

 1

Internet-Enabled Distributed Engineering (Web) Services

J. Peng1, D. Liu1, J. Cheng1, C.S. Han1 and KH. Law1*

1 Engineering Informatics Group, Department of Civil and Environmental Engineering,
Stanford University, Stanford, CA, USA

ABSTRACT

The emergence of the Internet and communication technologies will have significant impacts in the life cycle project
development and management of civil infrastructures. This paper presents the basic concepts of web services technology
and its potential applications in Civil Engineering. The web services model is becoming a popular approach for
integrating software applications and to improve the flexibility and extend the functionalities of a software application by
making it interoperable with other software services. Three example applications are presented to demonstrate that the
web service approach is a promising paradigm for integrating large engineering software applications.

Keywords: Internet computing, engineering web services, megaservice, engineering simulation

1. INTRODUCTION

The world of Internet computing is evolving very quickly. Simply defined, a web service is a combination of software
applications and data that can be accessed from any web-enabled devices. Using a set of standardized protocols, web
services can be universally accessed and deployed, independent of the underlying operating environment. The basic idea
behind web services is to adopt the web programming model for developing generic software applications that are not
necessarily browser-based. The goal is to provide a platform for building distributed applications that utilize software
components developed using different programming languages (possibly by different developers or vendors) and running
on different operating systems, computer platforms and devices. Acting as adapters for complicated process components
and legacy applications, web services allow disparate systems to work together.

The web services model is also becoming a favorite approach for integrating engineering applications in that the model
can improve the flexibility and extend the functionalities of a software application by making it interoperable with other
software services. An engineering simulation may now involve a number of software applications that run on
geographically distributed computers. For example, the architects, structural engineers, and construction team of a
project may reside in different locations and use separate computer systems and software packages for engineering
analysis and design. A project management application may take advantage of and dynamically integrated with on-line
services. The simplicity of the web services model makes it possible to build a complex software system incrementally.
This paper presents a few examples to illustrate the potential applications of web services in civil and building
engineering.

2. EMERGENCE OF WEB SERVICES

As software becomes ever more complex, there is a shift from coding as the focus of programming to a focus on
integration4, as illustrated in Figure 1. Traditionally, large programs are partitioned into subtasks of manageable sizes.
The subtasks are assigned to programmers who code the instructions in a programming language. The resulting program
segments are subsequently incorporated into the software package. As more and more program segments are pre-
constructed and packaged, increasingly, a large portion of the overall software engineering effort is being spent on
integration.

* Corresponding author. Email: law@stanford.edu.

 2

Coding

Integration

1970 1990 2010
Figure 1. Trend of Software Development (Courtesy of Prof. Gio Wiederhold, Stanford University)

2.1. Software Integration
Software integration takes place in many forms. Early attempts are primarily based on code reuse. The simplest method
is to copy the source code to wherever the desired functionality is needed. There are many drawbacks to this approach,
ranging from compiler incompatibility to difficulty in maintaining duplicate copies of code. To deal with these
drawbacks, shared libraries are used in place of copied code. Software components written using the same programming
language are compiled into shared libraries. The shared libraries have public interfaces, through which the users can
invoke the functions contained in the libraries. Generally speaking, software integration based on code reuse assumes
that the ownership of the reused software components belongs to the users of the software components. In addition, the
software components are executed on the same machine as the invoker (client) of the components.

Advances in network computing, especially the emergence of the Internet, allow software components to be distributed
to multiple machines. Each software component runs as a separate process, communicating with each other by
exchanging messages. Distributed components require to have well-defined interfaces and constraints, and are normally
managed in a decentralized manner. The distributed components whose interfaces are published on the web are
generally referred to as web services20.

Web services can be regarded as the atomic building blocks for service integration. The functionalities provided by the
web services are composed together to form an integrated megaservice. Although the web services are distributed and
heterogeneous, they are utilized as if they were locally available to the megaservice. Communication messages are
exchanged among the web services to coordinate the execution of the web services and to exchange data among the web
services. To achieve interoperability, a set of communication protocols is needed for exchanging data among the web
services. Various standardized communication protocols that can be used to build web services have been proposed.
Examples of standard communication protocols include Common Object Request Broker Architecture (CORBA)19,
Microsoft’s Distributed Component Object Model (DCOM)8, Java Remote Method Invocation (RMI)18, and Simple
Object Access Protocol (SOAP)5. Distributed components may be written in different languages, and can be compiled
by different compilers, while they communicate with each other via standardized protocols.

2.2. Integration Models
Models for integrating software components can be roughly categorized into two groups, namely tightly coupled and
loosely coupled. For tightly coupled model, software components are typically managed under a single administrative
domain. The software components follow a set of proprietary rules that allow access to software components located in
other machines. For software components managed under multiple administrative domains, loosely coupled component
model is preferred for integration. The software components in the loosely coupled model exist as autonomous services,
each of which is controlled by its own service provider. A typical web service application uses the loosely coupled
component model. Unlike in the tightly coupled distributed object systems where all the pieces of an application are
deployed at once, the web services model allows services to be added as needed. The connections to a new web service
can be established during the system runtime.

Web service applications range from comprehensive services such as storage management and customer relationship
management to more specific services such as travel reservation, book purchasing, weather forecasts, financial data
summaries, and newsgathering. To coordinate the execution of a number of individual services together, forming a
megaservice, many standard languages, such as Web Services Flow Language (WSFL)12, Business Process Execution
Language for Web Services (BPEL4WS)2, and Web Service Ontology based on DARPA Agent Markup Language
(DAML-S)3, have been proposed. These service description languages, however, are mainly targeted for business
oriented applications and are not designed for managing and reusing information to support engineering applications.
For example, engineering simulation typically involves large volume of data and it is more beneficial to separate

 3

execution controls and (distributed) data (message) communication. In addition to service description languages, data
representation and exchange standards, such as Industry Foundation Classes (IFC)10, Standards for the Exchange of
Product Data (STEP)11, Extendible Markup Languages (XML)22, Process Specification Language (PSL)21, play a
significant role in facilitating the interoperability of engineering applications.

The objective of our research in web services is to develop methodologies that can effectively wrap legacy applications
and make them accessible over the network. Different applications would require different models for integration and
coordination. The following describe a number of demonstrative examples in civil and building engineering to illustrate
the methodologies and potential applications of engineering web services.

3. APPLICATION EXAMPLES

3.1. A Web Service Example for Building Design.
The first example application is a distributed service architecture that allows building design web services to be
incorporated into a modular network-enabled infrastructure9. Building designs are often required to comply with design
codes and guidelines. Figure 2 shows a prototype framework for on-line review with a partially automated on-line
compliance process using Internet and web-based technologies. At any point in the design process, the user can send the
design to a code-checking program that resides on a remote server. The code-checking program examines the design
data and summarizes the results in a generated web page. The web page contains a graphical representation of the
building model along with “redline” information with hyperlinks to specific comments. When applicable, the comments
have hyperlinks to the actual building code document provisions.

Figure 2: An Online Compliance Assistance Framework

In the US, among the numerous provisions governing a facility design, the two issues that have been identified by
facility managers and building inspectors as most significant are accessibility and safe egress. This pilot study focuses on
design compliance with regulations governing disabled access1 and includes a path-planner to simulate wheelchair
access. Figure 3 shows the conceptual Internet-enabled distributed framework with web services and a broker. Each
individual service adheres to a three-tiered architecture. The first tier, a communication protocol interface developed
using CORBA, gives the application services a common means to send and receive design data over the Internet. The
middle tier, the common product model interface following the IFC standard, is a standard protocol that describes the
design data. The third tier is the core of the design service – the design service extracts the appropriate information of
the building design through the common product model interface and either modifies the design data or generates a
report based on the analysis of the data. The broker does not need the product model interface that is present in the
services. An application package needs simply register itself with the broker to advertise its services in the
infrastructure. Another service will query the broker for the existence of services in the distributed service architecture.
The registration and query service is based on a predefined syntax, but the broker does not have to be aware of the
underlying product model that is being used to exchange design data between services. As an example, Figure 4 shows
the results for the compliance checking of a floor plan and the simulation of wheelchair access of the facility.

Client
Data

Transfer

CLIENT SIDE SERVER SIDE

CAD package

web browser

Code
Server

IFC
data

IFC
data

RULES
linked to
hypertext

Code
Document

Code
Document

VRML model w/redlines,
comments linked to Code Doc

 4

CORBA
Naming Service

SERVICE
Path Planner

CORBA

IFC

BROKER:
Trading Service

CORBA

SERVICE
Accessibility

CORBA

IFC

SERVICE
Project Mgr

CORBA

IFC

CLIENT
CAD UI

CORBA

IFC

Internet

CLIENT
Viewer

CLIENT
Viewer

CORBA

Figure 3. A Web Service Architecture for Building Design Compliance Analysis

(a) Compliance Code Checking Result (b) Performance Simulation using a Path-Planner Program
Figure 4. Accessibility Analysis Service and Generated Report

3.2. A Web Service Example for Structural Analysis
The second example is a web service framework designed to facilitate the utilization of a collaborative finite element
structural analysis program16,17. A finite element analysis program is constructed as a web service to allow easy access
to the analysis program and the analysis results by using a web-browser or other application programs. Although the
finite element analysis program can be viewed as a single web service from the users’ perspective, the analysis program
can actually be running on disparate computers. In this study, the core service is built upon an object-oriented finite
element program, OpenSees15, and it serves as the entry point for users’ requests. Elements, materials, and solution
strategies can be constructed as web services and run on distributed computers to facilitate structural analyses. The
modules of the collaborative software framework are schematically depicted as shown in Figure 5.

Figure 5: System Modules for a Collaborative Finite Element Structural Analysis Software

In the prototype implementation, Java RMI is chosen to handle the network communication for distributed element
services. As an example, a “specialized” ElasticBeamColumn element, which is not available in the analysis core, is
built as an on-line web service. Figure 6 illustrates the interaction among the web services during a simulation of the
model. The analysis core service is running on a server computer called opensees.stanford.edu. The developed
ElasticBeamColumn element service is running on a computer named galerkin.stanford.edu. A MATLAB-based post-
processing web service is deployed on epic21.Stanford.edu. Since it is the core server that handles the communication
with the element service, users only need to know the location of the central server (opensees.Stanford.edu) without the
awareness of the underlying distributed model and the physical locations of the services.

 5

o p en sees .s tan fo rd .ed u e p ic 21 .s tan fo rd .ed ug alerk in .s tan fo rd .ed u
E lem en t S erv ice

(E lasticB e am C o lu m n)
P o stp ro ces sin g S e rv ice

(M a tlab S o ftw are)
C o re S erv e r
(O p en S ees)

C lie n t
1

3

2
4

5

Figure 6. Interaction of Distributed Web Services for a collaborative structural analysis

3.3. A Web Service Example for Project Management
The third example is a web service application for project management and scheduling. In this work, web services are
linked together through an integration framework, which is designed to efficiently handle large volume of engineering
data communication, to compose software applications and to form a megaservice13,14. As shown in Figure 7,
commercial software applications, such as Microsoft Project, Excel, Primavera Project Planner, Vite SimVision, and 4D
Viewer are wrapped as web services that export their functionalities. Applications run on heterogeneous platforms and
can be accessed homogeneously through standard web services interfaces. Functionalities from various software
applications can be brought together to complete a specific engineering task. The prototype also incorporates a variety
of devices ranging from PDA, web browsers, desktop computers, and server computers to support ubiquitous access to
the information and simulation applications. In short, by using the web services model to develop the integration
framework, project management applications can interoperate regardless of locations and platforms.

Oracle Database
Server

AutoCAD ADT

Apache/Tomcat
Server & FICAS Service

Internet

Primavera P3

MS Project MS Excel Web Browser
Typical Office
Applications

Servers and
Specialized

Software

Vite SimVision

Yahoo Weather
Forcasting Service

Figure 7. Web Service Infrastructure for Project Management Applications

Let’s first look at a sample scenario to demonstrate how the engineering service infrastructure may help facilitate
personnel from different groups conduct collaborations. The test case model and the scheduling information as
displayed using Primavera are shown in Figure 8. The project data is shared between the relational data model and the
Primavera’s data model by using a standard data model expressed in PSL6. As shown in Figure 9, the project schedule
can be reviewed using a handheld PDA device to access the information stored in a relational database. Suppose that the
duration for the activity, 18T1-33201, is hypothetically changed from 1 day to 40 days using the PDA. The update will
then trigger other application services to modify the project schedule. As shown in Figure 10, the updated schedule can
be retrieved from the relational database using Microsoft’s Project and the updated displayed with the 4D Viewer.

(a) Project Schedule as displayed in Primavera P3 (b) Sample Project on 4D Viewer

Figure 8. An Example Test Model and Its Project Schedule

 6

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

http://med...!! History
SCHEDULE

Review the schedule and make
appropriate updates by changing the
value in duration:

SCHEDULEID
STARTDATE
DURATION

18T1-33201
01-31-2001
40…………………….. Update

18T1-33241
02-01-2001

Change duration of activity
18T1-33201 (“Erect Roof Element 1”)
From 1 day to 40 days

Figure 9. Revising the Project Schedule via a PDA Device

(a) Reviewing the Updated Schedule in Microsoft Project (b) Reviewing Updated Project on 4D Viewer

Figure 10. Reviewing Updated Project Schedule and Project Model

Another scenario example is to bring on-line services to engineering simulation. Figure 11 shows the example workflow
to include weather conditions to project management applications. A parser is developed to convert the weather forecast
service information into XML format as shown in Figure 12. In addition, a simulation access language7 has been
designed to allow an user to specify the workflow and to embed the program code in Microsoft Excel as depicted in
Figure 13. Figures 14 and 15 illustrate the impacts of the weather conditions to the schedules displayed in Primavera P3
and the results of task and resource backlogs generated by Vite SimVision and displayed using Excel as charts.

Online
 Weather Information

ServiceWeather
Forecast

(retrieve weather
information)

Information of
weather impact

on activities

ServiceWeather
Process
(Process

Weather Impact)

ServiceP3
(Reschedule
the project)

ServiceVite
(Resimulate
the project)

ServiceNotification
(ntofiy participants)

Oracle 8i
Relational
Database

ServicePSL
(retrieve

scheduling
information)

Weather
Information

Encoded in XML

Scheduleing
Information in

PSL

 Figure 11: The Workflow in the Weather Demonstration

<?xml version="1.0"?>
<WeatherReport>
<weather date="2003-9-23">
<location>
<zipcode value="33410" />
</location>
<conditions value=" Isolated thunderstorms early, mainly cloudy overnight
with a few showers" />
<temperature>
<templow c="23.3" f="74.0" />
<temphigh c="32.2" f="90.0" />
</temperature>
……
</weather>
……

Figure 12: Expressing Weather Information in XML files

 7

SimAL WeatherDemo
{ /* Establish Connections */
 p3_svc = SETUP("ServiceP3")
 psl_svc = SETUP("ServicePsl")
 vite_svc = SETUP("ServiceVite")
 notification_svc = SETUP("ServiceNotification")
 wforecast_svc = SETUP("ServiceWeatherForecast")
 wprocess_svc = SETUP("ServiceWeatherProcess")
 /* Invoke Services */
 psl = psl_svc.INVOKE("to-psl", %%)
 wf = wforecast_svc.INVOKE("RetrieveForecast", %%)
 wp = wprocess_svc.INVOKE("ProcessForecast", wf_arho, arho, %%)
 p3 = p3_svc.INVOKE("reschedule", wp_arho, %%)
 vite = vite_svc.INVOKE("simulate", arho1, %%)
 notif = notification_svc.INVOKE("psl.stanford.edu", 8250, status)}

Figure 13: A Demonstration SIMAL Program

(a) Original Schedule in Primavera P3 (b) Updated Schedule in Primavera P3
Figure 14: The Impact of Weather on the Schedule Displayed in Primavera P3

(a) Original Backlogs Displayed in Excel (b) Updated Backlogs Displayed in Excel
Figure 15: The Impact of Weather on Task Backlog Displayed in Charts

4. SUMMARY AND DISCUSSIONS

This paper has presented three example applications that demonstrate the potential applicabilility and flexibility of the
web services technology. Although the mechanisms and protocols that these applications employ to achieve distributed
computing are different, the approach that each of them takes is more or less similar. Integrating distributed engineering
applications as web services provides an effective mechanism to make legacy applications accessible to a broader group
of users. Developers can collaborate to build sophisticated engineering applications by developing distributed modules
that provide portions of the desired functionalities. With the flexibility and scalibility of the web services technology,
the impact could have significant impact not only in project management but life cycle operations and management.

Web service is still an emerging technology, and many improvements need to be made. First, many general-purpose
features, such as security, reliable message delivery, and transactional semantics, are needed to facilitate the
development of web services. Second, specifications for the web services need to be standardized. The lifecycle of the
specifications typically progresses from proposal to de facto standard to actual standard. While researchers are
continuing to propose new specifications, standardization is required for adoption. Third, toolkits and frameworks for
developing web services need to be improved. To promote scalability in the integration of web services, programming
models need to shift from procedural call style services toward specification-centric services. As these new
developments progress, the web services technology will be applied more widely for developing engineering software
applications.

 8

ACKNOWLEDGEMENTS

This work has been supported in part by NSF Grant Number EIA-9988998, the Pacific Earthquake Engineering Research
Center through the NSF under Award number EEC-9701568, the Center for Integrated Facility Engineering at Stanford
University, and the Product Engineering Program at National Institute of Standards and Technology.

REFERENCES

1. Americans with Disabilities Act Accessibility Guide. Access Board, U.S. Architectural and Transportation Barriers

Compliance Board, Washington, D.C., 1997.
2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D., Smith, D. Thatte, S.

Trickovic, I., and Weerawarana, S., Specification: Business Process Execution Language for Web Services
(BPEL4WS), Version 1.1., http://www-106.ibm.com/developerworks/library/ws-bpel/, 2003

3. Ankolekar A, Burstein M, Hobbs JR, Lassila O, Martin DL, McIlraith SA, et al., “DAML-S: Semantic Markup for
Web services,” Proceedings of the International Semantic Web Working Symposium, Stanford, CA, pp. 411-430,
2001.

4. Beringer, D., Tornabene, C., Jain, P., and Wiederhold, G., “A Language and System for Composing Autonomous,
Heterogeneous and Distributed Megamodules,” DEXA International Workshop on Large-Scale Software
Composition, Vienna, Austria, 1998.

5. Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H. F., Thatte, S., and Winer, D.
Simple Object Access Protocol (SOAP), Version 1.1, W3C Note, http://www.w3.org/TR/SOAP, 2000.

6. Cheng, J., Gruninger, M., Sriram, R.D., and Law, K.H., “Process Specification Language for Project Scheduling
Information Exchange,” International Journal of IT in Architecture, Engineering and Construction, 4:307-328,
2003.

7. Cheng, J.. A Simulation Access Language and Framework with Applications to Project Management, Ph.D. Thesis,
Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 2004.

8. Eddon, G., and Eddon, H., Inside Distributed COM, 1st Ed., Microsoft Press, Redmond, WA, 1998.
9. Han, C. S., Kunz, J. C., and Law, K. H., “Building Design Services in a Distributed Architecture,” ASCE Journal of

Computing in Civil Engineering, 13(1):12-22, 1999.
10. International Alliance for Interoperability, Industry Foundation Classes. Specification Volumes 1-4, , Washington,

DC, 1997.
11. International Organization for Standardization, Product Data Representation and Exchange: Part 1: Overview and

Fundamental Principles, No. 10303-1, 1994.
12. Leymann, F., Web Services Flow Language (WSFL), Version 1.0, IBM Corporation, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf , 2001.
13. Liu, D., Law, K. H., and Wiederhold, G., “Data-flow Distribution in FICAS Service Composition Infrastructure,”

Proceedings of the 15th International Conference on Parallel and Distributed Computing Systems, Louisville, KY.,
2002.

14. Liu, D., Cheng, J., Law, K. H., Wiederhold, G., and Sriram, R. D., “An Engineering Information Service
Infrastructure for Ubiquitous Computing,” ASCE Journal of Computing in Civil Engineering, 17(4):219-229, 2003.

15. McKenna, F., Object Oriented Finite Element Analysis: Frameworks for Analysis Algorithms and Parallel
Computing, Ph.D. Thesis, Department of Civil and Environmental Engineering, University of California, Berkeley,
CA., 1997.

16. Peng, J., and Law, K. H. “A Prototype Software Framework for Internet-Enabled Collaborative Development of a
Structural Analysis Program,” Engineering with Computers, 18(1):38-49. 2002.

17. J. Peng and K. H. Law. "Building Finite Element Analysis Programs in Distributed Services Environment,"
Computers & Structures, 82(22):1813-1833, 2004.

18. Pitt, E. and McNiff, K., Java™.RMI: The Remote Method Invocation Guide, 1st Ed.., Addison-Wesley, 2001.
19. Pope, A., The CORBA Reference Guide: Understanding the Common Object-Request Broker Architecture, 1st Ed.,

Addison-Wesley, 1998.
20. Roy, J., and Ramanujan, A., “Understanding Web Services,” IT Professional, 3(6):69-73, 2001.
21. Schlenoff, C., Gruninger, M., and Ciocoiu, M., “The Essence of the Process Specification Language.” Transactions

of the Society for Computer Simulation, 16(4):204-216, 1999.
22. Young, M.J., Step by Step XML. Microsoft Press, 2001.

