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Abstract 
 

An open collaborative model for development of structural analysis program 
is presented in this paper. The main design principle of this framework is to keep the 
kernel flexible and extendible so that the researchers and engineers can easily 
incorporate new element technologies and solution strategies. The distributed 
element service over the Internet shows that the open collaborative model could be a 
powerful tool for incorporating legacy code as well as new developments. 
 
Introduction 

 
It is well recognized that a significant gap exists in the state-of-the-art 

computing methodologies and the state-of-practice in structural engineering analysis 
programs. In current engineering practice, finite element packages need to be able to 
accommodate new advances in element and material formulations, solution strategies 
and computing environments. However, most existing structural analysis programs 
bundle all the procedures and program kernels into a software package that are 
developed by individual organizations. Extending these programs to incorporate new 
developments is a difficult process and more importantly, there is no easy way to 
link custom components developed by users and researchers separately outside the 
organization.  
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With the maturation of information and communication technology, the 
concept of building collaborative systems to distribute the services over the Internet 
is becoming a reality. The open source software development process reflects a 
powerful global trend toward networked collaboration (O’Reilly 1999). Structural 
analysis programs can also be developed in an open collaborative, highly user-
involved fashion.  

 Unlike traditional packaged structural analysis programs, the collaborative 
model could potentially reduce the overhead of continuous upgrade and extension. 
For the users, they can select appropriate services and can easily replace a specific 
module if superior module becomes available. For the developers, they can 
concentrate on developing the components and can easily integrate the components 
to the core. This paper focuses on a prototype implementation of distributed element 
service, which illustrates an open collaborative model for development of structural 
analysis software over the Internet. 
 
The Architecture of Collaborative Model 
 

Figure 1 shows the system architecture of the collaborative framework for 
developing structural analysis software. The mechanics of the collaborative system is 
depicted in Figure 2. In this model, object-oriented kernel has been used to provide 
the maintainability and extendibility essential for software packages (McKenna 
1997). This is due to the support provided in object-oriented languages for 
abstraction, encapsulation, modularity and code reuse. 

 
In this framework, the users build their structural model by using model-

building services on the client site. The finished model can be sent to the analysis 
core by using the Internet or other types of computer networks. Upon receiving the 
analysis model, the core server then performs the analysis in a collaborative 
environment. The server can take advantage of distributed and/or parallel computing 
platforms and thus allow the solution of large sized problems to be completed within 
a reasonable amount of time (Santiago 1996, McKenna 1997). A stand-alone 
database is used for efficient data accessing and for post-processing. During the 
analysis, some elements can be accessed locally from the core element library and 
some elements can be obtained from on-line element service providers. The reason 
that these element services can be found by the core server is that before the analysis 
is performed, the element services can be pre-registered with the core server. When 
the server needs to use these elements, the registry will be looked up and the requests 
can be forwarded to appropriate site. 

 
 This paper focuses on the components to support two types of usages: (1) 
routine users who are interested in performing linear, nonlinear and dynamic 
analyses, and (2) element technology developers. 
 
1. Users can have direct or remote access (one such avenue is the Internet (Han et 

al. 1999)) to the core program through a graphical user interface or an interpreter.  
The users can utilize advanced and appropriate developments (element types, 
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efficient solution methods, and analysis strategies) contributed by other 
developers that incorporated into the platform.  

 

 
Figure 1: Collaborative System Architecture for Finite Element Software 

 
2. For element technology developers, a standard interface/wrapper will be defined 

for communicating the element(s) with the analysis core.  The element(s) can be 
written in languages such as C, Fortran, C++ and/or Java.  If the developer and 
the system administrator agree, the new element(s) can be migrated into the 
analysis core and become part of the element library. However, the developer can 
also choose to be an on-line element service provider. In this case, the element(s) 
can be registered to the core and can be accessed remotely over the network. 

 

 
 

Figure 2: Mechanics of the Collaborative Model 
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The Object-Oriented Analysis Core 
 

The Analysis core as shown in Figure 2 has an object-oriented modular 
architecture, which allows users to easily incorporate their developments and extend 
the system without having to change the existing core functionality. The main classes 
in the core can be divided into five groups: 
 
1. Modeling: classes to create the finite element model for a given problem. The 

analyst interacts with a ModelBuilder object to create the Elements, Nodes, Loads 
and Constraints objects that define the model. 

2. Finite Element Model: classes that describe the finite element model and to store 
the results of an analysis on this model. Typically a Domain object is used as a 
container object to store the Node, Element, Load and Constraint objects created 
by the ModelBuilder. 

3. Analysis: classes that perform the analysis of the finite element model, i.e. form 
and solve the governing equations. In the core, an Analysis object is an 
aggregation of objects of the following types: SolutionAlgorithm, Integrator, 
ConstraintHandler, DOF_Numberer, SystemOfEqn, and AnalysisModel. The 
AnalysisModel is a container for the FE_Element and DOF_Group objects that 
created by the ConstraintHandler. 

4. Numerical: classes that pass information between objects and to handle the 
numerical operations in the solution procedure. The numerical classes provided 
by the G3 core include Matrix, Vector, SystemOfEquations and Solver. 

5. Monitor: classes that monitor the solution progress and results of an analysis. 
These include Recorder, Database and Renderer classes. 

 
Distributed Element Service 
 

For the new element developers, a standard interface/wrapper is defined for 
communicating the element with the object-oriented analysis core. To introduce the 
new element into the analysis core generally composes of creating subclasses of 
Element class. The common interface for Element super-class is defined in the 
object-oriented finite element analysis kernel. After the development process is 
finished, the new element can be migrated into the core platform and become part of 
the element library. 
 

In addition to the element library provided by the analysis core, the developer 
can also choose to be an on-line element service provider. In this case, the actual 
computation code resides in the service provider’s site and it runs as a compute 
engine. Whenever the user wants to use this element, the request will be forwarded 
to the service provider and the meaningful computation is performed at the service 
provider’s site. This is more or less like a web server; the only difference in this 
instance is that the web presents primarily static information (typically HTML files), 
while the compute engine has programmed functionality that can generate dynamic 
responses for different requests.  

 
To standardize the implementation of a new element, a common interface 

named ElementRemote is provided, as shown in Figure 3. Element developers need 
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to implement an ElementServer, which is the subclass of ElementRemote. The 
ElementRemote interface is almost the same as the standard element interface. The 
only difference lies in the fact that two new methods are introduced in this interface. 
One is formElement() that is used by the client to send the input data (geometry, 
nodes coordinates, etc.) to the actual element. The other is clearElements(), which 
will be called to do the house-cleaning after the analysis is finished. During the 
analysis, the output data (stiffness matrix, mass matrix, etc.) of each element can be 
obtained by calling the corresponding member functions. It should be noted that all 
the methods of the ElementRemote class also perform exception processing; they are 
ignored in Figure 3 for clarity. 

 
 

public class ElementRemote extends Remote {
// This is the service name for publishing.
public static final String SERVICE = "ElementService";
// This is the port number, could be changed as needed.
public static final int PORT = 12345;

// This function is used to send the element data to server.
public void formElement(int tag, Identity src, String input);
// This function is used to perform house cleaning.
Public void clearElements(Identity src);

public int commitState(int tag, Identity src);
public int revertToLastCommit(int tag, Identity src);
public int revertToStart(int tag, Identity src);

// Form element stiffness, damping and mass matrix.
public MyMatrix getTangentStiff(int tag, Identity src);
public MyMatrix getSecantStiff(int tag, Identity src);
public MyMatrix getDamp(int tag, Identity src);
public MyMatrix getMass(int tag, Identity src);

public void zeroLoad(int tag, Identity src);
public MyVector getResistingForce(int tag, Identity src);
public MyVector getTestingForceIncInertia(int tag, Identity src);

}

 
Figure 3: Class Interface of ElementRemote 

 
The Prototype Implementation 
 

To illustrate the collaborative model, this section presents a simple prototype 
implementation. In the prototype, http is used for the communication between end 
users and analysis core. The finite element model is represented in a text file and this 
file can be submitted to analysis core through a web interface. After the server 
finishes the analysis, the results return to the client in the form of a generated web 
page. Figure 4 shows the web interface for file submission and the sample web page 
generated by the core server.  

 
In the prototype implementation as depicted in figure 5, Java’s Remote 

Method Invocation (RMI) is used to provide the network communication between the 
analysis core and the online element service. RMI enables a program in one Java 
Virtual Machine (JVM) to make method calls on an object located on a remote 
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server machine. The skeleton, which is the object at the server site, receives method 
invocation requests from the client. It then makes a call to the actual object 
implemented on the server. The stub is the client’s proxy representing the remote 
object. Stubs define all of the interfaces that the remote object supports. 

 

 
Figure 4: Web Pages Generated in the Client Site 

 
Figure 5 shows how the element service works by using Java RMI as the 

communication layer and using Java Native Interface (JNI) to link the legacy code. 
The Analysis Core is connected with ElementServer through ElementClient. The 
computation code that generates the element stiffness matrix, the mass matrix etc. is 
wrapped by ElementServer.  

 

 
Figure 5: Distributed Element Service by using Java RMI 
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When the users want to use this new element, they can instantiate and make 
method calls to this element in the same way they treat the local element class. The 
actual method calls will call on ElementClient and tunnel over to ElementServer. 
Figure 6 shows some sample code that illustrates the usage of two methods, 
formElement() and getStiff(). Upon receiving a formElement() request from the 
ElementClient, the ElementServer will instantiate a new Element object and start a 
new thread to calculate the element stiffness matrix. After the compute engine 
finishes the computation, the stiffness matrix is saved in a hashtable. The next time 
when the Client asks for the stiffness matrix by using getStiff() method, the hashtable 
will be looked up and the data can be returned to the caller immediately.  
 
 

public class QuadElementClient extends ElementClient {
/* based on the server name and port number, create stub object. */
public QuadElementClient(String server)
{

System.setSecurityManager(new RMISecurityManager());
String name = "//" + server + ":" + ElementRemote.PORT + "/" +

ElementRemote.SERVICE;
theStub = (ElementRemote)Naming.lookup(name);

}
/* calls on the server are just method calls to stub. */
public void formElement(String tag, String input)
{

theStub.formElement(tag, input);
}

public MyMatrix getStiff(String tag)
{

MyMatrix result = new MyMatrix(8, 8);
result = theStub.getStiff(tag);
return result;

}
}

 
public class QuadElementServer extends UnicastRemoteObject

implements ElementRemote {
/* use the hashtable to hold all the elements */
private Hashtable allElements = new Hashtable();
public void formElement(String tag, String input)
{

QuadElement newElement = new QuadElement(tag, input);
allElements.put(tag, newElement);

}
public MyMatrix getStiff(String tag)
{

QuadElement oneElement = (QuadElement)allElements.get(tag);
result = oneElement.getStiff();
return result;

}
}

 
Figure 6: Sample ElementClient and Sample ElementServer 
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Conclusions 
 

This paper focuses on one domain (in this case, the distributed element 
service) of the networked collaborative development of structural analysis program. 
The principle of distributed services can be applied to other domains of structural 
analysis program, for example, distributed solution strategy, distributed material etc. 
The collaborative model has been shown to have greater flexibility and extensibility 
than the current engineering approaches. A diverse group of users and developers 
can easily access the platform and attach their own developments to the core.  
 

The collaborative system implementation of a structural analysis program has 
at least three benefits. First, the framework provides a means of distributing services 
in a modular and systematic way. Users can select appropriate services and can 
easily replace a service if a superior service becomes available, without having to 
recompile the existing services being used. Second, it provides a means to integrate 
legacy code as one of the modular services in the infrastructure. Third, the 
framework alleviates the burden of managing a group of developers and their source 
code. Once a common communication protocol is defined, participants can write 
their code based on the protocol and there is no need to constantly merge the code 
written by different participants. 
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