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INTRODUCTION 

Simulations of earthquake responses and liquefaction effects generally involve coupling solid 
and fluid phases, and often require the incorporation of soil plasticity models.  Large-scale 
earthquake simulations are not feasible on most current single processor computers.  
Utilization of parallel computers, which combine the resources of multiple processing and 
memory units, can potentially reduce the solution time significantly.  Furthermore, parallel 
computing allows analysis of large and complex models that may not fit into a single 
processing unit.  Application software, such as finite element programs, must be re-designed 
in order to take full advantage of parallel computing. 
 
This joint research effort between Stanford University and University of California at San 
Diego explores the implementation of a geomechanics nonlinear finite element program on 
distributed memory parallel computers.  The research focuses on the development of a 
parallel version of a nonlinear finite element program, CYCLIC, for the simulation of 
earthquake ground response and liquefaction effects. The objective is to extend the 
computational capabilities of the finite element program to simulate large-scale systems, and 
to broaden the scope of its applications to seismic ground-foundation interaction problems.  

PARCYCLIC 

The parallel finite element program, ParCYCLIC, is implemented based on a sequential 
geomechanics nonlinear finite element program, CYCLIC, which has been developed to 
analyze cyclic mobility and liquefaction problems (Parra 1996; Yang et al. 2003).  CYCLIC is 
based on small-deformation theory, which does not account for nonlinearity effects due to 
finite deformation or rotation.  Extensive calibration of CYCLIC has been conducted with 
results from experiments and full-scale response of earthquake simulations involving ground 
liquefaction.  For the liquefaction model currently employed, emphasis is placed on 
controlling the magnitude of cycle-by-cycle permanent shear strain accumulation in clean 
medium-dense sands.  Following the classical plasticity formulation, it is assumed that 
material elasticity is linear and isotropic, and that nonlinearity and anisotropy are the results 
of plasticity.  The selected yield function forms a conical surface in stress space with its apex 
along the hydrostatic axis, as shown in Figure 1.  During shear loading, the soil 
contractive/dilative behavior is handled by a non-associative flow rule (Parra 1996) so as to 
achieve appropriate interaction between shear and volumetric response.   
 
The computational procedure of the developed ParCYCLIC program is illustrated in Figure 2.  
The procedure can be divided into three distinct phases, namely: preprocessing and input 
phase, nonlinear solution phase, and output and postprocessing phase.  In the nonlinear 
solution phase, modified Newton-Raphson algorithm is employed, that the stiffness matrix at 



each iteration step uses the same tangential stiffness from the initial step of the increment.  
Although this modified iterative approach will typically require more steps per load increment 
compared with full Newton-Raphson scheme, substantial savings can be realized as a result of 
not having to assemble and factorize a new global stiffness matrix during each iteration step.  
As shown in Figure 2, if the solution is not converged after a certain number of iterations 
(e.g., 10 iterations) within a particular time step, the time step will be split into two to 
expedite convergence. 
 
 

  

  

Figure 1 – Conical yield surface in principal stress space and deviatoric plane 

 

PARALLEL PROCESSING 

Programming models required to take advantage of parallel programming are significantly 
different from the traditional paradigm for a serial program (Mackay 1992).  To achieve high 
efficiency for parallel applications, it is important to keep all participating processors busy 
performing useful computations and to minimize communications among the processors.   
 
One common approach in developing application software for distributed memory parallel 
computers is to use the single-program-multiple-data (SPMD) paradigm.  In this parallel 
programming paradigm, all processors are assigned the same program code but run with 
different data sets comprising the problem.  Each processor of the parallel machine solves a 
partitioned domain, and data communications among sub-domains are performed through 
message passing.  In the implementation of ParCYCLIC, METIS (Karypis and Kumar 1998) 
routines are applied to decompose the finite element domain.  The algorithms in METIS are 
based on multilevel graph partitioning (Karypis and Kumar 1998), which is an efficient and 
popular domain decomposition approach. 
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Figure 2 – Flowchart of ParCYCLIC computational procedures 
 
After the domain partitioning, symbolic factorization is performed to set up the data structure 
for storing global stiffness matrix.  The assembly of the global matrix from the element 
stiffness matrices is one of the most natural tasks for parallel implementation.  Since each 
element stiffness matrix can be generated independently of the other element stiffness 
matrices, each processor can work independently on the elements assigned to it.  Once the 
processor assignment and the assembly of the global stiffness matrix are completed, 
numerical solution of the global system of linear equations can proceed.  A parallel row-
oriented sparse solver (Mackay and Law 1993) is adopted in ParCYCLIC for performing the 
numerical calculation.  The parallel numerical factorization procedure is divided into two 
phases.  In the first phase, each processor independently factorizes certain portions of the 
matrix that assigned to a single processor.  In the second phase, other portions of the matrix 
shared by more than one processor are factored.  Following the parallel factorization, the 
parallel forward and backward solution phases proceed to compute the solution to the global 
system of equations. 



 
The inter-process communication of ParCYCLIC is implemented using MPI (Snir and Gropp 
1998).  MPI (Message Passing Interface) is a specification of a standard library for message 
passing that was defined by the MPI Forum, a broadly based group of parallel computer 
vendors, library developers, and applications specialists.  The strength of MPI is its 
portability, which makes it suitable to write programs to run on a wide range of parallel 
computers and workstation clusters.  For ParCYCLIC, during the global matrix assembly and 
matrix factorization phases, most of the communications are point-to-point messages; while in 
the forward and backward solution phase, most of the communications are broadcast 
messages. 

PARALLEL PERFORMANCE 

The performance of ParCYCLIC is tested on the Blue Horizon machine at San Diego 
Supercomputer Center.  Blue Horizon is an IBM Scalable POWERparallel (SP) machine, 
which has 144 compute nodes, each with eight POWER3 RISC-based processors and with 4 
GBytes of memory.  Each processor on the node has equal shared access to the memory.  The 
performance of ParCYCLIC is evaluated by using a three-dimensional soil-pile interaction 
model, as shown in Figure 3.  In this model, a 3x3 pile group, embedded in a fully saturated 
soil foundation with three stratums (liquefiable soil as middle layer), is subjected to 
earthquake excitation along the X direction at the base.  As shown in Figure 3, only half of the 
model is used due to its geometrical symmetry.  
 
Table 1 summarizes the timing results of the nonlinear analysis for one time step.  The results 
for the solution phase and the total execution time (which includes the sequential phases such 
as input, domain decomposition, output and postprocessing steps) are also illustrated in Figure 
4.  Note that the results for one processor are not available because the model is too large to 
fit into the memory of a single processor.  The performance results demonstrate excellent 
parallel speedup on the solution phase for the model.  The results also show that the 
ParCYCLIC program is scalable to a large number of processors, e.g., 64 or more. 
 

 

Figure 3 – A soil-pile interaction finite element model 
 



Table 1 – Solution times for the soil-pile interaction model (time in seconds) 

(130,020 equations; 29,120 elements; 96,845,738 non-zeros in factor L) 
Number of 
processors 

LDLT 
factorization 

Forward and 
backward solve 

Solution 
phase 

Total execution 
time 

2 332.67 1.41 370.42 455.91 
4 166.81 0.78 187.72 286.97 
8 85.20 0.45 97.71 186.67 

16 50.73 0.29 59.39 147.55 
32 27.80 0.23 34.61 124.30 
64 18.41 0.26 24.40 116.21 
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Figure 4 – Solution times for the soil-pile interaction model 

CONCLUSIONS 

This article presents the analysis and solution strategies employed in ParCYCLIC, a parallel 
nonlinear finite element program for the simulations of earthquake site response and 
liquefaction.  In ParCYCLIC, finite elements are employed within an incremental plasticity 
coupled solid-fluid formulation.  A constitutive model developed for the simulation of 
liquefaction-induced deformations is a main component of this analysis framework.  Large-
scale experimental results for 3-D geotechnical simulations are presented to demonstrate the 
performance of ParCYCLIC.  It is shown that ParCYCLIC can be used to simulate large-scale 
problems, which would otherwise be infeasible using single-processor computers due to the 
limited memory sizes.  Furthermore, the results show that the ParCYCLIC program is scalable 
to a large number of processors.  Research continues to optimize the program to further 
reduce the total solution time and to apply the finite element program for large-scale 
simulation of ground-foundation interaction problems. 
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