
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 1129 

 
 

A MODULAR FRAMEWORK FOR EARTHQUAKE ENGINEERING 
ANALYSIS AND SIMULATIONS 

 
 

Jun PENG1, Frank MCKENNA2 and Kincho H. LAW3 
 
 

SUMMARY 
 
This paper describes a modular framework that facilitates the development of finite element analysis 
(FEA) programs.  The framework allows users easy access to the FEA program and the analysis results 
by using a web-browser or other application programs, such as MATLAB.  In addition, the framework 
enables new as well as legacy codes to be incorporated from disparate sites in a dynamic and distributed 
manner.  To provide flexible project management and data access, a database system is employed to store 
project-related information and selected analysis results.  The prototype framework demonstrates that the 
Internet can potentially enhance the flexibility and extendibility of traditional FEA programs. 
 

INTRODUCTION 
 
Practicing engineers today usually perform earthquake engineering simulations on a dedicated computer 
using the developments offered by a finite element analysis (FEA) program.  Typically, a FEA program 
bundles all the procedures and program kernels that are developed by an individual organization.  As 
technologies and structural theories continue to advance, FEA programs need to be able to accommodate 
new developments such as element formulation, material relations, analysis algorithms, and solution 
strategies.  Object-oriented design principles and programming have been utilized in FEA software 
development to support better data encapsulation and to facilitate code reuse [1].  Object-oriented FEA 
programs, particularly those written in C++, have been shown to have comparable performance to their 
procedural-based counterparts [2, 3].  However, most existing object-oriented FEA programs are still 
rigidly structured.  Extending and upgrading these programs to incorporate new developments and legacy 
codes remain to be a difficult task.  Moreover, there is no easy way to access computing resources and 
structural analysis services distributed in remote sites. 
 
With the maturation of information and communication technologies, the concept of building 
collaborative systems to distribute web services over the Internet is becoming a reality [4].  Using a set of 
standardized communication protocol, web services can be universally accessed and deployed, 

                                                 
1 Research Associate, Stanford University, Stanford, CA, USA. E-mail: junpeng@stanford.edu 
2 Research Associate, University of California, Berkley, CA, USA. E-mail: fmckenna@ce.berkeley.edu 
3 Professor, Stanford University, Stanford, CA, USA. E-mail: law@stanford.edu 



independent of the underlying operation environment.  The goal is to provide a platform for building 
distributed applications that utilize software components running on disparate sites.  Following the web 
services model, we have designed and prototyped an Internet-enabled modular framework for the usage 
and development of a FEA program [5, 6].  The modular framework adopts web service model to 
enhance and improve the capability of a FEA program by seamlessly integrating legacy code and new 
developments.  Developments can be incorporated by directly integrating with the core as a local module 
and/or by implementing as a web service.  Using the Internet as a communication channel, the framework 
provides users the ability to pick and choose the most appropriate methods and software services for 
solving a problem.  The framework also includes data and project management functionalities.  A 
database system is employed to store selected analysis results and to provide flexible data management 
and data access.  Project management functions allow users to access information about previous 
simulations of related models stored distributively in different sites. 
 
In the prototype implementation of the Internet-enabled framework, OpenSees [7] is utilized as the finite 
element analysis core.  OpenSees (Open System for Earthquake Engineering Simulation) is an object-
oriented program for the seismic simulation of structural and geotechnical systems.  It is sponsored by 
PEER (Pacific Earthquake Engineering Research) center, and is intended to serve as the computational 
platform for research in performance-based earthquake engineering.  While the prototype implementation 
is using OpenSees as the FEA core, the framework is sufficiently general to be incorporated by other 
FEA programs. 
 

STRUCTURAL ANALYSIS FRAMEWORK 
 
The design of the framework is focused on the interaction of services, with which the system can provide 
users a plug-and-play character.  The overall system architecture of the Internet-enabled collaborative 
framework is schematically depicted in Figure 1.  The architecture defines the dependency and the 
interaction among the participants. 
 
� In this framework, the structural analysis core program is running as a computational server.  

Element and material models, solvers, as well as analysis strategies and solution strategies, are 
brought into this module to improve the functionality of the core.  In the prototype implementation, 
OpenSees [7] is employed as the analysis core. 

 
� Users of the framework can have direct or remote access to the core program through a web-based 

user interface or other application programs, such as MATLAB.  The users can specify desirable 
features and methods (element types, efficient solution methods, and analysis strategies) contributed 
by other developers that have been tested and incorporated into the core platform. 

   
� For element developers, a standard interface/wrapper is defined for communicating the element(s) 

with the analysis core.  If the developer and the system administrator agree, the new element can be 
merged into the analysis core and become part of the static element library.  Moreover, the element 
code can be constructed as a distributed service and then be accessed remotely over the Internet. 

 
� A database system is linked with the core server to support the data storage and project management 

service.  This service can provide selective data storage and efficient data access, and to facilitate 
post-processing tasks.  Project management and version control are also supported by the project and 
data service. 

 



Workstation Parallel ComputerParallel Computer

Database

Element Server 2

Element Server 1

Registry

Finite Element
Compute Engine

(OpenSees)

Internet
Internet

LAN  (Local Area Network)

Internet

Server  Interface

Client Client

Workstation

 

Figure 1. The Collaborative System Architecture 

USER INTERACTION 
 
As shown in Figure 1, the framework can offer users access to the analysis core, as well as the associated 
supporting services via the Internet.  One benefit of this model is the transparency of software services.  
From a user’s perspective, the user deals with a single service from a single point-of-contact – even 
though the actual structural analysis may be performed in a distributed and collaborative manner.  
Another benefit is that this framework can widen the reach of the FEA core program to the users and 
external developers.  The core platform offering the FEA service stays at the provider’s site, where the 
software core is developed, kept securely, operated, maintained and updated. 
 
Web-Based User Interface 
Client browser programs such as the Internet Explorer and Netscape Navigator allow users to navigate 
and access data across machine boundaries.  In the Internet-enabled framework, a standard World Wide 
Web browser is utilized to interact with the FEA core.  The user of the framework can build a structural 
analysis model on the client site, and then save it as an input file.  The structural analysis model can then 
be submitted to the server through the provided web interface.  Whenever the server receives a request, it 
starts a new process to run the FEA core.  The server monitors the progress of the simulation and informs 
the user periodically.  After the analysis is complete, some pre-requested analysis results are returned 
from the FEA core to the user’s browser as a properly generated web page.  One feature of this model is 
that the server supports multithreading, so that the server is able to support simultaneously requests from 
multiple users without severe performance degradation. 
 
MATLAB-Based User Interface 
For web-based services, all too often analysis result is downloaded from the computational server as a 
file, and then put manually (cut and paste plus maybe some cumbersome conversions) into another 
program, e.g. a spreadsheet, to perform postprocessing.  For example, if we want to plot a time history 
response after a dynamic analysis, we might download the response in a data file and then use MATLAB, 
Excel, or other software packages to generate the graphical representation.  It would be more convenient 
to directly utilize some popular application software packages to enhance the user interaction with the 



FEA core.  In our prototype system, a MATLAB-based user interface is available to take advantage of 
the flexibility and graphical processing power of MATLAB.  In the implementation, some extra functions 
are added to the standard MATLAB to handle the network communication and data processing.  These 
add-on functions can be directly invoked from a MATLAB-based graphical user interface.  
 

DISTRIBUTED ENGINEERING SOFTWARE SERVICES 
 
One of the salient features of the software framework is to facilitate analysts to integrate new 
developments remotely with the analysis core so that the functionalities can be enhanced.  The modular 
framework would allow new application services to be incorporated with the analysis core in a dynamic 
and distributed manner.  A diverse group of users and developers can easily access the FEA program and 
contribute their own developments to the central core.  There are two types of online element services, 
namely distributed element service and dynamic shared library element service.  As opposed to the 
traditional statically linked element library, the online element services will not expose the source code to 
the core.  Therefore, the framework allows the building of proprietary element services and facilitates the 
linking of legacy applications. 
 
Distributed Element Service 
A key feature of the framework is the interchangeability of components and the ability to integrate 
existing libraries and new components into the analysis core without the need to dramatically change the 
existing code.  In an object-oriented FEA program, introducing a new type of element generally consists 
of creating a new subclass for a specific element [7].  This local object-computing paradigm can be 
extended to support distributed services.  Instead of only using the objects that reside exclusively on one 
local computer, the framework utilizes distributed objects to allow the building of a distributed 
application to facilitate new element development. 
 
The essential requirements in a distributed object system are the ability to create and invoke objects on a 
remote host or process, and interact with them as if they were objects within the same local process.  In 
the prototype implementation, Java’s Remote Method Invocation (RMI) [8] is chosen to handle 
communication for the distributed element services over the Internet.  Within the infrastructure, an 
element service can be written in any popular programming languages: Java, C, C++, or Fortran.  As long 
as the element service conforms to the defined protocol, the service can participate in the framework.  
The actual element code of a distributed element service resides in the service provider’s site.  The 
developed element service communicates with the analysis core through a communication layer.  A 
remote method call initiated by the analysis core invokes certain method on the element service via the 
communication layer.  For instance, the analysis core may issue a remote method invocation to send the 
input data of an element (e.g. geometry, nodal coordinates, Young’s modulus, and Poisson ratio, etc.) to 
the element service.  Later on, when the core needs certain element data, for example a stiffness matrix, it 
requests the data from the element service through another remote method invocation. The computation 
(e.g. the forming of the stiffness matrix of an element) is performed at the element service provider’s site. 
 
Dynamic Shared Library Element Services 
The distributed element service model has performance overhead on remote method invocation, which is 
generally more expensive than a local procedure call.  The system performance decreases because a 
remote method has to be invoked for accessing every distributed element.  A dynamic shared library (or 
simply a shared library) element service is designed to improve the system performance without losing 
the flexibility and other benefits of the distributed services.  Instead of being compiled to a static library 
and merged to the core server, an element service is built as a dynamic shared library and located on the 
element service provider’s site.  During the system runtime, the installed shared library can be 



automatically downloaded to the core server and linked with the FEA core.   The shared library element 
service allows the replacement of an element service without reinitiating the core server. 
 
There are many advantages for the shared library element services.  One advantage is that the shared 
library can be loaded at runtime, so that different services can be replaced at runtime without re-
compilation and re-linking with the application.  Another benefit of using dynamic shared library is that 
the used binary format guarantees that the source code of the element will not be exposed to the core 
server, making the building of proprietary software components easier.  This also implies that the 
element developer controls the maintenance, quality, and upgrade of the source code, facilitating bug-
fixing and version control of the element service.  However, the dynamic shared library element service 
is platform dependent.  In order to support dynamic loading and binding, in most cases the shared library 
must be built using the same platform as the core server.  Other disadvantages include potential security 
problem and minor performance overhead due to network downloading and dynamic binding. 
 

DATA AND PROJECT MANAGEMENT 
  
The handling of data shared between disparate systems requires persistent storage of the data and 
corresponding interfaces to access the data.  As shown in Figure 1, a database is linked with the 
framework to provide users with easy and efficient access to project information and structural analysis 
results [9].  The data management service would allow the users to query the core server for useful 
analysis results, and the information retrieved from the database through the core server is returned to the 
users in a standard format.  The project management service also facilitates the users to manage and to 
collaborate on engineering analysis and simulation project. 
 
Multi-tiered Architecture 
Figure 2 depicts the architecture of the data management service.  A multi-tiered architecture is employed 
instead of the traditional two-tier client-server architecture.  The multi-tiered architecture provides a 
flexible mechanism to organize distributed services.  Since components in the system are modular and 
self-contained, they could be designed and developed separately.  The multi-tiered data management 
system has the following components: 
 
� A standard interface is provided for the Remote Client programs to access the server system.  

Application programs, such as web browsers or MATLAB, can access the server core and the 
analysis results from the client site via the pre-defined communication protocols.  

 
� Java Servlet-enabled Web Server is employed to receive the requests from the clients and forward 

them to the Application Server.  The Web Server also plays the role of re-formatting the analysis 
results in certain HTML format for the web-based clients.    

 
� The Application Server is the middle layer for handling communication between the Web Server and 

the Data Server.  The Application Server also provides the core functionalities for performing 
analyses and generating analyses results.  In the Internet-enabled framework, the FEA core is situated 
in the Application Server.   

 
� A COTS (Commercial Off-The Shelf) database system is utilized as the Data Server for the storage 

and retrieval of selected analysis results.  Examples of COTS database systems include Oracle [10], 
Access [11], and MySQL [12].  The communication between the Application Server and the 
Database is handled via the standard data access interfaces based on Open Database Connectivity 
(ODBC) that most COTS database systems provide.  ODBC makes it possible to access different 
database systems with a common language. 



Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE
8i

Apache
With

Tomcat
Stored

Procedure

ODBC
JDBC

Presentation
Server

Application
Server

Data
Server

Browser WebServer
Database

AppServer

Java
Servlet

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLEApache
With

Tomcat
Stored

Procedure

Remote
Client

Presentation
Server

Application
Server

Data
Server

Browser
MATLAB

Java
Servlets

WebServer

JDBC
ODBC

Database

DB_Datastore
sendSelf()
recvSelf()

AppServer

Apache
Tomcat

OpenSees

Dynamic

HTML

With

JavaScript

Pages

ORACLE 8i
or MySQL

Presentation
Server

Application
Server

Data
Server

 
 

Figure 2. Project and Data Management System Architecture 

Data Storage Scheme 
A typical finite element analysis generates large volume of data, which can be saved and retrieved in two 
ways.  One approach is to pre-define all the required data and save only those pre-defined data during the 
analysis.  However, if analysis results other than pre-defined are needed, a complete re-analysis is needed 
to generate the results.  An earthquake simulation of a large structural model can be expensive in terms of 
both processing time and storage requirement.  The other approach is simply dumping all the interim and 
final analysis data into files, which are then utilized to retrieve the required results as a postprocessing 
task.  The drawbacks of this approach are the substantial amount of storage space and the potential poor 
performance due to the expensive search on the large data files. 
 
In the data management proposed in this work, the data storage scheme is carried out in a different 
fashion.  The data management service allows the collection of certain information to be saved as the 
analysis progresses, e.g. the maximum nodal displacement at a node or the time history response of a 
nodal displacement.  The purpose is to keep track of the progress of an analysis and output the users’ pre-
specified results.  Besides the recording functionalities, the data access system also has the restart 
capability.  Certain selected data are stored during the analysis that allows the analysis results to be 
restored as needed.  In the data access system, we use object serialization [13] to facilitate the restart 
function.  Ordinarily, an object lasts no longer than the program that creates it.  In this context, 
persistence is the ability of an object to record its state so that the object can be reproduced in the future, 
even in another runtime environment.  Through object serialization, the object can be shared outside the 
address space of an application by other application programs.  Consider a Truss element as an example, 
its nodes, dimension, number of DOFs, length, area, and material properties can be saved in a file or a 
database system.  Based on these stored data, a copy of the Truss object can be restored, and the stiffness 
matrix of the Truss element can then be re-generated. 
 
The restart function introduced in the framework is different from those supported by current commercial 
FEA programs (e.g. ANSYS, ABAQUS, etc.).  For most commercial FEA programs, the data saved in the 
restart file must conform to certain pre-defined data format.  The restart function in the framework, on 
the other hand, relies on object serialization.  As long as a replica of an object can be recreated with the 
saved data, the developer of the class can freely decide what kind of data to be saved and manipulate the 
saved data.  Furthermore, the restart file of most commercial FEA programs is organized as a sequential 
file.  On the other hand, the restart data saved in the framework can be retrieved randomly.  Therefore, a 
particular object or a sub-model of the finite element model can be easily restored without retrieving 
unnecessary data. 



Project Management 
In a typical structural engineering project, many simulations of the same structure with different model 
characteristics are performed.  To conduct a probability analysis, earthquake records with different 
magnitudes are applied to the same analysis model.  A project management mechanism is therefore 
desirable to facilitate storing and managing model information and simulation results.  The modular 
framework provides users with project management capability.  Due to the potentially large amount of 
model data and simulation results of a structure, it is infeasible to store all analysis related data in a 
single computer.  A centralized control-distributed data storage scheme is adopted.  Specifically, a central 
server stores all of the project background information (such as size of the model, the types of finite 
elements, specific boundary conditions, etc.) and the locations of projects.  The actual analysis data (such 
as finite element models, documents, simulation results, etc.) of each project resides on disparate sites 
and managed by the owner of the simulation.  
 
There are several other capabilities of the project management service implemented in the framework, 
such as access control and version control.  Access control is incorporated to differentiate users and to 
allow them access projects based on their privileges.  Version control is implemented with the project 
management service to keep track of the modifications to the analysis models and to present the 
difference between projects. 
 

APPLICATION EXAMPLE 
 
This section presents the usage of the Internet-enabled framework to investigate seismic performance of 
the Humboldt Bay Middle Channel Bridge, which is located at Eureka in northern California.  The bridge 
is a 330 meters long, 9-span composite structure with precast and prestressed concrete I-girders and cast-
in-place concrete slabs to provide continuity.  It is supported on eight pile groups, each of which consists 
of 5 to 16 prestressed concrete piles.  The foundation soil is mainly composed of dense fine-to-medium 
sand (SP/SM), organic silt (OL), and stiff clay layers.  In addition, thin layers of loose and soft clay 
(OL/SM) are located near the ground surface.  A two-dimensional FEA model of the Middle Channel 
Bridge, including the superstructure, piers, and supporting piles, was developed as shown in Figure 3 
[14].  The bridge piers are modeled using 2-D fiber beam-column elements and the abutment joints are 
modeled using zero-length elasto-plastic gap-hook elements.  A four-node quadrilateral element is used 
to discretize the soil domain.   
 
The prototype framework is employed to conduct a nonlinear dynamic analysis on the analysis model.  
As an example, the quadrilateral element in the model is built as a distributed element service.  Figure 4 
illustrates the interaction among the distributed services during a simulation of the model.  The analysis 
core is running on a central server computer called opensees.stanford.edu.  The web server and Java 
Servlet server are also running on this computer.  The developed quadrilateral element services are 
running on a computer named galerkin.stanford.edu.  As we indicated before, users only need to know 
the location of the central server without the awareness of the underlying distributed framework.  Figure 
4 also shows a postprocessing service running on epci21.Stanford.edu.  This postprocessing service is 
employed to generate graphical representations of time history responses.  Besides the illustrated web-
based interface, the users can also communicate with the server directly via a MATLAB-based interface.  
The MATLAB-based interface can be used to invoke structural analysis.  After the simulation, the 
command listResults can be issued to retrieve the list of response time history files, as shown in 
Figure 5(a).  We can also directly generate graphical representation of a particular response time history.  
For instance, Figure 5(b) shows the result of using command res2Dplot(‘press1315_2.out’) to 
plot the pore pressure time history of a particular node. 
 



 

Figure 3. Finite Element Model for Humboldt Bay Bridge (from [14]) 

opensees.stanford.edu epic21.stanford.edugalerkin.stanford.edu
Element Service

Quadrilateral
Postprocessing Service

(Matlab Software)
Core Server
(OpenSees)

Client
1

3

2
4

5

 
 

Figure 4. Interaction of Distributed Services 

 
(a) listResults 

 
(b) res2Dplot(‘press1315_2.out’) 

Figure 5. Sample MATLAB-Based User Interface 



To conduct probability analysis, approximately sixty ground motion records are applied to the bridge 
model for damage simulation.  The ground motion records are divided into three hazardous levels based 
on their probability of occurrence, which are 2%, 10%, and 50% in fifty years respectively.  Many 
simulations are conducted on the bridge model by applying different ground motion records.  Figure 6 
shows a partial list of the Humboldt Bay Bridge projects.  When using the project management service 
developed in this work, a web interface is a single point-of-entry for all the project related background 
information, documents, messages, and simulation results.  Adding a new simulation to the system is 
simple.  After performing a simulation on the analysis model with the new earthquake record, the owner 
can put all the project related data and simulation results in a local website, and then register the 
simulation to the central server.  Once the registration process is completed, the central web page will be 
updated to reflect the modification.  
 
Detailed information of a particular simulation can be retrieved by clicking on the project name, which is 
a hyperlink to the project website located in the owner’s computer.  We will use case Rinaldi of project 
X1 (highlighted in Figure 6) as an illustration.  The ground motion applied to this case is the 1994 
Northridge earthquake recorded at the Rinaldi station (PGA = 0.89g, PGV = 1.85 m/sec, PGD = 0.60 m), 
with a probability of 2% occurrence in fifty years. 
 

 

Figure 6.  The List of Updated Humboldt Bay Bridge Cases 

CONCLUSIONS 
 
This paper described a modular framework that can facilitate the development of earthquake engineering 
simulation programs and the access to simulation results.  The main design principle of this framework is 
to keep the software kernel flexible and extendible, so that a diverse group of users and developers can 
easily access the framework and attach their own developments to the core server.  Users can select 
appropriate services and can easily replace one service by another without having to recompile or 
reinitialize the existing services.  The framework provides both web-based interface and MATLAB-based 
interface to facilitate the user interaction.  The software framework described in this paper provides an 
execution environment that users only deal with a single server.  The end users do not need to be aware 
of the complexity of the core server in terms of both its hardware and software configurations.  
 



A data and project management service is provided to manage simulation results and other pertinent 
information.  A selective data storage scheme is introduced to provide flexible support for the tradeoffs 
between the time used for reconstructing analysis model and the space used for storing the analysis 
results.  This research has presented the potentials of using a project management system to archive 
project-related data and to perform access and revision control.  The project management system allows 
the usage of a database system to manage the information related to projects.  The actual project data is 
stored in distributed machines. The project management service can also facilitate users to 
collaboratively working together on a specific project model. 
 

ACKNOWLEDGEMENTS 
 
This work has been supported in part by the Pacific Earthquake Engineering Research Center through the 
Earthquake Engineering Research Centers Program of the National Science Foundation under Award 
number EEC-9701568, and in part by NSF Grant Number CMS-0084530.  The authors are grateful to Dr. 
Zhaohui Yang, Mr. Yuyi Zhang, Prof. Ahmed Elgamal, and Prof. Joel Conte for providing the Humboldt 
Bay Bridge model. The authors would also like to acknowledge an equipment grant from Intel 
Corporation for the support of this research. 
 

REFERENCES 
 
1. McKenna F. "Object-oriented finite element programming: Frameworks for analysis, algorithm and 

parallel computing." Ph.D. Thesis, University of California at Berkeley, Berkeley, CA. 1997. 
2. Dubois-Pelerin Y, Zimmermann T. "Object-oriented finite element programming: III. An efficient 

implementation in C++." Computer Methods in Applied Mechanics and Engineering 1993; 108(1-
2): 165-83. 

3. Rucki MD, Miller GR. "Algorithmic framework for flexible finite element-based structural 
modeling." Computer Methods in Applied Mechanics and Engineering 1996; 136(3-4): 363-84. 

4. Han CS, Kunz JC, Law KH. "Building design services in a distributed architecture." Journal of 
Computing in Civil Engineering 1999; 13(1): 12-22. 

5. Peng J, Law KH. "A prototype software framework for internet-enabled collaborative development 
of a structural analysis program." Engineering with Computers 2002; 18(1): 38-49. 

6. Peng J, McKenna F, Fenves GL, Law KH. "An open collaborative model for development of finite 
element program." Proceedings of the Eighth International Conference on Computing in Civil and 
Building Engineering (ICCCBE-VIII), Palo Alto, CA. 2000. 

7. McKenna F, Mazzoni S, Scott MH, Fenves GL. "OpenSees: Open system for earthquake 
engineering simulation." http://opensees.berkeley.edu, 2003. 

8. Pitt E, McNiff K. "Java(tm).RMI: The remote method invocation guide." Addison-Wesley, 2001. 
9. Peng J, Liu D, Law KH. "An engineering data access system for a finite element program." 

Advances in Engineering Software 2003; 34(3): 163-81. 
10. Kyte T. "Expert one on one: Oracle." Wrox Press, 2001. 
11. Andersen V. "Access 2000: The complete reference." McGraw-Hill Osborne Media, 1999. 
12. DuBois P, Widenius M. "MySQL." New Riders Publishing, 1999. 
13. Breg F, Polychronopoulos CD. "Java virtual machine support for object serialization." Proceedings 

of the ISCOPE Conference on ACM 2001 Java Grande, Palo Alto, CA. 2001. 
14. Conte JP, Elgamal A, Yang Z, Zhang Y, Acero G, Seible F. "Nonlinear seismic analysis of a bridge 

ground system." Proceedings of the 15th ASCE Engineering Mechanics Conference, New York, 
NY. 2002. 


