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Abstract

This paper presents a parallel nonlinear finite element program, ParCYCLIC, which is
designed for the analysis of cyclic seismically-induced liquefaction problems. Key
elements of the computational strategy employed in ParCYCLIC include the
deployment of an automatic domain decomposer, the use of the multilevel nested
dissection algorithm for the ordering ohie element nodes, and the development of

a parallel sparse direct solver. Simulatiosutes of grid models and a centrifuge test
model using ParCYCLIC are presented. Performance results show that ParCYCLIC
is efficiently scalable ta large number of processors.

I ntroduction

Large-scale finite element simulatiortd earthquake ground response including
liquefaction effects often require a leng#éwecution time. This is necessitated by the
complex algorithms of coupled solid-fthi formulation, the associated highly
nonlinear plasticity-based constitutive models, and the time domain step-by-step
earthquake computations. In view of tfiieite memory sizeand the limitation of
current operating systems (e.g. Linux, M8indows, and so forth), large-scale
earthquake simulations may not be felsiton single-processor computers.
Utilization of parallel computers, which coimk the resources of multiple processing
and memory units, can potentially reduce the solution time significantly and allow
simulations of large and complex models timaty not fit into a single processor.

Sequential application software, such as traditional finite element programs, needs to
be re-designed to take full advantage afafjal computers. This paper presents the
development of a state-of-the-art tioear parallel finite element program,
ParCYCLIC, for earthquake ground respomsel liquefaction simulation (Lu et al.
2004; Peng et al. 2004). ParCYCLICimplemented based on a serial program
CYCLIC, which is a nonlinear finite element program developed to analyze
liquefaction-induced semsic response (Parra 1996; Yang and Elgamal 2002).
Extensive calibration of CYCLIC has been conducted with results from experiments



and full-scale response of earthquake sitmia involving ground liquefaction. In
ParCYCLIC, the calibrated serial coder modeling of earthquake geotechnical
phenomena is combined with advanced potational methodologgeto facilitate the
simulation of large-scale systems and bieyathe scope of priacal applications.

Finite Element Formulation

In ParCYCLIC, the saturated soil system is modeled as a two-phase material based on
the Biot (1962) theory for porous mediad numerical framework of this theory,
known asu-p formulation, was implemented §Ra 1996; Yang 2000; Yang and
Elgamal 2002). In the-p formulation, displacement of the soil skeletoand pore
pressurep, are the primary unknowns (Chan 1988; Zienkiewicz et al. 1990). The
implementation is based on the following assumptions: small deformation and
rotation, constant density of the soliddafluid in both time and space, locally
homogeneous porosity which is constant with time, incompressibility of the soil
grains, and equal accelerations for the solid and fluid phases.

The u-p formulation as defined by Chan (198®)nsists of an equation of motion for
the solid-fluid mixture and an equation ofass conservation for the fluid phase.
These two governing equations can be egged in the following finite element
matrix form (Chan 1988):

MU+IBTc’dQ+Qp—fS=O (1a)
Q
Q'U+Sp+Hp-fP =0 (1b)

whereM is the mass matri{) the displacement vectoB the strain-displacement
matrix, ¢' the effective stress tensor (determined by the soil constitutive model
described below)Q the discrete gradient operataupling the solid and fluid phases,

p the pore pressure vectds, the compressibility matrix, antl the permeability
matrix. The vectord® and fP represent the effects of body forces and prescribed
boundary conditions for the solid-fluid mixtuaad the fluid phase respectively.

Extensive calibration of ParCYCLIC &abeen conducted with results from
experiments and full-scale response aarthquake simulations involving ground
liquefaction. Calibration wabased on results of monatc and cyclic laboratory
tests (Arulmoli et al. 1992), as well atata from dynamic centrifuge model
simulations (Dobry et al. 1995). For the liquefaction model currently employed,
emphasis is placed on controlling the magphét of cycle-by-cycle permanent shear
strain accumulation in clean medium-dense sands. Following the classical plasticity
formulation, it is assumed that materiabstlicity is linear and isotropic, and that
nonlinearity and anisotropy are the results of plasticity. The selected yield function
forms a conical surface in stress space with its apex along the hydrostatic axis.
During shear loading, the soil contraeiigilative behavior is handled by a non-
associative flow rule (Parra 1996) sotasachieve appropriate interaction between
shear and volumetric response.



Computational Procedures

The computational procedure B&rCYCLIC is illustrated in Figure 1. The procedure

can be divided into three distinct @es: the initializatin phase, the nonlinear
solution phase, and the output and postprocessing phase. The initialization phase
consists of reading input files, pemioing mesh partitioning, and symbolic
factorization. METIS (Karypis and Kumar 1998)hich is a set of libraries for graph
partitioning developed at the University of Minnesota, is used to partition the finite
element mesh at this phase. Specifically, the multilevel nested dissection algorithm in
METIS is employed to perform the mesh partitioning. An automatic domain
decomposer for performing domain degmosition, based on the METIS ordering, is

also implemented in ParCYCLIC.
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Figure 1. Flowchart of computational proceduresin ParCYCLIC



The symbolic factorization is performedeafthe initialization phase to determine the
nonzero pattern of the matrix factor. Therage space for the matrix factor is also
allocated during the symbolic factorizatioSince all the processors need to know the
nonzero pattern of the globatiffness matrix and symbo factorization generally
only takes a small portion of the total runtime, the domain decomposition and
symbolic factorization are performed witheach processor based on the global input
data. In the nonlinear analysis solution g#ahe program esgally goes through a
while loop until the number of incrementsaobes the pre-set limit. In the nonlinear
solution phase, the modified Newton-Raphsdgorithm is employed, that is, the
stiffness matrix at each iteration step uessame tangentidiféness from the initial

step of the increment. The convergence igeperformed at the end of each iteration
step. If the solution is not convergedeafa certain number of iterations (e.g., 10
iterations) within a particular time step, the time step will be divided into two steps to
expedite convergence. If the new stilb does not converge after the certain number
of iterations, then further time step sgphg will automatically take place, until
convergence is achieved.

The final phase, output and postprocessingsists of collecting the calculated node
response quantities (e.g. displacementsglacation, pore pressure, and etc.) and
element output (includes normal stress,nmalr strain, volume strain, shear strain,
mean effective stress, and etc.) from tHféedent processors. The response quantities
and timing results are then writténto files for future ppcessing and visualization.

Parallel Sparse Solver

Nonlinear finite element computations edrthquake simulatioriavolve the iterative
solution of sparse symmetric systems of linear equations. Solving the linear system is
often the most computational intensive task of a finite element program, especially
when an implicit time integration scheme is employed. The parallel sparse solver
implemented in ParCYCLIC is based on a row-oriented storage scheme that takes full
advantage of the sparsity of the stiffnesatrix (Law and Mackay 1993). A direct
solver is preferred in ParCYCLIC over an iterative solver because even the best-
known iterative solver (e.g. the Polyn@l Preconditioned @hjugate Gradient
method (PPCG)) may exhibit instabilities undertain conditions. For instance, in a
nonlinear analysis, an iterative solver nthyerge (Romero et ak002). The direct
solution method is a more stable appro&chachieve solution convergence. The
concept of the sparse solver incorporateBarCYCLIC is briefly described below.

Given a linear system of equatioks = f, the symmetric sparse matrik is often
factored into the matrix producDL’, whereL is a lower triangular matrix arfd is a
diagonal matrix. The solution vectwis then computed by a forward solutihz= f

orz= L, followed by a backward substituti@i.'x = zorx = L'D"z. Sparse matrix
factorization can be divided into two ®s: symbolic factorization and numeric
factorization (Law and Mackay 1993). r8polic factorizatbn determines the
structure of matrix factdr from that ofK (i.e. locations of nonzero entries). Numeric
factorization then makes use of the data structure determined to compute the numeric



values ofL andD. By topologically postordering the elimination tree, the nodes in
any subtree can be numbered consecutifledyv and Mackay 1993). The resulting
sparse matrix factor is partitioned intatk submatrices where the columns/rows of
each block correspond to the node set ofamdin in the elimination tree. Figure 2
shows a simple finite element grid and its post-ordered elimination tree
representation.

For parallel implementatiorof the sparse matrix attorization, the processor
assignment strategy can be based on matrix partitioning according to the post-ordered
elimination tree. The coefficients of a spamatrix factor are distributively stored
among the processors according to the column blocks. Essentially, the strategy is to
assign the rows corresponding to the modl®ng each branch (column block) of the
elimination tree to a processor or a group afcessors. Beginning at the root of the
elimination tree, the nodes belonging to tiianch of the tree are assigned among the
available processors in a rotating round mofaishion or a block wrap mapping. As

we traverse down the elimination tree, at each fork of the elimination tree, the group
of processors is divided tmatch the number and the size of the subtrees below the
current branch. A separate group of procesisoassigned to each branch at the fork
and the process is repeated for each subtree.

The parallel numerical factoaznon procedure is dividedtmtwo phases (Peng et al.
2004). In the first phase, each processorprddently factorizes certain portions of

the matrix that assigned to a single pssm®. In the second phase, other portions of
the matrix shared by more than one processor are factored. Following the parallel
factorization, the parallel favard and backward solution phases proceed to compute
the solution to the global system of equations.

. Global Node
FlrstI Cut Number
1 3 211 13 11 Global Node
Processor Number
Number
0 0 2 24|
Processor
2 4 22 14 12
0 0 2 2
9 10 23 20 19| Second Cut
N 0@ ®s
6 8 24 18 16
0(3® QK
1 1 3 3 0(2) (93
5 7 25 17 15 0(2) (B
|
Finite Element Grid Elimination Tree

Figure 2. A finite lement mesh and its elimination treerepresentation



Parallel Performance

ParCYCLIC has been successfully ported many different types of parallel
computers and workstation clustensicluding IBM SP machines, SUN super
computers, and Linux workstation clustefBo demonstrate the parallel performance
of ParCYCLIC, the following shows the performance of ParCYCLIC on the Blue

Horizon machine at San Diego SupercomepuCenter.

Blue Horizon is an IBM

Scalable POWERparallel (SP) machimgth 144 compute nodes, each with 8
POWER3 RISC-based processors and with 4 GBytes of memory. Each processor on

the node has equal shared access to the memory.

Solution of finite element grid models. The first experiment deals with the solution
of a number of 2D plane strain finiteeatent grid models of sizes ranging from
150x150 to 300x300 elements, as well as 3D grid models of sizes ranging from

20x20x20 to 35x35x35 elements.

The multilevel nested dissection (Karypis and

Kumar 1998) for the grid problems is ahie generate well-balanced workload
distribution for running on a parallel comput Each processor is responsible for
approximately the same numhsrelements and equations. When there is good load
balance, each processwvill complete its tasks atbout the same time and
synchronization costs are low. Table 1 summarizes the execution times of the
solution phase (numericadtorization, forward solve drbackward substitution) for

these 2D and 3D grid models for one tistep. Excellent parallspeedup is achieved

for these grid models up to a certain numbé processors, as shown in Table 2.
However, the speedup tendssetturate or peak at artan limit and the performance

does not continue to improvattvincreasing number of processors. This is due to the
increased communication overhead as the number of processors continues to increase.
It may be noted that some of the grid models, e.g. the 30x30x30 mesh and the
35x35x35 mesh, are too large to fit int@ tmemory of a low number of processors.

The execution time for these situations is denoted as N/A in Table 1.

Table 1. Execution time of solution phasefor grid models (timein seconds)

E?orz: 2D grid models 3D grid models
150x150 [200x206|250x253 |300x300 [20x20x2G|25x25x25 |30x30x30 | 35x35%3%
1| 19.66] 46.11] 98.14 185.70 188.00 674.60 N/A N/A
2 9.34 19.83 37.60 66.38 93.97] 357.00 1016.78 N/A
4 4.57 9.73] 17.70 28.68 47260 187.10 492.82 1359.26
8 2.69 5.56 9.78 16.16 25.59 06.16 248.53 714.91
16 1.81 3.49 5.81 9.22 16.74 54.72| 132.73 365.88
32 1.52 2.55 4.05 6.17 12.52 35.14 76.85| 188.32
64 2.36 3.60 7.02 6.84 14.80 34.70 58.98 127.23
128 4.32 6.01 11.50 8.94 18.97 50.88 64.81 119.12

168,403 equations; 7,457,460 non-zeros

2121,203 equations; 14,189,580 non-zeros
189,003 equations; 23,724,231 non-zeros
* 271,803 equations; 35,706,300 non-zeros

> 37,044 equations; 27,214,674 non-zeros
©70,304 equations; 66,365,120 non-zeros
119,164 equations; 138,930,582 non-zer
8 186,624 equations; 258,680,240 non-zer




Table 2: Parallel speedup factors of solution phase for grid models

Num. (2D grid models 3D grid models

Proc. [150x150200x200250x250300x30020x20x2025x25x2530x30x30|35x35x35

1 - - - - - - - -

2 2.10 2.33 2.61 2.80 2.00 1.89 - -

4 4.30 4.74 5.54 6.47 3.98 3.61 2.06 --

8 7.31 8.29) 10.03 11.49 7.35 7.02 4.09 1.90

16| 10.86 13.21 16.89] 20.14 11.23 12.33 7.66 3.72

32| 1293 18.08 24.23 30.10 15.02 19.20 13.23 7.22

64 8.33 12.81] 13.98 27.15 12.70 19.44 17.24 10.68

128 4.55 7.67 8.53] 20.77 9.91 13.26 15.69 11.41]
'Relative to 2 processors
“Relative to 4 processors

Numerical simulation of centrifuge experiment. Figure 3 shows a Rensselaer
Polytechnic Institute centrifuge tesoael (Abdoun and Doubry 2002) to investigate
the response of a single-pile foundation a liquefied gently sloping ground,
subjected to dynamic base excitationThe experiment wsa conducted using a
rectangular, flexible-wall laminar box camer. The soil profile consists of a
saturated loose liquefiable sand layer dtige density Dr = 40%), underlain by a
slightly cemented non-liquefiable reh layer (Abdoun and Doubry 2002). The
prototype single pile in the middle ofehsoil domain is 0.6m in diameter, 8m in
length, and is free at the top. The mode$weclined in 2 degrees and subjected to a
predominantly 2Hz harmonic base excatwith a peak acceleration of 0.3g.

The centrifuge model is numerically sitated using ParCYCLIC on Blue Horizon.

The soil domain and the pile were discretiavith 8-node brick elements, as shown

in Figure 3. A half mesh configurationas used due to geometrical symmetry.
ParCYCLIC is used to simulate theodel for roughly 2200 time-steps. As shown

from the results in Figure 4 and Figure 5, good agreement has been achieved between
the computed and the recerdl acceleration and pore pressure responses. Salient
liquefaction response characteristics, unithg excess pore pressure generation and
dissipation and acceleration spikes, weaptured by the ParCYCLIC model with
reasonable accuracy.

Table 3 summarizes the timing measurements for performing the simulation of the
centrifuge test model on 8, 16, and 32 pssors. Generally speaking, significant
decrease in both numerical factorization and the total execution time can be observed.
Since there is no element duplication in the phases of the right-hand-side (RHS)
formation and the stress update, these twoxqumures scale very well, and achieve
nearly linear speed-up. In the hybrid element assignment strategy, element
duplication occurs in the stiffness matfbrmation (Peng et al. 2004). As the number

of processors increases, the ratio ofdbglicated portion (i.enumber of duplicated
elements) over the non-duplicated portibacomes larger, anthus the parallel
speedup of the left-hand-sideHS) formation decreases.



Nevada sand
(Dr=40%)

Slightly
Cemented sand

)
0
\\\\\

W

\

L
W

e
\%&\‘
VL

W
W

o

\\%\“’
A
\{\\\

RN

@\\%“‘

\

b

W

A

AT
\\\\ i
IR

0

Input Motion

® Pore Pressure
Transducer

B Strain Gage -=-LVDT = Accelerometer

Figure 3. Centrifugetest model and itsfinite element mesh

Table 3: Simulation time of the centrifuge test model (timein second)

#orocs | LHSformation | RHS formation] Stress update| Factorization | For.&backsohve|  Tota Time Speedup
8 27135744 2446.749 254423 2736.6251 490.8359 6406.2478 100
16 164.1032 1224.6193 128.2848 1491.3682 13722 3579.8026 179
R 104.4461 6220131 64.1883 813.7018 320.2453 2157.344 297
64 854338 4450552 405832 629.3023 517.6617 2000.4592 320
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Conclusion

The finite elements employed in ParCYCLIC are modeled as an incremental plasticity
coupled solid-fluid formulation. The solah strategy in ParCYCLIC is based on the
enhancement of a parallel row-orientecrsg solver (Law and Mackay 1993). An
automatic domain decomposer based onlMEroutines (Karypis and Kumar 1998)

is implemented in ParCYCLIC, in which the multilevel nested dissection algorithm is
used to order the finite element nodes.

Large-scale experimental results for ginddels and 3-D geotechnical simulations are
presented to demonstrate the performance of ParCYCLIC. Excellent parallel
speedups are reported from the simulation resttgthermore, the results show that
ParCYCLIC is scalable to a large nhumbemodcessors, e.g., 64 or more. It is also
shown that ParCYCLIC can be used bmdate large-scale problems, which would
otherwise be infeasible using single-processor computers due to the limited memory.
The parallel computational strategies employed in ParCYCLIC are general and can be
adapted to other similar appltaans without difficulties.
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