
Peng, McKenna, Fenves, Law 1

An Open Collaborative Model for Development of Finite Element Program

Jun Peng1, Frank McKenna2, Gregory L. Fenves3 and Kincho H. Law4

Abstract

An open collaborative model for development of structural analysis program
is presented in this paper. The main design principle of this framework is to keep the
kernel flexible and extendible so that the researchers and engineers can easily
incorporate new element technologies and solution strategies. The distributed
element service over the Internet shows that the open collaborative model could be a
powerful tool for incorporating legacy code as well as new developments.

Introduction

It is well recognized that a significant gap exists in the state-of-the-art

computing methodologies and the state-of-practice in structural engineering analysis
programs. In current engineering practice, finite element packages need to be able to
accommodate new advances in element and material formulations, solution strategies
and computing environments. However, most existing structural analysis programs
bundle all the procedures and program kernels into a software package that are
developed by individual organizations. Extending these programs to incorporate new
developments is a difficult process and more importantly, there is no easy way to
link custom components developed by users and researchers separately outside the
organization.

1Graduate Student, Dept. of Civil and Envir. Engrg., Stanford Univ., Stanford, CA
94305, junpeng@leland.stanford.edu

2Postdoctoral Research Fellow, Dept. of Civil and Envir. Engrg., Univ. of California,
Berkeley, CA 94720, fmckenna@ce.berkeley.edu

3Professor, Dept. of Civil and Envir. Engrg., Univ. of California, Berkeley, CA 94720,
fenves@ce.berkeley.edu

4Professor, Dept. of Civil and Envir. Engrg., Stanford Univ., Stanford, CA 94305,
law@cive.stanford.edu

Peng, McKenna, Fenves, Law 2

With the maturation of information and communication technology, the
concept of building collaborative systems to distribute the services over the Internet
is becoming a reality. The open source software development process reflects a
powerful global trend toward networked collaboration (O’Reilly 1999). Structural
analysis programs can also be developed in an open collaborative, highly user-
involved fashion.

 Unlike traditional packaged structural analysis programs, the collaborative
model could potentially reduce the overhead of continuous upgrade and extension.
For the users, they can select appropriate services and can easily replace a specific
module if superior module becomes available. For the developers, they can
concentrate on developing the components and can easily integrate the components
to the core. This paper focuses on a prototype implementation of distributed element
service, which illustrates an open collaborative model for development of structural
analysis software over the Internet.

The Architecture of Collaborative Model

Figure 1 shows the system architecture of the collaborative framework for
developing structural analysis software. The mechanics of the collaborative system is
depicted in Figure 2. In this model, object-oriented kernel has been used to provide
the maintainability and extendibility essential for software packages (McKenna
1997). This is due to the support provided in object-oriented languages for
abstraction, encapsulation, modularity and code reuse.

In this framework, the users build their structural model by using model-

building services on the client site. The finished model can be sent to the analysis
core by using the Internet or other types of computer networks. Upon receiving the
analysis model, the core server then performs the analysis in a collaborative
environment. The server can take advantage of distributed and/or parallel computing
platforms and thus allow the solution of large sized problems to be completed within
a reasonable amount of time (Santiago 1996, McKenna 1997). A stand-alone
database is used for efficient data accessing and for post-processing. During the
analysis, some elements can be accessed locally from the core element library and
some elements can be obtained from on-line element service providers. The reason
that these element services can be found by the core server is that before the analysis
is performed, the element services can be pre-registered with the core server. When
the server needs to use these elements, the registry will be looked up and the requests
can be forwarded to appropriate site.

 This paper focuses on the components to support two types of usages: (1)
routine users who are interested in performing linear, nonlinear and dynamic
analyses, and (2) element technology developers.

1. Users can have direct or remote access (one such avenue is the Internet (Han et

al. 1999)) to the core program through a graphical user interface or an interpreter.
The users can utilize advanced and appropriate developments (element types,

Peng, McKenna, Fenves, Law 3

efficient solution methods, and analysis strategies) contributed by other
developers that incorporated into the platform.

Figure 1: Collaborative System Architecture for Finite Element Software

2. For element technology developers, a standard interface/wrapper will be defined

for communicating the element(s) with the analysis core. The element(s) can be
written in languages such as C, Fortran, C++ and/or Java. If the developer and
the system administrator agree, the new element(s) can be migrated into the
analysis core and become part of the element library. However, the developer can
also choose to be an on-line element service provider. In this case, the element(s)
can be registered to the core and can be accessed remotely over the network.

Figure 2: Mechanics of the Collaborative Model

Peng, McKenna, Fenves, Law 4

The Object-Oriented Analysis Core

The Analysis core as shown in Figure 2 has an object-oriented modular
architecture, which allows users to easily incorporate their developments and extend
the system without having to change the existing core functionality. The main classes
in the core can be divided into five groups:

1. Modeling: classes to create the finite element model for a given problem. The

analyst interacts with a ModelBuilder object to create the Elements, Nodes, Loads
and Constraints objects that define the model.

2. Finite Element Model: classes that describe the finite element model and to store
the results of an analysis on this model. Typically a Domain object is used as a
container object to store the Node, Element, Load and Constraint objects created
by the ModelBuilder.

3. Analysis: classes that perform the analysis of the finite element model, i.e. form
and solve the governing equations. In the core, an Analysis object is an
aggregation of objects of the following types: SolutionAlgorithm, Integrator,
ConstraintHandler, DOF_Numberer, SystemOfEqn, and AnalysisModel. The
AnalysisModel is a container for the FE_Element and DOF_Group objects that
created by the ConstraintHandler.

4. Numerical: classes that pass information between objects and to handle the
numerical operations in the solution procedure. The numerical classes provided
by the G3 core include Matrix, Vector, SystemOfEquations and Solver.

5. Monitor: classes that monitor the solution progress and results of an analysis.
These include Recorder, Database and Renderer classes.

Distributed Element Service

For the new element developers, a standard interface/wrapper is defined for
communicating the element with the object-oriented analysis core. To introduce the
new element into the analysis core generally composes of creating subclasses of
Element class. The common interface for Element super-class is defined in the
object-oriented finite element analysis kernel. After the development process is
finished, the new element can be migrated into the core platform and become part of
the element library.

In addition to the element library provided by the analysis core, the developer
can also choose to be an on-line element service provider. In this case, the actual
computation code resides in the service provider’s site and it runs as a compute
engine. Whenever the user wants to use this element, the request will be forwarded
to the service provider and the meaningful computation is performed at the service
provider’s site. This is more or less like a web server; the only difference in this
instance is that the web presents primarily static information (typically HTML files),
while the compute engine has programmed functionality that can generate dynamic
responses for different requests.

To standardize the implementation of a new element, a common interface

named ElementRemote is provided, as shown in Figure 3. Element developers need

Peng, McKenna, Fenves, Law 5

to implement an ElementServer, which is the subclass of ElementRemote. The
ElementRemote interface is almost the same as the standard element interface. The
only difference lies in the fact that two new methods are introduced in this interface.
One is formElement() that is used by the client to send the input data (geometry,
nodes coordinates, etc.) to the actual element. The other is clearElements(), which
will be called to do the house-cleaning after the analysis is finished. During the
analysis, the output data (stiffness matrix, mass matrix, etc.) of each element can be
obtained by calling the corresponding member functions. It should be noted that all
the methods of the ElementRemote class also perform exception processing; they are
ignored in Figure 3 for clarity.

public class ElementRemote extends Remote {
// This is the service name for publishing.
public static final String SERVICE = "ElementService";
// This is the port number, could be changed as needed.
public static final int PORT = 12345;

// This function is used to send the element data to server.
public void formElement(int tag, Identity src, String input);
// This function is used to perform house cleaning.
Public void clearElements(Identity src);

public int commitState(int tag, Identity src);
public int revertToLastCommit(int tag, Identity src);
public int revertToStart(int tag, Identity src);

// Form element stiffness, damping and mass matrix.
public MyMatrix getTangentStiff(int tag, Identity src);
public MyMatrix getSecantStiff(int tag, Identity src);
public MyMatrix getDamp(int tag, Identity src);
public MyMatrix getMass(int tag, Identity src);

public void zeroLoad(int tag, Identity src);
public MyVector getResistingForce(int tag, Identity src);
public MyVector getTestingForceIncInertia(int tag, Identity src);

}

Figure 3: Class Interface of ElementRemote

The Prototype Implementation

To illustrate the collaborative model, this section presents a simple prototype
implementation. In the prototype, http is used for the communication between end
users and analysis core. The finite element model is represented in a text file and this
file can be submitted to analysis core through a web interface. After the server
finishes the analysis, the results return to the client in the form of a generated web
page. Figure 4 shows the web interface for file submission and the sample web page
generated by the core server.

In the prototype implementation as depicted in figure 5, Java’s Remote

Method Invocation (RMI) is used to provide the network communication between the
analysis core and the online element service. RMI enables a program in one Java
Virtual Machine (JVM) to make method calls on an object located on a remote

Peng, McKenna, Fenves, Law 6

server machine. The skeleton, which is the object at the server site, receives method
invocation requests from the client. It then makes a call to the actual object
implemented on the server. The stub is the client’s proxy representing the remote
object. Stubs define all of the interfaces that the remote object supports.

Figure 4: Web Pages Generated in the Client Site

Figure 5 shows how the element service works by using Java RMI as the

communication layer and using Java Native Interface (JNI) to link the legacy code.
The Analysis Core is connected with ElementServer through ElementClient. The
computation code that generates the element stiffness matrix, the mass matrix etc. is
wrapped by ElementServer.

Figure 5: Distributed Element Service by using Java RMI

Peng, McKenna, Fenves, Law 7

When the users want to use this new element, they can instantiate and make
method calls to this element in the same way they treat the local element class. The
actual method calls will call on ElementClient and tunnel over to ElementServer.
Figure 6 shows some sample code that illustrates the usage of two methods,
formElement() and getStiff(). Upon receiving a formElement() request from the
ElementClient, the ElementServer will instantiate a new Element object and start a
new thread to calculate the element stiffness matrix. After the compute engine
finishes the computation, the stiffness matrix is saved in a hashtable. The next time
when the Client asks for the stiffness matrix by using getStiff() method, the hashtable
will be looked up and the data can be returned to the caller immediately.

public class QuadElementClient extends ElementClient {
/* based on the server name and port number, create stub object. */
public QuadElementClient(String server)
{

System.setSecurityManager(new RMISecurityManager());
String name = "//" + server + ":" + ElementRemote.PORT + "/" +

ElementRemote.SERVICE;
theStub = (ElementRemote)Naming.lookup(name);

}
/* calls on the server are just method calls to stub. */
public void formElement(String tag, String input)
{

theStub.formElement(tag, input);
}

public MyMatrix getStiff(String tag)
{

MyMatrix result = new MyMatrix(8, 8);
result = theStub.getStiff(tag);
return result;

}
}

public class QuadElementServer extends UnicastRemoteObject

implements ElementRemote {
/* use the hashtable to hold all the elements */
private Hashtable allElements = new Hashtable();
public void formElement(String tag, String input)
{

QuadElement newElement = new QuadElement(tag, input);
allElements.put(tag, newElement);

}
public MyMatrix getStiff(String tag)
{

QuadElement oneElement = (QuadElement)allElements.get(tag);
result = oneElement.getStiff();
return result;

}
}

Figure 6: Sample ElementClient and Sample ElementServer

Peng, McKenna, Fenves, Law 8

Conclusions

This paper focuses on one domain (in this case, the distributed element
service) of the networked collaborative development of structural analysis program.
The principle of distributed services can be applied to other domains of structural
analysis program, for example, distributed solution strategy, distributed material etc.
The collaborative model has been shown to have greater flexibility and extensibility
than the current engineering approaches. A diverse group of users and developers
can easily access the platform and attach their own developments to the core.

The collaborative system implementation of a structural analysis program has
at least three benefits. First, the framework provides a means of distributing services
in a modular and systematic way. Users can select appropriate services and can
easily replace a service if a superior service becomes available, without having to
recompile the existing services being used. Second, it provides a means to integrate
legacy code as one of the modular services in the infrastructure. Third, the
framework alleviates the burden of managing a group of developers and their source
code. Once a common communication protocol is defined, participants can write
their code based on the protocol and there is no need to constantly merge the code
written by different participants.

Acknowledgements

This research is partially sponsored by the Pacific Earthquake Engineering
Research (PEER) Center. The authors would also like to acknowledge the
“Technology for Education 2000” equipment from Intel Corporation which is being
used in this research.

References

Han, C. S., Kunz, J. C. and Law, K. H. (1999). “Building Design Services in a

Distributed Architecture.” Journal of Computing in Civil Engrg., 13(1), 12-22.

McKenna, F. (1997). “Object Oriented Finite Element Analysis: Frameworks for
Analysis Algorithms and Parallel Computing.” Ph.D. Thesis, Department of Civil
Engineering, University of California, Berkeley, CA.

O’Reilly, T. (1999). “Lessons From Open Source Software Development.”
Communications of the ACM, April 1999, 42(4), 33-37.

Santiago, E. De. (1996). “A Distributed Implementation of The Finite Element
Method for Coupled Fluid Structure Problems.” Ph.D. Thesis, Department of
Civil Engineering, Stanford University, Stanford, CA.

	Abstract
	
	Unlike traditional packaged structural analysis programs, the collaborative model could potentially reduce the overhead of continuous upgrade and extension. For the users, they can select appropriate services and can easily replace a specific module if s

	The Architecture of Collaborative Model
	
	Figure 1: Collaborative System Architecture for Finite Element Software

	The Object-Oriented Analysis Core
	Distributed Element Service
	For the new element developers, a standard interface/wrapper is defined for communicating the element with the object-oriented analysis core. To introduce the new element into the analysis core generally composes of creating subclasses of Element class.
	In addition to the element library provided by the analysis core, the developer can also choose to be an on-line element service provider. In this case, the actual computation code resides in the service provider’s site and it runs as a compute engine. W
	Figure 3: Class Interface of ElementRemote

	Figure 5: Distributed Element Service by using Java RMI
	This paper focuses on one domain (in this case, the distributed element service) of the networked collaborative development of structural analysis program. The principle of distributed services can be applied to other domains of structural analysis progr
	Acknowledgements
	References

