse. For example, the term successor in PSL means that there are no other

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 22

activities occurring between the two activities; however, in P3 the term does not have

such an implication and only indicates that one activity cannot start before the other.

Second, the same concept in different applications may be represented differently using

different terms. For instance, the terms Successor and Predecessor in P3 are used to

describe the dependency relationships; however, other terms, such as after-start and

after-start-delay, are used in PSL to describe the same concepts. To exchange project

scheduling information, we first need to map the concepts in different applications onto

the formal PSL ontology.

A typical construction project consists of a set of activities and the dependency

relationships among the activities. Construction activities can generally be categorized

into one of three types: production, procurement, and administrative activities. Each

activity has associated attributes, such as start date, duration, etc. Dependency

relationships describe the constraints defining the order in which the activities must occur

to complete the project [44]. There are four typical dependency relationships: Finish to

Start, Finish to Finish, Start to Start, Start to Finish. Figure 2.2 depicts the dependency

relationships and their respective definitions. For example, the “Finish to Start”

relationship between activity A and activity B means that B starts only after A completes,

and the “Finish to Finish” relationship indicates that A needs to complete before B does.

Each activity in a project schedule can be mapped onto an activity occurrence in PSL,

while the timepoint is used to specify the beginning and the end points of an activity

occurrence. PSL extensions provide terms to describe the dependency relationships

among activities. For example, the term before-start in PSL corresponds to the “Start to

Start” relationship, while the lag in the “Start to Start” relationship corresponds to the

PSL term before-start-delay. The PSL expression (before-start occ1 occ2 a3) specifies

that both occ1 and occ2 are subactivity occurrences of the activity a3, while the

beginning timepoint of occ1 is earlier than the beginning timepoint of occ2. In addition,

the expression (before-start-delay occ1 occ2 a3 d) implies that occ2 begins at least d

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 23

timepoints after occ1 begins. Table 2.2 lists the terms that are used in Primavera P3 and

PSL to describe activities and dependency relationships.

In addition to activity and relationship information, resource allocation also plays an

important role in project scheduling. A project schedule is not completely specified

unless the necessary resources are allocated. Resources include people, material, and

equipment required to finish the work. Resources can be mapped onto the lexicon

resource in PSL, which identifies the object required by an activity.

A B

(a) Finish to Start

A B

(b) Finish to Finish

A B

(c) Start to Start

A B

(d) Start to Finish

Figure 2.2: Dependency Relationships among Activities

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 24

Table 2.2: Mapping of Activities and Dependency Relationships

Concepts in
Primavera P3

PSL terms

Activity Activity occurrence

Predecessor, Successor Activity occurrence, before-start, before-finish, after-start,
after-finish

Start to Start before-start

Start to Finish before-finish

Finish to Start after-start

Finish to Finish after-finish

Dependency Lag before-start-delay, before-finish-delay, after-start-delay,
after-finish-delay

Semantic mapping between PSL and project management applications is not always

straightforward. For example, the total float concept in Primavera P3 cannot be directly

mapped to a corresponding PSL term. In Primavera P3, total float indicates the

maximum amount of time a task can be delayed without postponing the whole project.

To express the total float concept, we need a set of PSL expressions. For example,

assuming that in Primavera P3 there is a project (proj1) with the scheduled completion

date on March 10, 2003, the activity A is scheduled to finish on October 7, 2002 with a

total float of 3 days. To express the total float concept in the above example, we need to

use the following PSL expressions.

(=> (beforeEQ (endof A) 10/10/2002) (beforeEQ (endof proj1) 03/10/2003))

(=> (before 10/10/2002 (endof A)) (before 03/10/2003 (endof proj1)))

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 25

Here October 10, 2002 is the completion date of the activity A if it is delayed by exactly 3

days. The first PSL expression implies that if A is delayed by no more than 3 days, the

project will be completed on time with the end date of the project remains to be March

10, 2003. The second PSL expression indicates that if the end date of activity A is

beyond October 10, 2002, the project completion date will then be postponed beyond

March 10, 2003.

Generally speaking, PSL has more expressive power than many project management

tools. In particular, PSL has the capability to express uncertainty, conditioning, and

universal and existential relations. As an example, the following PSL expressions can be

used to indicate that a construction activity may require different resources depending on

the result of other activities.

 (activity-occurrence pourConcrete)

 (doc pourConcrete “Pouring Concrete”)

 (=> (beforeEQ (endof formColumns) 11/20/2002) (demand constructionWorker

pourConcrete 3))

 (=> (before 11/20/2002 (endof formColumns)) (demand constructionWorker

pourConcrete 6))

 (after-start pourConcrete formColumns proj1)

Here, the activity pourConcrete requires different resources depending on its predecessor

formColumns. If the activity formColumns is not completed before November 20, 2002,

then the activity pourConcrete would require more construction workers. This

conditioning expression, however, cannot be represented or encoded using project

management tools that primarily handle deterministic scheduling.

Let’s look at a mapping example between Primavera P3 and PSL. Figure 2.3 shows the

major activities involved in the schedule of a typical residential building project. The

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 26

project schedule is shown as a PERT (Primavera's Easy Relationship Tracing) chart from

the Primavera Project Planner. In the project, the activity “Frame House” needs to finish

before either the activity “Frame Roof” or “Install HVAC” can start. After the

completion of these two activities, the activity “Install Drywall” can proceed. Figure 2.4

shows the ASCII outputs of the scheduling and resource information of the project plan

from Primavera P3. For example, as shown in Figure 2.4, the activity “Frame House”

starts on August 5, 2002 and lasts 15 days, while the activity “Install Drywall” needs the

resource “drywall” to proceed.

The scheduling information in Primavera P3 can be described precisely using PSL.

Figure 2.5 shows portion of the PSL expressions for the example project. Here,

ResProject is the project identifier of the example residential building project. The PSL

expressions (after-start ID100 ID110 ResProject) and (after-start-delay ID100 ID110

ResProject 0) specify that the activity ID110 (“Frame Roof”) needs to start after the

completion of the activity ID100 (“Frame House”) with no lag between the two activities.

The PSL expression (available drywall ID130) indicates that the resource drywall is

available for the activity ID130 (“Install DryWall”), while the PSL expression (demand

drywall ID130 2220) specifies that the activity ID130 requires 2200 square feet of

drywall.

Figure 2.3: Example Dependency of a Scheduling Chart in Primavera P3

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 27

 ACT TITLE ES EF TF RD
---------- --------------- -------- -------- ----- ----
ID100 Frame House 5AUG02 23AUG02 0 15
ID130 Install Drywall 5SEP02 2OCT02 0 20
……

ACT RES RUT QTC QAC
---------- -------- ---- ------------- ------------

ID130 DRYWALL sqft 2200.00 2200.00
……

Figure 2.4: Schedule and Resource Information from Primavera P3

(and
(activity-occurrence ID100)
(doc ID100 "Frame House")
(beginof ID100 08/05/2002)
(duration-of ID100 15)
(after-start ID100 ID110 ResProject)
(after-start-delay ID100 ID110 ResProject 0)
......

)
(and

(resource drywall)
(available drywall ID130)
(demand drywall ID130 2220)

)
......

Figure 2.5: PSL Expressions for the Example Chart in Primavera P3

2.2.2 Wrapping Project Management Applications

There are many commercial software tools as well as in-house computer programs that

have been developed for project management. These tools use different internal

representations and usually do not communicate to each other. To achieve

interoperability, different approaches have been proposed over the past decades. Among

them are direct translation, neutral file-based integration, centralized database, and

software interface. The pros and cons of these approaches are summarized in Table 2.3.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 28

Table 2.3: Pros and Cons of Different Data Integration Approaches

Methods Pros Cons

Direct
Translation

• Only one translator is
needed to achieve
integration if there are
only two programs.

• It requires the cooperation of two
software developers to achieve
interoperability.

• As the number of applications
increase, the translators needed
increase dramatically.

Neutral
File
Based
Translation

• Only one translator is
needed for each
application.

• Software developers
focus on the translator of
their own tools.

• It requires more work if there are
only two tools involved.

Centralized
Database

• This approach has the
potential to ensure that
all participants have the
latest information.

• It could be difficult to define a
common schema.

• It requires extra programming
effort to interact with database.

Software
Interface

• This approach has more
flexibility in automating
the translating process.

• Programmers need to understand
APIs of individual tools.

• It may require significantly more
programming effort.

• It may not work when no API is
provided.

To achieve interoperability among computer tools using PSL, it is necessary to develop

wrappers for each individual tool. The specific implementation might be different

depending on individual tools. There are two major considerations in selecting an

appropriate approach to wrapping a legacy application:

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 29

• The Input/Output methods the legacy application supports.

Typical Input/Output (I/O) methods includes application programming interface

(API), neutral files, proprietary files, databases, and interactive interfaces.

Different legacy applications may support some or all of the methods. The

wrapping approach is thus limited to the I/O methods that the legacy tool

supports. For example, we cannot use the API approach to interact directly with a

legacy tool if the tool does not provide programming interface.

• Developer’ requirement

When more than one Input/Output method is provided by a legacy tool, it is up to

the software developers to choose a method based on their specific requirements.

For example, file-based approaches require less programming effort than the API-

based approach; however, they also provide less flexibility in automation. In this

research, the goal is to automate the data integration process as much as possible;

thus, the programming interface approach is employed whenever possible.

To exchange project scheduling information among different project management

applications, we need to develop wrappers for each application. The PSL wrappers are

used to retrieve and transfer information between the applications, to map between

application concepts and PSL ontology, and to parse and generate PSL files. Figure 2.6

shows a variety of software applications that have been wrapped using PSL. Currently,

these applications include the Primavera Project Planner (P3), Microsoft Project, Vite

SimVision, 4D Viewer, AutoCAD Architectural Desktop, the GeneralCost Estimator, and

Microsoft Excel. As depicted in Figure 2.6, wrappers for individual applications need

different implementations. The implementations of a few wrappers are listed as follows:

• For Vite SimVision, we use Java Database Connectivity (JDBC) to parse the

relevant information stored in the Access database created by the tool, translate

the information into PSL, and create a PSL file. For the PSL to Vite SimVision

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 30

translation, the information in the PSL file is parsed and rewritten into VNB

(Access database) file format.

• For Primavera P3, the Primavera Automation Engine (RA) is employed. The RA

is a set of object-oriented, OLE 2.0-based API, which allows object-oriented

programming access to the P3 scheduling engine and other applications. We use

RA to communicate with P3, such as retrieving project scheduling information

from P3 and transferring this information to P3.

• For Microsoft Project, VBA (Visual Basic for Application) as well as the

Microsoft Project Object Model is employed. The process here is very similar to

the communication protocols for Primavera P3.

• For 4D Viewer (McKinney and Fischer 1998), the scheduling information from

the PSL file is retrieved and converted into ASCII format required by the 4D

Viewer.

• For Microsoft Excel, VBA is employed as the programming language. In

addition, the Microsoft Excel Object Model is utilized to retrieve and update

project information.

• For AutoCAD Architectural Desktop (ADT), we use VBA as well as the

AutoCAD ActiveX Object Model.

• The GeneralCost Estimator is a cost estimating tool running in Microsoft Excel.

The wrapping process for the tool is similar to the process for Microsoft Excel,

except that the data structures and functionalities provided by the estimator are

also utilized.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 31

PSL Files

Convert to PSL format PSL parser

Map PSL ontology to concepts in
individual software

Retrieve information from
applications

P3: Primavera Automation
Engine
MS Project, MS Excel, GC

Estimator: VBA + application
modules
Vite SimVision: JDBC

Map concepts into formal PSL
ontology

Feed information into applications

P3: Primavera Automation Engine
MS Project, MS Excel, GC

Estimator, AutoCAD: VBA +
application modules
Vite SimVision: JDBC
4D Viewer: Plain text

Primavera
P3

MS
Project

Vite
SimVision 4D Viewer

MS Excel GeneralCost
Estimator

AutoCAD
ADT

Project
Management
Applications

Wrappers

Retriving and
Updating

Information

Ontology
Mapping

Syntactic
Translatiom

Figure 2.6: PSL Wrappers

As shown in Figure 2.7, the wrapping process is decomposed into three modules: I/O

modules, mapping modules, and translation modules. By decomposing a wrapper into

three modules, we standardize the wrapping process and improve the reusability of

previous modules.

• A syntactic translation module include a PSL parser and generator, which are

responsible for parsing and generating PSL files according to the PSL syntax,

respectively. This module can be reused by wrappers for other project

management tools with no or minimal changes.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 32

• Semantic mapping depends not only on the PSL ontology but also on the concepts

used in the individual applications. For many applications in the same domain,

the concepts are similar. Thus, the semantic mapping module can also be reused

by future PSL wrappers with appropriate changes in the terminology of

application concepts.

• Input/Output (I/O) modules are responsible for retrieving and updating

information in project management tools. The implementation of an I/O module

depends on the I/O methods supported by the tool and its internal data

representations. Thus, I/O modules cannot be reused if project management tools

do not support the same Input/Output methods. However, these modules can also

be partly reused among a number of project management tools. For example,

Microsoft Project, Microsoft Excel, AutoCAD ADT, and the GeneralCost

Estimator all support VBA programming. The only difference is their individual

Object Modules. Thus, a significant part of the I/O modules can also be reused

among the wrappers for these applications.

As noted, modularizing the wrappers encourages shareability and reusability of the codes

for different application tools. In summary, the syntactic translation modules have the

greatest reusability, because they deal with PSL files in standard ontology. On the other

hand, the I/O modules have to interact with different project management tools; thus,

they are less likely to be reusable.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 33

Project Management Tools
� Different Internal Data Representations
� Different Input/Output Methods

PSL Files
(Standard

 PSL Ontology)

I/O Module
(Retrieving and Updating Information)

Mapping Module
(Senmantic Mapping)

Translation Module
(Syntactic

Translation)

Figure 2.7: The Decomposition of PSL Wrappers

A PSL parser, as part of the wrappers, has been developed to read the project scheduling

information from PSL files. One simplification we made in the PSL parser is that PSL

sentences are expressed as relations rather than functions. In PSL, each function has a

unique value; for example, in the PSL expression (endof A), the activity A can only have

one unique completion date. In contrast, the value of a relation is either true or false;

furthermore, relations can have disagreement on the last element. For example, the

relations (before t1 t2) and (before t1 t3) differ. As a result, every function can be

expressed as an equivalent relation with axioms that ensure the uniqueness of values,

while not every relation can be expressed as a function. Therefore, using relations is

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 34

usually more convenient than using functions and minimizes unnecessary confusions and

complexities in implementing the PSL parser.

It should be noted that only the information that is common to the applications can be

exchanged. As shown in Figure 2.8, the Primavera Project Planner (P3) includes

scheduling, resource, and cost information, while Vite SimVision provides scheduling,

resource, communication, and organizational information. Scheduling and resource

information, which is common to both applications, can be exchanged through PSL.

However, not all scheduling and resource information is exchanged between these two

applications, since the granularity of such information may be different. For example,

Primavera P3 includes more detailed scheduling information than Vite SimVision; in

other words, not all scheduling information in Primavera P3 is needed by and transferred

to Vite SimVision.

Scheduling

Resource

Cost
......

Scheduling

Resource

Communication

Organiztion
......

Primavera P3 PSL Vite SimVision

Figure 2.8: Exchange Information between Primavera P3 and Vite SimVision through
PSL

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 35

2.3 Distributed Data Integration Infrastructure

Various architectures have been proposed to achieve software integration, such as

localized integration, client-server integration and distributed integration. Localized

integration involves integrating various software tools on one machine (e.g., a desktop

PC). In a client-server environment, software integration is often accomplished using a

project repository, which is either a neutral file or a database, residing on a central server,

to which all applications communicate to exchange information. In a distributed

environment, applications reside on different computers and are accessed over private or

public, local or wide area network.

In a construction project, it is not unusual that project management tools are

geographically distributed. The goal of a distributed integration infrastructure is to link

application tools and to act collaboratively on a project. We have prototyped a

distributed integration infrastructure using PSL as the information interchange standard

among different project management tools [26]. As shown in Figure 2.9, a

communication server is used to serve as the backbone of the system. The

communication server is responsible for listening requests from the communication

agents associated with different project management applications. When the server

receives a request, it broadcasts the request to different communication agents. For

example, the server may ask a communication agent to invoke a scheduling service or ask

the agent to transfer the scheduling result to another simulation tool. The communication

agents then pick up the request and process it. In addition, the Oracle database is used to

store the project information, so that users can access and update project information

through a Web browser.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 36

Primavera
P3

Microsoft
Project

Oracle 8i
Relational
Database

Microsoft
Excel

Vite
SimVision

Communication
Server

4D viewer

PSL Wrapper

Communication Agent

PSL Wrapper

Communication Agent

......

......

AutoCAD
ADT

GeneralCost
Estimator

 Project
Management

Tools
Distributed
at Different
Locations

Web
Browser

Figure 2.9: A Distributed Integration Infrastructure

2.3.1 Translation between PSL and Database

The Oracle database is used to store project information so that it is accessible by users

through a Web browser. To use the database for data exchange, a database schema needs

to be defined. Table 2.4 illustrates the database schema in the current implementation.

The PROJECT table stores the overall information of projects. The ACTIVITY,

SCHEDULE, and DEPENDENCY tables are used to describe activities and their

relationships in the projects. The ACTOR table describes project participants, while the

ASSIGNMENT table stores the assignment information of project activities. All cost

information is stored in the COST table.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 37

Table 2.4: A Database Schema for the Project Repository

Tables Attributes

project projectid, description, companyname, workday, workhour, startdate,
finishdate, costid

activity projectid, activityid, description, costid, scheduleid

actor projectid, actorid, description, role, hourwage

cost projectid, costid, actualcost, budgetedcost

schedule projectid, scheduleid, startdate, finishdate, actualstart, actualfinish,
earlystart, earlyfinish, latestart, latefinish, duration, actualduration,
freefloat, totalfloat

dependency projectid, dependencyid, activityid1, activityid2, relationship,
 driving, lag

assignment projectid, assignmentid, activityid, actorid

Once the schema is defined, a Java program is developed and employed to translate the

information between PSL and database. Figure 2.10 illustrates the translation process.

JDBC is used to establish connection to the database, and SQL statements are used to

query project information in the database. The information is then written into PSL

according to the syntax. In the reverse process, we can reuse the PSL parser that has

already been developed to parse project information. SQL operations are constructed

based on the information. The program finally connects to the database and writes the

information into the database.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 38

Oracle 8i
Relational
Database

PSL ParserConstruct SQL
Sentences

Wrtie to
Database

Write Results to
PSL

Use SQL to
Query Databse

Connect to
Databse

PSL
Files

Figure 2.10: Translation between Database and PSL

2.3.2 Network Communication in the Distributed

Integration Framework

The network communication mechanism in the distributed integration framework is

illustrated in Figure 2.11. Java socket communication is used as the protocol between the

communication server and agents. A communication agent consists of an event listener,

an event dispatcher, and a data mapper. The messages in the system include control

messages and data messages. Control messages, such as invocation and termination

requests, are typically small in size. Data messages, such as the project scheduling

information and organization information, however, are usually bigger in size. The event

listener receives control messages, while the event dispatcher sends out control messages.

The data mapper is responsible for sending and receiving data messages.

Figure 2.12 shows a Java code segment of an event listener. The listener first defines two

data streams: one input stream and one output stream. It then creates a Socket on a

specific port. Finally, it keeps listening on the port to see if there are messages from the

server.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 39

Data Flow

Control Flow

Communication Server

Event
Listener

Data
Mapper

Event
Dispatcher

Event
Listener

Event
Dispatcher

Data
Mapper

Communication Agent

Java Socket
Communication

Figure 2.11: A Network Communication Framework

Public class ClientListener{

protected DataInputStream i; protected DataOutputStream o;
public static void main (String args[]) throws IOException {

Socket s = new Socket (args[0], Integer.parseInt (args[1]));
ClientListener client = new ClientListener(" " + args[0] + ":" +

args[1], s.getInputStream (), s.getOutputStream ());
client.waitForEvent();
s.close(); }

public void waitForEvent () {
try { String line = i.readUTF ();}
……}

......
}

Figure 2.12: The Code Segment of an Event Listener

2.4 Demonstrations of Distributed Data Integration

In this section, two examples are used to demonstrate the integration of distributed

project management tools. We have conducted a number of demonstrations between

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 40

Glasgow Caledonian University in Scotland and Stanford University [27]*. In the

demonstrations, the Oracle database server, the 4D Viewer, and the Vite SimVison are

located at Stanford University, while the scheduling services (e.g., Microsoft Project and

the Primavera Project Planner) reside at Glasgow Caledonian University.

2.4.1 Example 1: A Chip Design Scenario

We select a sample project from the tutorial of Vite SimVision software to test PSL for

the exchange of project scheduling information. A Vite SimVision project is composed

of a traditional CPM diagram and additional links showing failure dependence, reciprocal

information, and management structure. The example scenario, as shown in Figure 2.13,

is to design and fabricate a chip set for a new personal digital assistant (PDA) product.

There are 12 activities in this project. Among the 12 activities there are three milestone

activities: (1) Start Project, (2) Ship Tapes to Foundry, and (3) Fab, Test and Deliver. The

activity “Design_Coordination” maintains the overall control of the project.

Using PSL, we successfully exchange scheduling information among Vite SimVision, the

Primavera Project Planner (P3), and Microsoft Project. Figure 2.14 shows some selected

logic sentences from the PSL file particular to this project. These logic sentences specify

the properties of the project and activities in the project. For example, the expression

(beginof TUTO 9/18/1998) specifies that the TUTO project starts on 9/18/1998. The

expression (after-start ID190 ID200 TUTO) specifies that the task ID190 should finish

before the task ID200 starts.

* The demonstrations were conducted in collaboration with Professor Bimal Kumar of Glasgow

Caledonian University, UK.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 41

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

PartitionChip
& Floor

Planning
Generate Test

VectorsShip Tapes
to Foundry

Design_Coordination

Figure 2.13: Original CPM Diagram in Vite SimVision

(and
(project TUTO)
(doc TUTO "TUTORIAL Project")
(beginof TUTO 9/18/1998)
(subactivity-occurrence ID100 TUTO)

……
)
(and

(activity-occurrence ID190)
(doc ID190 "PartitionChip & Floor Planning")
(beginof ID190 10/19/1998)
(duration-of ID190 42)
(after-start ID190 ID200 TUTO)
(after-start-delay ID190 ID200 TUTO 0)

……
)

Figure 2.14: Sample PSL File

Figures 2.15 to 2.17 illustrate the generated schedule in Vite SimVision, P3, and

Microsoft Project. Figure 2.15 is the original Gantt chart of the sample project in Vite

SimVision. Figures 2.16 and 2.17 show the regenerated project schedule in P3 and

Microsoft Project, respectively. As shown in the figures, project scheduling information

is successfully exchanged among these three applications. Activities have the same start

date and duration in all three applications. The critical paths are also the same in all three

applications.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 42

Figure 2.15: Original Gantt Chart in Vite SimVision

Figure 2.16: Regenerated Schedule in Primavera P3 using PSL

Figure 2.17: Regenerated Schedule in Microsoft Project using PSL

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 43

In this example scenario, the scheduling information from Vite SimVison is retrieved and

converted into a PSL file. The information in the PSL file is then parsed and used to

regenerate the project schedule in the Primavera Project Planner and Microsoft Project.

The successful information exchange among these applications shows the potential of

PSL as an interchange standard in construction project management.

2.4.2 Example 2: Mortenson Ceiling Project

We demonstrate the scalability and applicability of PSL as an interchange standard

through the Mortenson Ceiling Project, which is part of the Walt Disney Concert Hall,

built by Mortenson Construction and designed by Frank O. Gehry & Associates*. There

are 191 activities and 459 dependency relationships in this example project. PSL is

employed as the data standard to exchange project scheduling information among

Primavera P3, Microsoft Project, and 4D Viewer. The PSL file of this project contains

more than 2000 logic sentences.

Figures 2.18 to 2.20 show selected results of this example demonstration. Figure 2.18 is

the original Gantt chart of the ceiling project in the Primavera Project Planner (P3).

Figure 2.19 shows a snapshot of the construction progress in 4D Viewer on March 25,

2001. The scheduling information originally in P3 is successfully transferred to

Microsoft Project using PSL, as shown in Figure 2.20.

To further illustrate the information exchange process, we altered the duration of activity

18T1-33201 from 1 day to 40 days in Microsoft Project, as shown in Figure 2.21. The

regenerated information is exchanged and displayed using P3 in Figure 2.22 and 4D

Viewer in Figure 2.23. The successful information exchange on this project demonstrates

the scalability, applicability, and robustness of PSL as an interchange standard.

* The building model and the 4D viewer were provided by Professor Martin Fischer and his research

group at Stanford University.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 44

Figure 2.18: Original Schedule in Primavera P3

Figure 2.19: Model in 4D Viewer Taken on March 25, 2001

Figure 2.20: Regenerated Gantt Chart in Microsoft Project using PSL

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 45

Figure 2.21: Updated Project Schedule in Microsoft Project

Figure 2.22: Updated Project Schedule in Primavera P3

Figure 2.23: Updated Model in 4D Viewer Taken on March 25, 2001

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 46

2.5 PSL for Consistency Checking

2.5.1 Conflicts in Project Management

Conflicts are ubiquitous in everyday life. The Oxford English Dictionary defines conflict

as “the clashing or variance of opposed principles, statements, arguments, etc.” Brown

[17] defines conflict as “a form of interaction among parties that differ in interests,

perceptions, and preferences.”

Conflicts are commonplace on large construction projects, since each project by itself has

its unique character and thus is a new venture. No two building products are exactly the

same. To name a few, design specifications, site conditions, management teams, and

financial situations vary from project to project. Experiences gained from past projects

cannot be fully transferred to new ones. The information at hand is often conflicting,

inconsistent, and incomplete.

Project personnel spend a great deal of time handling various conflicts. It has been

estimated that as much as 80% of their time is spent dealing with conflicts [84].

Conflicts arise due to many factors and can occur from time to time during the course of

a construction project. The interaction of different intellects, beliefs, cultures,

personalities, and educational backgrounds may all generate conflicts. Design changes,

unexpected weather conditions, labor actions, and procurement delays are common bases

for conflicts during various project stages. One method to classify conflicts is by the

source of conflicts, as follows [85]:

• Conflict of interests, the discrepancy among involved parties on preferred

outcomes.

• Conflict of values, the discrepancy in beliefs or ideologies.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 47

• Conflict of opinions, the discrepancy in the best way to accomplish a shared goal.

• Conflict of information, the discrepancy in project information (e.g., scheduling,

resources, physical conditions).

This research focuses on conflicts of information in project management. In a distributed

engineering environment, such conflicts occur more often due to incremental changes and

miscommunications. For example, a subcontractor may change its sub-schedule without

realizing the potential impact on other project participants. Thus, conflicts occur among

the schedules of different participants.

2.5.2 Review of Existing Approaches in Conflict

Resolution

There are two major approaches to solving information inconsistency problems in project

management. One method is to employ a centralized database, where all project

information is stored. The other one is to use various heuristic approaches for specific

domain problems.

A centralized database enables all project participants to be in tune with the latest

information; thus, version conflicts can be eliminated with this approach. However, this

approach does not address any logic conflicts. For example, a centralized database can

ensure that all participants have the latest information, but it cannot ensure that there are

no internal conflicts in the information itself.

Heuristic approaches are employed to solve many specific conflicts in project

management. For example, Akinci et al. [2] developed a taxonomy to categorize and

detect time-space conflicts. The drawback is that it is difficult to generalize such

heuristic solutions to handle conflicts that are outside of the defined domain problem.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 48

2.5.3 Consistency Checking using PSL

PSL can be used to check the consistency of project information from different sources.

In particular, PSL can be used to detect logic conflicts in the project base, where

information comes from heterogeneous applications. For example, as illustrated later,

our initial investigation shows that it is possible to detect version conflicts and cyclic

dependency relationships between the Primavera Project Planner and Microsoft Project.

With the conflicts found, it will be relatively easy to trace back to the sources of the

conflicts. In addition, project personnel can check assumptions using PSL. For instance,

suppose one would like to find out whether an activity can start on a specific date, say on

November 15, 2001 without causing conflicts with other activities or prolonging the

project. With PSL, we can add one piece of knowledge, which in PSL format would be

(beginof activity 2001-11-15), into the PSL knowledge base, and reason on the whole

knowledge base. If no conflict is found during the reasoning, project personnel can infer

that the assumption is reasonable; in other words, in this example, the activity can start on

November 15, 2001.

Figure 2.24 depicts the basic process for detecting the conflicts or inconsistency of

project information in the prototype implementation. PSL wrappers are employed to

retrieve project information from different applications. In this work, we employ a

theorem-prover---Otter (Organized Techniques for Theorem-proving and Effective

Research)---as the logic reasoning tool [65, 102]. Otter infers conclusions from given

hypotheses and takes two types of input: logic clauses and first-order logic sentences.

Internally, Otter converts all inputs into logic clauses and applies inference rules to all

possible logic clauses to infer new facts or conclusions.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 49

Primavera
P3

Microsoft
Project Vite

PSL Files

Otter Input

PSL Axioms

4D Viewer

Reasoning Results

......

......PSL
Wrapper

PSL
Wrapper

PSL
Wrapper

PSL
Wrapper

PSL to Otter
Translator

Otter
(First Order Logic

Reasoning Tool)

Figure 2.24: Consistency Checking using PSL

To utilize Otter, a translator has been developed to convert PSL files and PSL axioms

into first-order logic sentences that Otter can understand. Both PSL and Otter inputs are

based on first-order logic, and they have only minor differences in syntax. For example,

in PSL a predicate and its variables are all within a pair of parentheses, while in Otter a

predicate is followed by a pair of parentheses containing its variables. Figure 2.25 shows

the translation from PSL files to Otter inputs.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 50

(activity-occurrence 00H0-8011D)
(beginof 00H0-8011D 2001-01-31)
(duration-of 00H0-8011D 90)
(freefloat 00H0-8011D 0)
(totalfloat 00H0-8011D 29)
(after-start 00H0-8011D 00H0-8011S
CEIL)
(after-start-delay 00H0-8011D 00H0-
8011S CEIL 0.0)

PSL Expressions

activity_occurrence(00H0_8011D).
beginof(00H0_8011D, 11384).
duration_of(00H0_8011D, 90).
freefloat(00H0_8011D, 0).
totalfloat(00H0_8011D, 29).
after_start(00H0_8011D,
00H0_8011S, CEIL).
after_start_delay(00H0_8011D,
00H0_8011S, CEIL, 0).

Otter Input

Figure 2.25: Converting PSL Expressions into Otter Input

Project knowledge base
� PSL Core, PSL Outer Core, and PSL Extensions
� Project Specific Knowledge

Knowledge
to be added

Knowledge
to be deleted

Infer new
knowledge

Rewrite
Knowledge

Update
knowledge

base

Figure 2.26: Simplified Reasoning Process in Otter

The reasoning process using Otter is summarized in Figure 2.26. Otter first infers new

conclusions from the existing knowledge base. Otter then rewrites the new knowledge

and checks whether it is subsumed by the existing knowledge. If not, the new knowledge

will be added to the existing knowledge base; otherwise, it will be deleted. Usually, the

reasoning process will stop either when Otter finds conflicts or when no further

conclusions can be inferred.

The knowledge base includes two main parts: (1) axioms and definitions from PSL Core,

PSL outer core, and PSL Extensions; and (2) facts of individual projects from

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 51

heterogeneous sources. The reasoning among the axioms and definitions can

significantly slow the reasoning process without producing essential results. We

therefore partition the inputs into two lists: the axioms on the usable list and the project-

specific facts on the SOS (set of support) list. The performance of Otter can be

significantly improved by separating the project specific knowledge and the PSL

axioms/definitions. For example, in the chip design project to be presented in the

demonstration section, Otter takes only seven seconds to complete the reasoning, as

compared to several hours without partitioning.

2.5.4 Demonstration of the Consistency Checking

Prototype

This section presents an example to demonstrate how PSL can be used for consistency

checking. A chip design scenario is used to test the potential of PSL for consistency

checking purpose. The example project includes the design and fabrication of a chip set

for a new personal digital assistant (PDA) product. It involves managing design tasks as

well as the foundry’s layout, testing, and manufacturing tasks. Here we assume that there

are two groups working on the project: one primarily responsible for the foundry’s

layout, and the other primarily responsible for testing and manufacturing tasks. We

assume that the two groups employ different application software and work on the

schedule independently but collaboratively. In addition, we assume that group 1 uses

Primavera P3 to create the detailed schedule. Moreover, in this group’s schedule the

“Eng Layout & Physical Ver’n” task is assumed to start after the “General Test Vector”

task. Figure 2.27 shows the group 1’s schedule in Primavera P3, and Figure 2.28 shows

the group’s CPM diagram.

For group 2, Microsoft Project is employed as the project management tool.

Furthermore, the task “PartitionChip & Floor Planning” is split into two tasks: task

“PartitionChip” and task “Floor Planning.” In addition, in the schedule, group 2 assumes

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 52

that the task “Sim_Gates” should follow the task “Eng Layout & Physical Ver’n.” Figure

2.29 shows group 2’s schedule in Microsoft Project, and Figure 2.30 shows the CPM

diagram.

Figure 2.27: Group 1’s Schedule in Primavera P3

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

PartitionChip
& Floor

Planning

Generate Test
Vectors

Ship Tapes
to Foundry

Design_Coordination

Figure 2.28: Group 1’s CPM Diagram

Figure 2.29: Group 2’s Schedule in Microsoft Project

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 53

Start
Project

Fab, Test
and Deliver

Develop
Specification

Write-Verify-
Synth_B1RTL FullChipSynth

Sim_Gates

Eng Layout &
Physical Ver'n

Assemble &
verify_RTL

Generate Test
Vectors

Ship Tapes
to Foundry

Design_Coordination

Floor Planning

PartitionChip

Figure 2.30: Group 2’s CPM Diagram

To check for inconsistencies in the two schedules, we first use PSL wrappers to retrieve

project information from Primavera P3 and Microsoft Project. We then store the

information in PSL files, convert the PSL files into Otter format, and link the project

information with Otter. Finally, Otter is employed to reason about the project knowledge

base and to detect conflicts. Figure 2.31 shows the results obtained from the reasoning.

In the last sentence, the “$F” indicates that a conflict has been found; the sentence

numbers 333 and 47 can be used to traced the sources of conflicts. In particular, the

sentence after_start(ID110,ID180,TUTO) specifies that ID110 (“Sim_Gates”) should

finish before ID180 (“Generate Test Vectors”) starts. Similarly,

after_start(ID180,ID160,TUTO) indicates that ID180 completes before ID160 (“Eng

Layout & Physical Ver’n”) starts, while after_start(ID160,ID110,TUTO) indicates that

ID160 completes before ID110 starts. The conflict detected is graphically depicted in

Figure 2.32. A cyclic dependency relationship in the project schedule is detected because

the task “Sim_Gates” needs to start after the task “Eng Layout & Physical Ver’n” is

completed, while at the same time the activity “Eng Layout & Physical Ver’n” needs to

start after the activity “Sim_Gates” finishes.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 54

44 [] -after_start(x100,x101,x102)| -
after_start(x101,x103,x102)|after_start(x100,x103,x102).
47 [] -after_start(x111,x112,x113)| -
after_start(x112,x111,x113).
85 [] after_start(ID110,ID180,TUTO).
136 [] after_start(ID180,ID160,TUTO).
252 [] after_start(ID160,ID110,TUTO).
310 [hyper,136,44,85] after_start(ID110,ID160,TUTO).
333 [hyper,310,44,252] after_start(ID160,ID160,TUTO).
361 [hyper,333,47,333] $F.

Figure 2.31: Reasoning Results in Cyclic Dependency Relationships

Sim_Gates Generate
Test Vectors

Eng Layout &
Physical Ver'n

From Primavera P3

From MS Project

Figure 2.32: Cycle in Dependency Relationships

In addition to logic conflicts in the activity relationships, other conflicts (e.g., conflicts

arising due to versioning problems) can also be detected. For example, the same activity

may have different start dates or durations in Primavera P3 and Microsoft Project. To

find these conflicts, we can simply add the following axioms into the knowledge base.

(forall ?a ?t1 ?t2 (=> (beginof ?a ?t1) (beginof ?a ?t2) (= ?t1 ?t2))

(forall ?a ?d1 ?d2 (=> (duration-of ?a ?d1) (duration-of ?a ?d2) (= ?d1 ?d2))

The first axiom specifies that the start date of an activity is unique. In other words, if an

activity has two start dates, these two start dates must be equal. Similarly, the second

axiom specifies that the duration of an activity is unique. These axioms will guarantee

that an activity has a unique start date or duration. With these axioms added into the

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 55

project knowledge base, Otter can detect those activities that have different start dates or

durations in Primavera P3 and Microsoft Project.

Figure 2.33 shows the sample conflict of the start dates of the activity ID210 (“Fab, Test

and Deliver”) detected by the reasoning tool. The first logic sentence in Figure 2.33

indicates that an activity must have a unique start date. Since Otter cannot directly

operate on dates, we assume 01/01/1970 as the base date and use the Java class Calendar

to convert the dates into numeric values. The second logic sentence

beginof(ID210,10738) specifies that the activity ID210 starts at 10738 that is equivalent

to 04/27/1999, as shown in Figure 2.27, which displays the project schedule using

Primavera P3. Similarly, in the logic sentence beginof(ID210,10773), the numeric value

10773 corresponds to the date 06/01/1999, which is the start date of the activity ID210

from the schedule shown in Figure 2.29 using Microsoft Project. The last logic sentence

in Figure 2.33 concludes that the activity ID210 has different start dates in the schedules

from Primavera P3 and Microsoft Project, thus causing inconsistency.

The above examples show that PSL can be used to detect inconsistencies in the project

knowledge base. Following the proof process, we can trace the root of the conflicts,

identify the causes, and help resolve the inconsistency problems in the project.

59 [] -beginof(x162,x163)| -beginof(x162,x164)|x163==x164.
161 [] beginof(ID210,10738).
273 [] beginof(ID210,10773).
323 [hyper,273,59,161,demod,propositional] $F.

Figure 2.33: Reasoning Results in Version Conflicts

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 56

2.5.5 Soundness and Completeness

The soundness and completeness of the consistency checking prototype largely depends

on the soundness and completeness of the employed logic reasoning tool. In this

research, it depends on the soundness and completeness of Otter.

• Soundness

The consistency checking prototype is sound if a conflict detected by the

prototype is indeed a conflict; in other words, the reasoning process is valid.

Otter has a very good record on soundness, but no part of it (approximately

28,000 lines of C code) has been formally verified [65]. Thus, any conflicts

detected by the prototype may need to be checked manually or by another

independent program.

• Completeness

The consistency checking prototype is complete if it detects all conflicts in the

knowledge base. Theoretically, the proof system of Otter is not complete [65]. In

Otter, many strategies have been adopted to save time and memory. These

strategies might be incomplete in theory; however, careful use of these strategies

does not prevent Otter from finding proofs in practice [65].

To test the soundness and completeness of the consistency checking prototype, four

example projects were employed, and various conflicts were created manually. The

prototype was then tested on these examples to see if the system is sound and complete.

In the demonstration, the following types of conflicts were manually created and mixed

into individual example projects:

• Inconsistent dates (e.g., start dates and finish dates)

• Inconsistent task durations

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 57

• Cyclic dependency relationships (A cycle may involve two, three, or more

activities.)

• Conflicts of resource competition among activities (e.g., two activities compete

for one crane at the same time.)

Table 2.5 shows the test results of the prototype system on soundness and completeness.

In all test cases, the system successfully detected all the conflicts and did not infer any

false conflicts. These experiments illustrate that the theorem prover can be employed

reliably for conflict detection and consistency checking applications.

Table 2.5: Soundness and Completeness of the Consistency Checking Prototype

Test Soundness Completeness

Project 1 (1 conflict)

Project 2 (3 conflicts)

Project 3 (8 conflicts)

Project 4 (12 conflicts)

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 58

2.5.6 Performance Analysis of Consistency Checking

Performance is a major issue for many logic reasoning systems. As the knowledge base

increases, the required reasoning time usually increases dramatically, which frequently

makes a logic reasoning system not useful for practical situations. We examine the

performance issue by testing the consistency checking prototype on four example

projects with different sizes. The smallest project consists of 12 activities and 101 pieces

of project specific facts, while the largest project has 460 activities and 5147 pieces of

project specific facts*. The experiments were conducted on two computers. One is a

Dell computer with 1 GB memory and a 2.4 GHZ Intel Pentium IV CPU, and the other is

a Dell server with 4 GB memory and four 2.0 GHZ Intel Xeon CPUs.

Section 2.5.3 has briefly discussed the importance of partitioning the input. Basically, the

input includes two parts: (1) axioms and definitions from the PSL language specification;

and (2) project specific facts. These two parts can be put either into a single list as the

input of the reasoning tool, or into two separate lists as the input. By partitioning the

input into two separate lists, the reasoning among the PSL axioms and definitions

themselves has been eliminated, thus significantly reducing the reasoning time. To

illustrate the importance of partitioning, the consistency checking prototype was also

tested on the two smaller projects on the Dell server without partitioning the input.

The reasoning times on these projects are shown in Table 2.6. In all test cases, a cyclic

dependency relationship involving three activities was created for each project. We

recorded the time required by the consistency checking system to find all potential

conflicts in each project, not the time to find the first conflict.

* In the experiments with partitioning, only axioms and definitions related with project scheduling are

selected from the PSL specification and loaded into the logic reasoning tool; thus, only around 120 pieces
of knowledge from the PSL core or extensions are used with partitioning instead of thousands of facts.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 59

Table 2.6: Performance Results of the Consistency Checking Prototype

Running Time

Partitioning the knowledge
base

Project Project Size

Dell PC Dell Server

No-partitioning
(on Dell Server)

Project 1 12 Activities
101 Pieces of Facts

7 sec

7 sec > 100 hours

Project 2 58 Activities
541 Pieces of Facts

11min 23 sec > 100 hours

Project 3 191 Activities
2064 Pieces of Facts

12 min 30 sec ---

Project 4 460 Activities
5147 Pieces of Facts

14 min 1min 23 sec ---

The following observations have been made from the test results on the consistency

checking prototype:

• It is difficult to predict the time required to detect conflicts in the knowledge base.

However, in general, running time increases non-linearly as the number of facts

increases in the project.

• Partitioning the input can dramatically reduce the reasoning time of the

consistency checking prototype. Even for a simple project that can be completed

in a few seconds with partitioning, the reasoning process fails to complete after

more than 100 hours when the input is not partitioned.

• By partitioning the input into two lists, the execution time can be quite

reasonable. As shown in Table 2.6, a fast computer with adequate memory can

significantly reduce the time of consistency checking even for relatively large

projects.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 60

These experiments illustrate the importance of partitioning the knowledge base when

applying the theorem prover. Furthermore, the performance of the logic-based reasoning

tool is acceptable for practical use in moderate size projects.

2.6 PSL for Constraint Scheduling

Project scheduling is frequently subject to many constraints, such as the targeted

completion dates, budget limits, and physical conditions. To develop a good schedule,

project personnel need to understand different constraints involved in scheduling. A

classification can help resolve the constraint problems and develop appropriate schedules.

2.6.1 Scheduling Constraint Categorization and

Expression

Since the 1970s the Critical Path Method (CPM) has been widely used for project

scheduling in the construction industry. Shortly after the adoption of the CPM method,

researchers started to realize the need to classify scheduling constraints. For example,

Antill and Woodhead [6] classified constraints according to origins, such as physical,

hazard, safety, and equipment constraints. Echeverry et al. [33] classified constraints

according to physical component relationships, trade interaction, path interference, and

code regulations.

In this work, the constraints are grouped into three categories: single-task constraints,

local constraints between two consecutive tasks, and global constraints that involve tasks.

This classification is based on the way such that constraints can be easily expressed in

PSL.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 61

Single-task constraints are those involving only one task. For example, the duration of a

task should be limited to a number of days (e.g., 20 days). Another typical single-task

constraint is that a task may have exactly one responsible contractor (e.g., a general

contractor or a sub contractor). In addition, schedulers often need to ensure that there are

no isolated tasks in the schedule. In other words, except for the start and finish tasks,

each activity needs to be connected to at least one predecessor and one successor.

One essential step to expressing these constraints in PSL is the semantic mapping

between the constraints and the corresponding PSL terms. The following examples

illustrate the mapping.

• The duration of an activity should be limited to N days.

(for all ?a ((<= (duration-of a) N)))

• Except the start activity, each activity should have a predecessor.

(forall ?a (=> (<> a start)

(exist ?a1 (or (before-start ?a1 ?a)

(before-finish ?a1 ?a))))

• Except the finish activity, each activity should have a successor.

(forall ?a (=> (<> a finish)

(exist ?a1 (or (after-start ?a ?a1)

(after-finish ?a ?a1))))

• Each task should have exactly one individual who is directly responsible for it.

(forall ?a (exist ?c (assign a c)))

(forall ?a (=> (assign a c1) (assign a c2) (= c1 c2)))

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 62

Local constraints involve two neighboring tasks (e.g., constraints determining the

dependency relationships), such as.

• Physical component relationships (support, connect, cover, enclose, protect, etc.)

• Trade interaction (serviced by, damaged by, workspace, resource, etc.)

• Path interference

• Code regulation (inspection, testing, safety, etc.)

Here resource is used as an example to illustrate local constraints. In the example,

activity a1 and activity a2 require 3 and 5 units of resources respectively. There are only

6 units of resources available; thus, activities a1 and a2 cannot be performed in parallel

(e.g., activity a2 may have to start after the completion of activity a1.). The constraints

can be expressed in PSL as follows:

(resource r)

(resource_point 6)

(demand r a1 3)

(demand r a2 5)

(after-start a1 a2)

Global constraints refer to constraints involving multiple tasks (more than two) and even

for the whole project, such as.

• Project costs and durations

• Space constraints of the construction site

• Critical resource constraints (e.g., cranes)

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 63

• External constraints (e.g., regulatory permissions, utility access, and unexpected

site/weather conditions)

Again, we use an example to illustrate how to express global constraints in PSL.

Suppose that on any given date a sub-contractor may not work on more than one task,

this constraint can be expressed as follows:

(forall ?sub ?a1 ?a2 ?d

 ((activity ?a1)

 (activity ?a2)

 (actor ?sub)

 (assigned ?a1 ?sub)

 (assigned ?a2 ?sub)

 (isbetween ?d (beginof ?a1) (endof ?a1))

 (isbetween ?d (beginof ?a2) (endof ?a2))

 (= ?a1 ?a2)))

2.6.2 PSL for Constraint Scheduling

To ensure that a schedule meets multiple constraints can be difficult, especially for large,

complex schedules with thousands of tasks and constraints. For example, in the San

Francisco De Young Museum project, there are over 4,000 tasks and 40 subcontractors.

In this project, it took over nine months for the project engineer to develop a schedule

that met the various constraints*.

* This information was obtained from the interview with Mr. Jeff Budke of Swinerton Builders, a project

engineer in the San Francisco De Young Museum project.

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 64

PSL can be used to check whether a schedule meets certain constraints due to its logic

structure. Obviously, a PSL wrapper needs to be developed to express scheduling

information in PSL, as discussed earlier [25]. In addition, constraints need to be encoded

in PSL. A logic-reasoning tool can then be employed to detect potential conflicts

between the schedule and the constraints. The following example illustrates the use of

PSL in checking whether a schedule meets constraints.

Start

InstallHVAC

InstallElectrical

Finish

Figure 2.34: An Example Schedule

(and (activity-occurrence ID100)
(doc ID120 "Start")
......)

(and (activity-occurrence ID120)
(doc ID120 "InstallHVAC")
(beginof ID120 08/05/2002)
(duration-of ID120 18)
(after-start ID120 ID160 proj)
(after-start-delay ID120 ID160

proj 0)
(demand tool ID120 80)
......)

......)

(and (activity-occurrence ID140)
(doc ID140

"InstallElectrical")
(beginof ID140 08/05/2002)
(duration-of ID140 15)
(after-start ID140 ID160 proj)
(after-start-delay ID140 ID160

proj 0)
(demand tool ID130 40)
......)

(and (activity-occurrence ID180)
(doc ID120 "Finsih")

......

Figure 2.35: The Scheduling Information Expressed in PSL

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 65

Let us assume that there are four tasks in a simplified schedule: one start task, one finish

task, and two tasks in between, as shown in Figure 2.34. Initially, task ID120

(“InstallHVAC”) and task ID140 (“InstallElectrical”) are scheduled to conduct in

parallel, and they require 80 and 40 units of tools, respectively.

The scheduling information can be expressed in PSL expressions, as shown in Figure

2.35. The schedule itself is valid, and there are no internal conflicts. However, if

scheduling constraints exist, further analysis is then needed. For example, assume that

there are only 100 units of tools available for use, which could be expressed in the

following PSL expressions:

(and (resource tool)

 (available tool 100))

Potential conflicts may then arise due to resource limitation. With the help of a logic

reasoning engine, we can check whether the schedule satisfies the resource constraints.

In this example, the available resources are not adequate to conduct tasks ID120 and

ID140 in parallel, and a conflict is detected. Here P5 refers to an axiom about the PSL

relation agg_demand; basically, the aggregate demand for the resource equals the sum of

resources required by each activity. P8 is an axiom dictating that the aggregate demand

for resources should not exceed the available quantity. The following shows the

reasoning process:

P1: (demand tool ID120 80) {Assertion}
P2: (demand tool ID140 40) {Assertion}
P3: (<> ID120 ID140) {Assertion}
P4: (agg_demand ?r N) {Assertion}
P5: (?r ?a1 ?a2 ?n1 ?n2 ?n (demand ?r ?a1 ?n1)
 (demand ?r ?a2 ?n2)
 (<> ?a1 ?a2)
 (agg_demand ?r ?n)

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 66

 (= ?n (+ ?n1 ?n2))
 {Axiom}
P6: (= N 120)) {P1, P2, P3, P4, P5}
P7: (available tool 100) {Assertion}
P8: (?r ?n1 ?n2 ((agg_demand ?r ?n1)
 (available ?r ?n2)
 (<= ?n1 ?n2))) {Axiom}
P9: (<= N 100) {P4, P7, P8}
P10: (<= 120 100) {P9, P6}

P11: False {P10}

Adjustments are needed if a schedule fails to meet all constraints. In this example, we

can either add more resources or conduct tasks ID120 and ID140 in a sequential order.

Each option will lead to a schedule satisfying the resource constraint. It should be noted

that while the reasoning system is able to check conformity, it does not automatically

produce suggestions on alternatives. Instead, project personnel have to develop

alternatives and adjust the schedule when resource constraints are detected by the

reasoning system.

2.7 Summary

Data integration has always been a challenge for the engineering and construction

industry, where volumes of information are frequently generated by different software

applications. Although the Process Specification Language (PSL) was designed with the

aim of exchanging process information among manufacturing applications, our research

shows that PSL can also be applied to the engineering and construction industry. The

mapping between PSL and application concepts is first discussed, followed by the

discussion of how to wrap different project management tools. While each application

needs a separate wrapper, the modularity of the wrappers allows shareability and

reusability of the modules among different project management tools. A distributed

CHAPTER 2. PSL FOR PROJECT MANAGEMENT APPLICATIONS 67

integration framework is proposed to integrate typical project management applications.

The framework has been successfully demonstrated with two example projects. The

distributed framework and the data exchange provide ubiquitous access to the project

data from different tools in geographically dispersed locations. PSL is employed for

information exchange among project management tools in the simulation access

framework to be discussed in the next chapter.

As an ontology standard based on first-order logic, PSL has applications beyond data

exchange. This chapter has illustrated the potential applications of PSL in two areas:

consistency checking and constraint scheduling. A formal mechanism is proposed to

detect conflicts of project information arising from different sources. An example

demonstration is provided to illustrate the potential of PSL in consistency checking. In

addition, a method is presented to ensure conformity of project schedules to scheduling

constraints using PSL.

Chapter 3

A Simulation Access Language
(SimAL) and Framework

In Chapter 2 we have demonstrated the applicability of PSL for project information

exchange. In particular, a distributed data integration framework has been implemented

and collaboratively demonstrated between Glasgow Caledonian University and Stanford

University. However, to simulate scenarios accomplished by different project

management tools, mechanism beyond data integration needs to be provided.

This chapter first presents an overview of a simulation access framework, a framework

designed with the aim of improving the reusability and extending the applications of

various project management tools. The simulation access language (SimAL) and

framework are then discussed in detail. The design criteria of SimAL are discussed,

followed by the SimAL components and specifications. This chapter then describes how

to build a compiler for the SimAL language. The implementation efforts of the SimAL

framework are also discussed in this chapter. In particular, data integration between

different computer tools is achieved using PSL based on the work described in Chapter 2.

The functions and implementation details of each module of the SimAL framework are

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

69

presented. Finally, an example is provided to demonstrate the usage of the SimAL

language and framework.

3.1 Overview of the Simulation Framework

This research aims to develop a general simulation framework and language for

integration and coordination of application tools. The SimAL framework consists of

multiple layers, as illustrated in Figure 3.1. To be integrated into the SimAL framework,

each project management tool needs a wrapper. The layers between user interface and

application-dependent wrappers (discussed earlier in Chapter 2) provide the following

additional functions: updating project information and querying results, invocation and

coordination of distributed applications, and simulation of project scenarios.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

70

Simulate and
Compare scenarios

Model Update
& Result Query

Source Specific
Code

Simulation
Tools

Wrapper

Invocation and
Coordination
Infrastructure

Simulation
Statements &

Results

SimAL
Query/Update

FICAS
(Distributed
Invocation &

Coordination)

SimAL
Scenario Process

User
Interface

Figure 3.1: Conceptual Model of the SimAL System

To allow users to build services rapidly from existing software components, the

simulation framework is designed to provide the following functionalities:

• To invoke computer tools across different platforms and locations.

• To facilitate information exchange and to coordinate information flow among the

tools.

• To update project models in different computer applications.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

71

• To query specific information generated by different computer tools.

• To specify and compare different scenarios.

The SimAL framework involves distributed invocation and integration of various project

management tools. These tools may reside at different locations and may adopt different

internal data representations. Thus, an ontology standard is needed for information

exchange; in addition, a distributed invocation and coordination engine needs to be

provided for reusing these tools. Data integration has been discussed in Chapter 2. The

SimAL framework uses FICAS, a Flow-based Infrastructure for Composing Autonomous

Services, to support the integration of distributed software applications. The basic

architecture of FICAS is first reviewed in Section 3.2. Detailed discussions on FICAS

can be found in [62]. Potential applications with illustrative examples will be discussed

in Chapter 4.

3.2 A Brief Review of FICAS

SimAL employs FICAS [62], a service composition infrastructure for building

megaservices, to invoke and coordinate distributed project management tools. FICAS

allows distributed software applications to hide heterogeneities in the network, platform,

and language. Using FICAS, users can compose new services from existing tools

without paying attention to the details of network locations and communications. As

shown in Figure 3.2, FICAS consists of a buildtime environment and a runtime

environment [62]. The buildtime environment specifies the composition of the

megaservice from existing autonomous services, and the runtime environment executes

the operations specified in the composition. Autonomous services refer to the software

components that have clearly defined functions with accessible interfaces. Most legacy

project management tools can be wrapped to become autonomous services.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

72

FICAS uses CLAS (Compositional Language for Autonomous Services) as the language

to allow application programmers to compose megaservices. A CLAS program is

essentially a sequential specification of the relationships among collaborating services

[62]. As shown in Figure 3.2, a CLAS program is translated by the buildtime component

into a control sequence, which, in turn, invokes corresponding information services.

FICAS Buildtime

Autonomous
Service

Directory

Communication
Network

CLAS
Program

FICAS
Controls

Autonomo
us Service

Autonomo
us Service

Autonomo
us Service

Software
Application

Autonomous
Service Wrapper

FICAS RuntimeFICAS Buildtime

Megaservice
Controller

Figure 3.2: FICAS Architecture (from [62])

p3_svc = SETUP("SIP3")
p3 = p3_svc.INVOKE("reschedule", ceil)
ceil = p3.EXTRACT()
p3_svc.TERMINATE()

Figure 3.3: Sample Code in CLAS

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

73

Currently, CLAS includes autonomous service statements and conditional statements

[62]. Autonomous service statements are provided to accomplish procedure calls. In the

CLAS language, a procedural call to an autonomous service is split into four statements:

SETUP, INVOKE, EXTRACT, and TERMINATE. The SETUP statement is used to

establish communication to an autonomous service, the INVOKE statement is used to

execute the autonomous service, the EXTRACT statement collects the results generated

by the autonomous service, and the TERMINATE statement ends the connection to the

autonomous service. Conditional statements, including IF-THEN-ELSE and WHILE

statements, are employed to enable conditional executions. In particular, the IF-THEN-

ELSE statement is used to make dynamic branching decisions, and the WHILE statement

provides looping operations. In summary, the CLAS language provides a protocol that

programmers can utilize existing service components and compose additional services.

Figure 3.3 shows a sample code in CLAS, which calls for the Primavera Project Planner

to reschedule the project “ceil.”

In addition to FICAS, many other solutions are available for distributed computing.

However, earlier attempts in distributed computing using Remote Procedure Call (RPC)

[10], Distributed Component Object Model (DCOM) [88], Common Object Request

Broker (CORBA) [75], Enterprise JavaBeans (EJB) [77], and Remote Method Invocation

(RMI) [74] have key limitations such as platform dependency, tight coupling, and limited

interoperability. For example, RPC is primarily designed for tightly bounded but

geographically distributed systems. In CORBA, messages are manipulated by

instantiating objects. In contrast, Simple Object Access Protocol (SOAP) [13] and

FICAS support platform independency, loose coupling, and more powerful

interoperability. SOAP, an XML-based messaging protocol for information exchange in

a decentralized, distributed environment, is essentially a flexible form of the traditional

RPC mechanism for gluing distributed, heterogeneous applications together.

FICAS employs a distributed data flow implementation and is designed to handle high

data volume [60, 62], which is typically found in engineering. As shown in Figure 3.4,

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

74

FICAS outperforms SOAP when the data volume is high [62]. The larger the data

volume, the bigger is the difference between the execution time of FICAS and SOAP

[62]. Because of the performance efficiency and its simple programming interface,

SimAL uses FICAS to support distributed application services.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 100 200 400 800 1600 3200

Data Volume (KB)

M
eg

as
er

vi
ce

 E
xe

cu
tio

n
Ti

m
e

SOAP (SingleService) SOAP (MultiService) FICAS (MultiService)

Figure 3.4: Comparison Between FICAS and SOAP on Local Area Network (from [62])

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

75

3.3 The SimAL Access Language (SimAL)

This section discusses the SimAL language. Specifically, Section 3.3.1 discusses the

design goal of the language, and Section 3.3.2 describes the major components of the

language.

3.3.1 The Design Goal of the SimAL Language

The purpose of SimAL is to provide a simple, easy-to-use language to simulate scenarios

for project management and decision support applications. In general, three key factors

are involved in decision making: alternatives, information, and preferences. Alternatives

imply that more than one option could be available. Information refers to the knowledge

available to users about different options. Preferences specify the specific aspects that

users want to optimize. These three factors work together in shaping decision making.

With these factors in mind, SimAL is designed to provide supports for: setting

preferences, gathering information, and comparing alternatives. In particular, the

following goals are considered in the design of the SimAL language:

• High-level Programming

The intended users of SimAL are the participants in a project, who may not have

extensive programming experience. Thus, SimAL should be a high level

language and not involve the details of specific computer applications. In other

words, the SimAL language should be as simple as possible but with the

capability to allow users to specify simulation scenarios.

• Imperative Programming

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

76

To simulate scenarios in project management, users need to describe tasks and

processes. Therefore, the SimAL language should support standard imperative

constructs, such as sequencing and iteration.

• Location-Independent Invocation

Many construction projects are geographically distributed; so is the deployment of

project management applications serving them. Hence, SimAL users should not

need to know the location of an existing service in order to invoke it. They

should only need to provide the name or description of the service.

• Physical Data Independence

Various project management application tools may use different internal data

representations. SimAL users should not need to know the physical formats of

the data (XML files, databases, etc.); they should only need to know the

representation schema.

• Transactions

The SimAL language needs to allow programmers to execute a sequence of

actions in an isolated and atomic fashion.

• Probabilities

In most projects, uncertainties, such as procurement delays and design changes,

are inevitable. The SimAL language needs to support probabilities and

uncertainties to facilitate predictive measure and scenario testing.

• Comparison

When changes occur on a project, frequently many options are available to study

the impact of the changes. Users should be able to use SimAL to investigate and

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

77

compare multiple alternatives for the project. It is essential that the SimAL

language allows users to compare different options based on specific criteria.

3.3.2 The Components of the SimAL Language

There have been many previous and current efforts in developing languages for data

management, simulation tools, and service composition. Example languages include SQL

[42], SimQL [100], CLAS [62], WSFL [58], BPEL4WS [3], and DAML-S [5]. SimAL

incorporates many features from these existing languages. In particular, the distributed

service invocation in SimAL is based on CLAS, while the update and query statements in

SimAL are similar to SQL.

During the development of the SimAL language, a series of interviews with project

managers on the issues in utilizing various computer tools and information sources have

been conducted. The interviewers are from different organizations, including

subcontractors, general contractors, and facility owner companies. In addition, real

information (tasks, data, models) on construction projects ranging from small residential

apartments to major, complex institutional buildings has been collected and studied to

identify the requirements of project management applications. The inputs from project

managers and studies on actual projects provided many insights in designing the SimAL

language.

Based on the related languages and practical needs, the SimAL language is designed to

include the following major components:

• Invocation Statements, to invoke distributed computer tools across different

platforms.

• Operation Statements, to update project information in different computer

applications and to query specific information generated by these tools.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

78

• Control Statements, to control the flow of the simulation.

• Decision Support Statements, to create and compare scenarios.

The following sections discuss in details these SimAL language components.

3.3.2.1 Invocation Statements

In the CLAS language, a procedure call to an autonomous service is divided into four

statements: SETUP, INVOKE, EXTRACT, and TERMINATE. In SimAL, we simplify

the invocation task by reducing four statements into two: SETUP and INVOKE.

• Service Setup

ServiceHandle = SETUP(“ServiceName”)

The SETUP statement is used to establish communication with a simulation

application through its service name. ServiceName is a unique description of the

service, and ServiceHandle identifies the service and is used for the subsequent

invocation of the service. For example, the statement p3_svc =

SETUP("ServiceP3") establishes connection to Primavera P3, and the handle

p3_srv is used to invoke Primavera P3. The network location of the tool (e.g.,

Primavera P3) is available in the service directory, as will be discussed in Section

3.6.1.

• Service Invocation

Variable = ServiceHandle.INVOKE(param1, param2, …)

The INVOKE statement invokes a simulation service through the handle returned

from the SETUP statement. The parameters are used to provide values (e.g.,

project name) needed by the service, while the returned variable is associated with

the results generated by the service. For example, the statement arho1 =

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

79

p3_svc.INVOKE("reschedule", arho, %%) invokes the Primavera P3 service

identified by the handle p3_svc. The first parameter reschedule specifies the

operation (asking Primavera P3 to reschedule the project), the second parameter

arho provides the data input to Primavera P3, and the third parameter %%

specifies the project name which is transferred to the SimAL system at run-time.

Here, the variable arho1 identifies the rescheduled results from Primavera P3, and

thus the results can be used as the input by other software applications through

arho1.

In SimAL, result extraction and service termination, which are accomplished through

EXTRACT and TERMINATE statements in CLAS, are conducted automatically.

Results from an invoked service are automatically extracted and stored in the Variable

associated with the invocation. The SimAL system scans all statements in the SimAL

program; after the last execution of a service, the connection to the service will be

terminated automatically by the SimAL system.

3.3.2.2 Operation Statements

In SimAL, two statements, QUERY and UPDATE, are defined so that users can

manipulate project models and query specific project information. These two statements

are briefly discussed below.

• QUERY

QueryHandle = ServiceHandle.QUERY(param1, param2, …)

The QUERY statement allows users to query specific information from the

simulation results. The first parameter param1 in the statement is a string used to

specify the query operation. Users can use the QUERY statement to retrieve

specific information such as project complete dates and total costs rather than the

whole schedule or cost report from the simulation tools. For example, the

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

80

statement QUERY("select startTime where activityID = ID100", arho, %%)

queries the start date of the activity ID100 from the scheduling results identified

by the variable arho. Again, %% is a placeholder of the project name which is

transferred to the statement at run-time.

• UPDATE

UpdateHandle = ServiceHandle.UPDATE(param1, param2, …)

The UPDATE statement enables users to modify project models. The first

parameter param1 in the statement specifies the update operation. Upon any

changes in a project, users can update the model and re-simulate the whole

project. For example, in case of task delays, the statement UPDATE("set duration

= 4 where activityID = ID110",arho, %%) can reset the duration of the activity

ID110 when delay occurs.

For the QUERY and UPDATE statements, the syntax of the operation strings is similar to

SQL. Currently, SimAL supports the following operations in the QUERY and UPDATE

statements:

• SELECT operation

SELECT select-list

[WHERE expression]

The SELECT operation is used to query information from the simulation results.

Users can specify search conditions in the expression.

• SET operation

SET [variable = expression]+

[WHERE expression]

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

81

The SET operation allows users to update project models. For example, users can

assign new values to selected attributes.

• DELETE operation

DELETE object-name

[WHERE expression]

The DELETE operation enables users to delete elements (e.g., ACTIVITY and

ACTOR) in project models.

• INSERT operation

INSERT object-name

SET [variable=expression]+

The INSERT operation allows users to insert new elements (e.g., ACTIVITY and

ACTOR) into project models, while the attributes of the elements are set by the

expressions.

Here, the SELECT operation applies only to the QUERY statement, while the other

operations are valid only in the UPDATE statement. These operations are processed by

the SimAL query and update engines, as will be discussed in Section 3.6.4.

3.3.2.3 Decision-Support Statements

The SimAL language is designed not only to transfer data among distributed tools but

also to enable users to simulate various scenarios and help them make decisions. Thus,

decision-support statements are also provided in SimAL. Currently, SimAL supports

operations for decision support: scenario creation, scenario instantiation, and scenario

comparison, and result display. The following briefly describe the statements for the four

operations:

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

82

• Scenario Creation

ScenarioHandle = SCENARIO(“Scenario Description”) { Statement_List }

The SCENARIO statement is used to create a scenario. Here, a scenario refers to

a set of actions to handle a specific issue. For example, when a task is delayed,

users may want to update the duration of the task and re-schedule the project. The

statement list contains the necessary expressions to instantiate the scenario, such

as updating project models, querying the results, and setting the objectives. For

example, sn1 = SCENARIO("Working on Saturdays") creates a new scenario in

which projects are scheduled to work on Saturdays as well as weekdays. The

scenario is identified by the handle sn1.

• Scenario Instantiation

ScenarioHandle.SETOBJECTIVES(variable1, variable2,…)

The SETOBJECTIVES statement sets the objectives of a scenario. In particular,

the statement allows users to indicate the most critical attributes for the scenario,

and these attributes are used for future comparison. For example, the statements

sn1.SETOBJECTIVES(date1, cost1) specifies that project completion date, whose

value is stored in the variable date1 , and project total cost, whose value is stored

in the variable cost1, are the two critical attributes for scenario sn1.

• Scenario Comparison

CompareHandle = COMPARE(ScenarioHandle1, ScenarioHandle2, …)

The COMPARE statement is used to compare different scenarios. It is assumed

that the objectives of different scenarios on the list are the same, no matter

whether they are cost, productivity, duration, or a combination of those attributes.

For instance, the statement res = COMPARE(sn1, sn2) compares two scenarios

sn1 and sn2. The comparison result is identified by the handle res.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

83

• Result Display

DISPLAY(Variable | CompareHandle, “Description”)

The DISPLAY statement is used to display the results of a variable or a

comparison. Results can be displayed as text strings as well as tables and charts.

For example, the statement DISPLAY(res, "Comparing two Options") displays the

comparison result of two scenarios (sn1 and sn2) associated with the handle res.

The statement DISPLAY(cost1, “Project Total Cost”) displays the project cost

identified by the variable cost1.

3.3.2.4 Control Statements

The SimAL language inherits the control statements from the CLAS language [62]. The

IF-THEN-ELSE and WHILE statements are used as follows to achieve conditional

execution:

• Branch Statement

IF (expression) THEN {Statement_List} [ELSE {Statement_List}]

The branching statement is used to make dynamic branching decisions based on

the value of a Boolean expression following the keyword IF. Depending on

whether the expression is evaluated to be true or not, the Statement_List inside the

first or second parentheses is executed. The following example first queries the

duration of the task ID210. It then sets the duration of the task to 5 days if its

duration is less than 5 days.

dur = query_svc.QUERY("select duration where activityID = ID210 ", arho,
%%)

IF(dur < 5) THEN {

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

84

 update = update_svc.UPDATE("set duration = 5 where activityID =
ID210", arho, %%)

 arho2 = p3_svc.INVOKE("reschedule", update, %%)

}

• WHILE Loop Statement

WHILE (expression) { Statement_List}

The while loop statement is used to provide iterative operations. The

Statement_List will be executed continuously as long as the expression is

evaluated to be true. It must be noted that users should proceed with caution when

using this statement, because infinite loops are possible if the expression is always

true (e.g., users forget to reset the value of the expression). The following

statements keep rescheduling the project until the duration dur is equal or greater

than 10.

WHILE(dur < 10) {

 update = update_svc.UPDATE("set startDate = 2003-11-15 where
activityID = ID210", arho, %%)

 arho2 = p3_svc.INVOKE("reschedule", update, %%)

}

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

85

Table 3.1: Symbols in the BNF format

Symbol Meaning

:= Defined to be

| Alternatively

* The preceding token can be repeated zero or more times.

+ The preceding token can be repeated one or more times.

{} The enclosed tokens are grouped as a single syntactic unit.

[] The enclosed tokens are optional—may occur zero time or once.

3.4 The SimAL Language Specification and
Compiler

3.4.1 SimAL Syntax and Definitions

The syntax of SimAL language can be described using the Backus Naur Form (BNF)

format [68]. Table 3.1 shows the meaning of some basic symbols used in BNF.

Table 3.2 lists the legal tokens in the SimAL language. Tokens are categorized as

comments, separators, variables, arguments, keywords, literals, and operators. The

following describe these tokens:

• A comment consists of any text delimited by /* and */ on one or more lines or any

text led by // on a single line.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

86

• Separators are used to establish relative positions of tokens within a SimAL

program.

• Variables are names for entities in a SimAL program. They are composed of

letters, digits, and underscores, and they cannot start with a digit. In addition,

variables cannot be any of the reserved words.

• Arguments, including variables and String literals, are used in SimAL statements

to specify parameter values.

• A key word is a word with prescribed meaning in SimAL and is reserved by the

SimAL compiler.

• Literals, the constants used in SimAL programs, include four types: Boolean

literals, Integer literals, Real literals, and String literals. There are only two

Boolean literals: TRUE and FALSE, and both are reserved words. An Integer

literal consists of one or more digits and may be preceded by a minus sign to

represent a negative number. A Real literal consists of a series of digits

representing the whole part of the number, followed by a decimal point and a

series of digits representing the fractional part. A Real literal can also be

represented in scientific notation. A String literal consists of double quotation

marks containing any number of characters.

• Operators are used for the assignment of values and for creating Boolean

expressions.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

87

 Table 3.2: Tokens in the SimAL Language

Token Type Token Values or Examples

Comment /* comment */

Separator () { } , .

Variable Var1 ABC abc a0 a_ _a

Argument “Example” var1

Keyword
SimAL TRUE FALSE SETUP INVOKE
WHILE IF THEN ELSE QUWEY UPDATE
SCENARO SETOBJECTIVES COMPARE DISPLAY

Boolean Literal TRUE FALSE

Integer Literal 0 1 -2

Real Literal 1.2 -2.1 1E-2 -1E2L
ite

ra
l

String Literal “” “hello world”

Assignment =

Comparison < > <= => == !=

O
pe

ra
to

r

Boolean Composition ! && ||

Table 3.3 shows the BNF representation of the SimAL grammar. A SimAL program

starts with the key word SimAL followed by the program name. The key word SimAL

indicates that the program follows the syntax of the SimAL language, while the program

name is used to differentiate various SimAL programs. A SimAL program consists of a

series of statements, including invocation statements, operation statements, control

statements, and decision-support statements.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

88

Table 3.3: BNF Representation of the SimAL Grammar

Left-Hand Side Right-Hand Side
SimALProgram := SimAL programname ‘{‘ (Statement)* ‘}’
Statement := InvocationStatement |

 OperationStatement |
 ControlStatement |
 DecisionSupportStatement

InvocationStatement := SetupStatement |
 InvocationStatement

OperationStatement := QueryStatement |
 UpdateStatement

ControlStatement := BranchStatement |
 WhileLoopStatement

DecisionSupportStatement := ScenarioStatement |
 ObjectiveStatement |
 CompareStatement |
 DisplayStatement

BranchStatement := ‘IF’ ‘(’ BooleanExpression ‘)’
‘THEN’ ‘{’ (Statement)* ‘}’
(‘ELSE’ ‘{’ (Statement)* ‘}’)?

WhileLoopStatement := ‘WHILE’ ‘(’ BooleanExpression ‘)’
‘{’ (Statement)* ‘}’

SetupStatement := servicehandle ‘=’ ‘SETUP’
‘(’ servicename ‘)’

InvokeStatement := var‘=’ servicehandle
‘.’ ‘INVOKE’
‘(’ (argument (‘,’ argument)*)? ‘)’

UpdateStatement := var‘=’ servicehandle
‘.’ ‘UPDATE’
‘(’ (argument (‘,’ argument)*)? ‘)’

QueryStatement := var‘=’ servicehandle
‘.’ ‘QUERY’
‘(’ (argument (‘,’ argument)*)? ‘)’

ScenarioStatement := scenariohandle ‘=’ ‘SCENARIO’
‘(’ scenariodescription ‘)’

ObjectiveStatement := scenariohandle ‘.’ ‘SETOBJECTIVES’ ‘(‘ (Variable (‘,’
Variable)*)? ‘)’

CompareStatement := comparehandle = ‘COMPARE’ ‘(‘ (scenariohandle (‘,’
scenariohandle)*)? ‘)’

DisplayStatement := ‘DISPLAY’ ‘(‘ [var|comparehandle] ‘,’ argument ‘)’

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

89

3.4.2 The SimAL Compiler

The SimAL compiler is implemented using the Java Compiler Compiler (JavaCC) [97], a

parser generator which reads a grammar specification and converts it to a Java program

capable of recognizing matches to the grammar. The following are the three steps

involved in the parsing process:

• Lexical analysis: The token manager reads in a sequence of characters and

produces corresponding objects called "tokens." The sequence of characters is

broken into tokens according to the SimAL lexicon conventions.

• Syntax analysis: JavaCC uses the production rules in the SimAL specification to

generate a parser in Java.

• Building XML trees: The parser then generates an XML tree based on the events

defined in FICAS [62]. The XML tree is used by FICAS to invoke and

coordinate distributed tools at run-time.

SimAL ComparisonDemo
{

psl_svc = SETUP("ServicePsl")
query_svc = SETUP("ServiceQuery")
p3_svc = SETUP("ServiceP3")
update_svc = SETUP("ServiceUpdate")

arho = psl_svc.INVOKE("to-psl", %%)
sn1 = SCENARIO("Original Schedule"){
stat1 = query_svc.QUERY("select finishDate", arho1, %%)
sn1.SETSCENARIO(stat1)
}

sn2 = SCENARIO("Expedite Delivery"){
update2 = update_svc.UPDATE("set startDate = 2003-11-20 where
activityID = ID210", arho, %%)
arho2 = p3_svc.INVOKE("reschedule", update2, %%)
stat2 = query_svc.QUERY("select finishDate", arho2, %%)
sn2.SETSCENARIO(stat2)
}

res = COMPARE(sn1, sn2)
DISPLAY(res, "Compare Two Scenarios")

}

Figure 3.5: Example Program for Testing the SimAL Language

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

90

Figure 3.5 shows an example SimAL program utilizing some of the primitives provided

by the SimAL language. In this example, the SimAL program ComparisonDemo

simulates and compares two scenarios. One scenario is to stay with the original project

schedule; the other is to expedite delivery, thus reducing the duration of the task ID210.

Finally, the program compares the targeted finish dates of the project according to these

two scenarios.

The SimAL compiler compiles the example program into XML statements, organized

hierarchically, as shown partially in Figure 3.6. The XML statements are then further

analyzed by the preprocessing engine for execution. For example, the preprocessing

engine may instruct FICAS to invoke individual services, or it may generate necessary

information for the display of future comparison results.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

91

<?xml version="1.0"?>
<SimAL>

<PROGRAMNAME>ComparisonDemo</PROGRAMNAME>
<SETUP>

<SERVICEHANDLE>psl_svc</SERVICEHANDLE>
<SERVICENAME>ServicePsl</SERVICENAME>

</SETUP>
……
<INVOKE>

<VARIABLE>arho</VARIABLE>
<SERVICEHANDLE>psl_svc</SERVICEHANDLE>
<VALUELIST>

<STRINGLITERAL>to-psl</STRINGLITERAL>
<INPUTARGUMENT>%%</INPUTARGUMENT>

</VALUELIST>
</INVOKE>
<SCENARIO>

<SCENARIOHANDLE>sn1</SCENARIOHANDLE>
<VALUELIST>

<STRINGLITERAL>Original Schedule</STRINGLITERAL>
</VALUELIST>
<SCENARIOBODY>

<QUERY>
<VARIABLE>stat1</VARIABLE>
<SERVICEHANDLE>query_svc</SERVICEHANDLE>
<VALUELIST>

<STRINGLITERAL>select finishDate</STRINGLITERAL>
<VARIABLE>arho1</VARIABLE>
<INPUTARGUMENT>%%</INPUTARGUMENT>

</VALUELIST>
</QUERY>
<OBJECTIVE>

<SCENARIOHANDLE>sn1</SCENARIOHANDLE>
<VALUELIST>

<VARIABLE>stat1</VARIABLE>
</VALUELIST>

</OBJECTIVE>
</SCENARIOBODY>

</SCENARIO>
……
<COMPARE>

<COMPAREHANDLE>res</COMPAREHANDLE>
<VALUELIST>

<VARIABLE>sn1</VARIABLE>
<VARIABLE>sn2</VARIABLE>

</VALUELIST>
</COMPARE>
<DISPLAY>

<VALUELIST>
<VARIABLE>res</VARIABLE>
<STRINGLITERAL>Compare Two Scenarios</STRINGLITERAL>

</VALUELIST>
</DISPLAY>

</SimAL>

Figure 3.6: SimAL Sequence Generated from the Example Program

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

92

3.5 Comparison Between CLAS and SimAL

The design of the SimAL language is based mostly on the CLAS language [62]. The

objective of CLAS is to allow programmers to specify service composition from existing

autonomous services. In contrast, SimAL is designed as a high-level language enabling

users to simulate various scenarios in project management based on existing commercial

tools and information sources. These two languages have similarities and differences.

The similarities are as follows:

• The invocation models in CLAS and SimAL are essentially the same. In fact, the

invocation statements in SimAL are compiled into control sequences encoded in

XML, which in turn utilize the FICAS implementation to invoke distributed

services.

• The limited conditional execution support in SimAL is inherited from the CLAS

language. Both languages support branching and looping through IF-THEN-

ELSE and WHILE statements.

• Both languages are purely compositional. Neither of the languages includes

computational constructs. In other words, rather than providing computation

capabilities, both languages encourage users to utilize the computation power of

other existing software tools.

The differences between the two languages are as follows:

• SimAL simplifies result passing and service termination. In SimAL, invocation

results are automatically passed to the variable associated with the invocation.

Thus, a separate EXTRACT statement is not needed in SimAL to retrieve the

result from the service.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

93

• In SimAL, a QUERY statement is provided to retrieve specific information.

Rather than returning the whole invocation results to the user, SimAL can provide

the specific information as needed by users.

• SimAL provides an UPDATE statement allowing users to manipulate the models.

This ability is essential in handling changes that occur in project management

applications. Users can update project models, re-simulate projects, and evaluate

the impact of changes on different aspects (e.g., schedules, costs, and task

backlogs) of the project.

• SimAL provides functionalities (although limited) to support decision making.

For example, SCENARIO and SETOBJECTIVES statements enable users to

compose scenarios and to set the objectives; COMPARE and DISPLAY

statements help users compare different scenarios and display the results in

appropriate formats.

3.6 The SimAL Framework

Figure 3.7 shows the basic process involved in the SimAL framework. The SimAL

system consists of multiple layers and is implemented based on work stemming from

various projects. For example, FICAS [62] is utilized to invoke distributed services and

to direct data flow among different services. The PSL wrappers as previously discussed

in Chapter 2 are employed to integrate legacy tools [23]. The SimAL program is first

processed by the preprocessing engine, which parses the program, instructs FICAS to

execute relevant services, and generates necessary information for the display of future

results. FICAS then invokes specified services to simulate various aspects of the project.

The update and query engine is employed to filter the information and to update project

models when necessary. The simulation results from different tools are processed by the

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

94

post-processing engine and are displayed in appropriate formats. The following sections

detail various layers in the SimAL framework.

User Inputs
(SimAL Program, etc.)

SimAL Preprocess

FICAS

SimAL UPDATE/QUERY
Engine

Legacy Simulation Tools

Wrappers

SimAL Post-Process

Final Result MS Excel
 Interface

Figure 3.7: The SimAL Framework

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

95

3.6.1 Project Management Applications and Wrappers

A number of project management tools are included in this research as application

services, including:

• Project Planning Tools: the Primavera Project Planner and Microsoft Project.

• Cost Estimating Tool: the GeneralCost Estimator.

• Organizational Simulation Tool: Vite SimVision.

• Design and Modeling Tools: AutoCAD Architectural Desktop and 4D Viewer.

• Spreadsheet Tool: Microsoft Excel.

• Other publicly available information sources: for example, the weather

forecasting service at http://weather.yahoo.com.

Wrappers for each tool have been developed to convert the information into standard

formats, so that these tools can exchange information. In this research, PSL is chosen as

the basic ontology standard in the SimAL system for two major reasons:

• PSL is designed specifically for process information. This feature is important

since project management frequently involves volumes of process related

information.

• With the underlying logic, PSL has the potential for consistency checking.

Chapter 2 has discussed application software wrappers and the use of PSL for

information exchange. In the SimAL framework, wrappers act as a bridge between

FICAS and project management tools in that FICAS invokes these tools and retrieves

their simulation results through the wrappers. According to the invocation methods,

project management tools are categorized into two types: standalone services and

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

96

embedded services. A standalone service is an application that can run independently

and thus can be invoked directly through its wrapper. In contrast, an embedded service is

an application that has to run inside another tool and thus cannot be invoked directly by

FICAS. Examples of standalone services include the Primavera Project Planner, which

can be accessed directly through its wrapper, a standalone Visual Basic program.

General Cost Estimator, on the other hand, is an embedded service, whose wrapper has to

run inside Microsoft Excel.

A service directory is employed for the registration, discovery, and invocation of the

project management tools. The directory maps the name of the service to the information

needed by the SimAL system to invoke the tool, such as the network location and the

TCP/IP port number of the application. The service directory is structured in XML

formats, as shown in Figure 3.8. Each individual application is represented by an XML

element, SERVICE, whose child elements specify the parameters of the application. In

particular, the NAME element specifies the name of the application, the SERVER element

contains the IP address of the machine the application is running, and the PORT element

indicates the TCP/IP port to which the application listens.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

97

<?xml version="1.0"?>

<SERVICEDIRECTORY>
<SERVICE>

<NAME>ServicePsl</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2409</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceP3</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2410</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceNotification</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2412</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceWeatherForecast</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>2413</PORT>

</SERVICE>
<SERVICE>

<NAME>ServiceExcel</NAME>
<SERVER>psl.stanford.edu</SERVER>
<PORT>4004</PORT>

</SERVICE>
……

</SERVICEDIRECTORY>

Figure 3.8: Service Directory

For standalone services, FICAS can look up the service directory, invoke the services

through their corresponding wrappers, and access their generated results. However,

FICAS cannot directly invoke embedded services through their corresponding wrappers.

For example, the GeneralCost Estimator, a Visual Basic Macro running in Microsoft

Excel, cannot be invoked directly by FICAS. To solve this problem, an event server, as

well as a communication agent for each service, has been developed. With the help of

these components, FICAS can invoke those embedded services.

Figure 3.9 illustrates the difference between invoking embedded services and standalone

services using FICAS. While invoking standalone services is straightforward, invoking

embedded services requires an event server as well as communication agents to work

together with FICAS. For example, to invoke the GeneralCost Estimator, an embedded

service in Microsoft Excel, the service itself must first connect to the event server.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

98

FICAS then sends an INVOKE command to the event server, which notifies the

GeneralCost Estimator to re-estimate.

We use an EVENT element to encode the message sent to the event server, as shown in

Figure 3.10. The ACTION attribute instructs what the server should do. There are two

types of actions: INVOKE and BROADCAST. The INVOKE event asks the server to

invoke a specific embedded service, whose network location is specified in IP and PORT.

The BROADCAST event notifies the server to invoke all connected embedded services.

Event Server

GeneralCost Estimator
in Microsoft Excel

Wrapper

Communication Agent

Primavera P3

Wrapper

Invoke GeneralCost Estimator
1.GeneralCost Estimator connects to the Server
2. FICAS sends INVOKE message to the Server
3. Server calls Estimator to re-estimate the cost

Invoke Primavera P3
4. FICAS invokes P3 to reschedule the project

1 3

2

FICAS

4

Figure 3.9: The Invocation of Embedded and Standalone Services

<EVENT
 ACTION = INVOKE
 IP = 171.64.1.1
 PORT = 2340
/>
(a) Invoking A Specific Embedded Service

<EVENT
 ACTION = BROADCAST
/>

(b) Invoking all Embedded Services

Figure 3.10: An Example Event Message

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

99

3.6.2 SimAL Preprocessing Engine

The SimAL preprocessing engine is responsible for the following functions: parsing

SimAL programs, instructing FICAS to invoke distributed services, and preparing

necessary information for the display of simulation results.

1. When the preprocessing engine parses a SimAL program, it invokes appropriate

functionalities in FICAS when necessary. For example, it utilizes the SETUP

event in FICAS to initiate the connection with distributed services. As another

example, to parse an INVOKE statement in SimAL, the engine instructs FICAS to

invoke the specified service; the returned results from the service are then

automatically extracted. After the last invocation, the connection is automatically

disconnected by the SimAL engine.

2. The preprocessing engine prepares the information flow in the SimAL program

and generates an XML file, which is utilized by the post-processing engine to

display the results. The engine extracts all information that will be used to

display the simulation results and structure the information in XML formats, as

shown in Figure 3.11. Three elements DISPLAY, COMPARE, and SCENARIO

are used to structure the information. The structure of these three elements is

listed as follows:

• DISPLAY

The DISPLAY element contains a VARIABLE or COMPAREHANDLE

element and an associated DESCRIPTION element.

• SCENARIO

The SCENARIO element contains a DESCRIPTION element, a

SCENARIOHANDLE element, and a list of VARIABLE elements. Each

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

100

VARIABLE represents the value of an attribute that users want to

compare among different scenarios.

• COMPARE

The COMPARE element contains a COMPAREHANDLE element and a

list of SCENARIOHANDLE elements.

<?xml version=”1.0”?>
<SimalResult>
<DISPLAY>

<Description>Original Start, Finish Dates</Description>
<Variable>status</Variable>

</DISPLAY>
<SCENARIO>

<Description>Adding Manpower</Description>
<ScenarioHandle>sn1</ScenarioHandle>
<Variable>stat1</Variable>

</SCENARIO>
<SCENARIO>

<Description>Expedise Delivery</Description>
<ScenarioHandle>sn2</ScenarioHandle>
<Variable>stat2</Variable>

</SCENARIO>
<COMPARE>

<CompareHandle>res</CompareHandle>
<ScenarioHandle>sn1</ScenarioHandle>
<ScenarioHandle>sn2</ScenarioHandle>

</COMPARE>
<DISPLAY>

<Description>Compare Two Scenarios</Description>
<CompareHandle>res</CompareHandle>

</DISPLAY>
</SimalResult>

Figure 3.11: XML Information for Displaying Results

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

101

3.6.3 The Update and Query Engine

The SimAL query and update engine is used to manipulate the simulation results

generated by different computer tools. Unlike databases, most legacy computer tools do

not support query and update interactions through an application programming interface

(API), and this lack of support undoubtedly increases the implementation difficulty of the

engine. As illustrated in Figure 3.12, an alternative approach is to query or update the

simulation result in files and then to instruct the computer tool to re-simulate when

necessary. In the current implementation, we translate PSL data into XML files, on

which query and update operations are performed. This approach was chosen instead of

performing operations directly on PSL files for the following reasons:

• PSL files are not as well structured as XML files. While an XML file is

essentially a hierarchical tree, PSL expressions can appear anywhere in a PSL file

and there is no specified order for the expressions.

• There is a significant amount of commercial and publicly available tools that can

be used to parse and query XML files. Currently, however, tools for processing

PSL data are very limited.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

102

SimAL Operation
Statements

Parser

PSL-ifcXML
Translator

Query and Update
 Engines

PSL Files

ifcXML Files

 Figure 3.12: The Implementation of the SimAL Query and Update Engine

3.6.3.1 Translation Between PSL and ifcXML

A fairly extensive schema with over 400 pages, IfcXML enables the exchange of IFC

data alternatively in XML format. In ifcXML tags have been defined for various stages

and purposes in the project life-cycle, such as product modeling, cost estimating,

scheduling and maintenance. For example, WorkSchedule, ScheduleTimeControl and

RelSequence elements have been defined in the project scheduling domain.

To translate between PSL and ifcXML, the first task is to map the terms related to project

scheduling defined in PSL and ifcXML [24]. In a typical construction project, a project

schedule consists of a set of activities and the dependency relationships among the

activities.

In PSL, there are four basic classes: object, activity, activity occurrence, and timepoint.

Each activity in a project schedule can be roughly mapped into an activity occurrence in

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

103

PSL, while time point is used to specify the beginning point and the end point of an

activity occurrence. In PSL extensions, PSL provides some terms to describe the

dependency relationship among activities. For example, the terms before-start and

before-start-delay in PSL correspond to the “Start to Start” relationship in a project

schedule. The PSL sentence (before-start occ1 occ2 occ3) specifies that the beginning

time point of occ1 is earlier than the beginning time point of occ2, while (before-start-

delay occ1 occ2 occ d) means that occ2 begins at least d time points after occ1 begins.

For ifcXML, each activity in a project schedule can be roughly mapped to a Task

element. The scheduling information about an activity is expressed in the WorkSchedule

and ScheduleTimeControl elements. The WorkSchedule element holds the overall

scheduling information, such as the start time and duration, while the

ScheduleTimeControl element holds further descriptions of scheduling information, such

as actualStart, earlyStart, lateStart and scheduleStart. The RelSequence element is used

to express the dependency relationships among activities.

IfcXML is based on a meta-markup language (XML), while PSL is based on a formal

logical language (KIF). XML has only limited representation capability to represent

constraints and rules. Since PSL is built on first order logic, it is more expressive than

XML-based schemas. Not all PSL sentences can be directly translated into XML, and

some of the PSL logical statements are difficult to translate into ifcXML.

Most PSL sentences that deal with basic facts can be expressed in XML, for examples:

• (Beginof occ1 t1)

This PSL sentence can be translated into ifcXML by creating a task occ1 and an

associated WorkSchedule element, where the value of startTime attribute is t1.

• (before-start occ1 occ2 occ3)

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

104

For this sentence, we can create two tasks occ1 and occ2, and define occ3 as the

task of the whole project. We can then use RelSequence element to express the

relationship between occ1 and occ2.

In general, the PSL sentences dealing with logic rules will be difficult or impossible to

translate into XML directly. Some example situations are listed below:

• PSL sentences with existential or universal logic tokens (forall and exists), for

example:

(forall (ν1 ... νn) (=> ψ θ))

(exists (ν1 ... νn) (and ψ1 ... ψm θ))

• PSL sentences with deduction or logically equivalent tokens (=> and <=>), for

example:

(=> occ1 occ2)

(<=> occ1 ooc2)

• Some PSL sentences with logic relations, for example:

(during occ1 occ2 occ3)

The PSL sentence (during occ1 occ2 occ3) means that the beginning and ending

time points of occ1 are between the beginning and ending time points of occ2,

and both occ1 and occ2 are subactivity occurrences of occ3. In ifcXML,

however, we do not have corresponding elements to express this logic relation.

Consequently, it is impossible to translate this PSL sentence into ifcXML.

One solution to this problem is to embed the whole PSL logic sentence as an XML

attribute, thus avoiding translation. For example, we can express the example PSL logic

sentences in an XML structure as:

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

105

<LogicRules>

<PSLsentence ID=”rule01” rule=”(forall (ν1 ... νn) (=> ψ θ))“>

<PSLsentence ID=”rule02” rule=”(exists (ν1 ... νn) (and ψ1 ... ψm θ))“>

</LogicRules>

Embedding PSL sentences in an XML structure does not provide the meaning of the

rules, since most XML parsers do not support rule processing. Nevertheless, the sentence

can be exchanged verbatim between applications, if necessary. On the other hand, we

can always translate the scheduling information in ifcXML files into PSL, as long as the

PSL ontology covers all the concepts in the ifcXML schemas.

As shown in Figure 3.13, the translation process between PSL and ifcXML is

straightforward. To translate PSL files into ifcXML files, first we use a PSL parser to

parse the PSL logic sentences. We then map the terms in PSL into ifcXML tags. Finally

we construct the XML trees according to the ifcXML schema, and output the file in the

corresponding formats. The reverse process is similar. To translate ifcXML files into

PSL files, we use an ifcXML parser to parse the information from XML files. We then

map the XML tags into PSL terms, and output the PSL logic sentences according to the

PSL syntax.

An example PSL file is used to demonstrate the translation between PSL and ifcXML.

Figure 3.14 shows part of the PSL file, which includes a set of logic statements to

describe activities and dependency relationships in the project schedule. Figure 3.15

shows part of the ifcXML file translated from the PSL file. As discussed earlier, a Task

element in ifcXML maps to an activity in a project schedule. Thus the ‘taskid’ attribute

in ifcXML maps to the identifier of an activity occurrence in PSL. As a result, the

WorkSchedule element is associated with the corresponding activity by using the same

identifier as its identifier attribute. Similarly, the RelSequence element, which depicts the

dependency relationships among activities, is associated with the predecessor and

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

106

successor activities through its ‘relatedProcess’ and ‘relatingProcess’ attributes. As

shown in Figures 3.14 and 3.15, all information in the PSL file is successfully translated

into the ifcXML file, and vice versa.

PSL File PSL
Parser Mapping

Ontology

Mapping
Ontology

Construct
XML trees ifcXML File

ifcXML File XML
Parser Mapping

Ontology

Mapping
Ontology

Construct
Logic

Sentences
PSL File

Figure 3.13: Mapping Process between PSL and XML

(and
(project TUTO)
(doc TUTO "TUTORIAL Project")
(beginof TUTO 9/18/1998)
(subactivity-occurrence ID100 TUTO)
… …

)
(and

(activity-occurrence ID100)
(doc ID100 "Assemble and verify_RTL")
(beginof ID100 12/17/1998)
(duration-of ID100 18)
(after-start ID100 ID170 TUTO)
(after-start-delay ID100 ID170 TUTO 0)

)

Figure 3.14: Sample PSL File

<WorkScheduleGroup>
<WorkSchedule identifier="ID100" duration="18.0" freeFloat="0.0"

totalFloat="0.0" startTime="12/17/1998" finishTime="1/4/99"/>
</WorkScheduleGroup>
<TasksGroup>

<Task taskid="ID100" description="Assemble and verify_RTL"/>
<Task taskid="ID700" description="FullChipSynth"/>

</TasksGroup>
<RelSequenceGroup>

<RelSequence id="depend0" relatingProcess="ID100"
relatedProcess="ID170" timeLag="0.0" sequenceType="after-start"/>
</RelSequenceGroup>

Figure 3.15: Sample ifcXML file

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

107

3.6.3.2 Querying and Updating Information

According to the operations specified in the SimAL statement, the query and update

engine performs different actions.

• SELECT Operation

The results generated by the tools are retrieved and saved in PSL format using

PSL wrappers. A PSL-XML is then invoked to convert PSL files into XML files.

A parser is employed to parse the operation string and to perform the query on

XML files.

• SET Operation

The SET string is parsed by the parser to perform operations on corresponding

XML files. The updated file is then translated into a PSL file, which is used by

the PSL wrapper to invoke the service to re-simulate.

• DELETE Operation

The DELETE operation first deletes the specified objects from the XML files, and

the change is then propagated to the corresponding PSL files, which serve as the

inputs for PSL wrappers to update the project models. Domain knowledge might

be needed in performing DELETE operations. For example, when an object is

deleted, other dependent objects might have to be deleted as a result.

• INSERT Operation

New objects are inserted into the project models following a similar process to the

DELETE operations. An INSERT operation is typically followed by SET

operations, which assign values to the attributes of the new objects.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

108

3.6.4 SimAL Post-Processing Engine

The post-processing engine is responsible for assembling the simulation results from

different computer tools, analyzing the XML file generated by the preprocessing engine,

and displaying the results in appropriate formats. The post-process engine displays the

results according to the following rules:

• Only the results in the DISPLAY element are displayed, although the information

in other elements may be helpful for displaying.

• When a DISPLAY element contains a VARIABLE element, the engine collects

the data associated with the VARIABLE and displays the results.

• When a DISPLAY element contains a COMPAREHANDLE element, the engine

needs to analyze the XML file generated by the preprocessing engine to see which

scenarios and variables are involved in the comparison. The engine then collects

information associated with those scenarios and variables. The results of

comparisons are displayed in appropriate formats (e.g., a textbox, a table, or a

chart in Microsoft Excel).

While SimAL is useful in collecting and presenting information from different sources, it

does not attempt to recommend a solution from different options. It is the user, not the

SimAL system, who decides on what is a good alternative, although SimAL may help

them in this matter.

3.7 Demonstration of the SimAL System

Here we use a simple example SimAL program to demonstrate the usage of the SimAL

language and system, as shown in Figure 3.16. In this example, the project name is

passed to the SimAL system in real-time, either through users’ input in Microsoft Excel

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

109

or in a Web browser. In this example, a user updates the duration of an activity, asks

Primavera P3 to reschedule the project, and reviews the updated schedule.

First, the user specifies in the SimAL program what services are to be used in the

scenario. The SimAL system then looks up the service names in the service directory and

establishes connections with the corresponding services. In this example, the following

four services are used:

• ServicePSL is a service to provide two way interactions between the database and

PSL files. For example, the SimAL statement psl_svc.INVOKE("to-psl", %%)

extracts project information from the Oracle database and converts it into a PSL

file.

• ServiceP3 is a service which wraps the Primavera Project Planner.

• ServiceUpdate is the update engine employed in the SimAL system.

• ServiceNotification is used to notify other services.

The program first uses the SETUP commands to establish connections to the relevant

services. The program then instructs SimAL to retrieve project information from the

database. The update engine is then invoked to update the activity duration in the project

schedule. After the updating, Primavera P3 is called to reschedule the project, and the

rescheduled result is stored back into the database. Finally, the notification service

notifies other services about the update. Upon completion, the SimAL engine then

terminates the connections to the services.

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

110

SimAL SchedulingDemo
{

psl_svc = SETUP("ServicePsl")
p3_svc = SETUP("ServiceP3")
update_svc = SETUP("ServiceUpdate")
notification_svc = SETUP("ServiceNotification")

arho = psl_svc.INVOKE("to-psl", %%)
arho1 = update_svc.UPDATE("set duration = 12 where activityID =

ID140", arho, %%)
arho2 = p3_svc.INVOKE("reschedule", arho1, %%)
arho3 = psl_svc.INVOKE("to-oracle", arho2)

notif = notification_svc.INVOKE("psl.stanford.edu", 8250, arho3)

}

Figure 3.16: An Example SimAL Program

After the completion of the SimAL program, the rescheduled result can be viewed on a

Web browser table or on a Microsoft Excel chart. Figures 3.17 and 3.18 show the

changes of the project schedule in the Web browser and in Microsoft Excel, respectively.

Figure 3.17: Viewing the Schedule Changes on a Web Browser

CHAPTER 3. A SIMULATION ACCESS LANGUAGE AND FRAMEWORK

111

Gantt Chart - Project Build House

01-Sep-03 21-Sep-03 11-Oct-03 31-Oct-03 20-Nov-03 10-Dec-03

Start

Grade Lot

Lay Foundation

Foundation Complete

Frame House

Install Heating

Install Electrical

Frame Roof

Install Plumbing

Ready for Drywall

Install Drywall

Paint

Install Appliances

Finish

Gantt Chart - Project Build House

01-Sep-03 21-Sep-03 11-Oct-03 31-Oct-03 20-Nov-03 10-Dec-03

Start

Grade Lot

Lay Foundation

Foundation Complete

Frame House

Install Heating

Install Electrical

Frame Roof

Install Plumbing

Ready for Drywall

Install Drywall

Paint

Install Appliances

Finish

Figure 3.18: Viewing the Schedule Changes in Microsoft Excel

3.8 Summary

This chapter reviews the components of the SimAL languages and the implementation

efforts involved in the development of the SimAL framework. SimAL consists of four

types of statements: Invocation Statements, Operation Statements, Control Statements,

and Decision-Support Statements. The syntax of SimAL is defined using the BNF

format, and a corresponding compiler is developed using JavaCC. The SimAL

framework includes multiple layers: the preprocessing engine, FICAS, the update and

query engine, project management applications, and the post-processing engine. The

preprocessing engine takes the inputs from users and compiles SimAL statements into

XML messages. FICAS is employed to assist the invocation and conditional execution of

distributed computer applications. The update and query engine is responsible for

filtering the results and modifying project models. The project management application

layer includes legacy applications as well as wrappers for these tools. The post-

processing engine connects data from various services and displays the results in proper

formats. The utilization of the SimAL framework for project management applications is

the subject to be discussed in the next chapter.

Chapter 4

Simulation Framework for Project
Management Applications

The purpose of the SimAL system is to allow users to perform simulations by accessing

distributed application tools and Web-based services. This chapter presents three

illustrative examples to demonstrate the potential applications of the SimAL system in

project management. Construction projects are subject to many external conditions, and

weather is one important factor that could affect construction activities. The first

example illustrates how SimAL can incorporate weather information for project

management applications. The second example illustrates how the SimAL system can be

deployed to gather information from heterogeneous sources and to support decision

making. Specifically, this example describes a scenario where SimAL is applied to select

optimal decisions for project schedule recovery. The third example illustrates the

integration of CAD tools (e.g., AutoCAD ADT) and scheduling tools (e.g., the Primavera

Project Planner and Microsoft Project). In particular, SimAL is employed to allow the

viewing of the construction progress at different stages and the impact of schedule

changes through CAD models.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

113

4.1 Using SimAL to Incorporate Weather
Information

Weather has a significant impact on construction projects. Heavy rain as well as strong

winds cause many construction activities to be suspended. Current industry practice is to

include a weather allowance in the project schedule. For example, in the San Francisco

Bay area, the typical allowance is 10 days per rainy season1. This allowance is necessary

at the project planning stage since long-term weather predications are highly uncertain.

However, as more accurate short-term weather information becomes available from

forecasting services during the project execution stage, the information can be very

helpful in planning project operations. For example, subcontractor meetings are usually

held weekly to plan for three-week look-ahead schedules according to the actual progress

in construction2. A project planning system, which can dynamically incorporate online

weather information (e.g., five-day forecast), would be very useful for project planning

purposes. The following sections discuss how weather information can be incorporated

into project scheduling using SimAL, and how to evaluate the impact of such information

on project schedules and costs.

4.1.1 Expressing Weather Information in XML

XML is used to structure the relevant weather information that may affect project

activities. The following XML elements were included:

• WeatherReport, the root element of the XML structure.

1 Data are obtained from the discussions with Webcor and Swinerton and the example schedules they

provided.

2 This information is obtained from the practices in Webcor, DPR, and Swinerton.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

114

• Weather element, which consists of attributes, including dates, locations, and

general weather conditions, such as sunny, rainy, cloudy, snowy, etc.

• Temperature element, which includes daily high and low temperatures.

• Wind element, which includes wind direction and strength.

In this example, the Yahoo weather service (http://weather.yahoo.com), which provides

five-day forecast, is employed. A parser has been developed to parse HTML formatted

information from the weather service and to convert it into XML format, as shown in

Figure 4.1.

<?xml version="1.0"?>
<WeatherReport>
<weather date="2003-9-23">
<location>
<zipcode value="33410" />
</location>
<conditions value=" Isolated
thunderstorms early, mainly
cloudy overnight with a few
showers" />
<temperature>
<templow c="23.3" f="74.0" />
<temphigh c="32.2" f="90.0" />
</temperature>
……
</weather>
……

Figure 4.1: Expressing Weather Information in XML

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

115

<?xml version = "1.0"?>
<weatherScheduling>
<actImpact actid = "ALL"
suspendOnRain = "yes"
suspendOnWind= "no" />
<actImpact actid = "ID190"
suspendOnRain = "No"
suspendOnWind = "Yes" />
<actImpact actid = "ID220"
suspendOnRain = "No" />
<actImpact actid = "ID230"
suspendOnWind = "No" />
</weatherScheduling>

Figure 4.2: Expressing the Impact of Weather in XML

4.1.2 Expressing the Knowledge of Weather Impact in

XML

Although weather conditions can affect many project activities, the exact influence on

individual activities may be different. For example, pouring concrete in an outdoor

environment may have to be suspended due to rain, while interior finishing can be

performed as usual. Thus, domain knowledge, particularly from an expert, is needed to

assess the impact on individual activities as well as on the overall project. To illustrate

this, a Microsoft Excel table is used to allow users to specify impacts on individual

activities or the overall project. Figure 4.2 shows the table and the corresponding

expressions in an XML file. Two different rules describe the weather’s influence on

construction activities:

• Global rules, which indicate the impact of weather on the overall project.

• Local rules, which specify the impact of weather on individual activities.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

116

Here, an assumption is made that in case of conflicts local rules have priority over global

rules. For example, as shown in Figure 4.2, task ID190 does not have to be suspended

due to rain, although the global rule indicates that all activities have to be suspended. It

should be noted that more sophisticated modules can be built to incorporate more

complicated rules.

4.1.3 Processing Weather Information

After converting weather information into XML formats, the SimAL system applies the

rules to update project schedules. Figure 4.3 indicates that the activity ID120 is

postponed due to weather conditions. Basically, each activity is checked against the

weather conditions and the impact information to see whether the activity will be

delayed. It must be noted that the durations of all activities cannot be updated

independently since there are dependency relationships among the activities. Instead, we

need to process the impact of the earliest rainy date, update the schedule by a scheduling

tool if necessary, and then proceed to the next rainy date, as shown in Figure 4.4.

Once the process is completed, the information is sent to scheduling tools for re-

scheduling, and the results can be further utilized by other project management tools to

simulate the impact of weather on other aspects (e.g., costs and task backlogs).

(and
(activity-occurrence ID120)
(doc ID120 “Lay Foundation”)
(beginof ID120 2003-09-08)
(endof ID120 2003-10-10)
(duration-of ID120 25)
(freefloat ID120 0)
(totalfloat ID120 0)
……

Original Schedule in PSL

(and
(activity-occurrence ID120)
(doc ID120 "Lay Foundation")
(beginof ID120 2003-09-08)
(endof ID120 2003-10-15)
(duration-of ID120 30.0)
(freefloat ID120 0.0)
(totalfloat ID120 0.0)
……

Updated Schedule in PSL

Figure 4.3: Original and Updated Schedules in PSL

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

117

Activity Information

Rainy/Windy during the
period?

Activity affected by
Rain/Winds?

Activity Prolonged Activity Unaffected

Yes

Yes

No

No

Select the first
rainy date

Dertermine
CandidateActivities

Reschedule the
Project

Remove the rainy
date

Figure 4.4: Processing the Impact of Weather

4.1.4 Demonstration Example – Simulating the Impact of

Weather in Project Management

To demonstrate how to use SimAL to simulate the impact of weather conditions, the

Arnold’s House project data given in the tutorial example of Vite SimVision is employed

[92]. The goal of the project is to build a residential house on time and within budget.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

118

Vite SimVision is used to model the planned work process and to identify major risks,

such as task backlogs. The Primavera Project Planner (P3) is used to schedule the project.

Let’s assume that managers have concerns about the weather in the example project.

They can then use SimAL to specify and simulate the scenario. Figure 4.5 shows the

interface of a SimAL Program embedded in Microsoft Excel that is used to accept inputs

from users.

SimAL WeatherDemo
{

p3_svc = SETUP("ServiceP3")
psl_svc = SETUP("ServicePsl")
vite_svc = SETUP("ServiceVite")
notification_svc =

SETUP("ServiceNotification")
wforecast_svc =

SETUP("ServiceWeatherForecast")
wprocess_svc =

SETUP("ServiceWeatherProcess")

psl = psl_svc.INVOKE("to-psl",
%%)

wf =
wforecast_svc.INVOKE("RetrieveForec
ast", %%)

wp =
wprocess_svc.INVOKE("ProcessForecas
t", wf_arho, arho, %%)

p3 = p3_svc.INVOKE("reschedule",
wp_arho, %%)

vite =
vite_svc.INVOKE("simulate", arho1,
%%)

notif =
notification_svc.INVOKE("psl.stanfo
rd.edu", 8250, status)
}

Figure 4.5: The Input of the SimAL System

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

119

Online
 Weather Information

ServiceWeather
Forecast

(retrieve weather
information)

Information of
weather impact

on activities

ServiceWeather
Process
(Process

Weather Impact)

ServiceP3
(Reschedule
the project)

ServiceVite
(Resimulate
the project)

ServiceNotification
(ntofiy participants)

Oracle 8i
Relational
Database

ServicePSL
(retrieve

scheduling
information)

Weather
Information

Encoded in XML

Scheduleing
Information in

PSL

 Figure 4.6: The Workflow in the Weather Demonstration

In the example SimAL program, SETUP statements are first used to establish

connections to different project management services, including ServiceP3 (Primavera P3

scheduling service), ServicePsl (translation service between the Oracle database and

PSL), ServiceVite (Vite SimVision simulation service), ServiceNotification (notifying

participating project management tools), ServiceWeatherForecast (retrieving real-time

online weather forecasting information), and ServiceWeatherProcess (processing weather

information and the impact of weather on project schedules). Different services are then

executed according to the workflow. In this example, ServicePsl is first executed to

retrieve scheduling information from the Oracle database and to convert the information

into PSL format. ServiceWeatherForecast is then invoked to dynamically parse online

weather information, which is then processed by ServiceWeatherForecast to update the

schedule. ServiceP3 is invoked to reschedule the project using Primavera P3. The

rescheduled result is then used by ServiceVite to invoke Vite SimVision to re-simulate

the project. The system finally notifies other participating services of the updates.

Figures 4.7 to 4.12 show the impact of weather on the project. In particular, Figures 4.7

and 4.8 illustrate the impact on the project schedule, while Figures 4.9 to 4.12 show the

impact on task backlogs. As shown in Figure 4.8, the activity “Lay Foundation” has been

prolonged from 25 to 30 days, which, in turn, causes the delays of other activities. As

shown in Figure 4.10, the pattern of task backlogs has been changed. The updated

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

120

backlogs are the re-simulated results in Vite SimVision due to the delays. For example,

both the peak value and the associated date of the electrician’s backlogs have been

changed. Users can also examine the updated task backlogs in Microsoft Excel tables, as

shown in Figure 4.12.

Figure 4.7: Original Schedule in Primavera P3

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

121

Figure 4.8: Updated Schedule in Primavera P3

Figure 4.9: Original Backlogs in Chart

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

122

Figure 4.10: Updated Backlogs in Chart

Figure 4.11: Original Backlogs in Table

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

123

Figure 4.12: Updated Backlogs in Table

4.2 Using SimAL to Compare Schedule Recovery
Options

In this section, the data and modules from the McDonald Housing Expansion project [96]

are used to illustrate how to use SimAL to compare different scenarios in project

management. Section 4.2.1 briefly introduces the project. This example project is also

used in Section 4.3 to illustrate how to integrate commercial tools using SimAL. Section

4.2.2 describes the process to compare different schedule recovery options and presents

the demonstrative results.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

124

Figure 4.13: The 3D Model of the Project

4.2.1 The McDonald Housing Expansion Project

The McDonald Housing Expansion project is a $10 million dollar reconstruction project

on Sand Hill Road in Palo Alto, CA [96]*. It consists of a 18,000 SF single story

concrete underground parking structure and a 32,000 SF 3-story structure of wood frame

and stucco construction with bedroom suites and administrative facilities. The owner of

the project is Ronald McDonald House at Stanford, a charitable organization. Hanscomb

USA acts as the owner’s representative and coordinates other project participants. The

Steinberg Group is responsible for the design of the project, while Webcor Builders is the

general contractor. Figure 4.13 shows the 3D model of the 3-story superstructure in

AutoCAD Architectural Desktop software.

* The data for the McDonald Housing Expansion project are obtained from Mr. Rick Trudell of Webcor

Builders, a superintendent in the project.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

125

With the initial targeted finish date in September 2003, the project started on July 22,

2002. The scheduling of the project was conducted using Microsoft Project. Figure 4.14

shows the detailed schedule of the project, including milestone tasks and sub-tasks.

Figure 4.15 shows the executive schedule reproduced in Primavera P3. The executive

schedule includes all milestone tasks but not detailed activities. Thus, it is more suitable

for high-level analysis. In this research, the executive schedule is used for the

demonstration purpose.

Figure 4.14: The Detailed Schedule of the Ronald Mcdonald House Project

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

126

Figure 4.15: The Executive Schedule Reproduced in Primavera P3

The estimating department (in this case, located at Webcor’s headquarters) is responsible

for the cost estimating and tracking of the project, while on-site project personnel have

the responsibility for notifing the estimating department about potential cost overruns. In

this project, the cost estimating and accounting process was reproduced using the

GeneralCOST Estimator, a Microsoft Excel based estimating tool developed by CPR

International, Inc. Figure 4.16 shows a snapshot in Microsoft Excel of the project’s cost

estimating information.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

127

Figure 4.16: Cost Estimating of the Project

4.2.2 Using SimAL to Simulate and Compare Alternatives

In the McDonald Housing project, there are volumes of information from different

sources that the management team needs to deal with. Examples of information include

project blueprints, CAD drawings, schedules, and cost reports. The information is

usually represented in different formats and resides at different locations. For example,

the scheduling information is available in Microsoft Project, while the electronic

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

128

drawings are in AutoCAD. Similarly, the on-site project team has up-to-date scheduling

information, while the detailed cost estimates may reside at the estimating department.

When a schedule delay occurs, more often than not, the management team needs to

review the information from different sources to handle the situation. For example, to

choose a good solution from various options, project personnel need to know not only

scheduling information but also the associated cost information for those options.

Let’s assume that the delivery of structural iron is 15 days behind schedule. This late

delivery will cause the delay of the task Erect Structural Iron, which, in turn, will

postpone the task Superstructure Framing and the whole construction progress.

Examination of the whole schedule shows that the delivery delay will lengthen the whole

project by four days.

Now, hypothetically, let’s assume that the following methods are proposed as practical

options:

• Scheduling the steel crews to work six days a week for four weeks, thus reducing

the duration of the tasks Set Steel, Plumb & Line and Weld Off by up to four days.

Further analysis shows that this option will allow the task Superstructure Framing

to be completed on time.

• Expediting the delivery of steel so that it will arrive four days earlier. This option

also ensures that the task Superstructure Framing completes on time.

• Allowing the postponement of the completion date and paying extra fees.

Figure 4.17 shows the SimAL program used to compose and compare these scenarios.

Users first need to initialize the connections to various project management services.

Users then need to compose individual scenarios using SimAL statements. Finally, users

need to specify how to compare scenarios and display results. According to the

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

129

instructions from users, the SimAL system invokes respective project tools, collects

information from various sources, displays the results, and compares these scenarios.

SimALDemo MCDO
{

psl_svc = SETUP("ServicePsl")
query_svc = SETUP("ServiceQuery")
p3_svc = SETUP("ServiceP3")
update_svc = SETUP("ServiceUpdate")
gcl_svc = SETUP("ServiceGCLEstimator")

mcdo = psl_svc.INVOKE("to-psl", %%)

sn1 = SCENARIO("Working on Saturdays"){
update0 = update svc.UPDATE("set duration = 14 where activityID =

167", mcdo, %%)
update1 = update svc.UPDATE("set duration = 8 where activityID =

168", update0, %%)
mcdo1 = p3_svc.INVOKE("reschedule", update1, %%)
stat1 = query_svc.QUERY("select duration", mcdo1, %%)
cost1 = gcl_svc.INVOKE("Re-estimate", mcdo1, %%)
sn1.SETSCENARIO(date1, cost1)

}

sn2 = SCENARIO("Expedite Delivery"){
update2 = update_svc.UPDATE("set finishDate = 2003-2-11 where

activityID = 166", mcdo, %%)
mcdo2 = p3_svc.INVOKE("reschedule", update2, %%)
stat2 = query_svc.QUERY("select duration", mcdo2, %%)
cost2 = gcl_svc.INVOKE("Re-estimate", mcdo2, %%)
sn2.SETSCENARIO(date2, cost2)

}

sn3 = SCENARIO("Stay with the schedule"){
cost3 = gcl_svc.INVOKE("Re-estimate", mcdo, %%)
date3 = query_svc.QUERY("select duration", mcdo, %%)
sn3.SETSCENARIO(date3, cost3)

}

res = COMPARE(sn1, sn2, sn3)
DISPLAY(res, "Compare Scenarios")

}

Figure 4.17: Using SimAL to Simulate Schedule Recovery

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

130

Identify Problems

Brainstorm Options

Express Scenarios
in SimAL

Coordinate Tools
and Gather Information

through SimAL

Display and Compare
Results

Make Decisions

Figure 4.18: The Schedule Recovery Process

The schedule recovery process is illustrated in Figure 4.18. Although SimAL does not

replace the human element in the process, it provides significant help in coordinating

various tools to achieve the common goal. Project personnel do not need to go through

vastly different and complex computer tools to gather information. The underlying data

integration provided by SimAL streamlines the data exchange among these tools. In

addition, SimAL also helps compare different scenarios and display the results in

appropriate formats.

To evaluate the impact of the project schedule on project costs, proper links need to be

established between the scheduling and estimating models. Schedule changes typically

have the following impacts on project costs:

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

131

• Direct Costs

Direct costs include costs directly attributed to task delay or other schedule

recovery measures. For example, constructors will incur additional labor costs if

weekend work is planned. Purchasing equipment and speeding delivery are also

going to translate into direct costs. To quantify the direct costs, the links between

delayed tasks or recovery measures and cost items in the estimating software have

to be established.

• Indirect Costs

Indirect costs include costs such as corporate overhead, interest fees, and

liquidated damages if a project is not completed on time. These costs usually can

be calculated by linear models based on the completion dates.

Figure 4.19 illustrates the results of comparing different options in schedule recovery as

well as the baseline numbers. In this case, the option Working on Saturdays is superior

since it has the lowest cost and also completes the project on time. In reality, other

factors, such as safety and quality, also need to be considered. For example, although the

option Working on Saturdays is able to speed the construction progress, it may have

safety concerns since accident rates tend to increase when workers are tired due to

overtime work. Thus, the option Expediting Delivery might be chosen over the option

Working on Saturdays, since it does not involve any safety concerns and results in only

slightly higher costs. Table 4.1 summarizes the comparisons among different alternatives

based on the simulation using the SimAL system and the integration platform.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

132

Figure 4.19: The Result of Comparing Three Options

Table 4.1: The Comparison of Different Alternatives

Methods Days
Recovered

Direct Cost Indirect Cost Total Cost

Working on
Saturdays

4 5,760 0 5,760

Expedite
Delivery

4 8,000 0 8,000

Stay with the
schedule

0 0 20,000 20,000

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

133

In this example, SimAL compares different scenarios in terms of completion dates and

project costs. The qualitative measures, such as safety and quality concerns, are subject

to users’ judgments and are not included as part of the comparison in SimAL. However,

it must be noted that these measures can also be incorporated into the comparison in

SimAL if quantitative simulation tools are developed.

4.3 Using SimAL to View Construction Progress

CAD and scheduling tools are among the most important software applications in design

and construction. In this section, we discuss how to integrate CAD and scheduling tools

using SimAL.

To build the link between CAD models and schedules, 3D models need to be object

based. For instance, a door should be created as an object instead of a set of lines in a

drawing tool. In addition, objects in CAD models need to be grouped and to be

associated with corresponding tasks in the project schedule. For instance, all doors on the

same story are likely associated with the same task, and they should be grouped together.

Once the association has been built, the program can display the 3D model according to a

specified schedule. As shown in Figure 4.20, for each object (a set of objects grouped

together) in AutoCAD Architectural Desktop (ADT), the program first retrieves the

corresponding scheduling task from the association table. It then compares the targeted

display date against the start and finish dates of the task to determine whether the object

should be displayed, partially displayed, or not displayed at all. Finally, the appropriate

CAD models are created to indicate the construction progress on the targeted date.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

134

Parse
Schedule

Information

Iterate all
CAD

Objects

Compare the
Start/Finish Date of

the Object with
Targeted Display

Date

Targeted
Date before
Start Date

Targeted
Date after

Finish Date

Targeted
Date

between
Start and

Finish Dates

Retrieve
Associate
d Tasks

Object Not
Constructed

Object
Constructed

Object In
Construction

Update CAD
Model

Figure 4.20: Update CAD Models

Using a Web browser, users can view the CAD model of the project at various dates

without the need of having AutoCAD ADT installed on their computers. This

functionality can be of significant help to field engineers. On-site personnel might not

always have access to corporate desktop computers, which host complex CAD tools; on

the other hand, it is not unusual for them to have PDA or laptop computers, as well as

Internet connections. Thus, they can view scheduled construction progress using Web

browsers. Figures 4.21 and 4.22 show the CAD model of the McDonald Housing Project

on July 15th, 2003 and November 20th, 2003, respectively. When users select a targeted

date, the command is processed by the SimAL system, which, in turn, instructs AutoCAD

ADT to retrieve scheduling data and to display appropriate models. The CAD models are

then retrieved and displayed on Web browsers. It must be noted that the CAD models are

dynamically generated by AutoCAD ADT and Primavera P3 according to the latest 3D

models and schedules. This approach is different from Web-based project repositories,

which offer no real-time analysis tools to process project information.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

135

Figure 4.21: View the CAD Model on July 15th, 2003 on a Web Browser

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

136

Figure 4.22: View the CAD Model on November 20th, 2003 on a Web Browser

The scheduling information can also be viewed and updated on Web browsers. Thus,

users can even adjust schedules and view the updated CAD models using Web browsers,

as illustrated in Figure 4.23. Once the scheduling information has been changed, the

SimAL system notifies Primavera P3 to incorporate the change and to reschedule the

whole project. The rescheduled information is then transferred to AutoCAD ADT for

generating the new CAD models, and the updated models can be viewed on Web

browsers.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

137

Web Browser

Primavera P3

AutoCAD

SimAL

Send results to AutoCAD
Instruct AutoCAD to update display

Instruct Web Browseer to
diplay 3D CAD models

Send Change to P3
 Triger P3 to Reschedule

Figure 4.23: Visualize the Impact of Schedule Change

Here, the MacDonald Housing project is again used as the test example. Suppose that the

task ID5 (“Grading/Excavation”) has been prolonged from 55 to 85 days due to various

delays. Users can then accordingly update the schedule on a Web browser, as illustrated

in Figure 4.24. Since ID5 is a task on the critical path, other succeeding tasks are delayed

as a result. Examples include task ID6 (“Parking Structure”) and ID11 (“Superstructure

Framing”). Once the SimAL system receives the change, it notifies Primavera to

reschedule the project. Figure 4.25 shows the rescheduling result. When rescheduling is

completed, SimAL instructs AutoCAD ADT to incorporate updated scheduling

information and to display the CAD models corresponding to the updated schedule, as

shown in Figure 4.26. As seen from the picture, due to the delay of the task ID5, the

construction progress has been noticeably delayed. In particular, under the new

circumstances, the project is built up to story one instead of story two on April 17, 2003.

The changes in the construction progress can also be viewed through a Web browser, as

shown in Figure 4.27.

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

138

Figure 4.24: Visualize the Schedule Change on a Web Browser

Figure 4.25: Visualize the Results in Primavera P3

Figure 4.26: Visualize the Model Change in AutoCAD ADT

CHAPTER 4. SIMULATION FRAMEWORK APPLICATIONS

139

Figure 4.27: Visualize the Model Change on a Web Browser

4.4 Summary

This chapter used three examples to illustrate the usage of SimAL for project

management applications:

• Incorporating weather information

• Handling schedule recovery

• Viewing CAD models under schedule changes

Most of these underlying functionalities are available in existing commercial tools or

information sources. For example, Primavera P3 allows users to schedule and re-

schedule projects, Vite SimVision enables users to simulate project organization,

AutoCAD ADT allow users to build and view CAD models, and Yahoo weather service

can provide weather reports. However, none of the problems can be easily solved using

these tools without the help of SimAL because there is no coordination among these

tools. The examples demonstrated that with the help of SimAL, users can perform

functions that otherwise would be difficult or impossible.

Chapter 5

A Question Answering System for
Project Management Applications

The usage of computer applications in the engineering and construction industry has

steadily increased over the years, as has the complexity of many software applications. It

is difficult for project personnel to become familiar with these ever-increasingly complex

tools. Furthermore, the causes of many practical problems, such as project delays or

escalating costs, are often not obvious from the outputs of these tools. A question

answering system can potentially provide a means to directly extracting answers from

these computer outputs. This chapter examines various issues involved in building such a

question answering system. The mechanisms of utilizing information in the knowledge

base for question understanding are explored. A prototype question answering system

has been built and tested to illustrate the potential usefulness of such a system for project

management applications [22].

CHAPTER 5. A QUESTION ANSWERING SYSTEM

141

5.1 Introduction

Natural language processing (NLP) technologies have been used in many applications.

Examples include database access [73, 101], machine translation [91], data extraction

from text [51], information retrieval [9], and text categorization/summarization [45].

Applications of all these types may be developed for deployment in the project

management domain.

In this chapter, we focus on the use of NLP technologies to help answer questions based

on semi-structured data generated from project management tools. This application is

closely related to research in data extraction from text and database access. A

combination of information retrieval and NLP technologies provides a powerful tool. For

example, project personnel use software tools for scheduling, cost estimating, and

reporting purposes. However, to discover the reasons why certain activities delay a

project or increase project costs, human expertise is needed to browse through and

examine a significant amount of output data. Using NLP technologies, it is possible to

convert natural questions into query expressions, so that such information can be

obtained from the software output. Data from various tools can be extracted, converted

into structured or semi-structured formats, and even stored in a database. Query results

for semi-structured data can then be used to generate answers (again using NLP) which

may not have been obvious from the raw output of the software.

The main objective of this work is to develop QAPM (A Question Answering System for

Project Management Applications), a prototype framework for an NLP based system for

extracting useful information from semi-structured pieces of text. QAPM is implemented

as a prototype system containing knowledge and information from the domain of

construction project management. The outputs from various computer applications are

encoded using domain specific ontology standards, such as ifcXML [59]. QAPM is then

able to extract useful information from these semi-structured texts, which would

otherwise not be obvious or possible to obtain directly from these applications. QAPM is

CHAPTER 5. A QUESTION ANSWERING SYSTEM

142

implemented as a QA (question answering) system that can assist project personnel in

making inferences about the project, based on information obtained from various project

management tools.

Various question answering systems have been developed in the past. For instance, there

have been many efforts made to develop natural language interfaces to databases.

Androutsopoulos et al. [4] discussed various methods and solutions available in

translating natural questions to database queries. Although some solutions seem

promising in a narrowly defined domain, it is difficult to apply these technologies to

construction projects, where database interfaces are not typically supported by the

application software. Callison-Burch and Shilane [20] developed a question answering

system to obtain information about a family tree. This system used the Knowledge

Interchange Format (KIF) [43] files as the knowledge representation system, and used a

Java-based Theorem Prover (JTP) [38] to infer answers. To develop such a system, a

knowledge base needs to be created manually, which makes it difficult to generalize the

system to other domains. Even within the same domain, this system may not scale well

over a number of individual projects, since a knowledge base needs to be created

manually for each project. Zajac [105] used a more general ontology-based semantic

approach for question answering. Both the questions and source texts are parsed into

semantic expressions. However, this approach assumes that the source texts are

expressed in natural sentences, from which semantic information can be extracted; thus it

cannot be directly applied to the project management domain, where information is

stored in various internal formats, either in plain text files or in semi-structured data files.

Our work aims to develop a question answering system, which is scalable over different

projects and considers the non-homogenous characteristics of project information.

Specifically, we take advantage of current developments in query languages for XML

data and the industry-based ontology standards.

The main contribution of QAPM is in the area of using non-document based retrieval of

information by combining information from multiple sources. This is mainly

CHAPTER 5. A QUESTION ANSWERING SYSTEM

143

accomplished by utilizing domain-specific ontologies in ifcXML. The fact that we use

NLP techniques to convert questions into a formal pattern matching language means that

our work also has important implications for User Interfaces in engineering domain

software. Most of the effort in NLP so far has been in the area of interacting with

documents in natural sentences; QAPM, however, takes into account domain-specific

issues, which makes it much more relevant and effective [29]. The lessons and

experiences gained from work on domain-independent fact based questions do not

necessarily ensure an effective QA system in specialized domains [29] such as project

management.

This chapter is organized as follows. Section 5.2 briefly reviews related technologies,

such as XML query languages and engines, POS tagging and chart parsing tools, and

WordNet, which are employed to develop the question answering system. Section 5.3

discusses the issues of knowledge representation and organization. Section 5.4 describes

the process of parsing and understanding questions; we discuss in detail how to utilize the

ifcXML schema and existing ifcXML files in the knowledge base to help understand

questions. In Sections 5.5 and 5.6, we briefly discuss how to search for answers in the

knowledge base and how to generate answers, respectively. Section 5.7 describes the

prototype framework and system implementation of QAPM. An example demonstration

of QAPM is presented in Section 5.8. Finally, Section 5.9 summarizes the status of the

current development and discusses future work.

5.2 Related Technologies

Many recent and current developments, such as ontology standards, query languages,

language parsers and information retrieval, can be employed to build a question

answering system. In this work, various technologies are used, including XQuery [95],

CHAPTER 5. A QUESTION ANSWERING SYSTEM

144

GNU Kawa’s Qexo [16], a POS tagging tool [82], a chart parsing tool [53] and WordNet

[36]. The following briefly describe these related technologies.

5.2.1 XML Query Language

XML query languages are designed to query information from XML files. Many XML

query languages are available, such as XQL [76], XML-QL [93], LOREL [1], Xpath

[94], and XQuery [95]. The query capability of XQL is limited at its current state, while

the research on LOREL is no longer active. In contrast, XQuery, based on XML-QL and

Xpath, is a full-featured query language and is emerging as a standard. Our initial

investigation shows that XQuery is an appropriate language for our prototype

implementation of a question answering system.

XQuery [95] is an XML query language jointly defined by the XML Query Working

Group and the XSL Working Group and is designed to be applicable to all types of XML

data sources. XQuery uses a syntax similar to SQL. For example, the following XQuery

sentence can be utilized to query the start date of the activity ELPV (Eng Layout &

Physical Ver_n):

for $ws in document("tuto.xml")//WorkSchedule

where $ws/@identifier = "ELPV"

return $ws/@startTime

5.2.2 XML Query Engine

Although XQuery is still in its W3C Working Draft version, many vendors have

implemented XQuery, such as Xquench [86], XQEngine [35], Galax [83], and GNU

Kawa Qexo [16]. In this work, we employ the GNU Kawa Qexo as the query engine

because of its high performance and easy usage, as well as its availability as open source.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

145

Qexo is an open source project and a partial implementation of the XML query language

from GNU Kawa [16]. There are two ways to use Qexo. Qexo can be used in an

interactive environment, in which users can input query sentences at the command line.

In addition, Qexo can also compile XQuery sentences into Java byte codes, which

significantly improves the query efficiency. In this work, the latter approach is adopted;

XQuery expressions are compiled into Java byte codes to automate the process of answer

searching.

5.2.3 POS Tagging and Chart Parsing Tools

Part-Of-Speech (POS) tagging is designed to label each word in a sentence with its

appropriate part of speech. For instance, the word “finish” in the sentence, “When did

the project finish?” should be labeled as a verb. There are many POS tagging tools

available. QAPM employs ICOPOST [82], which is a set of free POS taggers written in

the C language.

A grammar parser is used to recognize the structure and organization of words in a

sentence. Among many available grammar parsers is a context-free grammar parser,

which assumes that phrases with the same part of speech can be interchangeable

regardless of the specific context. In QAPM, we have used the context-free grammar

chart parser developed at Stanford University [53]. The chart parser takes a grammar file

and a lexicon file. All possible parses, together with the best parses based on the

probability analysis, will be output as the parsing results.

5.2.4 WordNet

Developed by the Cognitive Science Laboratory at Princeton University [36], WordNet is

a lexical reference system, in which words are organized into synonym sets. WordNet

can be used online; it can also be installed and used on different platforms, including

CHAPTER 5. A QUESTION ANSWERING SYSTEM

146

Microsoft Windows and Unix environments. WordNet can help a question answering

system to identify synonyms. For example, verbs “start” and “begin” will be recognized

as synonyms by WordNet. The synonym information can be used to help match a

question with an appropriate rule, as we will discuss in Section 5.4.4.

5.3 Knowledge Representation and Organization in
QAPM

5.3.1 Knowledge Representation using ifcXML

Knowledge representation is crucial in building a question answering system. Ideally, the

knowledge base should be built automatically, based on the existing information in the

domain. In the project management domain, project information in various applications

is usually stored in different internal formats. As discussed in previous chapters,

wrappers were built to retrieve project information from various sources and to convert

the information into standard formats [23, 25]. Many ontology standards exist in the

A/E/C domain, such as STEP and IFC/ifcXML. These ontology standards provide

standard terms and, often, relationships among the terms. In this research, we use

ifcXML as the knowledge representation format. Project information from various

applications can be extracted and translated into ifcXML files.

IfcXML is emerging as an industry standard and has many advantages for adoption as a

knowledge representation format. First, ifcXML provides many of the terms and

relationships commonly used in project management applications [59]. In addition,

ifcXML provides XML-based schemas, which are easy for querying and transferring on

the Internet. Second, as discussed earlier, there are many existing tools that can be used

CHAPTER 5. A QUESTION ANSWERING SYSTEM

147

to parse and query XML data. Finally, ifcXML has the power to model data from various

project management applications.

In the prototype application, we focus on the project management domain; thus, only a

small portion of the ifcXML schema is used. Specifically, in the ifcXML schema, the

WorkSchedule element holds the overall scheduling information, such as the start time

and duration, while the ScheduleTimeControl element holds further descriptions of

scheduling information, such as actualStart, earlyStart, lateStart and scheduleStart. The

RelSequence element, on the other hand, is used to express the dependency relationships

among activities.

5.3.2 Knowledge Organization

As the size of a knowledge base grows, it is necessary to partition the knowledge base

into smaller chunks. These chunks are called knowledge modules, each of which

addresses a sub-problem of the overall problem domain [31]. Generally, the main issues

that need to be considered when organizing a knowledge base are:

• What needs to be represented in the knowledge base? This issue is related to the

content of the knowledge base.

• How should we represent the content that needs to be represented? That is, an

approach must be selected to organize the knowledge, and formalisms (like rules,

frames, semantic nets, objects or a combination of these etc.) should be used.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

148

Knowledge Base

Schedule Cost Resource

09/01/2001

06/01/2001

03/01/2001

......

Figure 5.1: A Context Tree For Knowledge Organization

For project management applications, the knowledge base can be organized as a set of

knowledge modules, each representing a sub-domain, such as schedule, cost,

organizational model, etc. Meta-knowledge (i.e. knowledge about knowledge) is then

defined to guide the processing of the facts encoded in the knowledge base; in other

words, the meta-knowledge can help a question answering engine search for relevant

information. In QAPM, the meta-knowledge is encoded as sets of patterns, which serve

as the indices to different knowledge modules. When a question is posed, these patterns

are used to identify the relevant knowledge modules from which to retrieve the answer.

Figure 5.1 shows a schematic representation of the knowledge base. A project contains

information from several sub-disciplines, each of which usually comes from a

corresponding project management application. Moreover, within a sub-discipline,

information about different stages of the project can be stored in the knowledge base.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

149

5.4 Parsing and Understanding Natural Questions

Understanding natural questions is rather difficult for computer applications, partly due to

the fact that there can be too many variations of natural language questions. Even if we

limit our research to a small predefined domain, for instance, the project scheduling

domain, there are still significant variations of possible questions, such as:

1. When did the PouringConcrete activity start?

2. Why should the PouringConcrete activity start before ErectingBeams?

3. Which subcontractor submitted scheduling changes yesterday?

Although all these questions are (1) syntactically correct; (2) semantically sound; and (3)

within the project scheduling domain, not all of these questions can be answered from the

knowledge base. For example, we may not have information for questions 2 and 3 in our

ifcXML files. For a practical question answering system, questions from users can be

either syntactically incorrect, semantically unsound, or both.

5.4.1 Analyzing ifcXML Trees

The ifcXML schema can be utilized to facilitate the understanding of questions. Using

the information in the schema, QAPM can predict what kind of questions it can answer.

We can safely ignore the questions with no answers in the knowledge base; in other

words, we do not need to understand the exact meanings of many questions that we

cannot answer from the existing knowledge. A preliminary analysis of such questions

may be enough to discard them. For example, for the question “How many governors of

California have been democrats during the past 50 years?” after a preliminary analysis,

we know that no rule in the knowledge base matches this question; thus, there is no need

to further analyze the exact meaning of the question.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

150

To utilize the ifcXML schema, the first step is to analyze the tree structures of ifcXML

files. We have developed a Java program, which can analyze all the elements, attributes,

and relationships in our ifcXML files. Based on the analysis, we can predict possible

questions that we can answer and express the questions as rules. Each rule contains one

relation word and several parameters, such as the rules (duration activity) and (finish

activity). The rule (duration activity) means that an activity lasts a specific number of

days, while the rule (finish activity) specifies the finish date of the activity. Usually, the

first word in the rule specifies the relation, while the remaining words represent the

parameters of the rule. Figure 5.2 shows part of the tree structure of the ifcXML schema

about project scheduling. The leaf nodes are attributes, while all other nodes are

elements.

Root
(ifcXML-2x_Final)

Project WorkSchedule
Group

Task
Group

RelSequence
Group

WorkSchedule Task RelSequence

id

startDate

description relatingProcess

...id

duration ...

Figure 5.2: Tree Structure of IfcXML Files

CHAPTER 5. A QUESTION ANSWERING SYSTEM

151

According to the tree structure, there are several types of questions that the system should

be able to answer, for example:

• Questions inquiring the attribute value of an element

• Questions asking which element has certain attribute value

• Questions involving multiple elements in the ifcXML tree structures

The first two types of questions are relatively straightforward. Using a leaf node

(attribute) and its parent node (element), we can produce rules for possible questions of

the first type. For instance, after analyzing tree structures of the ifcXML schema, we can

automatically generate rules, such as (startDate Project) and (duration WorkShedule).

The rule (startDate Project) means that we can answer questions such as “What is the

start date of the project?” However, this automatic analysis is not perfect. For example,

in ifcXML, we use the element WorkSchedule to represent the schedule information for

an activity; in practice, however, people usually ask about the duration of an activity

instead of a WorkSchedule. That is, we should use (duration activity) instead of

(duration WorkSchedule).

The third type of questions, on the other hand, is quite complex. We first need to

determine the relationships among different elements. Based on the relationships, we

then need to predict possible questions that we can answer and generate the

corresponding rules for the questions. Again, these automatically generated rules need to

be examined manually by experts. One sample rule is (description (hasDuration

number)). For this rule, the possible question is to inquire the description of an activity

with a specific duration. The (hasDuration number) will return an activity name, which

will then be used to obtain the activity description. The manual work involved in

generating rules is worth the effort. Since ifcXML files for different projects have the

same XML tree structure, we only need to manually examine these rules once. These

rules can then be used for a variety of construction projects.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

152

5.4.2 Tagging Questions

The Part-Of-Speech (POS) tagger is used to provide POS information for individual

words. For example, using the POS tagger, QAPM can find out whether a word is a noun

or verb. The POS information can be used to help understand the meanings of words. In

particular, it can help us identify whether or not a word is a potential relation word or a

parameter in a rule.

Questions need to be processed before we can tag them. In particular, we need to

separate the words and punctuation marks in the questions. The following examples show

some sample tagging results:

When WRB will MD activity NN ID100 NN start NN ? .

How WRB many JJ successors NNS does VBZ activity NN ELPV NNP have VBP ?

When WRB will MD ELPV NNP end VB ? .

Here NN (NN, NNS or NNP) represents a noun, VB (VB, VBZ or VBP) represents a

verb, WRB represents a wh-adverb, JJ represents an adjective, and MD represents a

modal word. We can see that the POS tagger does not always provide the correct POS

information. For example, it tags the word “start” in the first sentence as a noun, while it

is actually a verb. Nonetheless, the POS information provides a good basis for

understanding questions.

5.4.3 Parsing Questions

QAPM uses a context-free grammar chart parser for parsing questions. To use the chart

parser, we first need to create both a grammar file and a lexicon file. While it is possible

to write a grammar file for questions in the project management domain, it is a tedious, if

not an impossible task, to create a lexicon file for all possible questions, since the lexicon

file must contain all the words which can appear in the questions.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

153

S -> WRB MD NP VP ? %%0.1
S -> WP MD NP VP ? %%0.1
NP -> NN %%0.1
NP -> NNS %%0.1
NP -> NNP %%0.1
VP -> VB %%0.1
VP -> VBD %%0.1

 ……

Figure 5.3: Grammar File for the System

We can extract a grammar file from the Penn Treebank, a human-annotated corpus

consisting of over 4.5 million words of American English [63]. However, the extracted

grammar file is huge, while most of the grammar rules are not useful for questions. The

size of grammar rules will significantly affect the parsing process. On the other hand, a

much smaller grammar file is possible for questions within a small domain. As a result, a

grammar file for questions in the project management domain was developed. Figure 5.3

shows part of the grammar file, which is largely based on a heuristic observation. As an

example, the grammar rule “S -> WRB MD NP VP ? %%0.1” indicates that a question

sentence can be rewritten into a wh-adverb, a modal verb, a noun phrase, and a verb

phrase. The grammar rule “NP -> NNS %%0.1” indicates that a noun phrase can be

rewritten as a singular noun, in which the number 0.1 represents the probability that a

noun phrase will be rewritten as a singular noun. The probability values are not used by

the context-free chart parser in this work; rather, these values are provided to conform to

the required format, since other probabilistic context-free grammar parsers need these

probability values.

For the lexicon file, we can also extract lexicons from the Penn Treebank. Developed by

the Stanford Natural Language Process Group, the standalone program ExtractPTBRules

[53] can be used to extract lexicon files from a collection of the Penn Treebank sentences.

However, even if we extract lexicons from a large collection of documents, many words

in the questions may still not be included in the lexicon file; as a result, the chart parser

will have difficulties in parsing the question.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

154

A simple but effective approach is to utilize the POS tagging results. We can

dynamically generate a lexicon file based on the tagging results. Obviously, all words in

the question will appear in the lexicon file. Assuming that the question is syntactically

correct, the chart parser will always find a parse for a question. Figure 5.4 illustrates this

approach.

Once the grammar and lexicon files are ready, we can use the chart parser to parse the

questions. All possible parses, together with their corresponding probability values, will

be generated. In addition, the best parse is also available. Figure 5.5 illustrates the

process of generating a lexicon file for the question, while Figure 5.6 shows the parsing

results of an example question.

Natural Question

Lexicon File

Grammar File

Parse
Information

POS
Information

Trigram
Tagger

Chart
Parser

Figure 5.4: Tagging and Parsing Questions

CHAPTER 5. A QUESTION ANSWERING SYSTEM

155

Question:
When did ELPV begin ?

POS:
When WRB did VBD ELPV NNP begin VB ? .

Lexicon File:
WRB -> When %%0.1
VBD -> did %%0.1
NN -> ELPV %%0.1
VB -> begin %%0.1
? -> ? %%0.1

Figure 5.5: Preparing A Lexicon File

WRB VBD NP

NNP

VP

VBWhen did

ELPV begin

?

?

S

Figure 5.6: Parse Tree of A Sample Question

5.4.4 Analyzing Concepts and Matching Rules

In QAPM, ifcXML is used as the knowledge representation format. Useful information

can be obtained from ifcXML files before we actually start processing questions. For

example, QAPM can parse ifcXML files and store all activity names on a list. Later

when the system encounters a question, it can search the list; if a word is found on the

activity list, it is a strong indication that this word represents an activity name. Thus, this

approach significantly helps the system understand questions.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

156

Earlier, we discussed possible questions that QAPM can answer from the knowledge

base, and how to express them in rules. We also discussed how to obtain the POS and

parsing information for the questions. Based on the information above, we can analyze

the concepts in the questions and match the questions with corresponding rules. Usually,

the most important words for understanding questions are the question words, the nouns,

and the verbs.

• Question words, such as when, what, why, how and does, determine the type of

the question; in addition, these words also imply what kind of answers users

expect.

• Nouns usually correspond to object names, such as activity names, in ifcXML

files. Sometimes, nouns can also be used to express relations in the rules. For

example, in the following question:

What is the start date of Sim_Gates?

The noun phrase “start date” corresponds to the relation “start” in the rule (start

activity).

• Verbs usually imply the rule to which a question should be categorized. For

instance, in the following sentence:

When does the task Sim_Gates end?

The verb “end” is a strong indication that QAPM should categorize this sentence

into the rule (end activity), while the word “Sim_Gates” corresponds to the

activity parameter in the rule.

In addition, WordNet is used by QAPM to categorize synonyms into the correct rules.

For example, to ask the start date of an activity, we may use either start or begin. Using

WordNet, QAPM can categorize both situations into the rule (start activity).

CHAPTER 5. A QUESTION ANSWERING SYSTEM

157

Rule matching is based on probability scores. Based on the concept analysis, QAPM can

match a question with a set of possible rules. The probability scores will be calculated

for each question and rule pair. The rule with the maximum probability score will be

chosen as the correct rule to generate XQuery expressions if the maximum score exceeds

the threshold value set in the system. Otherwise, no matching will be assumed by the

system, which will lead to an answer like “No answer can be found from the current

knowledge base.” In particular, the following information is used in calculating the

probability scores:

• Relation words, which include the meaning and number of relation words. For

example, the relation word “begin” in a question will match the word “start” in

the rule (start activity); thus, this rule will likely have a high probability score.

• Object names, which include the type and number of object names. The number

of tasks and actors in a question is important in matching the question with

possible rules.

5.5 Searching for Answers in the Knowledge Base

To search for answers in the knowledge base, QAPM needs to translate questions into

XQuery expressions, which can then be directly executed on the knowledge base.

Translating questions into XQuery expressions is not a trivial task. Therefore, a Java

program has been developed to analyze the tree structure of ifcXML files and generate

rules for possible questions; meanwhile, the Java program also produces XQuery

expressions for each rule. For example, the rule (duration activity) will be translated into

the following XQuery expressions:

for $ws in document("$xmlfile1")//WorkSchedule

where $ws/@identifier = "$1"

CHAPTER 5. A QUESTION ANSWERING SYSTEM

158

return $ws/@duration

There are two parameters in the XQuery expressions. The first parameter $xmlfile1

appears in most rules; it represents one of the ifcXML files in the current project. The

second parameter $1 corresponds to the activity name in the rule.

When a question is parsed, QAPM categorizes it into a rule, based on the syntactic and

semantic information of the question. As an example, the question “What is the duration

of the task Sim_Gates?” will be categorized into the rule (duration activity), where the

value of the parameter activity is Sim_Gates. Suppose the corresponding ifcXML file in

the current project is p3_tuto.xml, the following XQuery expressions will be generated

for this question:

for $ws in document("p3_tuto.xml")//WorkSchedule

where $ws/@identifier = "Sim_Gates"

return $ws/@duration

The XQuery expressions are then compiled into Java byte codes by the Qexo query

engine. Finally, the generated codes are used to search the knowledge base for the

answer.

5.6 Answer Generation

The answer generator first needs to parse the query results from the query engine. In

addition, it needs to consider different types of questions. For instance, for a wh-

question, a question with specific information is usually expected. For a how many

question, on the other hand, we should give a specific number. In contrast, for a yes or no

question, a yes or no answer is usually sufficient. In most cases, for a wh-question, if the

XQuery engine cannot find any result, it is adequate to provide an answer such as “Sorry,

CHAPTER 5. A QUESTION ANSWERING SYSTEM

159

we cannot find the answer in the knowledge base.” In the current prototype, we provide

only short answers to most questions, for example:

Ask QAPM> when will the task STF terminate?

……

QAPM Ans> 1/4/99

Alternatively, QAPM can provide an answer in full sentences, such as “STF will

terminate on 1/4/99.” This approach, however, increases the implementation complexity

without providing additional information. Rather, using a short answer, such as “1/4/99,”

is sufficient in most cases.

5.7 The Framework and Implementation of QAPM

A question answering system usually includes the following components: knowledge

representation, question understanding, answer searching, and answer generation. Figure

5.7 illustrates the overall framework of QAPM. As shown in Figure 5.7, ifcXML is used

to represent knowledge, while the XML query engine is employed for information query.

In the first and most critical step, QAPM parses and understands natural language

questions. These questions are then converted into XQuery expressions, which are

executed by the XQuery engine. The query results are finally utilized by the generator to

produce answers.

CHAPTER 5. A QUESTION ANSWERING SYSTEM

160

Natural
Questions

XML Query Engine

Answers

Knowledge Base
(ifcXML files)

Primavera P3

Wrapper Wrapper Wrapper

NLP
Generator

NLP
Parser

Translate
to XQuery

Invoking Engine

MS Project Vite SimVision

Figure 5.7: The Framework of QAPM

Information in the knowledge base comes from various sources, such as the Primavera

Project Planner (P3), Microsoft Project, and Vite SimVision. Wrappers are employed to

communicate with different software applications, while the invoking engine is used to

execute these wrappers.

The detailed question answering process is illustrated in Figure 5.9. The rule generation

process involves manual examination; however, this examination can be done by the

experts in advance. At runtime, QAPM first tags and parses the question using existing

NLP tools. The result is the basis for further analysis. In particular, the object names in

the ifcXML files are used to help understand questions. In addition, rules, which are

generated from XML trees and manually examined, are also used to help understand

questions. Based on the analysis, QAPM matches the question against potential rules. If

CHAPTER 5. A QUESTION ANSWERING SYSTEM

161

no match is found, there is probably no answer for the question based on the existing

knowledge. Otherwise, QAPM conducts further analysis and generates answers.

QAPM is developed in Java. Various Java classes have been developed for different

tasks, such as tagging questions and checking synonyms. External programs, including

XQuery engine and WordNet, are invoked via Java system calls, and results from these

external programs are stored either in temporary files or Java InputStreams.

ifcXML
schema ifcXML files

Analyze Tree to
Predict Possible
Question Types

Extract Object
Names (task,

actor, etc.)Manual
Examination

Rules

Natural Questions

Question
Understanding

Match Rule ?

Genertaing Xquery
Expression

Answer Generation

No Answer

NLP Processing
(Tagging, Parsing)

Synonym Analysis
(Wordnet, etc.)

Invoke XQuery
Engine

 Yes No

Figure 5.8: Detailed Process of the QAPM Question Answering System

CHAPTER 5. A QUESTION ANSWERING SYSTEM

162

5.8 Sample Demonstration of QAPM

5.8.1 Example Project used in the Demonstration

We test QAPM on a chip design project, which is a tutorial example in Vite SimVision

[92]. The project involves both the design and the foundry staff to accelerate the design

and construction of a new chip. The goal of the project is to design and fabricate a chip

set for a new Personal Digital Assistant (PDA) product within a tight schedule. There are

12 activities in this project. Among the 12 activities are three milestone activities: “Start

Project,” “Ship Tapes to Foundry” and “Fab, Test and Deliver.” The activity

“Design_Coordination” maintains the overall control of the project.

Figure 5.10 shows the Gantt Chart of the Project in Primavera P3, where activities on the

critical path are shown in dark color (red). Detailed scheduling information, such as the

start dates, durations, and finish dates of individual activities, is available in Primavera

P3. In addition, dependency relationships among these activities are also included. A

wrapper, as described in Chapters 2 and 3, has been developed to retrieve information

from the Primavera Project Planner (P3) and to convert it into an ifcXML file [24, 25].

Figure 5.9: The Gant Chart of the Chip Design Project in Primavera P3

CHAPTER 5. A QUESTION ANSWERING SYSTEM

163

<WorkScheduleGroup>
<WorkSchedule identifier="ID100" duration="18.0" freeFloat="0.0"
totalFloat="0.0" startTime="11/17/1998" finishTime="12/10/1998"/>

</WorkScheduleGroup>
<TasksGroup>

<Task taskid="ID100" description="Assemble and verify_RTL"/>
<Task taskid="ID700" description="FullChipSynth"/>

</TasksGroup>
<RelSequenceGroup>

<RelSequence id="depend0" relatingProcess="ID100"
relatedProcess="ID170" timeLag="0.0"
sequenceType="after-start"/>

</RelSequenceGroup>

Figure 5.10: Generated Sample ifcXML File from Primavera P3

Figure 5.11 shows the resulting ifcXML file from the Primavera Project Planner. In this

example, the scheduling information is expressed using WorkSchedule, Task and

RelSequence elements. In particular, a Task element in ifcXML maps to an activity in a

project schedule. The WorkSchedule element is associated with the corresponding

activity by using the same identifier as its identifier attribute. Similarly, the RelSequence

element, which depicts the dependency relationships among activities, is associated with

the predecessor and successor activities through its ‘relatedProcess’ and

‘relatingProcess’ attributes.

Figure 5.12 shows the chip design project in Vite SimVision. Actors and supervision

relationships are shown in the top half of the display, while activities and dependency

relationships are shown in the bottom half. Various aspects of the project, such as

supervision, task assignment, communication and rework information, are represented

using links in different colors in Vite SimVision. Again, a wrapper, as described in

Chapters 2 and 3, has been developed to retrieve organization information from Vite

SimVision and convert it into the corresponding ifcXML file. To represent the

information in Vite SimVision, extensions are introduced in ifcXML. For example, we

CHAPTER 5. A QUESTION ANSWERING SYSTEM

164

introduce the Rework element, which is not included in the current ifcXML schema, to

represent the rework information among activities. The XML structure, <Rework

id="REW100" relatingTask="WVSB" relatedTask="PCAFP" />, indicates that the

failure of the task WVSB (“Write-Verify-Synth_B1RTL”) will lead to the rework of the

task PCAFP (“Partition Chip and Floor Planning”).

Figure 5.11: The Chip Design Project in Vite SimVision

CHAPTER 5. A QUESTION ANSWERING SYSTEM

165

5.8.2 Working Scenario

When invoked, QAPM first initializes and displays the welcome messages. First, users

can choose to load any project in the database. The following command loads the TUTO

project into the runtime environment:

Ask QAPM> load tuto

Currently, the project tuto has been loaded

There are 2 ifcxml files about the project :p3_tuto.xml, vite_tuto.xml

The ifcXML files will then be analyzed by QAPM, i.e., to extract object names. Once

the program has finished the initialization process, it is ready to answer questions.

QAPM first analyzes questions and converts them into XQuery expressions. The

XQuery engine then executes the XQuery expressions based on the current knowledge

base. The XQuery results are then parsed and presented to the user.

QAPM can answer various questions about project schedule, such as the start date, end

date, duration, successors, and predecessors of an activity. It ignores the tense of the

question. In addition, WordNet is used to identify synonyms. For example, in the

following question, QAPM will give the same answer if we use the word “start” instead

of “begin.”

Ask QAPM> when did Design_Coordination start?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule
where $ws/@identifier = "DC"
return $ws/@startTime
XQuery Results:
 startTime="10/19/1998"
QAPM Ans> 10/19/1998
Ask QAPM> what is the duration of the task Generate Test Vectors?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule

CHAPTER 5. A QUESTION ANSWERING SYSTEM

166

where $ws/@identifier = "GTV"
return $ws/@duration
XQuery Results:
 duration="2.0"
QAPM Ans> 2.0
Ask QAPM> which activity succeeds Sim_Gates?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//RelSequence
where $ws/@relatingProcess = "SG"
return $ws/@relatedProcess
XQuery Results:
 relatedProcess="GTV"
QAPM Ans> Generate Test Vectors

It is also possible to ask other questions about the project, such as task assignments,

supervision, costs, task uncertainties, and other information. Example usages are shown

as follows:

Ask QAPM> who is responsible for Develop Specification?
Convert to XQuery expressions ...
for $ts in document("vite_tuto.xml")//RelAssignsTasks
where $ts/@relatingTask = "DS"
return $ts/@relatedActor
XQuery Results:
 relatedActor="HPM"
QAPM Ans> HW Project Manager
Ask QAPM> what is the hourly cost of Foundry layout engineer?
Convert to XQuery expressions ...
for $ws in document("vite_tuto.xml")//Actor
where $ws/@id = "FLE"
return $ws/@salary
XQuery Results:
 salary="50.00"
QAPM Ans> 50.00
Ask QAPM> which task does sim_Gates need to communicate with?
Convert to XQuery expressions ...
for $cs in document("vite_tuto.xml")//Communication
where $cs/@relatedTask = "sim_Gates"
return $cs/@relatingTask
XQuery Results:
 relatingTask="DC"

CHAPTER 5. A QUESTION ANSWERING SYSTEM

167

QAPM Ans> Design_Coordination

In addition, the system can answer more complex questions by combining the

information from the Primavera Project Planner and Vite SimVision. For example, to

answer the first question “which actors are involved with tasks on the critical path?” the

system searches from the Vite ifcXML file for task assignment information and searches

from the Primavera P3 file for critical path information.

Ask QAPM> which actors are involved with tasks on the critical path?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $rs in document("vite_tuto.xml")//RelAssignsTasks
where $ws/@identifier = $rs/@relatingTask and $ws/@freeFloat="0.0"
return $rs/@relatedActor
XQuery Results:
 relatedActor="FT" relatedActor="LDT" relatedActor="HPM" relatedActor="FLE"
 relatedActor="LDT" relatedActor="FT" relatedActor="CA"
QAPM Ans> Foundry test
Logic design team
HW Project Manager
Foundry layout engineer
Logic design team
Foundry test
Chip Architect
Ask QAPM> which tasks on the critical path has the highest uncertainty?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $ts in document("vite_tuto.xml")//Task
where $ws/@identifier = $ts/@taskid and $ws/@freeFloat="0.0" and $ts/@uncertainty="high"
return $ws/@identifier
XQuery Results:
 identifier="DS"
QAPM Ans> Develop Specification
Ask QAPM> when does the activity with highest priority start?
Convert to XQuery expressions ...
for $ws in document("p3_tuto.xml")//WorkSchedule,
 $ts in document("vite_tuto.xml")//Task
where $ws/@identifier = $ts/@taskid and $ts/@priority = "high"
return $ws/@startTime
XQuery Results:

CHAPTER 5. A QUESTION ANSWERING SYSTEM

168

startTime="9/18/1998"
QAPM Ans> 9/18/1998

5.8.3 Analysis of the Results

There are two basic approaches to evaluating a question answering system: on-line and

off-line evaluations [14]. For on-line evaluations, system answers are judged by humans,

while the answers in off-line evaluations are scored by an evaluation program against

standard references.

In this research, QAPM was tested on a selected set of questions in the project

management domain. It has been tested on the chip design project as well as a few

residential building projects and demonstrates reasonable accuracy. However, the

evaluation results depend on the selection of test questions as well as human judgement.

The types, complexities, and ranges of questions, the human judgements on generated

answers, the documents in the knowledge base, and other factors all affect the

performance of the system.

A standard evaluation program can save significant efforts in assessing a question

answering system. However, since the results from project management tools are often

stored in various internal formats, current evaluation programs cannot be directly applied

in this research due to the characteristics of the project management domain. For

example, Qaviar, an experimental evaluation program developed at the MITRE

Corporation, judges the response using human generated answer keys and focuses on the

Text REtrieval Conference (TREC) context [15]. E-Rater, an evaluation system

developed at ETS, is used to score essay questions of TOEFL takers [19].

CHAPTER 5. A QUESTION ANSWERING SYSTEM

169

5.9 Summary and Discussions

In this chapter, we present a framework for developing a question answering system in a

specific domain. An implementation of the QAPM framework for project management

applications was described. Taking domain-specific issues into account results in a much

more robust and effective system in specialized domains. Once rules were generated

from the ifcXML schema and examined by experts, QAPM requires no extra human

involvement in building the knowledge base for individual projects, thus demonstrating

the adaptability and scalability of the approach to different projects. Finally, using

information from the knowledge base, together with the syntactic and semantic analysis,

leads to better understanding of questions.

Chapter 6

Summary and Discussions

6.1 Summary and Contributions

This thesis addresses some important problems in the domain of project management,

and has developed a simulation access language (SimAL) and framework that can

provide additional services based on existing tools. Four main contributions are made in

this thesis.

• Extensions to the Process Specification Language (PSL)

We have investigated typical project management applications in the design and

construction domain to examine what kinds of extensions are necessary to use

PSL for project information exchange. Some of the suggested extensions have

been adopted in the PSL specification, and other extensions are used in our

research prototype. It is expected that some of these extensions will be

incorporated into PSL as part of the standards.

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

171

• Data Exchange for Project Management Applications

With the increasing use of computer applications in project management, the

interoperability among these applications has become an important issue. In

particular, exchanging process information is important since project management

involves volumes of process information. Our research evaluates and

demonstrates the applicability of using PSL to exchange process information

among distributed computer applications in the project management domain. A

distributed data integration infrastructure has been prototyped and tested on a few

projects collaboratively between Glasgow Caledonian University in Scotland and

Stanford University.

• Consistency Checking and Constraint Scheduling

When project information is obtained from different applications, it is important

to maintain the consistency of process information among these applications.

Currently, no formal approach exists to solve the consistency checking problem.

This research proposes a formal mechanism to check inconsistencies, and the

method has been validated on a few example projects. In addition, large, complex

projects often involve numerous constraints. This thesis proposes a method to

express schedule constraints in PSL and to ensure the conformity of project

schedules to the constraints with the help of a logic-reasoning tool.

• Workflow Management and Decision Support

To handle changes in a project, users usually need information from different

sources to evaluate the impact on different aspects (e.g., costs and schedules) of

the project. The accessibility of such information is often precluded by network

communication and data integration details (e.g., various applications residing at

different locations and using different representations). The SimAL language and

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

172

framework allows users to use a simple language to gather information from

heterogeneous sources and to simulate and compare different scenarios.

• A Question Answering System

A prototype question answering system QAPM has been developed to alleviate

users’ burden on browsing through volumes of data generated by different project

management tools. Emerging industry standards, such as ifcXML, are adopted as

the knowledge representation format to alleviate the manual effort to build a

knowledge base. The mechanisms of utilizing information in the knowledge base

are explored for question understanding.

6.2 Future Research

This thesis opens up a wide field of potential research and applications. While this thesis

has addressed many aspects of the problem in integrating, coordinating, and reusing

project management tools, it could only do so to a limited depth, and in a limited

application area. This section describes some of the important issues deemed valuable

for future research in simulation access and project management.

6.2.1 The Process Specification Language (PSL)

6.2.1.1 Exchanging Product and Process Information

This thesis discussed how to use PSL to exchange process information. In particular, we

elaborated on how to express scheduling information in PSL. As shown in Figure 6.1,

process information includes scheduling, resource, cost, and organization information.

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

173

Currently, PSL is an on-going standard, and its capability in expressing process

information other than scheduling is still under-development.

In a typical project, not only process information but also product data are involved in

project management. PSL is not designed to model product data. Thus, to exchange

project information, ontology standards, which are capable of modeling product data, are

also needed. Example standards include IFC and STEP. However, further research is

needed to effectively integrate PSL with other product data standards.

Scheduling

Resource Cost

Organization

Figure 6.1: Typical Process Information in Project Management

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

174

6.2.1.2 Constraint Scheduling using PSL

In this thesis, we have examined the potential of PSL in checking whether a schedule

meets various constraints. Constraint scheduling is a complex problem. For most

commercial project management tools, the Critical Path Method (CPM) is routinely used

to compute the start and finish times of activities. However, when resource leveling is

involved, finding the optimal (shortest feasible) schedule becomes much more difficult

and complex. Because of its logical representation, PSL may be useful in constraint

scheduling. Activities, resources, and constraints can be expressed in logical sentences

using PSL. Find an optimal constrained schedule can be viewed as a problem of seeking

the shortest project duration that also satisfies the constraints expressed in PSL.

6.2.2 The Simulation Access Language (SimAL) and

Framework

6.2.2.1 Decision-Support Capabilities of SimAL

Currently, the SimAL language provides some basic decision support capabilities to

allow users to specify, simulate, and compare scenarios. Each scenario may require a set

of actions executed by different project management tools. Decision-making, however,

may require further manipulating and analyzing the simulation results. Although separate

services can be developed to support decision making, the SimAL language currently

does not support aggregating and mining results from different computer applications.

Further research is needed to extend SimAL to support complex decision analysis.

6.2.2.2 Computational Capabilities of SimAL

The SimAL language is designed as a compositional language. In other words, SimAL

does not provide any computational capabilities; rather, users need to invoke other

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

175

services to conduct computational tasks. While this design keeps the SimAL language

clean and simple, users are burdened with additional work even for simple calculations,

such as adding two numbers from the results generated by different computer

applications. It would be desirable to include some minimal computational capabilities

within the SimAL language.

6.2.2.3 Validation and Testing

We have applied a simulation access framework to integrate and coordinate distributed

project management software applications on a number of demonstration projects. The

framework has been tested on a few projects remotely between Glasgow Caledonian

University, Scotland and Stanford University. Future research is needed to validate the

framework. In particular, it would be desirable to deploy the prototype in a number of

engineering and construction companies and test the system in practice. Meanwhile,

although the project management software applications are selected primarily from the

design and construction industry, the SimAL language and framework are designed and

implemented with sufficient flexibility that the framework can be applied to other

domains.

6.2.3 The Question Answering System

We have developed a prototype question answering systems QAPM and have

demonstatted it on a few illustrative project. However, the grammar used for the chart

parser in the current implementation is based on a heuristic approach. A more complete

grammatical analysis of various questions may be required for a more robust system

Extending QAPM to handheld devices would provide further significant benefits for

project management. For example, although many handheld devices, such as Palm Pilots

and Pocket PCs, are often used by project members on construction sites, these devices

cannot run most project management applications, such as Vite SimVison, the Primavera

CHAPTER 6. SUMMARY AND FUTURE DIRECTIONS

176

Project Planner, and 4D Viewer. This incapability is due to their small amount of

memory and sub-optimal displays. A question answering system, on the other hand,

requires little memory or displaying abilities on the client device. With a question

answering system available, on-site personnel can simply input the question and get the

information back using handheld devices.

6.3 Conclusions

Some of the positive outcomes of this work are that the SimAL system may improve the

reusability and extend the applications of existing computer tools, help users gather

relevant project information, and assist users in comparing alternative scenarios.

The SimAL language and framework can help users integrate, coordinate, and reuse

existing project management tools. Different project management tools can be brought

together to solve tasks that otherwise would be difficult to handle by individual tools. In

addition, the SimAL system can help collecting relevant project information from

geographically distributed tools and project sites. Even though the tools may use

different internal data representations, the SimAL system allows users to view and update

project information using a simple, consistent language. Finally, the SimAL system can

help users to investigate and compare alternative scenarios. Different options can be

tested and evaluated by using the SimAL system to gather information from different

tools.

In conclusion, this thesis has demonstrated how a simulation access language (SimAL)

and framework can integrate different project management tools, coordinate them,

improve their reusability, and provide help in decision-making.

Bibliography

[1] S. Abiteboul, D. Quass, J. McHugh, J. Widom, and J. Wiener. "The Lorel Query

Language for Semistructured Data," International Journal on Digital Libraries,

1(1):68-88, 1997.

[2] B. Akinci, M. Fischer, R. Levitt, and R. Carlson. "Formalization and Automation

of Time-Space Conflict Analysis," Journal of Computing in Civil Engineering,

16(2):124-134, 2002.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu, D.

Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. BPEL4WS

Specification: Business Process Execution Language for Web Services Version

1.1, http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003.

[4] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. "Natural Language Interfaces

to Databases -- An Introduction," Journal of Natural Language Engineering,

1(1):29-81, 1995.

[5] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. L. Martin, S. A. McIlraith,

S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. "DAML-S:

Semantic Markup for Web Services," Proceedings of the International Semantic

Web Working Symposium, Stanford, CA, 2001.

BIBLIOGRAPHY

178

[6] J. Antill and R. Woodhead. Critical Path Methods in Construction Practice, 2nd

Ed., John Wiley & Sons, Inc., New York, 1970.

[7] N. Apte and T. Mehta. UDDI: Building Registry-based Web Services Solutions,

Pearson Education, 2003.

[8] A. Arkin. Business Process Modeling Language, Business Process Management

Initiative, 2002.

[9] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval, Addison

Wesley Ltd, 1999.

[10] A. D. Birrell and B. J. Nelson. "Implementing Remote Procedure Calls," ACM

Transactions on Computer Systems, 2(1):39-59, 1984.

[11] B. C. Bjork. "Basic Structure of a Proposed Building Product Model," CAD,

21(2):71-78, 1989.

[12] A. Bosworth. "Developing Web Services," Proceedings of the International

Conference on Data Engineering, Heidelberg, Germany, pp. 477-481, 2001.

[13] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen, S.

Thatte, and D. Winer. Simple Object Access Protocol (SOAP), W3C Note,

http://www.w3.org/TR/SOAP, 2000.

[14] E. J. Breck, J. D. Burger, D. House, M. Light, and I. Mani. "Question answering

from large document collections," Proceedings of AAAI Fall Symposium on

Question Answering Systems, North Falmouth, MA, pp. 26-31, 1999.

[15] E. J. Breck, J. D. Burger, L. Ferro, L. Hirschman, D. House, M. Light, and I. Mani.

"How to Evaluate Your Question Answering System Every Day and Still Get Real

Work Done," Proceedings of LREC-2000, the 2nd International Conference on

Language Resources and Evaluation, Athens, Greece, 2000.

BIBLIOGRAPHY

179

[16] P. Brothner. "Kawa: Compiling Scheme to Java," Proceedings of Lisp Users

Conference, Berkeley, CA, 1998.

[17] L. D. Brown. Managing Conflict Among Groups, Prentice-Hall, Inc., 1995.

[18] M. Burner. "The Deliberate Revolution Transforming Integration With XML Web

Services?," ACM Queue, 1(1):28-37, 2003.

[19] J. Burstein, K. Kukich, S. Wolff, C. Lu, and M. Chodorow. "Computer Analysis of

Essays," Proceedings of NCME Symposium on Automated Scoring, 1998.

[20] C. Callison-Burch and P. Shilane. A Natural Language Question and Answer

System, Stanford University, Stanford, CA, 2000.

[21] S. Chandrasekaran, G. Silver, J. Miller, J. Cardoso, and A. Sheth. "Web Service

Technologies and their Synergy with Simulation," Proceedings of the 2002 Winter

Simulation Conference (WSC'02), San Diego, CA, pp. 606- 615, 2002.

[22] J. Cheng, B. Kumar, and K. H. Law. "A Question Answering System for Project

Management Applications," Advanced Engineering Informatics, 16(4):277-289,

2002.

[23] J. Cheng and K. H. Law. "Using Process Specification Language for Project

Information Exchange," Proceedings of the 3rd International Conference on

Concurrent Engineering in Construction, Berkeley, CA, pp. 63-74, 2002.

[24] J. Cheng, P. Trivedi, and K. H. Law. "Ontology Mapping Between PSL and XML-

Based Standards For Project Scheduling," Proceedings of the 3rd International

Conference on Concurrent Engineering in Construction, Berkeley, CA, pp. 143-

156, 2002.

BIBLIOGRAPHY

180

[25] J. Cheng, M. Gruninger, R. D. Sriram, and K. H. Law. "Process Specification

Language for Project Information Exchange," International Journal of Information

Technology in Architecture, Engineering and Construction, 1(4):307-328, 2003.

[26] J. Cheng, K. H. Law, and B. Kumar. "Integrating Project Management

Applications as Web Services," Proceedings of the 2nd International Conference

on Innovation in Architecture, Engineering and Construction, Loughborough

University, UK, 2003.

[27] J. Cheng, K. H. Law, and B. Kumar. "Online Collaboration of Project

Management Applications," Proceedings of the 11th International Workshop of

the EG-ICE, Weimar, Germany, 2004.

[28] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. WSDL. Web

Services Description Language, W3C Note, World Wide Web Consortium,

http://www.w3.org/TR/wsdl, 2000.

[29] A. Diekema, X. Liu, J. Chen, H. Wang, N. McCracken, O. Yilmazel, and E. D.

Liddy. "Question Answering : CNLP at the TREC-9 Question Answering Track,"

Proceedings of Proceedings of the 9th Text REtrieval Conference (TREC-9),

National Institute of Standards and Technology, Gaithersburg, MD, pp. 501-510,

2000.

[30] A. M. Dubois and F. Parand. "COMBINE Integrated Data Model," Proceedings of

CIBSE National Conference, Manchester, UK, pp. 96-108, 1993.

[31] C. L. Dym and R. E. Levitt. Knowledge-Based Systems In Engineering, McGraw-

Hill, Inc., 1991.

[32] C. M. Eastman. Building Product Models: Computer Environments Supporting

Design and Construction, CRC Press, 1999.

BIBLIOGRAPHY

181

[33] D. Echeverry, W. Ibbs, and S. Kim. "Sequence Knowledge for Construction

Scheduling," Journal of Construction Engineering and Management, 117(1):118-

130, 1991.

[34] B. Eisenberg, A. Grangard, and D. Nickull. ebXML Technical Architecture

Specification v1.0.4, Organization for the Advancement of Structured Information

Standards, http://www.ebxml.org/specs/ebTA.pdf, 2001.

[35] Fatdog. XQEngine Introductory Tutorial, Fatdog Software,

http://www.fatdog.com/tutorial.html, 2002.

[36] C. Fellbaum and G. Miller. WordNet: An Electronic Lexical Database (Language,

Speech, and Communication), MIT Press, 1998.

[37] J. Fowler. STEP for Data Management, Exchange and Sharing, Technology

Appraisals Ltd., UK, 1995.

[38] G. Frank. "A General Interface for Interaction of Special-Purpose Reasoners

within a Modular Reasoning System," Proceedings of Question Answering

Systems, Papers from the 1999 AAAI Fall Symposium, North Falmouth,

Massachusetts, pp. 57-62, 1999.

[39] T. Froese, M. Fischer, F. Grobler, J. Ritzenthaler, K. Yu, S. Sutherland, S. Staub,

B. Akinci, R. Akbas, B. Koo, A. Barron, and J. Kunz. "Industry Foundation

Classes for Project Management-A Trial Implementation," Electronic Journal of

Information Technology in construction, 4:17-36, 1999.

[40] GAO. Computer Aided Building Design, GAO, 1978.

[41] F. K. Garas and I. Hunter. "CIMSteel (Computer Integrated Manufacturing in

Constructional Steelwork) - Delivering the Promise," Structural Engineering,

76(3):43-45, 1998.

BIBLIOGRAPHY

182

[42] H. Garcia-Molina, J. D. Ullman, and J. D. Widon. Database Systems: The

Complete Book, Prentice Hall, 2001.

[43] M. R. Genesereth and R. Fikes. Knowledge Interchange Format Reference Manual

- Version 3, Report No. CSD-Logic-92-1, Department of Computer Science,

Stanford University, Stanford, CA, 1992.

[44] E. F. Gould. Managing the Construction Process: Estimating, Scheduling, and

Project Control, Prentice Hall, 2002.

[45] E. Hovy and C. Y. Lin. Automated Text Summarization in SUMMARIST, MIT

Press, 1999.

[46] IAI. Industry Foundation Classes, International Alliance for Interoperability,

Washington, DC, 1997.

[47] IAI. AecXML, International Alliance for Interoperability, http://www.aecxml.org,

2002.

[48] IGES. Initial Graphics Exchange Standard (IGES), Version 5.1, National Bureau

of Standards, Gaithersburg, MD, 1991.

[49] ISO. Industrial Automation Systems-Product Data Representation and Exchange,

International Organization for Standardization, 1989.

[50] ISO. EXPRESS Language Reference Manual: External Representation of Product

Definition Data, ISO DIS10303 Part 11, 1991.

[51] P. Jacobs and L. Rau. "SCISOR: Extracting Information from On-line News,"

Communications of the ACM, 33(11):88-97, 1990.

[52] V. Karamcheti and A. A. Chien. "A Comparison of Architectural Support for

Messaging in the TMC CM-5 and the Cray T3D," Proceedings of ISCA 95, Santa

Margherita, Italy, pp. 298-307, 1995.

BIBLIOGRAPHY

183

[53] D. Klein and C. Manning. "Parsing with Treebank Grammars : Empirical Bounds,

Theoretical Models, and the Structure of the Penn Treebank," Proceedings of the

39th Annual Meeting of the ACL, Toulouse, France, pp. 330-337, 2001.

[54] K. H. Law and M. K. Jouaneh. "Data Modeling for Building Design," Proceedings

of the 4th Conference on Computing in Civil Engineering, ASCE, pp. 21-36, 1986.

[55] K. H. Law, D. L. Spooner, and M. K. Jouaneh. "Abstraction Database Concepts

for Engineering Modeling," Engineering with Computers, 2(2):79-84, 1987.

[56] K. H. Law, T. Barsalou, and G. Wiederhold. "Management of Complex Structural

Engineering Objects in a Relational Framework," Engineering with Computers,

6:81-92, 1990.

[57] S. M. Lewandowski. "Framework for Component-Based Client/Server

Computing," ACM Computing Surveys, 30(1):3-27, 1998.

[58] F. Leymann. Web Services Flow Language (WSFL 1.0), IBM Corporation,

http://www4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, 2001.

[59] T. Liebich. XML Schema Language Binding of EXPRESS for ifcXML, International

Alliance for Interoperability, 2001.

[60] D. Liu, K. H. Law, and G. Wiederhold. "Data-flow Distribution in FICAS Service

Composition Infrastructure," Proceedings of the 15th International Conference on

Parallel and Distributed Computing Systems, Louisville, KY, 2002.

[61] D. Liu, J. Peng, K. H. Law, G. Wiederhold, and R. D. Sriram. "Composition of

Autonomous Services with Distributed Data Flows and Computations," submitted

to ACM Transactions on Internet Technology,

http://mediator.stanford.edu/papers/FICAS.pdf, 2003.

BIBLIOGRAPHY

184

[62] D. W. Liu. A Distributed Data Flow Model For Composing Software Services,

Ph.D. Thesis, Department of Electrical Engineering, Stanford University, 2003.

[63] M. P. Marcus, B. Santorini, and M. A. Marcinkiewica. "Building a large annotated

corpus of English: the Penn Treebank," Computational Linguistics, 19(2):310-330,

1993.

[64] R. Mayer and J. Linden. Using Iges, Dxf and Cals for Cad/Cam Data Transfer:

The Complete Guide to Data Transfer Standards, Management Roundtable, 1992.

[65] W. W. McCune. Otter 3.0 Reference Manual and Guide, Report No. ANL-94/6,

Mathematics and Computer Science Division, Argonne National Laboratory, 1994.

[66] K. McKinney and M. Fischer. "Generating, Evaluating and Visualizing

Construction Schedules with CAD Tools," Automation in Construction, 7(6):433-

447, 1998.

[67] C. Menzel and M. Gruninger. "A Formal Foundation for Process Modeling,"

Proceedings of Formal Ontology in Information Systems, Ogunquit, Maine, pp.

256-269, 2001.

[68] P. Naur and J. Backus. "Report on the Algorithmic Language ALGOL 60,"

Communications of the ACM, 3(5):299-314, 1960.

[69] NRC. The 1984 Workshop on Advanced Technology for Building Design and

Engineering, Building Research Board, NRC, 1985.

[70] NRC. The 1985 Workshop on Advanced Technology for Building Design and

Engineering, Building Research Board, NRC, 1986.

[71] NRC. The 1986 Workshop on Integrated Data Base Development for the Building

Industry, Building Research Board, NRC, 1987.

BIBLIOGRAPHY

185

[72] S. K. Park, K. I. Lim, and E. D. Kim. "A STEP-based Integrated Structural Design

System for Steel Framed Buildings," Proceedings of the 8th International ASCE

Conference on Computing and Building Engineering, Stanford, CA, pp. 788-795,

2000.

[73] F. Pereira. Logic for Natural Language Analysis, Technical Note 275, SRI

International, 1983.

[74] E. Pitt and K. McNiff. java.rmi: The Remote Method Invocation Guide, Addison

Wesley, 2001.

[75] A. Pope. The CORBA Reference Guide: Understanding the Common Object-

Request Broker Architecture, Addison Wesley, 1998.

[76] J. Robie. XQL Tutorial, Software AG, http://ibiblio.org/xql/xql-tutorial.html, 1999.

[77] E. Roman, S. W. Ambler, and T. Jewell. Mastering Enterprise JavaBeans, 2nd

Ed., John Wiley & Sons, 2001.

[78] J. Roy and A. Ramanujan. "Understanding Web Services," IT Professional,

3(6):69-73, 2001.

[79] N. Sample, D. Beringer, L. Melloul, and G. Wiederhold. "CLAM: Composition

Language for Autonomous Megamodules," Proceedings of the 3rd International

Conference on Coordination Models and Languages, Amsterdam, Netherland, pp.

291-306, 1999.

[80] C. Schlenoff, M. Ciocoiu, D. Libes, and M. Gruninger. "Process Specification

Language: Results of the First Pilot Implementation," Proceedings of the

International Mechanical Engineering Congress and Exposition, Nashville,

Tennessee, pp. 529-539, 1999.

BIBLIOGRAPHY

186

[81] C. Schlenoff, M. Gruninger, and M. Ciocoiu. "The Essence of the Process

Specification Language," Transactions of the Society for Computer Simulation,

16(4):204-216, 1999.

[82] I. Schröder. Ingo's Collection Of POS Taggers, http://nats-www.informatik.uni-

hamburg.de/~ingo/icopost/, 2002.

[83] J. Siméon. Galax Implementation of XQuery, XQuery Implementation Panel, XML

2001, Orlando, http://db.bell-labs.com/galax/, 2002.

[84] A. Singh and D. A. Vlatas. "Using Conflict Management for Better Decision

Making," Journal of Management in Engineering, 7(1):70-82, 1989.

[85] A. Singh and H. M. Johnson. "Conflict Management Diagnosis at Project

Management Organizations," Journal of Management in Engineering, 14(5):48-

63, 1998.

[86] Sourceforge. Sourceforge Xquench Project, Open Source Development Network,

http://sourceforge.net/projects/xquench/, 2002.

[87] STEP. ST-Developer, STEP Tools Inc., Rensselaer Technology Park, Troy, NY,

1997.

[88] T. L. Thai. Learning DCOM, O'Reilly & Associates, 1999.

[89] S. Thatte. XLANG: Web Services For Business Process Design, Microsoft

Corporation, 2001.

[90] D. Vanier. "Product Modeling: Helping Life Cycle Analysis of Roofing Systems,"

Proceedings of the Life Cycle of Construction IT Innovations, Stockhelm, Sweden,

pp. 423-235, 1998.

BIBLIOGRAPHY

187

[91] M. Vasconcellos and M. Leon. "SPANAM and ENGSPAN: Machine translation at

the Pan American Health Organisation," Computation Linguistics, 11(2-3):122-

136, 1985.

[92] Vite. SimVision Help, Vite SimVision Help Manual, Vite Corporation, 2002.

[93] W3C. XML-QL: A Query Language for XML, World Wide Web Consortium,

http://www.w3.org/TR/NOTE-xml-ql/, 1998.

[94] W3C. XML Path Language (XPath) Version 1.0, World Wide Web Consortium,

Recommendation 16, 1999.

[95] W3C. XQuery 1.0: An XML Query Language, W3C Working Draft 20, 2001.

[96] Webcor. Ronal McDonal Housing Expansion Quarterly Project Review, Webcor

Builders, April 2003.

[97] WebGain. Java Compiler Compiler (JavaCC) - The Java Parser Generator,

http://www.webgain.com/products/java_cc/, 2001.

[98] G. Wiederhold. Strategic Uses of Information Technologies, Presentation at

Stanford Graduate School of Business, Stanford, CA, 1996.

[99] G. Wiederhold, R. Jiang, and H. Garcia-Molina. "An Interface Language for

Projecting Alternatives in Decision-Making," Proceedings of AFCEA Database

Colloquium, San Diego, CA, 1998.

[100] G. Wiederhold and H. Garcia-Molina. "SimQL: an Interface for Integrating Access

to Simulations into Information Systems," Proceedings of DARPA-JFACC

Symposium, San Diego, pp. 259-262, 1999.

[101] W. A. Woods. "Progress in Natural Language Understanding: An Application to

Lunar Geology," Proceedings of AFIPS Conference, pp. 441-450, 1973.

BIBLIOGRAPHY

188

[102] L. Wos and G. W. Pieper. A Fascinating Country in the World of Computing: Your

Guide to Automated Reasoning, World Scientific Publishing Company, Singapore,

2000.

[103] P. Wyckoff, S. W. McLaughry, T. J. Lehman, and D. A. Ford. "TSpaces," IBM

Systems Journal, 37(3):454-474, http://www.almaden.ibm.com/cs/TSpaces, 1998.

[104] M. J. Young. Step by Step XML, Microsoft Press, 2001.

[105] R. Zajac. "Towards Ontological Question Answering," Proceedings of ACL Open

Domain Question Answering Workshop, Toulouse, 2001.

