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Abstract 
 
This paper presents a parallel nonlinear finite element program, ParCYCLIC, which is 
designed for the analysis of cyclic seismically-induced liquefaction problems.  Key 
elements of the computational strategy employed in ParCYCLIC include the 
deployment of an automatic domain decomposer, the use of the multilevel nested 
dissection algorithm for the ordering of finite element nodes, and the development of 
a parallel sparse direct solver.  Simulation results of grid models and a centrifuge test 
model using ParCYCLIC are presented.  Performance results show that ParCYCLIC 
is efficiently scalable to a large number of processors. 
 
Introduction 
 
Large-scale finite element simulations of earthquake ground response including 
liquefaction effects often require a lengthy execution time.  This is necessitated by the 
complex algorithms of coupled solid-fluid formulation, the associated highly 
nonlinear plasticity-based constitutive models, and the time domain step-by-step 
earthquake computations.  In view of the finite memory size and the limitation of 
current operating systems (e.g. Linux, MS Windows, and so forth), large-scale 
earthquake simulations may not be feasible on single-processor computers.   
Utilization of parallel computers, which combine the resources of multiple processing 
and memory units, can potentially reduce the solution time significantly and allow 
simulations of large and complex models that may not fit into a single processor.   
 
Sequential application software, such as traditional finite element programs, needs to 
be re-designed to take full advantage of parallel computers.  This paper presents the 
development of a state-of-the-art nonlinear parallel finite element program, 
ParCYCLIC, for earthquake ground response and liquefaction simulation (Lu et al. 
2004; Peng et al. 2004).  ParCYCLIC is implemented based on a serial program 
CYCLIC, which is a nonlinear finite element program developed to analyze 
liquefaction-induced seismic response (Parra 1996; Yang and Elgamal 2002).  
Extensive calibration of CYCLIC has been conducted with results from experiments 
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and full-scale response of earthquake simulations involving ground liquefaction.  In 
ParCYCLIC, the calibrated serial code for modeling of earthquake geotechnical 
phenomena is combined with advanced computational methodologies to facilitate the 
simulation of large-scale systems and broaden the scope of practical applications. 
 
Finite Element Formulation 
 
In ParCYCLIC, the saturated soil system is modeled as a two-phase material based on 
the Biot (1962) theory for porous media.  A numerical framework of this theory, 
known as u-p formulation, was implemented (Parra 1996; Yang 2000; Yang and 
Elgamal 2002).  In the u-p formulation, displacement of the soil skeleton u and pore 
pressure p, are the primary unknowns (Chan 1988; Zienkiewicz et al. 1990).  The 
implementation is based on the following assumptions: small deformation and 
rotation, constant density of the solid and fluid in both time and space, locally 
homogeneous porosity which is constant with time, incompressibility of the soil 
grains, and equal accelerations for the solid and fluid phases. 
 
The u-p formulation as defined by Chan (1988) consists of an equation of motion for 
the solid-fluid mixture and an equation of mass conservation for the fluid phase.  
These two governing equations can be expressed in the following finite element 
matrix form (Chan 1988): 
 

0fQpdΩ σBUM s

Ω

T =−+′+ ∫     (1a) 

0fHppSUQ pT =−++        (1b)  
 
where M is the mass matrix, U the displacement vector, B the strain-displacement 
matrix, σ′  the effective stress tensor (determined by the soil constitutive model 
described below), Q the discrete gradient operator coupling the solid and fluid phases, 
p the pore pressure vector, S the compressibility matrix, and H the permeability 
matrix.  The vectors sf  and pf  represent the effects of body forces and prescribed 
boundary conditions for the solid-fluid mixture and the fluid phase respectively.  
 
Extensive calibration of ParCYCLIC has been conducted with results from 
experiments and full-scale response of earthquake simulations involving ground 
liquefaction.  Calibration was based on results of monotonic and cyclic laboratory 
tests (Arulmoli et al. 1992), as well as data from dynamic centrifuge model 
simulations (Dobry et al. 1995).  For the liquefaction model currently employed, 
emphasis is placed on controlling the magnitude of cycle-by-cycle permanent shear 
strain accumulation in clean medium-dense sands.  Following the classical plasticity 
formulation, it is assumed that material elasticity is linear and isotropic, and that 
nonlinearity and anisotropy are the results of plasticity.  The selected yield function 
forms a conical surface in stress space with its apex along the hydrostatic axis.  
During shear loading, the soil contractive/dilative behavior is handled by a non-
associative flow rule (Parra 1996) so as to achieve appropriate interaction between 
shear and volumetric response.  
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Computational Procedures 
 
The computational procedure of ParCYCLIC is illustrated in Figure 1.  The procedure 
can be divided into three distinct phases: the initialization phase, the nonlinear 
solution phase, and the output and postprocessing phase.  The initialization phase 
consists of reading input files, performing mesh partitioning, and symbolic 
factorization.  METIS (Karypis and Kumar 1998), which is a set of libraries for graph 
partitioning developed at the University of Minnesota, is used to partition the finite 
element mesh at this phase.  Specifically, the multilevel nested dissection algorithm in 
METIS is employed to perform the mesh partitioning.  An automatic domain 
decomposer for performing domain decomposition, based on the METIS ordering, is 
also implemented in ParCYCLIC. 
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Figure 1. Flowchart of computational procedures in ParCYCLIC 
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The symbolic factorization is performed after the initialization phase to determine the 
nonzero pattern of the matrix factor.  The storage space for the matrix factor is also 
allocated during the symbolic factorization.  Since all the processors need to know the 
nonzero pattern of the global stiffness matrix and symbolic factorization generally 
only takes a small portion of the total runtime, the domain decomposition and 
symbolic factorization are performed within each processor based on the global input 
data.  In the nonlinear analysis solution phase, the program essentially goes through a 
while loop until the number of increments reaches the pre-set limit.  In the nonlinear 
solution phase, the modified Newton-Raphson algorithm is employed, that is, the 
stiffness matrix at each iteration step uses the same tangential stiffness from the initial 
step of the increment.  The convergence test is performed at the end of each iteration 
step.  If the solution is not converged after a certain number of iterations (e.g., 10 
iterations) within a particular time step, the time step will be divided into two steps to 
expedite convergence.  If the new step still does not converge after the certain number 
of iterations, then further time step splitting will automatically take place, until 
convergence is achieved. 
 
The final phase, output and postprocessing, consists of collecting the calculated node 
response quantities (e.g. displacements, acceleration, pore pressure, and etc.) and 
element output (includes normal stress, normal strain, volume strain, shear strain, 
mean effective stress, and etc.) from the different processors.  The response quantities 
and timing results are then written into files for future processing and visualization. 
 
Parallel Sparse Solver 
 
Nonlinear finite element computations of earthquake simulations involve the iterative 
solution of sparse symmetric systems of linear equations.  Solving the linear system is 
often the most computational intensive task of a finite element program, especially 
when an implicit time integration scheme is employed.  The parallel sparse solver 
implemented in ParCYCLIC is based on a row-oriented storage scheme that takes full 
advantage of the sparsity of the stiffness matrix (Law and Mackay 1993).  A direct 
solver is preferred in ParCYCLIC over an iterative solver because even the best-
known iterative solver (e.g. the Polynomial Preconditioned Conjugate Gradient 
method (PPCG)) may exhibit instabilities under certain conditions.  For instance, in a 
nonlinear analysis, an iterative solver may diverge (Romero et al. 2002).  The direct 
solution method is a more stable approach to achieve solution convergence.  The 
concept of the sparse solver incorporated in ParCYCLIC is briefly described below.  
 
Given a linear system of equations Kx = f, the symmetric sparse matrix K is often 
factored into the matrix product LDLT, where L is a lower triangular matrix and D is a 
diagonal matrix.  The solution vector x is then computed by a forward solution, Lz = f 
or z = L-1f, followed by a backward substitution DLTx = z or x = L-TD-1z.  Sparse matrix 
factorization can be divided into two phases: symbolic factorization and numeric 
factorization (Law and Mackay 1993).  Symbolic factorization determines the 
structure of matrix factor L from that of K (i.e. locations of nonzero entries).  Numeric 
factorization then makes use of the data structure determined to compute the numeric 
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values of L and D.  By topologically postordering the elimination tree, the nodes in 
any subtree can be numbered consecutively (Law and Mackay 1993).  The resulting 
sparse matrix factor is partitioned into block submatrices where the columns/rows of 
each block correspond to the node set of a branch in the elimination tree.  Figure 2 
shows a simple finite element grid and its post-ordered elimination tree 
representation. 
 
For parallel implementation of the sparse matrix factorization, the processor 
assignment strategy can be based on matrix partitioning according to the post-ordered 
elimination tree.  The coefficients of a sparse matrix factor are distributively stored 
among the processors according to the column blocks.  Essentially, the strategy is to 
assign the rows corresponding to the nodes along each branch (column block) of the 
elimination tree to a processor or a group of processors.  Beginning at the root of the 
elimination tree, the nodes belonging to this branch of the tree are assigned among the 
available processors in a rotating round robin fashion or a block wrap mapping.  As 
we traverse down the elimination tree, at each fork of the elimination tree, the group 
of processors is divided to match the number and the size of the subtrees below the 
current branch.  A separate group of processors is assigned to each branch at the fork 
and the process is repeated for each subtree.  
 
The parallel numerical factorization procedure is divided into two phases (Peng et al. 
2004).  In the first phase, each processor independently factorizes certain portions of 
the matrix that assigned to a single processor.  In the second phase, other portions of 
the matrix shared by more than one processor are factored.  Following the parallel 
factorization, the parallel forward and backward solution phases proceed to compute 
the solution to the global system of equations. 
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Figure 2. A finite element mesh and its elimination tree representation 
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Parallel Performance  
 
ParCYCLIC has been successfully ported on many different types of parallel 
computers and workstation clusters, including IBM SP machines, SUN super 
computers, and Linux workstation clusters.  To demonstrate the parallel performance 
of ParCYCLIC, the following shows the performance of ParCYCLIC on the Blue 
Horizon machine at San Diego Supercomputer Center.  Blue Horizon is an IBM 
Scalable POWERparallel (SP) machine with 144 compute nodes, each with 8 
POWER3 RISC-based processors and with 4 GBytes of memory.  Each processor on 
the node has equal shared access to the memory. 
 
Solution of finite element grid models.  The first experiment deals with the solution 
of a number of 2D plane strain finite element grid models of sizes ranging from 
150x150 to 300x300 elements, as well as 3D grid models of sizes ranging from 
20x20x20 to 35x35x35 elements.  The multilevel nested dissection (Karypis and 
Kumar 1998) for the grid problems is able to generate well-balanced workload 
distribution for running on a parallel computer.  Each processor is responsible for 
approximately the same number of elements and equations.  When there is good load 
balance, each processor will complete its tasks at about the same time and 
synchronization costs are low.  Table 1 summarizes the execution times of the 
solution phase (numerical factorization, forward solve and backward substitution) for 
these 2D and 3D grid models for one time step. Excellent parallel speedup is achieved 
for these grid models up to a certain number of processors, as shown in Table 2.  
However, the speedup tends to saturate or peak at a certain limit and the performance 
does not continue to improve with increasing number of processors.  This is due to the 
increased communication overhead as the number of processors continues to increase.  
It may be noted that some of the grid models, e.g. the 30x30x30 mesh and the 
35x35x35 mesh, are too large to fit into the memory of a low number of processors.  
The execution time for these situations is denoted as N/A in Table 1. 

Table 1. Execution time of solution phase for grid models (time in seconds) 

Num.  
Proc. 

2D grid models 3D grid models 

 150x1501 200x2002 250x2503 300x3004 20x20x205 25x25x256 30x30x307 35x35x358 

1 19.66 46.11 98.14 185.70 188.00 674.60 N/A N/A 
2 9.34 19.83 37.60 66.38 93.97 357.00 1016.78 N/A 
4 4.57 9.73 17.70 28.68 47.26 187.10 492.82 1359.26 
8 2.69 5.56 9.78 16.16 25.59 96.16 248.53 714.91 

16 1.81 3.49 5.81 9.22 16.74 54.72 132.73 365.88 
32 1.52 2.55 4.05 6.17 12.52 35.14 76.85 188.32 
64 2.36 3.60 7.02 6.84 14.80 34.70 58.98 127.23 

128 4.32 6.01 11.50 8.94 18.97 50.88 64.81 119.12 
1 68,403 equations; 7,457,460 non-zeros 
2 121,203 equations; 14,189,580 non-zeros  
3 189,003 equations; 23,724,231 non-zeros  
4 271,803 equations; 35,706,300 non-zeros  

5 37,044 equations; 27,214,674 non-zeros  
6 70,304 equations; 66,365,120 non-zeros  
7 119,164 equations; 138,930,582 non-zeros 
8 186,624 equations; 258,680,240 non-zeros 
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Table 2: Parallel speedup factors of solution phase for grid models 

2D grid models 3D grid models Num. 
Proc. 150x150 200x200 250x250 300x300 20x20x20 25x25x25 30x30x301 35x35x352 

1 -- -- -- -- -- -- -- -- 
2 2.10 2.33 2.61 2.80 2.00 1.89 -- -- 
4 4.30 4.74 5.54 6.47 3.98 3.61 2.06 -- 
8 7.31 8.29 10.03 11.49 7.35 7.02 4.09 1.90 

16 10.86 13.21 16.89 20.14 11.23 12.33 7.66 3.72 
32 12.93 18.08 24.23 30.10 15.02 19.20 13.23 7.22 
64 8.33 12.81 13.98 27.15 12.70 19.44 17.24 10.68 

128 4.55 7.67 8.53 20.77 9.91 13.26 15.69 11.41 
1Relative to 2 processors 
2Relative to 4 processors  

 
 
Numerical simulation of centrifuge experiment.   Figure 3 shows a Rensselaer 
Polytechnic Institute centrifuge test model (Abdoun and Doubry 2002) to investigate 
the response of a single-pile foundation in a liquefied gently sloping ground, 
subjected to dynamic base excitation.  The experiment was conducted using a 
rectangular, flexible-wall laminar box container.  The soil profile consists of a 
saturated loose liquefiable sand layer (relative density Dr = 40%), underlain by a 
slightly cemented non-liquefiable sand layer (Abdoun and Doubry 2002).  The 
prototype single pile in the middle of the soil domain is 0.6m in diameter, 8m in 
length, and is free at the top.  The model was inclined in 2 degrees and subjected to a 
predominantly 2Hz harmonic base excitation with a peak acceleration of 0.3g.  
 
The centrifuge model is numerically simulated using ParCYCLIC on Blue Horizon.  
The soil domain and the pile were discretized with 8-node brick elements, as shown 
in Figure 3.  A half mesh configuration was used due to geometrical symmetry.   
ParCYCLIC is used to simulate the model for roughly 2200 time-steps.  As shown 
from the results in Figure 4 and Figure 5, good agreement has been achieved between 
the computed and the recorded acceleration and pore pressure responses.  Salient 
liquefaction response characteristics, including excess pore pressure generation and 
dissipation and acceleration spikes, were captured by the ParCYCLIC model with 
reasonable accuracy. 
 
Table 3 summarizes the timing measurements for performing the simulation of the 
centrifuge test model on 8, 16, and 32 processors.  Generally speaking, significant 
decrease in both numerical factorization and the total execution time can be observed.  
Since there is no element duplication in the phases of the right-hand-side (RHS) 
formation and the stress update, these two procedures scale very well, and achieve 
nearly linear speed-up.  In the hybrid element assignment strategy, element 
duplication occurs in the stiffness matrix formation (Peng et al. 2004).  As the number 
of processors increases, the ratio of the duplicated portion (i.e., number of duplicated 
elements) over the non-duplicated portion becomes larger, and thus the parallel 
speedup of the left-hand-side (LHS) formation decreases. 
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Figure 3. Centrifuge test model and its finite element mesh 

Table 3:  Simulation time of the centrifuge test model (time in second) 

#procs LHS formation RHS formation  Stress update Factorization For.& back solve Total Time Speedup
8 273.5744 2446.7949 254.423 2736.6251 490.8859 6406.2478 1.00
16 164.1032 1224.6193 128.2848 1491.3682 341.3722 3579.8026 1.79
32 104.4461 622.0131 64.1883 813.7018 320.2453 2157.3544 2.97
64 85.4338 445.0552 40.5882 629.3023 517.6617 2000.4592 3.20  
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Figure 5. Computed and recorded excess pore pressure time histories 

Conclusion 
 
The finite elements employed in ParCYCLIC are modeled as an incremental plasticity 
coupled solid-fluid formulation.  The solution strategy in ParCYCLIC is based on the 
enhancement of a parallel row-oriented sparse solver (Law and Mackay 1993).  An 
automatic domain decomposer based on METIS routines (Karypis and Kumar 1998) 
is implemented in ParCYCLIC, in which the multilevel nested dissection algorithm is 
used to order the finite element nodes. 
 
Large-scale experimental results for gird models and 3-D geotechnical simulations are 
presented to demonstrate the performance of ParCYCLIC.  Excellent parallel 
speedups are reported from the simulation results.  Furthermore, the results show that 
ParCYCLIC is scalable to a large number of processors, e.g., 64 or more.  It is also 
shown that ParCYCLIC can be used to simulate large-scale problems, which would 
otherwise be infeasible using single-processor computers due to the limited memory. 
The parallel computational strategies employed in ParCYCLIC are general and can be 
adapted to other similar applications without difficulties.   
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