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Abstract 

This paper presents the computational procedures and solution strategy employed in ParCYCLIC, a 

parallel nonlinear finite element program developed based on an existing serial code CYCLIC for the 

analysis of cyclic seismically-induced liquefaction problems.  In ParCYCLIC, finite elements are 

employed within an incremental plasticity, coupled solid-fluid formulation.  A constitutive model 

developed for simulating liquefaction-induced deformations is a main component of this analysis 

framework.  The elements of the computational strategy, designed for distributed-memory message-

passing parallel computer systems, include: (a) an automatic domain decomposer to partition finite 

element mesh; (b) nodal ordering strategies to minimize storage space for matrix coefficients; (c) an 

efficient scheme for the allocation of sparse matrix coefficients among the processors; and (d) a parallel 

sparse direct solver.  Application of ParCYCLIC to simulate 3-D geotechnical experimental models is 

demonstrated.  Not only good agreement is achieved between the computed and recorded results, but also 

the computational results show excellent parallel performance and scalability of ParCYCLIC on parallel 

computers with large number of processors. 
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1 Introduction 

Soil liquefaction is a complex phenomenon that causes many damages during earthquakes.  The use of 

finite element methods for the simulations of earthquake response and liquefaction effects requires 

significant amount of execution time due to the complexity involved in coupling solid and fluid, as well 

as the need for sophisticated soil plasticity models.  Large-scale earthquake simulations often exceed the 

capacity of current single-processor computers.  Utilization of parallel computers with multiple 

processing and memory units can potentially reduce the solution time and allow analysis of large and 

complex models.  Sequential application software, such as traditional finite element programs, needs to be 

re-designed in order to take full advantage of parallel computers. 

Many structural and geotechnical analysis programs have been implemented on parallel computers.  Since 

the most time consuming operation of a typical finite element analysis is the solution of linear 

simultaneous equations, some research efforts in the parallelization of finite element programs have been 

attempted on developing parallel equation solvers [1].  Parallel sparse direct solution techniques have 

been developed [2-7].  Various aspects of the parallel direct sparse solver implementations, including 

symbolic factorization, appropriate data structures, and numerical factorization, have been studied.  This 

paper focuses on direct solution method for symmetric matrices.  Specifically, a square-root free parallel 

LDLT factorization, which can be applied to symmetric matrices containing negative diagonal entries, is 

presented. 

There have also been many efforts on the implementation of nonlinear finite element analysis on 

distributed memory parallel computers.  Watson and Noor presented a computational strategy for the 

nonlinear static and post-buckling analysis of large complex structures using nested dissection ordering 

scheme [8].   Gummadi and Palazotto described a nonlinear finite element formulation for beams and 

arches on a parallel machine [1].  They employed the concept of loop splitting to parallelize the element 

stiffness matrix generation.  Nikishkov et al. presented a semi-implicit finite element code ITAS3D using 

domain decomposition method and direct solution method on a IBM SP2 computer, and reported that the 

parallel implementation was scalable to only a moderate number (up to 8) of processors [9].  Rometo et 

al. studied the nonlinear analysis of reinforced concrete three-dimensional frames on different parallel 

architectures, including a cluster of personal computers [10].  Modak and Sotelino presented an objected-

oriented programming framework for parallel dynamic analysis of structures [11].  McKenna also 

presented a parallel object-oriented programming framework and a dynamic load balancing scheme to 

allow elements migrate between subdomains to reduce the number of wasted CPU cycles [12].  Krysl and 

Bittnar presented a nonlinear finite element program for explicit time integration of the momentum 
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equations in structural dynamics [13].  Bao et al. modeled earthquake ground motion in large sedimentary 

basins using a 3D linear finite element program with explicit integration method on parallel computers 

and concluded that implicit method is not attractive on distributed memory computers [14].  

This research presents the implementation of a parallel version of a geomechanics nonlinear finite 

element program for the simulation of earthquake ground response and liquefaction effects.  The 

implementation is based on the serial program CYCLIC, which is a nonlinear finite element program 

developed to analyze cyclic mobility and liquefaction problems [15, 16].  Extensive calibration of 

CYCLIC has been conducted with results from experiments and full-scale response of earthquake 

simulations involving ground liquefaction.  CYCLIC program is re-designed and parallelized to form 

ParCYCLIC.  A parallel sparse direct solver has been incorporated to improve the simulation 

performance.  The objectives of developing ParCYCLIC are to extend the computational capabilities of 

the finite element program to simulate large-scale systems, and to broaden the scope of its applications to 

seismic ground-foundation interaction problems.  

2 Theoretical Background of ParCYCLIC 

The finite element formulation and the stress-strain model adopted in ParCYCLIC are the same as those 

in CYCLIC.  The theoretical development is based on the two phase (solid-fluid) fully-coupled finite 

element formulation of Chan [17] and Zienkiewicz et al. [18].  The soil constitutive model incorporated is 

developed specifically for liquefaction analysis [15, 19].  The current implementation is based on small-

deformation theory and does not account for nonlinear effects due to finite deformation or rotation.  In the 

following, the finite element formulation and the soil constitutive model adopted in CYCLIC and 

ParCYCLIC are briefly described. 

2.1 Finite Element Formulation 

In CYCLIC and ParCYCLIC, the saturated soil system is modeled as a two-phase material based on the 

Biot theory [20] for porous media.  A numerical formulation of this theory, known as u-p formulation (in 

which displacement of the soil skeleton u, and pore pressure p, are the primary unknowns [17, 18]), is 

implemented [15, 16, 19].  This implementation is based on the following assumptions: small deformation 

and rotation, constant density of the solid and fluid in both time and space, locally homogeneous porosity 

which is constant with time, incompressibility of the soil grains, and equal accelerations for the solid and 

fluid phases. 
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The u-p formulation is defined by Chan [17] as two equations: one is the equation of motion for the solid-

fluid mixture, and the other is the equation of mass conservation for the fluid phase that incorporates 

equation of motion for the fluid phase and Darcy's law.  These two governing equations can be expressed 

in the following finite element matrix form [17]: 

0fQpdΩ σBUM s

Ω

T =−+′+ ∫       (1a) 

0fHppSUQ pT =−++          (1b)  

where M is the total mass matrix, U the displacement vector, B the strain-displacement matrix, σ′  the 

effective stress vector (determined by the soil constitutive model described below), Q the discrete 

gradient operator coupling the solid and fluid phases, p the pore pressure vector, S the compressibility 

matrix, and H the permeability matrix.  The vectors sf  and pf  represent the effects of body forces and 

prescribed boundary conditions for the solid-fluid mixture and the fluid phase, respectively.  

In Equation 1a (equation of motion), the first term represents inertia force of the solid-fluid mixture, 

followed by internal force due to soil skeleton deformation, and internal force induced by pore-fluid 

pressure.  In Equation 1b (equation of mass conservation), the first two terms represent the rate of volume 

change for the soil skeleton and the fluid phase respectively, followed by the seepage rate of the pore 

fluid.  Equations 1a and 1b are integrated in the time space using a single-step predictor multi-corrector 

scheme of the Newmark type [15, 17].  In the current implementation, the solution is obtained for each 

time step using the modified Newton-Raphson approach [15].  

2.2 Soil Constitutive Model 

The second term in Equation 1a, which corresponds to the internal force due to soil deformation, is 

defined by the soil stress-strain constitutive model.  The finite element program incorporates a soil 

constitutive model [15, 16, 21] based on the original multi-surface-plasticity theory for frictional 

cohesionless soils [22].  This model was developed with emphasis on simulating the liquefaction-induced 

shear strain accumulation mechanism in clean medium-dense sands [16, 21, 23, 24].  Special attention 

was given to the deviatoric-volumetric strain coupling (dilatancy) under cyclic loading, which causes 

increased shear stiffness and strength at large cyclic shear strain excursions (i.e., cyclic mobility). 

The constitutive equation is written in incremental form as follows [22]: 

)(: pεεEσ −=′                                                           (2) 
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where σ ′  is the rate of effective Cauchy stress tensor, ε  the rate of deformation tensor, pε  the plastic 

rate of deformation tensor, and E the isotropic fourth-order tensor of elastic coefficients.  The rate of 

plastic deformation tensor is defined by: pε = P L , where P is a symmetric second-order tensor 

defining the direction of plastic deformation in stress space, L the plastic loading function, and the symbol 

 denotes the McCauley's brackets  (i.e., L =max(L, 0)).  The loading function L is defined as: L = 

Q:σ ′ / H ′  where H ′  is the plastic modulus, and Q a unit symmetric second-order tensor defining yield-

surface normal at the stress point (i.e., Q= ff ∇∇ / ), with the yield function f  written in the following 

form: 

0)())(())((
2

3 2
0

2
00 =′+′−′+′−′+′−= ppMppppf αsαs :   (3) 

in the domain of 0≥′p  [21].  The yield surfaces in principal stress space and deviatoric plane are shown 

in Figure 1.  In Equation 3, δσs  p′−′=  is the deviatoric stress tensor, p′  the mean effective stress, 0p′  

a small positive constant (1.0 kPa in this paper) such that the yield surface size remains finite at 0=′p  

for numerical convenience (Figure 1), α  a second-order kinematic deviatoric tensor defining the surface 

coordinates, and M dictates the surface size.  In the context of multi-surface plasticity, a number of similar 

surfaces with a common apex form the hardening zone (Figure 1).  Each surface is associated with a 

constant plastic modulus.  Conventionally, the low-strain (elastic) module and the plastic module are 

postulated to increase in proportion to the square root of p′  [22]. 

  

  

Figure 1. Conical Yield Surfaces for Granular Soils in Principal Stress Space and Deviatoric Plane 
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The flow rule is chosen so that the deviatoric component of flow P′ = Q′ (associative flow rule in the 

deviatoric plane) and the volumetric component P ′′  define the desired amount of dilation or contraction 

in accordance with experimental observations.  Consequently, P ′′  defines the degree of non-associativity 

of the flow rule and is given by Parra [15] as follows: 

        ΨP
1)/(

1)/(
2

2

+
−=′′

ηη
ηη

       (4) 

where p′= /2/1):)2/3(( ssη  is effective stress ratio, η  a material parameter defining the stress ratio 

along the phase transformation (PT) surface [25], and Ψ  a scalar function controlling the amount of 

dilation or contraction depending on the level of confinement and/or cumulated plastic deformation [21]. 

The sign of 1)/( 2 −ηη  dictates dilation or contraction: if the sign is negative, the stress point lies 

below the PT surface and contraction takes place (phase 0-1, Figure 2); otherwise, if the sign is positive, 

the stress point lies above the PT surface and dilation occurs under shear loading (phase 2-3, Figure 2).  

At low confinement levels, accumulation of plastic deformation may be prescribed (phase 1-2, Figure 2) 

before the onset of dilation [21]. 

 

 

Figure 2. Shear Stress-Strain and Effective Stress Path under Undrained Shear Loading Conditions 
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A purely deviatoric kinematic hardening rule is chosen according to Prevost [22]: 

µα   bp =′           (5) 

where µ  is a deviatoric tensor defining the direction of translation and b is a scalar magnitude dictated 

by the consistency condition.  In order to enhance computational efficiency, the direction of translation 

µ  is defined by a new rule [15, 21], which maintains the concept of conjugate-points contact by Mroz 

[26].  Thus, all yield surfaces may translate in stress space within the failure envelope 

3 ParCYCLIC Software Organization 

3.1 Parallel Program Strategies 

Programming models required to take advantage of parallel computers are significantly different from the 

traditional paradigm for a sequential program [27].  In a parallel computing environment, cares must be 

taken to maintain all participating processors busy performing useful computations and to minimize 

communication among the processors.  To take advantage of parallel processing power, the algorithms 

and data structures of CYCLIC are re-designed and implemented in ParCYCLIC. 

One approach in developing application software for distributed memory parallel computers is to use the 

single-program-multiple-data (SPMD) paradigm [28, 29].  The SPMD paradigm is related to the divide 

and conquer strategy and is based on breaking a large problem into a number of smaller sub-problems, 

which may be solved separately on individual processors.  In this parallel programming paradigm, all 

processors are assigned the same program code but run with different data sets comprising the problem.  

A finite element domain is first decomposed using some well-known domain decomposition techniques.  

Each processor of the parallel machine then solves a partitioned domain, and data communications among 

sub-domains are performed through message passing.  Domain decomposition is attractive in finite 

element computations on parallel computers because it allows individual sub-domain operations to be 

performed concurrently on separate processors.  The SPMD model has been applied successfully in the 

development of many parallel finite element programs from legacy serial codes [28, 30].  The 

development of ParCYCLIC follows the SPMD model to parallelize the legacy serial code CYCLIC. 

3.2 Computational Procedures 

The computational procedure of ParCYCLIC is illustrated in Figure 3.  The procedure can be divided into 

three phases, namely: preprocessing and input phase, nonlinear solution phase, and output and 

postprocessing phase.    The first phase consists of initializing certain variables, allocating memories, and 

reading the input file.  There is no inter-process communication involved in this phase – all the processors 
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run the same piece of code and read identical copies of the same input file.  Since a mesh partitioning 

routine is incorporated in ParCYCLIC, the input file does not need to contain any information for 

processor assignment of nodes and elements.  The input file for ParCYCLIC has essentially the same 

format as that of CYCLIC.  

After the preprocessing and input phase, the nonlinear solution phase starts with using a domain 

decomposer to partition the finite element mesh.  Symbolic factorization is then performed to determine 

the nonzero pattern of the matrix factor.  After the symbolic factorization, the storage spaces for the 

sparse matrix factor required by each processor are allocated.  Since all the processors need to know the 

nonzero pattern of the global stiffness matrix and symbolic factorization generally only takes a small 

portion of the total runtime, each processor carries out the domain decomposition and symbolic 

factorization based on the global data.  

In the nonlinear analysis solution phase, the program essential goes through a while loop until the number 

of increments reaches the pre-set limit or errors/exceptions are being encountered inside the loop.  In the 

nonlinear solution phase, modified Newton-Raphson algorithm is employed, that is, the stiffness matrix at 

each iteration step uses the same tangential stiffness from the initial step of the increment.  For large-scale 

finite element modeling, the global matrix assembly and numerical factorization require substantial 

computation and message exchange.  Although the modified iterative approach typically requires more 

steps per load increment as compared with full Newton-Raphson scheme, substantial savings can be 

realized as a result of not having to assemble and factorize a new global stiffness matrix during each 

iteration step.  In ParCYCLIC, there is one variation to the typical modified Newton-Raphson algorithm.  

As shown in Figure 3, a convergence test is performed at the end of each iteration step.  If the solution is 

not converged after a certain number of iterations (e.g., 10 iterations) within a particular time step, the 

time step will be divided into two to expedite convergence.  This process repeats until the solution 

converges. 

The numerical solution scheme for the linear system of equations Kx f=  in ParCYCLIC is based on the 

row-oriented parallel sparse solver developed by Mackay and Law [7].  The direct solution of the linear 

system of equations consists of three steps: (1) parallel factorization of the symmetric matrix K into its 

matrix product TLDL ; (2) parallel forward solution, 1y L f−= ; and (3) parallel backward substitution, 

1Tx L D y− −= . 
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Figure 3. Flowchart of Computational Procedures in ParCYCLIC 

The final phase, output and postprocessing, consists of collecting the calculated node response quantities 

(e.g. displacements, acceleration, pore pressure, etc.) and element output (such as normal stress, normal 

strain, volume strain, shear strain, mean effective stress, etc.) from the different processors.  The response 

quantities and timing results are then written into files for future processing and visualization. 

3.3 Message Exchange Using MPI 

During the parallel execution of ParCYCLIC, processors in the program need to communicate with each 

another.  The inter-processor communication of ParCYCLIC is implemented using MPI (Message 

Passing Interface) [31], which is a specification of a standard library for message passing.  MPI was 



 10

defined by the MPI Forum, a broadly based group of parallel computer vendors, library developers, and 

applications specialists.  One advantage of MPI is its portability, which makes it suitable to develop 

programs to run on a wide range of parallel computers and workstation clusters.  Another advantage of 

MPI is its performance, because each MPI implementation is optimized for the hardware it runs on.  

Generally, MPI code can be developed for an arbitrary number of processors.  It is up to the users to 

decide, at run-time, how many processors should be invoked for the execution. 

The MPI library consists of a large set of message passing primitives (functions) to support efficient 

parallel processes running on a large number of processors interconnected over a network.  The 

implementation of ParCYCLIC employs only a small set of MPI message passing functions.  There are 

two types of communications in ParCYCLIC: point-to-point communication and collective messages.  

The point-to-point communication in MPI involves the transmittal of data between two processors.  The 

collective communications, on the other hand, transmit data among all processors in a group.  

For the implementation of ParCYCLIC, point-to-point messages are used extensively during the global 

matrix assembly and matrix factorization phases.  Figure 4 shows some sample codes for the point-to-

point messages in ParCYCLIC, which have the following features: 

• For most of the point-to-point communications, the blocking send (MPI_Send) is used to send out 

data, and the non-blocking receive (MPI_Irecv) is used to receive data.  The purpose of this choice 

is to keep all the processors busy performing useful computation and at the same time to ensure all 

the messages are delivered.  A blocking send temporarily stores the message data in a buffer.  The 

function does not return until the message has been safely delivered.  A non-blocking receive tests the 

buffer for any incoming messages, and can concurrently perform computation not relying on the 

incoming messages. 

• The MPI_Send sends a message to the specific recipient by passing the receiver’s node 

identification (denoted as r_node in Figure 4) as one of the parameters.  The MPI_Irecv, on the 

other hand, receives a message from any source by denoting the sender as a wild card value of 

MPI_ANY_SOURCE.  The sender knows whom the recipient is when sending a particular message, 

while the receiver listens to messages from all processors.  After a message is received, the 

MPI_SOURCE field of the MPI_Status is retrieved to find the node identification of the sender.  

The actual size of the received message is detected by calling the function MPI_Get_count.  

• Instead of sending messages with data type information (such as double, integer, byte, etc.), all data 

are sent as a byte stream, which is denoted as MPI_BYTE.  Since messages have overhead cost, 



 11

minimizing the number of messages improves the system performance.  One way to reduce the 

number of messages is for the sender to combine messages.  Each sender maintains a buffer for all the 

outgoing messages, and these messages will not be sent off to other processors unless the buffer is 

nearly full.  Since the buffer may contain mixted types of data, the byte stream is a common format to 

represent the content of the buffer.  The type information of the actual content can be retrieved during 

the unpacking of a message according to the pre-defined communication protocol.     

 

MPI_Request request; 
MPI_Status status; 
int mlen; 
int s_node, r_node; 
 
MPI_Send(sendbuf, len, MPI_BYTE, r_node, tag, MPI_COMM_WORLD); 
 
MPI_Wait(&request, &status); 
 
/* set up recbuf for the incoming message*/  
... 
MPI_Irecv(recbuf, length, MPI_BYTE, MPI_ANY_SOURCE, tag,  
          MPI_COMM_WORLD, &request); 

 
s_node = status.MPI_SOURCE; 
MPI_Get_count(&status, MPI_BYTE, &mlen); 
Unpack(recbuf, mlen); 

Figure 4.  Sample Code for Point-to-Point Message in ParCYCLIC 

There are three types of collective communications in the implementation of ParCYCLIC: barrier 

synchronization, gather-to-all, and broadcast.  The barrier synchronization function, MPI_Barrier, 

blocks the caller until all processors within a group have finished calling it.  The barrier synchronization 

can be used to ensure all the processors are at the same pace.   

The gather-to-all function is employed for performing a global operation (such as sum, max, logical, and 

etc.) across all the processors of a group.  The gather-to-all function is applied in ParCYCLIC to gather 

global information.  For example, since each processor is working on a portion of the domain, it only 

holds the solution for that portion.  A gather-to-all function call is needed at the end of the numerical 

solution phase to collect the global solution from each processor.  The gather-to-all function, 

MPI_Allreduce, has the following syntax: 

MPI_Allreduce(sendbuf, recvbuf, count, [MPI_INT, MPI_DOUBLE...], 

                    [MPI_MAX, MPI_MIN, MPI_SUM...], MPI_COMM_WORLD); 
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The third type of collective messages is broadcast, which sends a message to all the members of a 

processors group.  In ParCYCLIC, most communications in forward and backward solution phase require 

sending the same message to more than one processor.   Figure 5 shows some sample codes for 

broadcasting messages in ParCYCLIC.  After knowing which processor belongs to the broadcast group, 

the MPI_Comm_create function can be invoked to create a communication group MPI_Comm.  The 

group communication is then handled by a broadcast message to the MPI_Comm.  

int *sendlist, nshare; 
MPI_Comm workers; 
MPI_Group world_group, worker_group; 
 
MPI_Comm_group(MPI_COMM_WORLD, &world_group); 
MPI_Group_incl(world_group, nshare, sendlist, &worker_group); 
MPI_Comm_create(MPI_COMM_WORLD, worker_group, &workers); 
 
MPI_Bcast(buf, length, MPI_BYTE, my_pid, workers); 

Figure 5.  Sample Code for Broadcast Message in ParCYCLIC 

4 Parallel Sparse Direct Solver 

For nonlinear finite element analysis, the assembly to and the solution of the global matrix consume the 

greatest share of the computation effort [32].  Therefore, parallelizing these two parts has significant 

overall performance benefits.  A parallel row-oriented sparse solution method for finite element analysis 

[7] has been enhanced and implemented in ParCYCLIC. 

4.1 Mesh Partitioning Using Domain Decomposition 

In a parallel sparse solver, a domain decomposer is needed to partition the finite element mesh into 

subdomains.  To achieve high parallel efficiency of the parallel solver, it is important that the finite 

element mesh is partitioned in such a way that computational workloads are well balanced among 

processors and inter-processor communication is minimized.   

To decompose a finite element domain, ParCYCLIC employs METIS, which is a software package for 

partitioning large irregular graphs, partitioning large meshes, and computing fill-reducing ordering of 

sparse matrices [33].  The algorithms in METIS are based on multilevel graph partitioning [34, 35].  The 

multilevel algorithm reduces the original graph partitioning problem to a sequence of bisection steps.  

That is, the algorithm first divides the graph into two pieces, and then recursively bisects the two sub-

pieces independently.  The multilevel partitioning method is quite different from traditional methods.  
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Traditional graph partitioning algorithms compute a partition of a graph by operating directly on the 

original graph.  Multilevel partitioning algorithm, on the other hand, takes a different approach.  First, the 

algorithm reduces the size of the graph by collapsing vertices and edges to produce a smaller graph.  The 

graph partitioning is then performed on the collapsed graph.  Finally, the partition is propagated back 

through the sequence to un-collapse the vertices and edges, with an occasional local refinement [33].  

METIS provides both stand-alone programs (executable files) and library interfaces (functions).  The 

library interfaces are incorporated in ParCYCLIC to perform the domain decomposition.  In particular, 

multilevel k-way partitioning routine is used in ParCYCLIC to partition a graph into k parts.  The number 

of processors (power of 2 is suggested) used in the execution of ParCYCLIC determines the number of 

levels to partition.  The objective of the partitioning is to minimize the total communication volume.   

Once the cuts are found by METIS routines, i.e., the finite element mesh has been partitioned into 

subdomains, the internal nodes of each subdomain still need to be ordered to reduce the fill-ins of the 

matrix factors.  There are many ordering routines implemented in ParCYCLIC to perform this task, 

including Reverse Cuthill-McKee [36], Minimum Degree [37], General Nested Dissection [38], and 

Multilevel Nested Dissection [34].  Users are allowed to choose different types of ordering routines for a 

specific problem.  Otherwise, the default ordering routine is the Multilevel Nested Dissection ordering, 

because it is stable and normally generates an ordering with the least fill-ins of the matrix factors.   After 

the matrix ordering is complete, symbolic factorization and parallel matrix assignment are performed.  

4.2 Assignment of Sparse Stiffness Matrix 

The notion of the elimination tree plays a significant role in sparse matrix study [39].  It is well known 

that the nonzero entries in the numerical factor L can be determined by the original nonzero entries of the 

stiffness matrix K [40, 41] and a list vector, which is defined as  

}0|min{)( ≠= ijLijPARENT       (6) 

The array PARENT represents the row subscript of the first nonzero entry in each column of the lower 

triangular matrix factor L.  The definition of the list array PARENT results in a monotonically ordered 

elimination tree of which each node has its numbering higher than its descendants.  By topologically post-

ordering the elimination tree, the nodes in any subtree can be numbered consecutively.  The resulting 

sparse matrix factor is partitioned into block submatrices where the columns/row of each block 

corresponds to the node set of a branch in the elimination tree.  Figure 6 shows a simple square finite 

element grid and its post-ordered elimination tree representation.  One important feature of the 

elimination tree is that it describes the dependencies among the variables during the factorization process.  
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That is, a column block may not be factored until all nodes below the nodes representing the column 

block have been factored.  This implies that all the column blocks represented by the leaves of the 

elimination tree have no dependencies.  These column blocks can be factored independently and 

concurrently.   

The coefficients of a sparse matrix factor are distributively stored among the processors according to the 

column blocks.  Figure 7 shows an example of the data assignment of a sparse matrix on four processors 

for the finite element model shown in Figure 6.  The strategy is to assign the rows corresponding to the 

nodes along each branch of the elimination tree (column block) to a processor or a group of processors.  

Beginning at the root of the elimination tree, the nodes belonging to this branch of the tree are assigned 

among the available processors in a rotating round robin fashion.  As we traverse down the elimination 

tree, at each fork of the elimination tree, the group of processors is divided to match the number and size 

of the subtrees below the current branch.  A separate group of processors is assigned to each branch at the 

fork and the process is repeated for each subtree.  The process of assigning groups of processors to each 

branch of the elimination tree continues until only one processor remains for the subtree.  At this stage, all 

remaining nodes in the subtree are assigned to the single processor.  
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Figure 6. A Finite Element Grid and Its Elimination Tree Representation 
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Figure 7. Matrix Partitioning for Parallel Computations 

The matrix assignment strategy described partitions a sparse matrix into two basic sets: the principal 

diagonal block submatrices and the row segments outside the principal block submatrices.  For the 

principal block submatrices, which have a profile structure, the processor assignment proceeds on a row 

group by row group basis with each row group corresponding to a node in the finite element model.  This 

strategy divided the diagonal block submatrices into two groups: one is assigned to a single processor and 

the other is shared by multiple processors.  For the row segments outside the diagonal blocks, the rows 

are assigned to the processors sharing the node set (column block) in rotating round robin fashion. 

4.3 Data Structure for Matrix Coefficients 

After the symbolic factorization, all the nonzero entries in the matrix factor are determined.  The data 

structure for storing the matrix coefficients is directly set up for the factored matrix L.  There are three 

different data structures for storing the coefficients: one for the principal block submatrices associated 

with the column blocks assigned to a single processor, one for the principal block submatrices associated 

with column blocks shared by multiple processors, and one for the row segments in column blocks.  The 



 16

following describes the details of these three different data structures.  For demonstration purpose, the 

data structure in Processor 0 for the square grid problem shown in Figure 7 is presented. 

The data structure for the principal block submatrices assigned to a single processor is illustrated in 

Figure 8.  It consists of an array of pointers ipenv which points to the beginning of the coefficients for 

each row, and an array of integers to indicate the corresponding global row numbers.  The actually matrix 

coefficients are stored consecutively to facilitate efficient access. 

e1

[3][2][1]

Ee10e9e8e7e6e5e4e3e2

[4] [5]

ipenv

321 4 E

Global row number

Row: 4, Col: 3

 

Figure 8. Data Structure for Principal Block Submatrix Assigned to a Single Processor 

The data structure for the principle block submatrices assigned to multiple processors is illustrated in 

Figure 9.  The array of pointers epenv points to the beginning coefficients of each row just like ipenv 

does for principal block submatrices assigned to a single processor.  The global row numbers and the 

length of the rows are stored in another array for each row block.  Because each row block ends with an 

element in the matrix diagonal, the row number and row length are sufficient to map a stored matrix 

coefficient to its location in the global matrix.  For example, the matrix coefficient X7 belongs to the third 

row block, which has global row number of 25 and row length of 5.  Since we know that X7 is the second 

to the last elements in the row block, the global column number for X7 can be calculated as to be 24. 

x1

[3][2][1]

x8x7x6x5x4x3

epenv

9 1 525121

Global row number

Row length Row: 25, Col: 24

x2
 

Figure 9. Data Structure for Principal Block Submatrix Shared by Multiple Processors 
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The third data structure stores the row segments, as illustrated in Figure 10.  This data structure is 

essentially a linked list with each node corresponding to a row segment.  Each node in the linked list 

contains four variables, namely the global row number, the starting global column number for the row 

segment, a pointer to the next node, and a pointer to the beginning of the matrix coefficients for the row 

segment.  These variables can be used to find the global row number and column number of a particular 

matrix coefficient.  For example, in Figure 10, the node in the linked list corresponding to matrix 

coefficient n15 has row number 23 and starting column number 9.  Since n15 is the second element in the 

row segment, its column number can be calculated as 10. 
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Figure 10. Data Structure for Row Segments 

4.4 Parallel Global Matrix Assembly 

The generation of element stiffness matrices is one of the most natural tasks for parallel implementation.  

Since each element stiffness matrix can be generated independently of the other element stiffness 

matrices, each processor can work independently on the elements assigned to it.  After the stiffness matrix 

of an element is generated, the processor that has the element assigned to it will be responsible to 

assemble the element coefficients to the matrix data structure described in the previous section.  There are 

two strategies for assigning elements to different processors.  For the first strategy, each element is 

assigned to a particular processor with no duplication of element assignment.  The second strategy allows 

duplicated assignment of elements to the processors but requires no inter-processor communication for 

global matrix assembly.   

The first strategy is to distribute the elements to different processors according to the processor 

assignment of the global nodal variables of the elements.  This element assignment strategy can be 

summarized as follows [27]: 
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1. If all the nodal variables of an element belong to a single processor, the element is assigned to that 

processor. 

2. If one of the nodal variables of an element belongs to a column block assigned to a single processor, 

then the element is assigned to that processor.  

3. If all nodal variables of an element are shared among multiple processors, the element is assigned to 

the processor which is assigned the lowest global number variable of the element stiffness matrix. 

For the parallel global matrix assembly, coefficients of the element stiffness matrices that belong to the 

processor where the element stiffness matrix is formed are assembled into the global stiffness matrix 

directly.  If the coefficients of the element stiffness matrix belong to the segment of the global stiffness 

matrix located in another processor, they are sent to that processor for assembly.  

The first element assignment strategy ensures no duplication of element stiffness generation, but 

substantial amount of messages are needed to exchange the stiffness matrix coefficients among the 

processors.  To eliminate the messages for global matrix assembly, a second element assignment strategy 

is introduced in ParCYCLIC.   All the elements along a cut are assigned to a group of processors that 

share the cut.  In this strategy, the same element may be assigned to more than one processor, and 

consequently the element stiffness generation will be duplicated.  However, the duplication of work can 

be offset by not having to exchange messages.  During the global matrix assembly phase, coefficients of 

the element stiffness matrices that belong to the processor where the element stiffness matrix is formed 

are assembled into the global stiffness matrix directly.  If the coefficients of the element stiffness matrix 

belong to another processor, they are simply discarded.   

Both strategies for element assignment have been implemented in ParCYCLIC.  For illustration purpose, 

Figure 11 shows the results of applying both strategies to assign elements to four processors for the 

square grid model.  Depending on the characteristics of the finite element model, users can choose which 

strategy to be used.  For large finite element models where the interface (cuts) is relatively small (in other 

words, most of the elements have all their nodes assigned to a single processor), strategy two is 

recommended.  From the performance point of view, the performance overhead is small because the 

number of duplicated elements is only a small portion of the total number of elements.  From the 

execution point of view, strategy two incurs no communication and thus easier to guarantee the 

completion of matrix assembly.     
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Figure 11. Two Methods of Assigning Elements to Four Processors 

4.5 Parallel Numerical Factorization 

Once the processor assignment and the assembly of the global stiffness matrix are completed, numerical 

calculation can proceed.  In ParCYCLIC, the TLDL  factorization is performed.  The parallel numerical 

factorization procedure is divided into two distinct phases.  During the first phase, the column blocks 

assigned entirely to a single processor are factorized.  The strategy is to carry out as much computation as 

possible in the local processor.  Figure 12 shows the parallel factorization procedures in this phase with 

the factor of matrix coefficients in Processor 1 being highlighted.  The operations in this phase are as 

follows: 

1. For each column block assigned to a processor, perform a profile factorization on principal block 

submatrix. 

2. Update the off-diagonal row segments below the principal submatrix by a series of forward solutions. 

3. After the column blocks are factorized, form dot products among row segments.  These dot products 

are then fanned-out to update the remaining matrix coefficients in the same processor or saved in the 

buffer to be sent out to other processor during the parallel factorization phase. 
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Figure 12.  Phase One of Parallel Factorization 

In the second phase of the numerical factorization, the column blocks shared by more than one processor 

are factorized.  Figure 13 shows the parallel factorization procedures in this phase with the factor of 

matrix coefficients in Processor 1 being highlighted.  The operations in this phase proceed as follows: 

1. For the column blocks shared by multiple processors, each processor fans in the dot products 

generated in phase one of the numerical factorization.  The principal block submatrix can be updated 

based on the received dot products.  

2. Perform parallel factorization of column blocks.  This step involves a parallel profile factorization of 

the principal block submatrix and updating the row segments shared by a group of processors.  In this 

step, the processor responsible for the first row (say, row r) in the column block factorizes the row 

and broadcasts it to all other processors sharing the column block.  The other processors receive the 

row factor and use it to update columns in them.  The processor containing the next row, r+1, updates 

the row and broadcasts it to the other processors sharing the column block.  The other processors 

continue receiving rows until it is time to factor a row they are responsible for.  This process 
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continues until the entire submatrix is factored and all the row segments in the column block are 

updated.   

3. After all the row segments in the column block have been updated, the row segments of the column 

blocks are circulated among the shared processors.  After a processor receives another processor’s 

row segment, the processor forms dot products between the row segments belonging to the two 

different processors.  The row segment is then passed on to the next processor to update the matrix 

column blocks. 

Note that in this parallel factorization strategy, the dot products between row segments are not fanned-in 

until the column blocks that needs the dot products is being factorized by the processors. 
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Figure 13.  Phase Two of Parallel Factorization 

4.6 Parallel Numerical Solution 

Following the parallel factorization is the parallel forward solution phase, which can be viewed 

symbolically as a procedure traversing the elimination tree from the leaves to the root.  The solution 

vector x and the load vector f are divided into blocks just as the matrix is divided into column blocks 
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determined by the elimination tree.  The forward solution phase is also divided into two phases: a 

sequential phase and a parallel phase.   

In the first phase, each processor calculates the blocks of f corresponding to the matrix blocks which 

reside entirely within a single processor.  For each column block assigned to a processor, each processor 

performs a profile forward solve with the principal submatrix in the column block.  Each processor also 

updates the shared portions of the solution vector based on the row segments that lie below the profile 

submatrices.  The solution coefficients not assigned to this processor are stored in buffer to be sent to 

other processors.  

Phase two of the parallel forward solution begins as the processors working together on the variables in 

the shared column blocks.  There are three steps involved in this phase as outlined below: 

1. The first step is to send and receive solution coefficients generated in phase one of the forward 

solution.  These coefficients are used to update the partially solved block of solution vector f.  

2. The second step performs parallel forward solution based on principal submatrix.  As each value of f 

is calculated, for example f [i], it is broadcast to the other processors sharing the block.  After 

receiving the value of f [i], the processor responsible for f [i+1] can complete the solution and 

broadcast the value to other processors sharing the column block.  This process is repeated until the 

solution to the entire block is completed. 

3. The third step is to use the values in this block to update other blocks using the rows segments in this 

column block. 

Following the forward solution phase is the backward substitution procedure, which is essentially a 

reverse of the forward solution.  The first phase of backward substitution deals with the portion of the 

solution vector shared by multiple processors and is essentially a reverse of the second phase of the 

forward solution.  In the second phase, each processor calculates the portion of the solution vector 

corresponding to the column blocks residing within a single processor; the processors perform the 

calculations independently without any processor communications and may complete the solution at 

different times.  Once all the processors finish the backward substitution, a global gathering function is 

invoked to obtain the global solution from each processor.  This step is essential because each processor 

only has part of the global solution vector that it is responsible for. 
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5 Performance of ParCYCLIC 

To demonstrate the simulation capability and parallel performance of ParCYCLIC, we have performed 

earthquake simulations for three-dimensional geotechnical models using ParCYCLIC.  The simulations 

are performed on the Blue Horizon machine at San Diego Supercomputer Center.  Blue Horizon is an 

IBM Scalable POWERparallel (SP) machine which has 144 compute nodes, each with 8 POWER3 RISC-

based processors and with 4 GBytes of memory.  Each processor on the node has equal shared access to 

the memory.  The following presents the simulations of two 3D geotechnical finite element models. 

5.1 Simulation of Pile-Soil Interaction in Liquefied Sloping Ground 

Figure 14 shows a RPI centrifuge test model [42] to investigate the response of a single-pile foundation in 

a liquefied gently sloping ground, subjected to dynamic base excitation.  The experiment was conducted 

using a rectangular, flexible-wall laminar box container (as shown in Figure 14).  The soil profile consists 

of a saturated loose liquefiable sand layer (relative density Dr = 40%), underlain by a slightly cemented 

non-liquefiable sand layer [43].  The prototype single pile in the middle of the soil domain is 0.6m in 

diameter, 8m in length, and is free at the top.  The model was inclined in 2 degrees and subjected to a 

predominantly 2Hz harmonic base excitation with a peak acceleration of 0.3g.  

The centrifuge model is simulated using ParCYCLIC on Blue Horizon.  The soil domain and the pile 

were discretized with 8-node brick elements, as shown in Figure 15.  A half mesh configuration was used 

due to geometrical symmetry.  ParCYCLIC is used to simulate the model for roughly 2200 time-steps.  

As shown from the results in Figures 16-18, good agreement has been achieved between the computed 

and the recorded acceleration, displacement, and pore pressure responses.  Salient liquefaction response 

characteristics, including excess pore pressure generation and dissipation, acceleration spikes, pile lateral 

movement, and permanent soil lateral deformation, have been captured by the ParCYCLIC model with 

reasonable accuracy. 

Table 1 summarizes the timing measurements for performing the simulation of the centrifuge test model 

on 8, 16, and 32 processors.  Overall, significant decrease in both numerical factorization and the total 

execution time can be observed.  Since there is no element duplication in the phases of the right-hand-side 

(RHS) formation and the stress update, these two procedures are scaled very well, or actually nearly 

linear, as shown in Table 1.  In the hybrid element assignment strategy, element duplication occurs in the 

stiffness matrix formation.  As the number of processors increases, the ratio of the duplicated portion (i.e., 

number of duplicated elements) over the non-duplicated portion becomes larger, and thus the parallel 

speedup of LHS formation decreases. 
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Figure 14. Lateral Spreading Pile Centrifuge Model in Two-Layer Soil Profile 

 

Figure 15. Finite Element Mesh for the Centrifuge Test Model 
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Figure 18. Computed and Recorded Excess Pore Pressure Time Histories 

Table 1:  Timing Measurements on the Simulation of the Centrifuge Model (time in second) 

#procs LHS formation RHS formation  Stress update Factorization For. & back solve Total Time
8 273.57 2446.79 254.42 2736.63 490.89 6406.25

16 164.10 1224.62 128.28 1491.37 341.37 3579.80
32 104.45 622.01 64.19 813.70 320.25 2157.35  

 

The timing measurements on the initialization phase are shown in Table 2 in details.  The initialization 

phase is essentially sequential and only consists of less than 2% of the total execution time.  Most of the 

time in this phase was spent on the finite element model input, the adjacency structure formation, and the 

setup for matrix storage and the parallel solver indexing.  The multilevel nested dissection ordering using 

METIS is relatively fast and less than 1 second is needed to order this finite element model with 

approximately 63,500 degrees of freedom.  The times spent on the elimination tree setup and the symbolic 

factorization are insignificant comparing with the total execution time. 
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Table 2. Detailed Timing Results for the Initialization Phase (time in second). 

#procs 8 16 32 
Finite element mesh read-in 13.18 
Adjacency structure 
formation 

9.38 

Multilevel nested dissection 
ordering (using METIS) 

0.79 

Elimination tree setup and 
postordering 

0.23 

Symbolic factorization 1.4 

Solver inter-processor 
communication setup 

2.04 3.23 5.19 

Matrix storage and solver 
indexing setup 

14.74 9.72 4.11 

Total on initialization phase  45 41.78 38.53 

 

5.2 Stone Column Centrifuge Test Model 

The second example is a stone-column centrifuge test model, as shown in Figure 19.  Again, half mesh is 

used due to its geometrical symmetry.  Many of the past earthquake-induced ground failures and large 

deformations observed in the built-environment have occurred mostly in sites containing non-plastic silty 

soils.  One of the improved remediation techniques to mitigate liquefaction hazards in these silty soils is 

installing stone columns [44].  In the stone column test model, a number of gravel columns are embedded 

into a fully-saturated soil foundation filled with silt.  The model is then subjected to earthquake excitation 

along the x-direction at the base.  

 

Figure 19. Finite Element Model of the Stone Column Centrifuge Test 
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Since the simulation of this model requires significant computer resources, only one time step is 

performed to show the parallel performance of ParCYCLIC.  Table 3 summarizes the timing results of the 

solution phase, the LDLT numerical factorization, the forward and backward solutions, and the total 

execution time (which includes the initialization phase) for one time step.  The parallel speedup and the 

total execution times for the solution phase are also shown in Table 3.  Note that the stone column model, 

with a scale of 364,800 degrees of freedom, cannot fit into the memory of less than 4 processors.  As 

shown in Table 3 and Figure 20, excellent parallel speedup is achieved for this model. 

Table 3.  Solution Times for the Stone Column Centrifuge Test Model (time in seconds) 

Number of 
processors 

LDLT 
factorization 

Forward and 
backward solve 

Solution 
phase 

Total execution 
time 

4 1246.08 2.76 1306.87 1769.00 
8 665.66 1.56 702.09 1150.17 

16 354.99 0.98 378.35 841.38 
32 208.90 0.67 225.93 668.02 
64 125.05 0.66 142.33 583.98 

 

 

Figure 20. Execution Times and Speedup of the Solution Phase for the Stone Column Model 

Execution time of 
solution phase 

Solution phase speedup 
(relative to 4 processors) 
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6 Conclusions 

This paper presents the analysis and solution strategies employed in ParCYCLIC, a parallel nonlinear 

finite element program for the simulations of earthquake site response and liquefaction.  In ParCYCLIC, 

finite elements are employed within an incremental plasticity, coupled solid-fluid formulation.  A 

constitutive model developed for the simulation of liquefaction-induced deformations is a main 

component of this analysis framework.  Extensive calibration of ParCYCLIC has been conducted with 

results from experiments and full-scale response of earthquake simulations involving ground liquefaction.   

The solution strategy in ParCYCLIC is based on a parallel sparse solver [7].  Several improvements have 

been made to the original parallel sparse solver.  An automatic domain decomposer is used to partition the 

finite element mesh so that the workload on each processor is more or less evenly distributed and the 

communication among processors is minimized.  METIS routines [33] are incorporated in ParCYCLIC to 

perform domain decomposition, and the internal nodes of each sub-domain are ordered using Multilevel 

Nested Dissection or other ordering strategies.  Because of the automatic domain decomposer, the input 

file for ParCYCLIC is very easy to prepare.  It does not contain any information for processor assignment 

of nodes and elements, and essentially has the same format as the input file for the sequential program 

CYCLIC.  Moreover, a parallel data structure is introduced to store the matrix coefficients.  There are 

three different data structures for storing the coefficients of the matrix: one for the principal block 

submatrices associated with the column blocks assigned to a single processor, one for the principal block 

submatrices associated with column blocks shared by multiple processors, and one for the row segments 

in column blocks.  An enhancement to the original parallel solver is the processor communication 

interface.  The original solver is designed for running on Intel supercomputers such as the hypercube, the 

Delta system and the Intel Paragon; and the message-passing routines are written using the Intel NX 

library [45].  The communication in ParCYCLIC is written in MPI [31]; this makes ParCYCLIC more 

portable to run on a wide range of parallel computers and workstation clusters.  

Large-scale experimental results for 3-D geotechnical simulations have been presented to demonstrate the 

capability and performance of ParCYCLIC.  Simulation results demonstrated that ParCYCLIC is suitable 

for large-scale geotechnical simulations, and good agreement has been achieved between the computed 

and the recorded acceleration, displacement, and pore pressure responses.  Excellent parallel speedup has 

also been obtained from the simulation results.  Last but not least, it is shown that ParCYCLIC program, 

which employs direct solution scheme, remains scalable to a large number of processors, e.g., 64 or more. 
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