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Abstract  

Parallel computing is a promising approach to alleviate the computational demand in conducting large-

scale finite element analyses. This paper presents a numerical modeling approach for earthquake ground 

response and liquefaction using the parallel nonlinear finite element program, ParCYCLIC, which is 

designed for distributed-memory message-passing parallel computer systems. In ParCYCLIC, finite 

elements are employed within an incremental plasticity, coupled solid-fluid formulation framework. A 

constitutive model calibrated by physical tests represents the salient characteristics of sand liquefaction 

and associated accumulation of shear deformations. Key elements of the computational strategy 

employed in ParCYCLIC include the development of a parallel sparse direct solver, the deployment of  

an automatic domain decomposer, and the use of the Multilevel Nested Dissection algorithm for the 

ordering of finite element nodes. Simulation results of centrifuge test models using ParCYCLIC are 

presented. Performance results from grid models and geotechnical simulations show that ParCYCLIC is 

efficiently scalable to a large number of processors.  
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1. Introduction 

Large-scale finite element (FE) simulations of earthquake ground response including liquefaction 

effects often require a lengthy execution time. This is necessitated by the complex algorithms of coupled 

solid-fluid formulation, the associated highly nonlinear plasticity-based constitutive models, and the 

time domain step-by-step earthquake computations.  In view of the finite memory size and the limitation 

of current operating systems (e.g. Linux, MS Windows, and so forth), large-scale earthquake 

simulations may not be feasible on single-processor computers.  Utilization of parallel computers, which 

combine the resources of multiple processing and memory units, can potentially reduce the solution 

time significantly and allow simulations of large and complex models that may not fit into a single 

processing unit.   

The concept of parallel computing has been successfully applied to various structural and 

geotechnical nonlinear finite element problems. Nikishkov et al. (1998) developed a semi-implicit 

parallel FE code ITAS3D using the domain decomposition method and a direct solver for an IBM SP2 

computer. They reported that the parallel implementation could only be efficiently scalable to a 

moderate number of processors (e.g. 8).  Rometo et al. (2002) attempted to perform nonlinear analysis 

for reinforced concrete three-dimensional frames using different types of parallel computers, including a 

cluster of personal computers.  McKenna (1997) proposed a parallel object-oriented programming 

framework, which employs a dynamic load balancing scheme to allow element migration between sub-

domains in order to optimize CPU usage.  Krysl et al (Krysl and Belytschko 1998; Krysl and Bittnar 

2001) presented node-cut and element-cut partitioning strategies for the parallelization of explicit finite 

element dynamics.  They found that node-cut partitioning could yield higher parallel efficiency than 

element-cut partitioning. Bielak et al (1999; 2000) modeled earthquake ground motion in large 

sedimentary basins using a 3D parallel linear finite element program with an explicit integration 

procedure.  They noted that the implementation of implicit time integration approach is challenging on 

distributed memory computers, requiring global information exchange (Bao et al. 1998; Hisada et al. 

1998; Bielak et al. 1999; Bielak et al. 2000).  
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The research reported herein focuses on the development of a state-of-the-art nonlinear parallel 

finite element program for earthquake ground response and liquefaction simulation.  The parallel code, 

ParCYCLIC, is implemented based on a serial program CYCLIC, which is a nonlinear finite element 

program developed to analyze liquefaction-induced seismic response (Parra 1996; Yang and Elgamal 

2002).  Extensive calibration of CYCLIC has been conducted with results from experiments and full-

scale response of earthquake simulations involving ground liquefaction.  In ParCYCLIC, the calibrated 

serial code for modeling of earthquake geotechnical phenomena is combined with advanced 

computational methodologies to facilitate the simulation of large-scale systems and broaden the scope 

of practical applications.  

In the following sections, the essential features of the finite element formulation and the constitutive 

model employed in ParCYCLIC are described. Thereafter, details on the implementation of ParCYCLIC 

are presented, followed by numerical simulations of centrifuge seismic site response experiments using 

ParCYCLIC.  The parallel performance of ParCYCLIC is then discussed. 

2. Finite element formulation 

In CYCLIC and ParCYCLIC, the saturated soil system is modeled as a two-phase material based on 

the Biot (1962) theory for porous media.  A numerical framework of this theory, known as u-p 

formulation, was implemented (Parra 1996; Yang 2000; Yang and Elgamal 2002).  In the u-p 

formulation, displacement of the soil skeleton u, and pore pressure p, are the primary unknowns (Chan 

1988; Zienkiewicz et al. 1990).  The implementation of CYLCIC is based on the following assumptions: 

small deformation and rotation, constant density of the solid and fluid in both time and space, locally 

homogeneous porosity which is constant with time, incompressibility of the soil grains, and equal 

accelerations for the solid and fluid phases. 

The u-p formulation as defined by Chan (1988) consists of: i) equation of motion for the solid-fluid 

mixture, and ii) equation of mass conservation for the fluid phase, incorporating equation of motion for 

the fluid phase and Darcy's law.  These two governing equations can be expressed in the finite element 

matrix form as follows (Chan 1988): 
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where M is the mass matrix, U the displacement vector, B the strain-displacement matrix, σ ′  the 

effective stress tensor (determined by the soil constitutive model described below), Q the discrete 

gradient operator coupling the solid and fluid phases, p the pore pressure vector, S the compressibility 

matrix, and H the permeability matrix.  The vectors sf  and pf  represent the effects of body forces and 

prescribed boundary conditions for the solid-fluid mixture and the fluid phase respectively.  

In eq. 1a (equation of motion), the first term represents inertia force of the solid-fluid mixture, 

followed by internal force due to soil skeleton deformation, and internal force induced by pore-fluid 

pressure.  In eq. 1b (equation of mass conservation), the first two terms represent the rate of volume 

change for the soil skeleton and the fluid phase respectively, followed by the seepage rate of the pore 

fluid.  Eqs. 1a and 1b are integrated in the time space using a single-step predictor multi-corrector 

scheme of the Newmark type (Chan 1988; Parra et al. 1996).  In the current implementation, the 

solution is obtained for each time step using the modified Newton-Raphson approach (Parra 1996).  

3. Soil constitutive model 

The second term in eq. 1a is defined by the soil stress-strain constitutive model.  The finite element 

program incorporates a soil constitutive model (Parra 1996; Yang and Elgamal 2002; Elgamal et al. 

2003; Yang et al. 2003) based on the original multi-surface-plasticity theory for frictional cohesionless 

soils (Prevost 1985).  This model was developed with emphasis on simulating the liquefaction-induced 

shear strain accumulation mechanism in clean medium-dense sands (Elgamal et al. 2002a; Elgamal et al. 

2002b; Yang and Elgamal 2002; Elgamal et al. 2003; Yang et al. 2003).  Special attention was given to 

the deviatoric-volumetric strain coupling (dilatancy) under cyclic loading, which causes increased shear 

stiffness and strength at large cyclic shear strain excursions (i.e., cyclic mobility). 

The constitutive equation is written in incremental form as follows (Prevost 1985): 

)(: pεεEσ −=′                                                           (2) 
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where σ ′  is the rate of effective Cauchy stress tensor, ε  the rate of deformation tensor, pε  the plastic 

rate of deformation tensor, and E the isotropic fourth-order tensor of elastic coefficients.  The rate of 

plastic deformation tensor is defined by: pε = P L , where P is a symmetric second-order tensor 

defining the direction of plastic deformation in stress space, L the plastic loading function, and the 

symbol  denotes the McCauley's brackets  (i.e., L =max(L, 0)).  The loading function L is defined 

as: L = Q:σ ′ / H ′  where H ′  is the plastic modulus, and Q a unit symmetric second-order tensor 

defining yield-surface normal at the stress point (i.e., Q= ff ∇∇ / ), with the yield function f selected 

of the following form (Elgamal et al. 2003): 

0)())(())((
2

3 2
0

2
00 =′+′−′+′−′+′−= ppMppppf αsαs :    (3) 

in the domain of 0≥′p .  The yield surfaces in principal stress space and deviatoric plane are shown in 

Fig. 1.  In eq. 3, δσs  p′−′=  is the deviatoric stress tensor, p′  the mean effective stress, 0p′  a small 

positive constant (1.0 kPa in this paper) such that the yield surface size remains finite at 0=′p  for 

numerical convenience (Fig. 1), α  a second-order kinematic deviatoric tensor defining the surface 

coordinates, and M dictates the surface size.  In the context of multi-surface plasticity, a number of 

similar surfaces with a common apex form the hardening zone (Fig. 1).  Each surface is associated with 

a constant plastic modulus.  Conventionally, the low-strain (elastic) module and plastic module are 

postulated to increase in proportion to the square root of p′  (Prevost 1985). 

The flow rule is chosen so that the deviatoric component of flow P′ = Q′ (associative flow rule in 

the deviatoric plane), and the volumetric component P ′′  defines the desired amount of dilation or 

contraction in accordance with experimental observations. Consequently, P ′′  defines the degree of 

non-associativity of the flow rule and is given by (Parra 1996): 

        ΨP
1)/(
1)/(

2

2

+
−=′′

ηη
ηη

       (4) 
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Figure 1: Conical yield surfaces for granular soils in principal stress space and deviatoric plane  

(Prevost 1985; Lacy 1986; Parra et al. 1996; Yang 2000) 

where p′= /2/1):)2/3(( ssη  is effective stress ratio, η  a material parameter defining the stress ratio 

along the phase transformation (PT) surface (Ishihara et al. 1975), and Ψ  a scalar function controlling 

the amount of dilation or contraction depending on the level of confinement and/or cumulated plastic 

deformation (Elgamal et al. 2003). The sign of 1)/( 2 −ηη  dictates dilation or contraction. If the sign 

is negative, the stress point lies below the PT surface and contraction takes place (phase 0-1, Fig. 2). On 

the other hand, the stress point lies above the PT surface when the sign is positive and dilation occurs 

under shear loading (phase 2-3, Fig. 2). At low confinement levels, accumulation of plastic deformation 

may be prescribed (phase 1-2, Fig. 2) before the onset of dilation (Elgamal et al. 2003). 

A purely deviatoric kinematic hardening rule is chosen according to (Prevost 1985): 

µα   bp =′           (5) 

where µ  is a deviatoric tensor defining the direction of translation and b is a scalar magnitude dictated 

by the consistency condition. In order to enhance computational efficiency, the direction of translation 

µ  is defined by a new rule (Parra 1996; Elgamal et al. 2003), which maintains the original concept of 

conjugate-points contact by Mroz (Mroz 1967). Thus, all yield surfaces may translate in stress space 

within the failure envelope. 
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Figure 2: Shear stress-strain and effective stress path under undrained shear loading  

conditions (Parra 1996; Yang 2000) 

The employed model has been extensively calibrated for clean Nevada Sand at rD ≈ 40% (Parra 

1996; Yang 2000). Calibration was based on results of monotonic and cyclic laboratory tests (Arulmoli 

et al. 1992, fig 3), as well as data from level-ground and mildly inclined infinite-slope dynamic 

centrifuge-model simulations (Dobry et al. 1995; Taboada 1995). The main modeling parameters 

include (Table 1) standard dynamic soil properties such as low-strain shear modulus and friction angle, 

as well as calibration constants to control the dilatancy effects (phase transformation angle, contraction 

and dilation parameters), and the level of liquefaction-induced yield strain (yγ ). 
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Figure 3: Recorded and computed results of anisotropically consolidated, undrained cyclic triaxial test 

(Nevada Sand at 40% relative density) with static shear stress bias (Arulmoli et al. 1992; Yang 2000) 

Table 1: Model parameters calibrated for Dr = 40% Nevada Sand (Elgamal et al. 2002b) 

Main calibration 
experiment 

Parameter Value 

Low-strain shear modulus rG  (at 80 kPa mean 
effective confinement)  

33.3 MPa  
Drained monotonic tests 

Friction angle φ  31.4 degrees 

Undrained cyclic test Liquefaction yield strain yγ  (Fig. 2, phase 1-2) 1.0 % 

Contraction parameter 1c  0.17  
RPI Centrifuge Model 1 
 Contraction parameter 2c  (Fig. 2, phase 0-1) 0.05 

Phase transformation angle PTφ  26.5 degrees 

Dilation parameter 1d  0.4 

 
 
RPI Centrifuge Model 2 
 Dilation parameter 2d  (Fig. 2, phase 2-3) 100.0 
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4. Parallel implementation 

4.1. Parallel program strategies 

Programming architectures required to take advantage of parallel computers are significantly 

different from the traditional paradigm for a serial program (Mackay 1992; Law 1994; Suarjana 1994; 

Aluru 1995; Herndon et al. 1995a; McKenna 1997).  In a parallel computing environment, care must be 

taken to maintain all participating processors busy performing useful computations and to minimize 

communication among the processors. ParCYCLIC employs the single-program-multiple-data (SPMD) 

paradigm, a common approach in developing application software for distributed memory parallel 

computes. In this approach, problems are decomposed using well-known domain decomposition 

techniques. Each processor of the parallel machine solves a partitioned domain and data 

communications among sub-domains are performed through message passing. The domain 

decomposition method (DDM) is attractive in finite element computations on parallel computers 

because it allows individual sub-domain operations to be performed concurrently on separate processors. 

The SPMD model has been applied successfully in the development of many parallel finite element 

programs from legacy serial code (Aluru 1995; Herndon et al. 1995b; De Santiago and Law 1996).   

4.2. Computational procedures 

The computational procedure of ParCYCLIC is illustrated in Fig. 4. The procedure can be divided 

into three distinct phases: the initialization phase, the nonlinear solution phase, and the output and 

postprocessing phase. The initialization phase consists of reading input files, performing mesh 

partitioning and symbolic factorization. METIS (Karypis and Kumar 1997), which is a set of libraries 

for graph partitioning developed at the University of Minnesota, is used to partition the finite element 

mesh at this phase. Specifically, the multilevel nested dissection algorithm in METIS is employed to 

partition the finite element mesh. An automatic domain decomposer for performing domain 

decomposition, based on the METIS ordering, is also implemented in ParCYCLIC.  

The symbolic factorization is performed after the initialization phase to determine the nonzero 

pattern of the matrix factor.  The storage space for the matrix factor L is also allocated during the 

symbolic factorization.  Since all the processors need to know the nonzero pattern of the global stiffness 
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matrix and symbolic factorization generally only takes a small portion of the total runtime, the domain 

decomposition and symbolic factorization are performed within each processor based on the global 

input data.  

Symbolic
factorization

Postprocessing
visualization

Global matrix
assembly

Numerical
factorization

Right-hand-side
formation

Forward and
backward solution

Converged?

Read input
files

Initialization
Allocate memory

i < steps?
No

Element stiffness
generation

Yes

Yes

i =
 i 

+
 1

Iteration
exceeds limit?

No

Split current
 time step

Yes

No

Preprocessing
and input phase

Nonlinear
Solution
phase

Postprocessing
phase

Output

Mesh
Partitioning

 

Figure 4. Flowchart of computational procedures in ParCYCLIC 

In the nonlinear analysis solution phase, the program essentially goes through a while loop until the 

number of increments reaches the pre-set limit. In the nonlinear solution phase, the modified Newton-

Raphson algorithm is employed, that is, the stiffness matrix at each iteration step uses the same 

tangential stiffness from the initial step of the increment. The convergence test is performed at the end 

of each iteration step.  If the solution is not converged after a certain number of iterations (e.g., 10 

iterations) within a particular time step, the time step will be divided into two steps to expedite 
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convergence.  If the new step still does not converge after a certain number of iterations, then further 

time step splitting will automatically take place, until convergence is achieved. 

The final phase, output and postprocessing, consists of collecting the calculated node response 

quantities (e.g. displacements, acceleration, pore pressure, and etc.) and element output (includes normal 

stress, normal strain, volume strain, shear strain, mean effective stress, and etc.) from the different 

processors.  The response quantities and timing results are then written into files for future processing 

and visualization. 

4.3. Parallel sparse solver 

Nonlinear finite element computations of earthquake simulations involve the iterative solution of 

sparse symmetric systems of linear equations. Solving the linear system is often the most computational 

intensive task of a finite element program, especially when an implicit time integration scheme is 

employed. ParCYCLIC employs a direct sparse solution method proposed and developed by Mackay 

and Law (1993).  The parallel sparse solver is based on a row-oriented storage scheme that takes full 

advantage of the sparsity of the stiffness matrix. A direct solver is preferred in ParCYCLIC over an 

iterative solver because even the best-known iterative solver (e.g. the Polynomial Preconditioned 

Conjugate Gradient method (PPCG)) may exhibit instabilities under certain conditions. For instance, in 

a nonlinear analysis, an iterative solver may diverge (Romero et al. 2002). The direct solution method is 

a more stable approach to achieve solution convergence. The concept of the sparse solver incorporated 

in ParCYCLIC is briefly described below.  

Given a linear system of equations Kx = f, the symmetric sparse matrix K is often factored into the 

matrix product LDLT, where L is a lower triangular matrix and D is a diagonal matrix.  The solution 

vector x is then computed by a forward solution, Lz = f or z = L-1f,  followed by a backward substitution 

DLTx = z or x = L-TD-1z. Sparse matrix factorization can be divided into two phases: symbolic 

factorization and numeric factorization (Law and Mackay 1993).  Symbolic factorization determines the 

structure of matrix factor L from that of K (i.e. locations of nonzero entries).  Numeric factorization then 
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makes use of the data structure determined to compute the numeric values of L and D. The nonzero 

entries in L can be determined by the original nonzero entries of K and a list vector, which is defined as:  

                                    }0|min{)( ≠= ijLijPARENT    (4) 

in which j is the column number and i the row subscript. The array PARENT represents the row 

subscript of the first nonzero entry in each column of the lower matrix factor L.  The definition of the 

array PARENT results in a monotonically ordered elimination tree T of which each node has its 

numbering higher than its descendants (Schreiber 1982; Fenves and Law 1986; Liu 1986, 1988; Mackay 

et al. 1991).  The list array PARENT contains sufficient information for determining the nonzero 

structure of any row in L.  Furthermore, by topologically postordering the elimination tree, the nodes in 

any subtree can be numbered consecutively (Liu 1986).  The resulting sparse matrix factor is partitioned 

into block submatrices where the columns/rows of each block correspond to the node set of a branch in 

T. Fig. 5 shows a simple finite element grid and its post-ordered elimination tree representation. 
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Figure 5: A finite element mesh and its elimination tree representation 

For parallel implementation of the sparse matrix factorization, the processor assignment strategy can 

be based on matrix partitioning according to the post-ordered elimination tree.  The coefficients of a 

sparse matrix factor are distributively stored among the processors according to the column blocks.  

Essentially, the strategy is to assign the rows corresponding to the nodes along each branch (column 

block) of the elimination tree to a processor or a group of processors.  Beginning at the root of the 
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elimination tree, the nodes belonging to this branch of the tree are assigned among the available 

processors in a rotating round robin fashion (Mackay 1992) or a block wrap mapping (Golub and Van 

Loan 1989).  As we traverse down the elimination tree, at each fork of the elimination tree, the group of 

processors is divided to match the number and the size of the subtrees below the current branch.  A 

separate group of processors is assigned to each branch at the fork and the process is repeated for each 

subtree.  

The parallel numerical factorization procedure is divided into two phases (Law and Mackay 1993).  

In the first phase, each processor independently factorizes certain portions of the matrix that assigned to 

a single processor.  In the second phase, other portions of the matrix shared by more than one processor 

are factored.  Following the parallel factorization, the parallel forward and backward solution phases 

proceed to compute the solution to the global system of equations. 

5. Parallel performance 

ParCYCLIC has been successfully ported on many different types of parallel computers and 

workstation clusters, including IBM SP machines, SUN super computers, and Linux workstation 

clusters. To demonstrate the parallel performance of ParCYCLIC, the following shows the performance 

of ParCYCLIC on the Blue Horizon machine at San Diego Supercomputer Center (NPACI 2003).  Blue 

Horizon is an IBM Scalable POWERparallel (SP) machine with 144 compute nodes, each with eight 

POWER3 RISC-based processors and with 4 GBytes of memory. Each processor on the node has equal 

shared access to the memory.  The performance of ParCYCLIC is evaluated by using two-dimensional 

(2D) and three-dimensional (3D) grid models as well as 3D geotechnical finite element models.  All 

timing results mentioned below are collected with nonlinear analysis conducted for one time step 

(unless stated otherwise). 

5.1. Solution of finite element grid models 

The first experiment deals with the solution of a number of 2D plane strain finite element grid 

models of sizes ranging from 150x150 to 300x300 elements, as well as 3D grid models of sizes ranging 

from 20x20x20 to 35x35x35 elements.  The multilevel nested dissection (Karypis and Kumar 1997) for 
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the grid problems is able to generate a very well-balanced workload distribution for running on a 

parallel computer. Each processor is responsible for approximately the same number of elements and 

equations.  When there is good load balance, each processor will complete its tasks at about the same 

time and synchronization costs will be minimized. Table 2 summarizes the execution times of the 

solution phase for these 2D and 3D grid models for one time step.  Excellent parallel speedup is 

achieved for these grid models up to a certain number of processors, as shown in Table 3. However, the 

speedup tends to saturate or peak at a certain limit and the performance does not continue to improve 

with increasing number of processors. This is due to the increased communication overhead as the 

number of processors continues to increase. It may be noted that some of the grid models, e.g. the 

30x30x30 mesh and the 35x35x35 mesh, are too large to fit into the memory of a low number of 

processors. The execution time for these situations is denoted as N/A in Table 3. 

5.2. Solution of 3D geotechnical finite element models 

This section presents the results of simulating geotechnical models including a soil-pile interaction 

model and a stone column centrifuge test model. The soil-pile interaction model shown in Fig. 6 is used 

to study the loads on a pile group subjected to earthquake-induced liquefaction and lateral spreading.  A 

total of 29,120 3D brick element constitute the FE mesh (Fig. 6). In this soil-pile interaction model, a 

3x3 pile group, is embedded in a submerged mild infinite ground slope and subjected to strong base 

shaking.  A three-layer soil profile is used in this model, with a nonliquefiable stratum placed below and 

above the liquefiable sand. As shown in Fig. 6, a half mesh configuration is used due to geometrical 

symmetry. 
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Table 2. Execution times of solution phase for finite element grid models (time in seconds) 

Number 
of 
processors 

2D grid models 3D grid models 

 150x1501 200x2002 250x2503 300x3004 20x20x205 25x25x256 30x30x307 35x35x358 

1 19.66 46.11 98.14 185.70 188.00 674.60 N/A N/A 
2 9.34 19.83 37.60 66.38 93.97 357.00 1016.78 N/A 
4 4.57 9.73 17.70 28.68 47.26 187.10 492.82 1359.26 
8 2.69 5.56 9.78 16.16 25.59 96.16 248.53 714.91 

16 1.81 3.49 5.81 9.22 16.74 54.72 132.73 365.88 
32 1.52 2.55 4.05 6.17 12.52 35.14 76.85 188.32 
64 2.36 3.60 7.02 6.84 14.80 34.70 58.98 127.23 

1 68,403 equations; 7,457,460 non-zeros 
2 121,203 equations; 14,189,580 non-zeros  
3 189,003 equations; 23,724,231 non-zeros  
4 271,803 equations; 35,706,300 non-zeros  

5 37,044 equations; 27,214,674 non-zeros  
6 70,304 equations; 66,365,120 non-zeros  
7 119,164 equations; 138,930,582 non-zeros 
8 186,624 equations; 258,680,240 non-zeros 

 

Table 3: Speedup factors of the solution phase for finite element grid models 

2D grid models 3D grid models Number of 
processors 150x150 200x200 250x250 300x300 20x20x20 25x25x25 30x30x301 35x35x352 

1 -- -- -- -- -- -- -- -- 
2 2.10 2.33 2.61 2.80 2.00 1.89 -- -- 
4 4.30 4.74 5.54 6.47 3.98 3.61 2.06 -- 
8 7.31 8.29 10.03 11.49 7.35 7.02 4.09 1.90 

16 10.86 13.21 16.89 20.14 11.23 12.33 7.66 3.72 
32 12.93 18.08 24.23 30.10 15.02 19.20 13.23 7.22 
64 8.33 12.81 13.98 27.15 12.70 19.44 17.24 10.68 

1Relative to 2 processors 
2Relative to 4 processors  

 

 Table 4 summarizes the timing results of the nonlinear analysis for one time step.  Note that the 

results for one processor are not available because the model is too large to fit into the memory of a 

single processor.  The parallel speedup (relative to 2 processors) and the execution times of the solution 

phase are illustrated in Fig. 7.  In a typical earthquake simulation where hundreds or even thousands of 

time steps may be performed, the solution phase actually dominates, and thus the reported speedup 

essentially represents that of the entire seismic analysis phase. The performance results demonstrate 

excellent parallel speedup up to 64 processors for this model.   
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Figure 6: A soil-pile interaction finite element model 

Table 4. Solution times for the soil-pile interaction model (time in seconds) 

Number of 
processors 

LDLT 
factorization 

Forward and 
backward solve 

Solution 
phase 

Total execution 
time 

(130,020 equations; 29,120 elements; 96,845,738 non-zeros in factor L) 
2 332.67 1.41 370.42 455.91 
4 166.81 0.78 187.72 286.97 
8 85.20 0.45 97.71 186.67 

16 50.73 0.29 59.39 147.55 
32 27.80 0.23 34.61 124.30 
64 18.41 0.26 24.40 116.21 

128 18.47 0.83 25.95 124.40 
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Figure 7. Execution times and speedup of the solution phase for the soil-pile interaction model 
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Another example is the solution of a stone column centrifuge test model, as shown in Fig. 8. The 

stone column technique is a ground improvement process where vertical columns of compacted 

aggregate are installed through the soils to be improved.  A series of centrifuge tests were conducted at 

Rensselaer Polytechnic Institute to assess the performance of this ground improvement method (Adalier 

et al. 2003). Fig. 8 shows one of the centrifuge test models used in the analysis. In this stone column 

model, a number of gravel columns are embedded into a fully-saturated silt soil stratum.  The model is 

then subjected to earthquake excitation along the x-direction at the base. Again, a half mesh 

configuration is used due to geometrical symmetry. 

 

Figure 8. Finite element model of a stone column centrifuge test 

Table 5 summarizes the timing results of the solution phase, the LDLT numerical factorization and 

the forward and backward solve, as well as the total execution time for one time step. The speedup and 

the execution times for the solution phase are illustrated in Fig. 9.  Note that the stone column model, 

with a scale of 364,800 degrees of freedom (dofs), cannot fit into the memory of less than 4 processors.  

As shown in Table 5 and Fig. 9, excellent parallel speedup is achieved for this model.  
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Table 5.  Solution times for the stone column centrifuge test model (time in seconds) 

Number 
of 
processors 

LDLT 
factorization 

Forward and 
backward solve 

Solution 
phase 

Total execution 
time 

(364,800 equations; 84240 elements; 340,514,320 non-zeros in factor L) 
4 1246.08 2.76 1306.87 1769.00 
8 665.66 1.56 702.09 1150.17 

16 354.99 0.98 378.35 841.38 
32 208.90 0.67 225.93 668.02 
64 125.05 0.66 142.33 583.98 
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Figure 9. Execution times and speedup of the solution phase for the stone column centrifuge test model 

6. Numerical simulation of centrifuge experiments 

In this section, numerical simulations of centrifuge test models using ParCYCLIC are presented. 

Two centrifuge model tests (Fig. 10) were conducted by Dobry and Taboada (1994) to simulate the 

dynamic response of level and mildly sloping sand sites. The employed centrifuge models are (Taboada 

1995): VELACS (VErification of Liquefaction Analysis by Centrifuge Studies) Model 1 represents a 

level site, subjected to a predominantly 2 Hz harmonic base excitation; and VELACS Model 2 

represents a mildly inclined infinite slope with an inclination angle of 2°, subjected to a predominantly 2 

Hz harmonic base excitation. 
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Figure 10: General configurations of RPI models 1 and 2 in laminar container 

These tests were performed in a laminated container that allows relative slip between laminates in 

order to simulate approximately one-dimensional (1D) shear response. Nevada sand was used at Dr in 

the range of 40-45%. The soil models were spun to a 50g gravitational field (Taboada 1995). At this 

gravitational field, the centrifuge models aim to simulate a prototype stratum of 22.86m long, 12.70m 

wide and 10m high. Water was used as the pore fluid, resulting in a prototype soil permeability equal to 

50 times that of the model soil (Tan and Scott 1985).  

As mentioned in Section 3, these VELACS centrifuge test models were employed for calibrating 

CYCLIC (Elgamal et al. 2002b). The simulations performed herein using ParCYCLIC could be viewed 

as a further calibration procedure with a highly refined 3D finite element mesh. The calibrated main 

modeling parameters, as shown in Table 1, have been employed in the following 3D simulations.  

6.1. Numerical modeling 

A grid mesh with 60 by 30 by16 elements (128,588 degrees of freedom in total) was used for the 

simulations. The boundary conditions were: (i) dynamic excitation was defined as the recorded base 

acceleration, (ii) at any given depth, displacement degrees of freedom of the downslope and upslope 
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boundaries were tied together (both horizontally and vertically using the penalty method) to reproduce a 

1D shear beam effect (Parra 1996), (iii) the soil surface was traction free, with zero prescribed pore 

pressure, and (iv) the base and lateral boundaries were impervious. A static application of gravity 

(model own weight) was performed before seismic excitation. The resulting fluid hydrostatic pressures 

and soil stress-states served as initial conditions for the subsequent dynamic analysis.  

The simulations were conducted using 32 processors on the Blue Horizon machine at San Diego 

Supercomputer Center (SDSC). The total execution time was approximately 5 hours for the Model 1 

simulation and 7 hours for the Model 2 simulation. Note that these simulations cannot fit into a single 

processor unit due to the limitation of memory size.  

6.2. Computation results 

Figs. 11 and 12 display the computed and recorded lateral accelerations and pore-pressures for 

Model 1, and Figs. 13 and 14 for Model 2. In general, good agreement is achieved between the 

computed and the recorded responses. In Model 1, accelerations virtually disappeared at the free surface 

after about 4 seconds due to liquefaction, as shown in Fig. 11. Liquefaction was reached down to a 

depth of 5.0m, as indicated by the pore-pressure ratio ru approaching 1.0 (dashed lines in Fig. 12, ru = 

ue/σv where ue is excess pore pressure, and σv initial effective vertical stress).  

The 2° inclination of Model 2 imposed a static shear stress component (due to gravity), causing 

accumulated cycle-by-cycle lateral deformation. Despite the relatively mild inclination, all response 

characteristics (Figs. 13 and 14) are much different from those of Model 1 (Figs. 11 and 12). Surface 

accelerations were sustained throughout the shaking phase (Fig. 13), and lateral displacement reached a 

permanent value of 0.4m (Fig. 15). The recorded and computed excess pore pressure histories (Fig. 14) 

both displayed a number of instantaneous sharp pore pressure drops after initial liquefaction. These 

drops coincided with the observed and computed acceleration spikes that occurred exclusively in the 

negative direction (Fig. 13).  

As illustrated in Fig. 16, the 3D simulations show that the centrifuge test models behave 

approximately as a 1D shear beam, as expected.  
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Figure 11: Model 1 recorded and computed acceleration time histories 
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Figure 12: Model 1 recorded and computed excess pore pressure time histories 
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Figure 13: Model 2 recorded and computed acceleration time histories 
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Figure 14: Model 2 recorded and computed excess pore pressure time histories 
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Figure 15: Model 2 recorded and computed lateral displacement histories 

 

 

Figure 16: Deformed mesh (factor of 10) of Model 2 after 10 seconds of excitation (unit: m) 
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7. Conclusions 

This paper presents the analysis and solution strategies employed in ParCYCLIC, a parallel 

nonlinear finite element program for the simulation of earthquake site response and liquefaction.  In 

ParCYCLIC, finite elements are employed within an incremental plasticity coupled solid-fluid 

formulation.  Extensive calibration of ParCYCLIC has been conducted with results from experiments 

and full-scale response of earthquake simulations involving ground liquefaction.   

ParCYCLIC employs the single-program-multiple-data (SPMD) paradigm, a common approach in 

developing application software for distributed memory parallel computes. The solution strategy in 

ParCYCLIC is based on the parallel row-oriented sparse solver (Mackay and Law (1993).  An automatic 

domain decomposer based on METIS routines (Karypis and Kumar 1997) is implemented in 

ParCYCLIC, in which the multilevel nested dissection algorithm is used to order the finite element 

nodes. 

ParCYCLIC has been successfully ported on IBM SP machines, SUN super computers, and Linux 

workstation clusters. Large-scale experimental results for gird models and 3-D geotechnical simulations 

are presented to demonstrate the performance of ParCYCLIC.  Excellent parallel speedups are reported 

from the simulation results. Furthermore, the results show that ParCYCLIC is scalable to a large number 

of processors. The parallel computational strategies employed in ParCYCLIC are general and can be 

adapted to other similar applications without difficulties. 

Centrifuge tests were simulated using ParCYCLIC on a parallel computer and preliminary results 

are presented. It is shown that ParCYCLIC can be used to simulate large-scale problems, which would 

otherwise be infeasible using single-processor computers due to the limited memory. 
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