
A SUBSPACE APPROXIMATION METHOD FOR THE QUADRATIC
EIGENVALUE PROBLEM

U. B. HOLZ, G. H. GOLUB AND K. H. LAW

Abstract. Quadratic eigenvalue problems involving large matrices arise frequently in areas
such as the vibration analysis of structures, MEMS simulation, and the solution of quadratically
constrained least squares problems. The typical approach is to solve the quadratic eigenvalue problem
using a mathematically equivalent linearized formulation, resulting in a doubled dimension and a lack
of backward stability.

This paper introduces a method that uses perturbation subspaces for block eigenvector matrices
to reduce the modified problem to a sequence of problems of smaller dimension. These perturbation
subspaces are shown to be contained in certain generalized Krylov subspaces of the n-dimensional
space, where n is the undoubled dimension of the matrices in the quadratic problem. The method
converges at least as fast as the corresponding Taylor series, and the convergence can be accelerated
further by applying a block generalization of the quadratically convergent Rayleigh quotient iteration.
Numerical examples are presented to illustrate the applicability of the method.

1. Introduction. The quadratic eigenvalue problem

(λ2M + λC + K)x = 0(1.1)

commonly arises during the solution of systems of second order ordinary differen-
tial equations found in scientific and engineering applications. Gohberg, Lancaster,
and Rodman [6] and Lancaster [11] provided an extensive theoretical background on
quadratic and other polynomial eigenvalue problems. For a current review of nu-
merical methods for quadratic eigenvalue problems along with a broad discussion of
application areas, see Tisseur and Meerbergen [14]. The most common approach is
to linearize (1.1), for example as[(

0 N
−K −C

)
− λ

(
N 0
0 M

)]
z = 0 or

[(−C −K
N 0

)
− λ

(
M 0
0 N

)]
w = 0,

(1.2)
where N is any nonsingular matrix. Not only does the linearized problem have twice
the dimension of the quadratic problem, but also, in general, even if a backward sta-
ble method is used for the linear eigenvalue problem, that stability is not guaranteed
for the quadratic eigenvalue problem, as shown by Tisseur [13]. This paper intro-
duces a method that uses subspace approximation and perturbation techniques for
the quadratic eigenvalue problem.

1.1. Subspace approximation method for linear eigenvalue problems.
Zhang, Golub, and Law [16] presented a generalized Krylov subspace method for
the perturbed symmetric standard eigenvalue problem, (A + ∆A)x = λx given the
known solution for Ax = λx. The method is based on the following theorem.

Theorem 1.1. [16] Assume Q = [Q1 Q2] is orthogonal, with each Qi representing
an eigenspace, and assume Λ1 = QT

1 AQ1 = λ1I. Let Λ2 = QT
2 AQ2, E = Q2(Λ2 −

λ1I)QT
2 , and F = E∆A. Let Qm

1 be the eigenspace of A + ∆A (as a perturbation
of Q1) obtained by the mth order Taylor series expansion. Then Qm

1 belongs to the
subspace K(E,F,Q1,m), where

K(E,F,Q1,m) = R([P0(E,F )Q1, . . . , Pm(E,F )Q1]).
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Here Pk(E,F ) is the space spanned by all the homogeneous polynomials in E and F
of order k, and R(Y ) denotes the range of Y .

The method computes the spaces K(E,F,Q1,m), m = 1, 2, 3, . . ., and solves the
reduced problems in these spaces until convergence of the eigenpairs. The method
is at least as fast as the convergence of the corresponding Taylor polynomials. The
subspace approximation concept is employed here for solving the quadratic eigenvalue
problem.

1.2. The perturbed quadratic eigenvalue problem. Consider computing a
few eigenpairs for the perturbed problem

(λ2(A + ∆A) + λ(B + ∆B) + (C + ∆C))x = 0,(1.3)

assuming that corresponding eigenpairs for the unperturbed problem, (λ2A + λB +
C)x = 0, are known [8]. For the special case of the quadratic eigenvalue problem
discussed in this paper, we consider the case with ∆A = B = ∆C = 0 and at least
one of A and C nonsingular. That is, we consider the quadratic eigenvalue problem
as a special case of the perturbed quadratic eigenvalue problem. Specifically, in (1.3),
A,C, and ∆B correpsond to M,K, and C, respectively, in (1.1).

This paper is organized as follows: In Section 2 a block perturbation form of (1.3)
is introduced and a subspace approximation theorem is proved. Then in Section 3
the computation of perturbation subspaces is described, both in terms of generalized
Krylov subspaces and in terms of smaller, directly computed subspaces. Section 4
gives a first order error analysis and develops a stopping criterion. In Section 5 a
hybrid algorithm is developed using perturbation subspaces and block Rayleigh quo-
tients, and in Section 6 the complexity of the subspace approximation computations
is considered. Finally, Section 7 illustrates the subspace approximation method, using
numerical examples drawn from structural dynamics applications.

The numerical examples are performed using MATLAB 6.1.0 on a 1GHz Sun Blade
2000 with 2GB of main memory, running Solaris 8. Examples involving flop counts
are performed on the same machine using MATLAB 5.3.1.

2. Block quadratic equation. Given M, C, and K in Rn×n, with M nonsin-
gular, let P (λ, t) = λ2M + λtC + K for λ ∈ C and 0 ≤ t ≤ 1. Consider the eigenvalue
problem

P (λ(t), t)x(t) = 0, t ∈ [0, 1].(2.1)

Because M is nonsingular for t in [0, 1], there exist continuous eigenvalue paths
λ1(t), λ2(t), . . . , λ2n(t). (See e.g. Ahlfors [1, Sec. 8.2].) If, instead, M is singular
but K is nonsingular, all the theory of this section still applies to the problem re-
arranged as P (µ(t), t)x(t) = 0, t ∈ [0, 1], with P (µ, t) ≡ M + µtC + µ2K and
λ(t) = 1

µ(t) for µ(t) �= 0.
When the eigenvalues λ(t) of interest are nondefective, it is useful to compute a

subspace that contains approximations to the associated eigenspaces. We write the
block version of (2.1) as

MX(t)Λ2(t) + tCX(t)Λ(t) + KX(t) = 0,(2.2)

where we know solutions at t = 0 and seek solutions at t = 1. The idea of the subspace
approximation method is to compute subspaces that contain the ranges of the Taylor
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approximations to X(t), and then to solve the reduced quadratic eigenvalue problems
in these subspaces to obtain the approximate eigenpairs for (2.1) on the whole space.

The following notational conventions are used in our discussion:
1. The superscript (j) denotes the jth derivative with respect to t, at t = 0

unless t is otherwise specified. For example if Q(t) is a matrix function of t
then Q(j) is its jth derivative at t = 0, and Q(j)(t0) is its jth derivative at
t = t0.

2. ‖ · ‖ denotes the Euclidean norm unless otherwise stated.
3. Xj(t) is the jth Taylor approximation about t = 0 to the function X(t) in

(2.2).

2.1. Convergence of the block Taylor series. Suppose we know a nonde-
fective eigenvalue λ of multiplicity p for (2.1) at t = 0, along with a correspond-
ing n × p right eigenvector matrix X0. Writing the associated eigenvalue paths as
λ1(t), . . . , λp(t), in (2.2), X(t) is an n × p matrix function of t with X(0) = X0,
and Λ(t) is a p × p matrix function of t whose eigenvalues are λ1(t), . . . , λp(t). No
assumptions are made here regarding the normalization of X(t), since the results in
this section are independent of normalization.

For nondefective λ the matrix function X(t) can be taken to have a convergent
Taylor series as follows. Consider a standard linearized form for (2.1), such as

A(t)z(t) ≡
(−tM−1C −M−1K

I 0

) (
λ(t)x(t)

x(t)

)
= λ(t)

(
λ(t)x(t)

x(t)

)
.(2.3)

When λ0 is a nondefective eigenvalue of some multiplicity p for (2.3) at t = t0,
the corresponding eigenspace projection P (t), also called the total projection for the
λ-group eigenvalues of A(t), is holomorphic in a neighborhood of t0 (see Kato, [9,
Section II.1.4]). It is shown in [9, Section II.4.2] that if a projection P (t) is holo-
morphic in some domain D containing t0 then there is a transformation function
U(t) satisfying: (1) U(t)−1 exists and both U(t) and U(t)−1 are holomorphic on D;
(2) U(t)P (t0)U(t)−1 = P (t) on D; and (3) U(t0) = I. It follows that if the p
columns of Z0 form a basis for P (t0) then the p columns of Z(t) = U(t)Z0 form a
holomorphic basis for P (t). Now taking Z0 =

(
λ0X0
X0

)
and writing Z(t) =

(Z1(t)
Z2(t)

)
,

the block form of (2.3) is A(t)Z(t) = Z(t)Λ(t), and with some manipulation, yields
MZ2(t)Λ2(t) + tCZ2(t)Λ(t) + KZ2(t) = 0, where Z2(t0) = X0. Since Z2(t) is holo-
morphic and of full rank, taking

X(t) = Z2(t)W (t)(2.4)

for any nonsingular holomorphic p × p matrix W (t) satisfying W (t0) = Ip gives a
holomorphic block eigenvector matrix X(t). In particular if W (t) is holomorphic on
the whole complex plane and ρ is the convergence radius about t0 of the Taylor series
for Z(t), then the convergence radius of the Taylor series for X(t) about t0 is at least
ρ. (A lower bound for ρ may be computed using majorization series, described in [9,
Section II.3.1]; however this is very expensive, involving explicit formation of a 2n
matrix inverse, a 2n pseudoinverse, and several 2n matrix norms.)

Even when λ0 is a defective eigenvalue of A(t) at t0, the total projection P (t)
onto the associated invariant subspace is holomorphic. Thus if Ptot(t) is the total
projection for the sum of the invariant subspaces associated with p eigenvalue paths
λi1(t), λi2 (t), . . . , λip(t), then Ptot can be analytically continued as t goes from 0 to
1, as long as no other eigenvalue paths intersect these. Z(t) can therefore also be
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analytically continued, as can X(t) if it is defined by (2.4), although, in this case,
X(t) may be rank-deficient.

2.2. A subspace approximation theorem. To specify the perturbation sub-
spaces we first require the following definition of a generalized Krylov subspace.

Definition 2.1. For B1, B2, . . . , Bk ∈ CN×N , and X ∈ CN×p, 0 < p ≤ N , let
Sj(B1, B2, ..., Bk, X), abbreviated Sj(X) when the Bi’s are understood, denote the jth
generalized Krylov subspace generated by B1, B2, ..., Bk applied j times to X, i.e.

Sj(X) = +
deg(q)≤j

{range(q(B1, B2, ..., Bk)X)},

where the sum is over all polynomials q in k variables with coefficients in C and degree
less than or equal to j.

As an equivalent definition, let S0(B1, B2, . . . , Bk, X) = range(X), and, for j > 0,
if the columns of Xj−1 form a basis for Sj−1(B1, B2, . . . , Bk, X), let

Sj(B1, B2, . . . , Bk, X) = range([B1Xj−1 B2Xj−1 · · · BkXj−1 Xj−1]).

Theorem 2.2. Let V ∈ Cn×(n−p) be such that range(V ) + range(X0) = Cn, and
let F be an n× n matrix satisfying

FP (λ0, 0)V = V.(2.5)

Then ∀t, ∀j ≥ 0, range(Xj(t)) ⊆ Sj(FM, FC, X0).
Proof. Since Sj(X0) ⊆ Sj+1(X0) for all j ≥ 0, it is sufficient to show that

range(X(j)) ⊆ Sj(X0) ∀j ≥ 0.(2.6)

By the definition of Sj(X0), (2.6) is true for j = 0. We proceed by induction on j.
Assume (2.6) holds for all j < k, where k > 0. Then range(X(i)) ⊆ Sj(X0) for all i
and j such that 0 ≤ i ≤ j < k. Taking the kth derivative with respect to t of equation
(2.2), setting t = 0, and applying F yields

FP (λ0, 0)X(k) = −∑k−1
r=0

(
k
r

)
MX(r)(Λ2)(k−r) − ∑k−1

r=0 k
(
k−1

r

)
CX(r)Λ(k−1−r).(2.7)

If the columns of Qk−1 form a basis for Sk−1(X0), then range(X(j)) ⊆ range(Qk−1)
for all j < k, so the range of the right-hand side of (2.7) is contained in

range([FMQk−1, FCQk−1]),

which is in turn contained in Sk(X0). Let the columns of Qk be a basis for Sk(X0),
of size n × pk. Then FP (λ0, 0)X(k) = QkTk for some pk × p matrix Tk. Writing
X(k) = Q

(k)
(1) + Q

(k)
(2) , where the columns of Q(k)

(1) are in range(X0) and the columns of

Q
(k)
(1) are in range(V ), and using (2.5), we have Q

(k)
(2) = QkTk. Hence

range(X(k)) ⊆ range([Q(k)
(1) Q

(k)
(2) ]) ⊆ range([X0 Qk]) = Sk(X0).

Thus (2.6) holds for all j ≥ 0, which proves the theorem.

3. Subspace computations.
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3.1. Applying the subspace approximation theorem. If V = [v1 . . . vn−p]
satisfies range(V ) + range(X0) = Cn, then clearly V is of full rank and range(V ) ∩
range(X0) = 0. Also the n − p columns of P (λ0, 0)V are linearly independent and
therefore form a basis for range(P (λ0, 0)). Now let y1,y2, . . . ,yp be a basis for
range(P (λ0, 0))⊥. For any p vectors wj ∈ Cn there is an associated matrix F satis-
fying (2.5), specified by

F (P (λ0, 0)vi) = vi, i = 1, 2, . . . , n− p,
Fyj = wj , j = 1, 2, . . . , p.(3.1)

The condition

V ∈ Cn×(n−p), range(V ) + range(X0) = Cn(3.2)

thus implies the existence of a matrix F satisfying (2.5) that is uniquely determined by
w1, . . . ,wp. Also (3.2) alone uniquely determines FP (λ0, 0), since FP (λ0, 0)V = V
and FP (λ0, 0)X0 = 0.

To apply Theorem 2.2 we must first specify V in some way. A natural choice is
to let V satisfy range(V ) = range(X0)⊥. Let P+

0 be the pseudoinverse of P (λ0, 0).
Then P+

0 P (λ0, 0) is the orthonormal projection into null(P )⊥ = range(V ), and if
P (λ0, 0)∗y = 0 then P+

0 y = 0. Hence the F satisfying (2.5) determined by this
V and wj = 0, j = 1, 2, . . . , p, is exactly P+

0 . (Note that in the version of the
subspace theorem for the standard symmetric eigenvalue problem this choice of F gives
Theorem 1.1 [16].) Now we can compute the subspaces Sj by solving appropriate least
squares problems. The problems min ‖P (λ0, 0)v− y‖ are rank-deficient, but because
null(P (λ0, 0)) = range(X0), deflation using Householder transformations can be used
to obtain equivalent full rank problems. Alternatively, the least squares problems may
be considered only nearly rank-deficient numerically, in which case we can choose to
solve them directly by decomposing P (λ0, 0). This is an ill-conditioned problem,
resulting in large error components in range(X0) that must then be removed to gain
acceptable solutions.

3.2. Computing the full perturbation subspaces. Suppose we have
X1, X2, . . . , Xj−1 such that

Sj−1 = range(X0) ⊕ range(X1) ⊕ · · · ⊕ range(Xj−1).

Then, writing Yj−1 = [X0 X1 · · · Xj−1], Sj = range([FMYj−1, FCYj−1, Yj−1]). Since,
for k < j− 1, the ranges of FMXk and FCXk are contained in range(Yk+1), which is
contained in range(Yj−1), it follows that

Sj = range([FMXj−1, FCXj−1, Yj−1]).

Setting S−1 = ∅ and S0 = range(X0), we proceed as follows to compute Sj for j > 0.

Algorithm 3.1. This algorithm computes Ŵ such that Sj = Sj−1 + range(Ŵ ).
0. Let Xj−1 satisfy Sj−1 = Sj−2⊕range(Xj−1). That is, Xj−1 is full rank, such

that the span of its columns added to Sj−2 gives the space Sj−1 with dim(Sj−1) =
dim(Sj−2) + rank(Xj−1).

1. Let the columns of W form a basis for range([MXj−1,CXj−1]).
2. Solve the least squares problem min ‖P (λ0, 0)ŵi −wi‖ for each column of W

to get Ŵ . (If solving directly, first project wi into S⊥
0 , so that the part of the solution

not in the range of X0 will be numerically significant.)
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3. Sj = Sj−1 + range(Ŵ ), because range([Ŵ X0]) = range([FW X0]).

To add range(Ŵ ) to Sj−1, Modified Gram-Schmidt is used to get the orthonormal
basis [X0 X1 · · · Xj] for range([X0 X1 · · · Xj−1 Ŵ ]), so that

Sj = range([X0 X1 · · · Xj ]) = Sj−1 ⊕ range(Xj).

Note that this algorithm computes the generalized Krylov subspace by powers. It will
be interesting, in future work, to consider computing the space using other polyno-
mials.

3.3. Directly computing derivative subspaces. The equations leading to
the proof of Theorem 2.2 suggest a way to compute the derivatives X(k) directly
within the generalized Krylov subspace. As mentioned above, the results in Section
2.2 are independent of the normalization of X(t). Now assume the normalization
condition

X0
∗X(t) = I, t ∈ [0, 1].(3.3)

In addition, assume we know a matrix of left eigenvectors W0 ∈ Cn×p associated with
λ0 at time t = 0, i.e. W0

∗P (λ0, 0) = 0, such that

2λ0W0
∗MX0 is nonsingular.(3.4)

In some instances a value of W0 is clear from the properties of the problem. For
example when M and K are symmetric, if C is skew-symmetric then W0 = X0, and if
C is symmetric then W0 = X0, the conjugate of X0. Condition (3.4) is guaranteed,
as the following lemma shows.

Lemma 3.2. Let λ0 be an eigenvalue of geometric multiplicity p for P (λ, 0), and
let X0 and W0 be associated full rank right and left eigenvector matrices. Then (3.4)
holds if and only if λ0 is nondefective.

Proof. Let P (λ, 0) = E(λ)Γ(λ)F (λ) be the Smith canonical decomposition of P
(see Wilkinson [15, pp. 19–20]), so that E(λ) and F (λ) are nonsingular n×n matrices
with determinants independent of λ, and Γ(λ) = diag(aj(λ)), where the functions
aj(λ) are monic polynomials in λ satisfying a1(λ) | a2(λ) | · · · | an(λ). Since λ0 is of
geometric multiplicity p,

aj(λ0) �= 0 for j ≤ n− p,
aj(λ0) = 0 for j > n− p.

(3.5)

Write f(λ) = W ∗
0 P (λ, 0)X0 = (W0E(λ))Γ(λ)(F (λ)X0), and let Ŵ0(λ) =

E(λ)∗W0 and X̂0(λ) = F (λ)X0. Ŵ0(λ) and X̂0(λ) are of full rank for all values
of λ, and from (3.5) and the facts

Ŵ0(λ0)
∗
Γ(λ0) = 0, Γ(λ0)X̂0(λ0) = 0,

it follows that Ŵ0(λ0)
∗

= [0 w1(λ0)] and X̂0(λ0) = [0 x1(λ0)]T , where w1(λ0) and
x1(λ0) are nonsingular p× p matrices. Then

W0
∗(2λ0M + C)X0 = f ′(λ0) = Ŵ0(λ0)

∗
Γ′(λ0)X̂0(λ0)

= w1(λ0)diag(a′n−p+1(λ0), . . . , an
′(λ0))x1(λ0).(3.6)
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Condition (3.4) holds exactly when aj
′(λ0) �= 0 for all j > n− p, which is true if and

only if λ0 has algebraic multiplicity p.

To get X(k) directly we again differentiate (2.2),

P (λ0, 0)X(k) +
∑k−1

r=0

(
k
r

)
MX(r)(Λ2)(k−r) +

∑k−1
r=0 k

(
k−1

r

)
CX(r)Λ(k−1−r) = 0,(3.7)

and, extracting the terms in Λ(k) and using the fact that k
(
k−1

j

)
= (k − j)

(
k
j

)
,

P (λ0, 0)X(k) + (2λ0M)X0Λ(k)

= −MX0

∑k−1
l=1

(
k
l

)
Λ(l)Λ(k−l) − M

∑k−1
j=1

(
k
j

)
X(k−j)(Λ2)(j).

(3.8)

Let Vk denote the right hand side of (3.8). Then, premultiplying (3.8) by W0
∗,

(2λ0W
∗
0 MX0)Λ(k) = W ∗

0 Vk.(3.9)

If all the values of Λ(j) and X(j) are known for j < k, we can compute Vk in a
straightforward manner using its definition, so (3.9) may be solved uniquely for Λ(k).
The columns of −2λ0MX0Λ(k) + Vk are in the range of P (λ0, 0). Let Zk be any
solution to

P (λ0, 0)Zk = −2λ0MX0Λ(k) + Vk.(3.10)

Then, for some vk ∈ Cp×p, X(k) = Zk +X0vk. By (3.3) X∗
0Zk +X∗

0X0vk = X∗
0X

(k) =
0, so vk = −X∗

0Zk and

X(k) = Zk −X0(X∗
0Zk),(3.11)

i.e. X(k) = (I−X0X
∗
0 )Zk, the projection of the columns of Zk into range(X0)⊥. Thus

we compute X(k) as follows.

Algorithm 3.3. Given Λ(0) = λ0I, X(0) = X0, W0, and Λ(1),Λ(2), . . . ,Λ(k−1),
X(1), X(2), . . . , X(k−1), this algorithm computes Λ(k) and X(k).

X0 = X(0); X1 = X(k−1);
ZM = X0

∑k−1
l=1

(
k
l

)
Λ(l)Λ(k−l); ZC = kλ0X1;

for j = 1: k − 1 /* compute sums on r.h.s. of (3.8) */
X2 = X1; X1 = X(k−1−j);
L = Λ(j); L1 =

∑j
l=0

(
j
l

)
Λ(l)Λ(j−l); c =

(
k
j

)
;

ZM = ZM + cX2L1;
ZC = ZC + (k − j)cX1L;

end
Vk = −(MZM + CZC);
Z = 2λ0MX0; Z = Z −X0(X∗

0Z);
Solve W ∗

0 ZΛ(k) = W ∗
0 Vk for Λ(k).

Solve P (λ0, 0)X = −ZΛ(k) + Vk for X.
X(k) = X −X0(X∗

0X);

To compute the subspace associated with s distinct nonconjugate eigenvalues we
perform the above procedure for each eigenvalue independently and then combine the
s computed subspaces to get the desired space. For a conjugate pair of eigenvalues
it is enough to compute the subspace for one of the two, since the bases determining
the two subspaces are conjugate.
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3.4. Real arithmetic in subspace computations. Under certain conditions
the computation of the subspaces can be arranged in a way that involves only real
arithmetic, as can be seen from the following lemma, the proof of which is a straight-
forward case-by-case check, left to the reader.

Lemma 3.4. Let M and K be symmetric and let the quadratic eigenvalue problem
(λ2M + K)x = 0 have only real eigenvectors x associated with an imaginary nonde-
fective eigenvalue λ0 = iω0 �= 0. Let Λ(k) and X(k) be as in Section 2.2 and suppose
XT

0 MX0 is nonsingular. Assume C is a nonzero matrix. Then{
Λ(k) ∈ iRp×p and X(k) ∈ Rn×p, when k is even,
Λ(k) ∈ Rp×p and X(k) ∈ iRn×p, when k is odd

Instead of looking at Λ(k) and X(k), let us look at the imaginary parts when the
matrices are imaginary and the real parts when the matrices are real. Write

Λ(k) = i(1−kmod2)Ωk, X
(k) = ikmod2Yk,(3.12)

where, by the lemma, Ωk and Yk are real matrices. Since the perturbation subspaces
are determined by the sets range(X(k)) = range(Yk) it suffices to work with (Ωk, Yk)
rather than (Λk, X

(k)). Substituting (3.12) into (3.8) gives

ikmod2P (λ0, 0)Yk + (2iω0M)Y0i
(1−kmod2)Ωk =

−MY0

∑k−1
l=1

(
k
l

)
i(1−lmod2)+(1−(k−l)mod2)ΩlΩk−l

−M
∑k−1

j=1 (
(
k
j

)
i(k−j)mod2Yk−j

∑j
l=0

(
j
l

)
i(1−lmod2)+(1−(j−l)mod2)ΩlΩj−l)

−C
∑k−1

j=0 k
(
k−1

j

)
i(k−1−j)mod2Yk−1−ji

1−jmod2Ωj ,

(3.13)

which can be rewritten as

P (λ0, 0)Yk + (−1)k−12ω0MY0Ωk = −MY0

∑k−1
l=1

(
k
l

)
(−1)(k−1)(l−1)ΩlΩk−l

−M
∑k−1

j=1 (
(

k
j

)
Yk−j

∑j
l=0

(
j
l

)
(−1)(kj−1)(l(j−1)−1)ΩlΩj−l

−C
∑k−1

j=0 k
(
k−1

j

)
(−1)(k−1)(j−1)Yk−1−jΩj .

(3.14)

Just as in Section 3.3, we can now compute Ωk and Yk directly, this time using only
real arithmetic.

3.5. Solving the reduced problem. If Q ∈ Cn×r gives an orthonormal basis
for the subspace S, let

Mproj = Q∗MQ, Cproj = Q∗CQ, and Kproj = Q∗KQ,(3.15)

and consider the solutions (λi,yi), i = 1, 2, . . . , 2r, to

(λ2Mproj + λCproj + Kproj)y = 0.(3.16)

The approximate solutions (λi,xi) = (λi, Qyi) are exactly the eigenpairs for the
quadratic problem with the operators M, C, and K replaced by their projections onto
S. See Hochstenbach and van der Vorst [7] for alternative ways of getting approximate
solutions from a given subspace.

The reduced quadratic problem (3.16) has complex matrices Mproj, Cproj, and
Kproj, resulting in a complex linearized problem. These matrices can, instead, be
forced to be real using the fact that, for w ∈ Cr, Qw = [real(Q) imag(Q)]

(
w
iw

)
, which

8



Table 3.1

Flop comparison between real and complex bases.

Flops, using Q Flops, using [real(Q) imag(Q)]

Forming
basis done 4nr

Projecting 6(2nr)(r + n) 4nr(2r + n)

Solving
linearized
problem

6(25)(r3) 25(2r)3

Computing
approximate
eigenvectors

6(2r)(2ns) 4r(2ns)

Total 12nr2 + 12n2r + 150r3 + 24nrs 4nr + 8nr2 + 4n2r + 200r3 + 8nrs

implies range(Q) ⊆ range([real(Q) imag(Q)]). If Q1 is a matrix whose columns form
an orthonormal basis for [real(Q) imag(Q)], then S ⊆ range(Q1). Thus using Q1

instead of Q in (3.15) results in a reduced problem involving only real matrices, and
the best eigenspace approximations in range(Q1) are at least as good as those in S.
The corresponding linear problem is of a dimension up to twice that of the linear
problem formed using Q, and the question is whether it is cheaper to find the basis
Q1, project M, C, and K onto range(Q1), solve the resulting real linearized problem,
and form the approximate eigenpairs, rather than just to work with the complex basis
Q.

A simplified operation count provides an answer. Assume a real scalar operation
counts as one flop and a complex one counts as six. (This is the convention used in
MATLAB 5, for example.) The comparison is given in Table 3.1, showing that it is
better to use Q1 when

12nr2 + 12n2r + 150r3 + 24nrs > 4nr + 8nr2 + 4n2r + 200r3 + 8nrs,

which holds exactly when the cardinality r of the complex basis satisfies

0 < r <
n

25
+

1
25

√
101n2 + 200ns− 50n.(3.17)

Usually we are interested in the s eigenvalues of smallest (or largest) magnitude,
and the first idea might be to choose as our approximations the s smallest (or largest)
λi and corresponding xi for the projected problem. However, unless the eigenvalues
are known to satisfy a minimax or interlacing property, for example in the case of
overdamped systems (see e.g. Duffin [5]) or conservative gyroscopic systems (see [8,
Ch. 4] and Bauchau [2]), a further check is needed to eliminate spurious values. In
the next section an eigenvalue error estimate is introduced that will be used to weed
out these poor approximations.

4. First order error and stopping criterion.

4.1. Error in eigenvalues. For any given matrices M̃, C̃, and K̃, with M̃ non-
singular, suppose the pair (µ,y) is an approximation to an eigenpair (λi,xi) for

(λ2M̃ + λC̃ + K̃)x = 0,(4.1)

9



with λi a simple eigenvalue and µ not equal to any eigenvalue of (4.1), and suppose
we know the associated residual r = (µ2M̃ + µC̃ + K̃)y. Consider the problem

(λ(ε)2M̃ + λ(ε)C̃ + K̃ − (1 − ε ‖y‖‖r‖ ) ruT

uT y ))x(ε) = 0,(4.2)

where u is any vector such that uTy �= 0. It is straightforward to check that (µ,y) is
a solution to (4.2) at ε = 0. Since µ is not an eigenvalue of (4.1), z = y is the unique
solution to (µ2M̃ + µC̃ + K̃)z = r, and any nonzero vector ŷ satisfying

(µ2M̃ + µC̃ + K̃)ŷ − r(uT ŷ
uT y ) = 0

must be a multiple of y. Thus µ is a simple eigenvalue, so for all sufficiently small ε
the solution (λ(ε),x(ε)) with x(ε)∗x0 = 1 exists, and we can write the Taylor series

λ(ε) = µ + ελ̇(0) + ε2 λ̈(0)
2 + · · ·

x(ε) = y
‖y‖ + εẋ(0) + ε2 ẍ(0)

2 + · · · .(4.3)

Substituting (4.3) into (4.2), and using the fact that the coefficient of the first power
of ε (and in fact that of each power of ε) on the left-hand side of (4.2) is zero,

(2µλ̇(0)M̃ + λ̇(0)C̃ + ‖y‖
‖r‖

ruT

uT y ) y
‖y‖ + (µ2M̃ + µC̃ + K̃ − ruT

uT y )ẋ(0) = 0,

and

λ̇(0)(2µM̃ + C̃) y
‖y‖ + r

‖r‖ + (µ2M̃ + µC̃ + K̃)ẋ(0) − r(uT ẋ(0)
uT y

) = 0.(4.4)

Setting

u = (µ2M̃ + µC̃ + K̃)Tw(4.5)

for any w satisfying

wT r �= 0,(4.6)

and premultiplying (4.4) by wT gives λ̇(0)wT (2µM̃ + C̃) y
‖y‖ + wT r

‖r‖ = 0; thus

λ̇(0) = − ‖y‖
‖r‖ ( wT r

wT (2µM̃+C̃)y
),

and

λ(ε) − µ = −ε− ‖y‖
‖r‖ ( wT r

wT (2µM̃+C̃)y
) + O(ε2) as ε → 0.(4.7)

Next observe that at ε = ‖r‖
‖y‖ , λi is by assumption a simple eigenvalue of (4.2), so if

‖r‖
‖y‖ is small enough we have

|λi − µ| = |wT r|
|wT (2µM̃+C̃)y| + O

(
( ‖r‖
‖y‖ )2

)
as ‖r‖

‖y‖ → 0.(4.8)

Then a reasonable criterion for a solution pair (µ,y) to be acceptable is

max
(

|wT r|
|yT (2µM̃+C̃)y| , (

‖r‖
‖y‖ )2

)
< µ tol(4.9)
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for some tolerance tol, i.e., the relative error in the eigenvalue is on the order of tol. A
good choice of w is clearly w = r̄, since this w fails to satisfy (4.6) only when r = 0,
in which case the approximate solution is of course acceptable. Then (4.9) becomes

‖r‖2

min(|r∗(2µM̃ + C̃)y|, ‖y‖2)
< µ tol.(4.10)

Now suppose we want approximations of the form yi = Wzi, with W ∈ Cn×r of full
rank and zi satisfying (µ2

i M̃proj + µiC̃proj + K̃proj)zi = 0, where M̃proj = W ∗M̃W ,
C̃proj = W ∗C̃W , and K̃proj = W ∗K̃W . In other words suppose we are interested in
pairs (µi, zi) resulting from solving a reduced quadratic eigenvalue problem as in
Section 3.5. Using (3.17), the following is an algorithm to solve the reduced quadratic
eigenvalue problem and to select approximate solutions.

Algorithm 4.1. Given a full rank matrix W ∈ Cn×r, this algorithm computes
approximations to the s < 2r eigenvalues of (4.1) smallest in magnitude, along with
corresponding eigenvector approximations.

1. If r satisfies condition (3.17), compute a real orthonormal basis W1 for
range([real(W ) imag(W )]), and set W = W1.

2. Form M̃proj = W ∗M̃W , C̃proj = W ∗C̃W , and K̃proj = W ∗K̃W .
3. Linearize and use methods for small, dense matrices to compute the eigen-

values µ1, µ2, . . . , µ2r and corresponding eigenvectors z1, z2, . . . , z2r of

(µ2M̃proj + µC̃proj + K̃proj)z = 0.

4. For i = 1, 2, . . . , 2r, compute yi = Wzi.
5. Use criterion (4.10) to select the approximate eigenpairs (µij ,yij ), j =

1, 2, . . . , s with the smallest values of relerrsi ≡ 1
|µi|

‖ri‖2

min(|r∗
i
(2µM̃+C̃)yi|, ‖y‖2)

.

In Steps 4 and 5 of Algorithm 4.1 the computation is done only once for each
complex conjugate pair. Note that if W is orthogonal, ‖yi‖ = ‖zi‖.

4.2. Error in eigenvectors. If instead of (4.5) we set

u = ȳ(4.11)

and define v = (µ2M̃ + µC̃ + K̃)−1(2µM̃ + C̃)y, we can show the following.

Lemma 4.2. If 	 (y,v) �= 0, then 	 (y,xi) = 	 (y,v) + O
(
( ‖r‖
‖y‖ )2

)
as ‖r‖

‖y‖ → 0.

For the proof of the lemma two other results are needed.

Proposition 4.3. ‖ẋ(0)‖2 = (‖y‖‖r‖ )2 1∣∣( y
‖y‖

)∗
v
∣∣2 (‖v‖2 − |( y

‖y‖)∗v|2).

Proof. Applying (µ2M̃ + µC̃ + K̃)−1 to (4.4),

ẋ(0) = −λ̇(0) v
‖y‖ + ( 1

‖r‖ − uT ẋ(0)
uT y )y,

and since y∗ẋ(0) = 0, it follows that 0 = −λ̇(0)y∗v
‖y‖ + ( 1

‖r‖ − uT ẋ(0)
uT y

)‖y‖2, so

ẋ(0) = −λ̇(0) v
‖y‖ + λ̇(0)y∗v

‖y‖3 y.
11



Now let z be a nonzero vector satisfying

z∗(µ2M̃ + µC̃ + K̃ − ruT

uT y ) = 0.

Then z∗(µ2M̃ + µC̃ + K̃) = ( z∗r
uT y )uT , so z∗ = αuT (µ2M̃ + µC̃ + K̃)−1 for some α.

Applying z∗ to (4.4) yields

λ̇(0)z∗(2µM̃ + C̃) y
‖y‖ + z∗r

‖r‖ = 0,

λ̇(0) = − ‖y‖
‖r‖

z∗r
z∗(2µM̃+C̃)y

= − ‖y‖
‖r‖

uT y
uT v .

Hence

ẋ(0) = − ‖y‖
‖r‖

uT y
uT v

(
− v

‖y‖ + y∗v
‖y‖3 y

)
= − 1

‖r‖
uT y
uT v

(
−v +

[
( y
‖y‖ )∗v

]
y

‖y‖
)
.

Using (4.11),

‖ẋ(0)‖2 = | 1
‖r‖

uT y
uT v |

2 ∥∥∥−v + [( y
‖y‖ )∗v] y

‖y‖
∥∥∥2

= (‖y‖‖r‖ )2 | ‖y‖y∗v |2
(
‖v‖2 − (v∗y)(y∗v)

‖y‖2 − (y∗v)(v∗y)
‖y‖2 + |y∗v|2

‖y‖2

)
= (‖y‖‖r‖ )2 1

|( y
‖y‖ )∗v|2

(
‖v‖2 − |( y

‖y‖ )∗v|2
)
.

Proposition 4.4. If ẋ(0) �= 0,

	 (x(ε),y) = cos−1 1√
1+ε2‖ẋ(0)‖2

+ O(ε2) as ε → 0.

Proof. The proof is elementary calculus using the Taylor expansion of f(w) =
cos−1(w−1/2) in the appropriate interval.

Proof of Lemma 4.2 	 (y,v) �= 0 exactly when |( y
‖y‖)∗v| �= ‖v‖, so, from Propo-

sition 4.3,

‖ẋ(0)‖2 = (‖y‖‖r‖ )2 1
|( y

‖y‖ )∗v|2
(
‖v‖2 − |( y

‖y‖)∗v|2
)
�= 0,

and applying Proposition 4.4 at ε = ‖r‖
‖y‖ we have

	 (xi,y) = cos−1 1√
1+ 1∣∣( y

‖y‖ )∗v

∣∣2 (‖v‖2−
∣∣( y

‖y‖ )∗v
∣∣2)

+ O
(
( ‖r‖
‖y‖ )2

)
as ‖r‖

‖y‖ → 0

= cos−1

∣∣( y
‖y‖ )∗v

∣∣
‖v‖ + O

(
( ‖r‖
‖y‖)2

)
as ‖r‖

‖y‖ → 0

= 	 (y,v) + O
(
( ‖r‖
‖y‖ )2

)
as ‖r‖

‖y‖ → 0.

Computing v to examine this eigenvector error estimate at each step would be ex-
pensive; instead it is useful to calculate the estimate at the end of the computation
to look at the final quality of the computed eigenvectors.
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5. A hybrid method. Because the perturbation subspaces are constructed to
contain the ranges of the Taylor series for the eigenspaces, the subspace approxima-
tions discussed above yield, within their convergence radius, eigenpair approximations
that converge at least as well as the corresponding Taylor series, in other words at
least linearly. To accelerate this convergence we would like to switch, at an appro-
priate stage, to a generalization of the quadratically convergent Rayleigh quotient
iteration.

5.1. Block Rayleigh quotient iteration. Suppose the vectors X =
[x1 x2 · · · xs] form a basis for a space spanned by approximate right eigenvectors of
the problem (4.1), and define a block Rayleigh quotient of (4.1) for X to be any s× s
matrix Λ satisfying

X∗M̃XΛ2 + X∗C̃XΛ + X∗K̃X = 0.

A block generalization of Lancaster’s Rayleigh Quotient Iteration [10] can be described
as follows.

Algorithm 5.1. (Block RQI 1) This algorithm performs general block Rayleigh
quotient iterations, starting with any X1, to compute approximate eigenpairs for (4.1).
For l = 1, 2, 3, . . .

0. Given range(Xl), an approximate span of right eigenvectors for (4.1).
1. Find Λl (not unique) such that (X∗

l M̃Xl)Λ2
l + (X∗

l C̃Xl)Λl + (X∗
l K̃Xl) = 0.

2. Solve M̃Yl+1Λ2
l + C̃Yl+1Λl + K̃Yl+1 = Xl for Yl+1.

3. Let W be a basis for range(Yl+1), and apply Algorithm 4.1 to solve the reduced
problem and get approximate solutions (λi,Wxi), i = 1, 2, . . . , s.

4. Set Xl+1 = W [x1 x2 · · ·xs].

It is straightforward to check that Λ is a block Rayleigh quotient of (4.1) for X
if it is of the form Λ = Y ΩY −1, where Ω = diag(ωi) is a matrix of eigenvalues and
Y = [y1 y2 · · · ys] is a full rank matrix of eigenvectors for the reduced quadratic
eigenvalue problem, i.e.

(ω2
i X

∗M̃X + ωiX
∗C̃X + X∗K̃X)yi = 0, i = 1, 2, . . . , s.(5.1)

Now suppose the approximate pairs (λi,xi), i = 1, 2, . . . , s, have been obtained
by choosing any s of the 2r approximate solutions resulting from solving a re-
duced problem of size r as in Section 3.5. Then the problem (5.1) has solutions
(λi, ei), i = 1, 2, . . . , s, where ei ∈ Cs is the ith standard basis vector, so the matrix
Λ = diag(λi) = Is diag(λi) Is is a block Rayleigh quotient of (4.1) for X . With this
Rayleigh quotient, Algorithm 5.1 becomes the following.

Algorithm 5.2. (Block RQI 2) This algorithm performs block Rayleigh quotient
iterations to compute approximate eigenpairs for (4.1), starting only with eigenpairs
obtained by solving a reduced quadratic problem.
For l = 1, 2, 3, . . .

0. Given (λi,xi), i = 1, 2, . . . , s, a set of approximate eigenpairs for (4.1) ob-
tained by solving a reduced problem as in Section 3.5.

1. Solve λi
2M̃yl+1,i +λiC̃yl+1,i +K̃yl+1,i = xl,i, i = 1, 2, . . . , s, for the columns

of Yl+1.
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2. Let W be a basis for range(Yl+1), and apply Algorithm 4.1 to solve the reduced
problem and get approximate solutions (λi,Wxi), i = 1, 2, . . . , s.

3. Set Xl+1 = W [x1 x2 · · ·xs].

The subspace approximation method switches to this RQI when the largest rel-
ative change in consecutive eigenvalue iterates remains less than some tolerance, i.e.
when the eigenvalues have in a sense “nearly” converged.

5.2. Hybrid algorithm. Now we have discussed all the individual parts of the
hybrid method and are ready to summarize the whole algorithm.

Algorithm 5.3. Given nondefective eigenvalues λ1, λ2, . . . , λl of multiplic-
ities n1, n2, . . . nl, and associated eigenvector matrices X(1) ∈ Cn×n1 , X(2) ∈
Cn×n2 , . . . , X(l) ∈ Cn×nl , for (2.1) at t = 0, along with tolerances tol1 (default 10−3)
and tol, this algorithm computes the corresponding values at t = 1.

0. Initialize: relchange = 2tol1 · ones(p, 1); j = 0; W0 = [ ]; convgct = 0;
If we know the left eigenvector matrix, anyleftvec = 1, else anyleftvec = 0.

1. While max(relerrs) > tol and convgct < 2,
j = j + 1;
For i = 1: l, /* compute new vectors, columns of X(j)

(i) , to add to space */
If anyleftvec = 1, compute X

(j)
(i) using Algorithm 3.3, else compute X

(j)
(i)

using Algorithm 3.1.
Use Modified Gram-Schmidt to compute basis Wj for

Sj =
j
+

m=0
(

l
+

i=1
range(X(m)

(i) )) = (
l
+

i=1
range(X(j)

(i) )) + range(Wj−1).

Solve reduced prob. in Sj; compute new relerrs and approx. (λi,xi) using Alg. 4.1.
If j > 1 set relchange to rel. changes in computed eigenvalues from previous step.
If max(relchange) ≤ tol1, convgct = convgct + 1; else convgct = 0.

2. While max(relerrs) > tol,
Apply Block RQI Algorithm 5.2, beginning with X = [x1 x2 · · · xp].

6. Complexity. The subspace approximation method spends over 95% of its
time performing five tasks: computing the right-hand side Vk of (3.8) in the direct
subspace computation; solving the least squares problems in the subspace computation
or the linear systems in the block Rayleigh quotient iteration; applying Modified
Gram-Schmidt to compute bases; solving the reduced (projected) quadratic eigenvalue
problems; and computing the error estimates.

For a crude analysis of these costs, assume that the maximum relative error
estimate decreases by a factor ρ at each step. (Because the convergence is at least
linear, such a value eventually exists.) If e0 is the original maximum relative error
estimate, the number of steps needed for convergence with tolerance tol is the smallest
integer m greater than or equal to logρ

e0
tol . Starting with p eigenpairs, the following are

computed: pm values of Vk, requiring a total of at most 6pm matrix-vector products
and (m + 1)2 matrix-matrix products of size p × p; pm least square solutions (or
ill-conditioned linear system solutions); orthonormalization of 2p(m + 1) n-vectors;
solutions of m+1 projected problems, with real bases of dimension 2p, 4p, . . . , 2p(m+
1), requiring work as shown in Table 3.1; and 2p(m+1) error estimates each requiring
6 matrix-vector products and 3 inner-products.
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Table 6.1

Work performed by the subspace approximation method

Task Flops

Computing Vk 6(6pm(4nq) + (m + 1)2p3)

Linear solves (direct) 6(pm)(4nq + 2nq2)

Modified Gram-Schmidt n(2p(m + 1))2

Solving reduced problems
∑m+1

j=1
(8np2j2 + 4n2jp + 200(jp)3 + 8npj)

Relative error estimates 6(2p(m + 1))(24nq + 6n)

Total O(6q2pnm + 2
3
p2nm3 + pn2m2 + 25p3m4)

If P (λ, t) is banded, let q denote the maximum of the upper and lower bandwidths
of all the matrices in P (λ, t). When the linear systems are solved directly, the method
performs work at most on the order of that shown in Table 6.1, and in fact with
the switch to the locally faster-converging block RQI the total amount of work done
should be even less. For general sparse matrices a similar analysis can be performed
using the applicable flop counts for matrix-vector multiplications and the solution of
linear systems or least squares problems.

7. Numerical examples.

7.1. A truss problem. Consider a long and slender truss structure shown in
Figure 7.1. This example is designed to measure the effectiveness of the numerical
algorithms for problems with proportional and nonproportional damping.
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Fig. 7.1. Truss structure.

The element stiffness and mass matrices are given as

Ke =
AE

l




1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


 and Me =

ρAl

6




2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2


 .

For each member let the cross sectional area A be 1.0 and assume the other constants
have the values E = 107 and ρ = 1.0. Values of the length l are given in the figure.
The assembled matrices K and M are symmetric positive definite, of order 2000.
The members are numbered as shown, so that K has a bandwidth of 13 and M has
a bandwidth of 12. Assume the eight smallest eigenpairs (µ1,x1), . . . , (µ8,x8) for
the generalized eigenvalue problem Kx = µMx have been computed, i.e. assume the
undamped problem has been solved.
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7.1.1. Proportional damping. The first example is of simple proportional
damping, with 5% damping in the first eight modes and zero damping in all the oth-
ers. The damping matrix is then Cprop = M(

∑8
j=1 2(.05)ωjφjφ

T
j )M, where ωj = √

µj

and φj = (xT
j Mxj)

−1/2
xj for j = 1, . . . 8. This is a symmetric, positive semi-definite

matrix of rank 8, which is dense but easy to apply as an operator. Taking the un-
damped problem (λ2M + K)x = 0 as the original, unperturbed problem, to which
solutions are known, we use the subspace approximation method to solve the damped
problem (λ2M + λCprop + K)x = 0 for the sixteen eigenvalues of least magnitude. As
shown in Section 3.4, the subspace computation involves only real arithmetic.

The true eigenvalues of the damped equation are simply the roots of the quadratic
polynomials λ2 +0.1λ√µj +µj and, as expected, the subspace approximation method
computes these values in the first step, using the first subspace, since the original
eigenspaces and final eigenspaces are the same. The acceptance tolerance is taken to
be 10−5. The first eight pairs of paths are nearly linear and all other eigenvalue paths
are constant; there is no risk of path crossing. Table 7.1 shows a comparison with
vector RQI started from the same original values, and with eigs, the MATLAB imple-
mentation of ARPACK [12], applied to the second linearization of (1.2) with N = I.
All three methods converged to the correct solutions, but the subspace approxima-
tion method is clearly appropriate for this problem, and one sees that the method’s
performance is orders of magnitude better than that of the other two methods.

Table 7.1

Comparison of methods for proportionally damped truss problem.

Subsp.Approx. RQI eigs
CPU time (seconds) 0.35 25.4 57

max relerrs (estimate) 6.56 × 10−6 8.47 × 10−6 9.92 × 10−6

max rel.err. (actual) 1.52 × 10−8 1.97 × 10−8 1.36 × 10−8

7.1.2. Nonproportional damping. In the second example, half the structure
has 1% damping and the other half has 2% damping (to the right and left, resp., of
the dotted vertical center line in Figure 7.1). The resulting damping matrix Cnpr,

M1

M2

K1

K2

a11M1+a12K1

a21M2+a22K2

M K C

Fig. 7.2. Block form of nonproportional damping matrix.

assembled as indicated in Figure 7.2, is composed of two overlapping submatrices
along the diagonal, each of which is a different linear combination of the corresponding
submatrices of M and K associated with the two different damping percentages. The
values aij used in the linear combinations are given by

(
ai1
ai2

)
= 2ξi

ω1+ω2

(
ω1ω2

1

)
, where

ξ1 = 0.01, ξ2 = 0.02, and ω1 =
√
µ1 and ω2 =

√
µ2 are the two smallest natural

frequencies for the undamped problem. Because of the elements in common between
the 1% and 2% damping, Cnpr is not itself a combination of M and K of the form
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∑p
j=0 αjM(M−1K)j , so this is nonproportional damping (see e.g. Clough and Penzien

[3, Ch.12]) and cannot be solved using the traditional modal superposition.
The results of applying the subspace approximation method to compute the first

16 eigenvalues of the damped problem are summarized in Table 7.2, again compared
with RQI and eigs. The acceptance tolerance is taken to be 10−6. In this problem,
iterative solution via QMR with MATLAB’s default parameters is used both in the
subspace approximation and in the vector RQI. Linearization ((1.2), first equation)
is used in eigs, with the choice N = K and with the default parameters because no
advantage was found in making other choices. One sees that the relative accuracy of
the computed eigenvalues is about the same for all three methods, as is the order of
the error angles in the computed eigenvectors. Figure 7.3 shows the eigenvalue paths
(left graph) and convergence of the subspace approximation method (right graph)
The paths are less linear than those for the proportional damping problem, but they
are smooth and well separated from other eigenvalue paths, showing that the problem
is very suitable for subspace approximation. Note that faster convergence could have
been achieved by switching to the block RQI early, after step 2, yielding a time savings
of 8.6%. However, further work is needed to automate the “tweaking” of the hybrid
method.

Table 7.2

Comparison of methods for nonproportionally damped truss problem.

Subsp.Approx. RQI eigs
CPU time (sec.) 1.85 6.58 11.31
maximum relerrs 8.75 × 10−7 9.80 × 10−7 7.25 × 10−7

max. � error (rad.) 8.02 × 10−8 8.82 × 10−8 8.30 × 10−8
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Fig. 7.3. Eigenvalue paths and convergence of subsp. approx. method for nonprop. problem.

7.2. Humboldt Bay Middle Channel Bridge Example. This example illus-
trates the possible application of the subspace approximation method in the analysis
of a bridge structure including soil properties. The following is a description of the
Middle Channel Bridge, from Conte et al. [4].
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Fig. 7.4. Finite element model of Middle Channel Bridge

The Humboldt Bay Middle Channel Bridge, near Eureka in northern Califor-
nia, . . . is a 330 meters long, 9-span composite structure . . . . It is supported
on eight pile groups, each of which consists of 5 to 16 prestressed concrete
piles, in soils vulnerable to liquefaction (under extreme earthquake shaking
conditions). The river channel has an average slope from the banks to the
center of about 7% (4 degrees). The foundation soil is composed of mainly
dense fine-to-medium sand (SP/SM), organic silt (OL), and/or stiff clay lay-
ers. In addition, thin layers of loose sand and soft clay (OL/SM) are located
near the ground surface. . . . A two-dimensional nonlinear model of the Mid-
dle Channel Bridge, including the superstructure, piers, and supporting piles
was developed . . . as shown in [Figure 7.4].

The example here is not intended to accurately model the various soil properties, since
each soil type could have its own frequency dependent damping properties. Neverthe-
less, for illustrative purposes, the following realistic damping values are tested: 2%
damping on the bridge structure and first 2%, then 7% damping on the soil (denoted
here, respectively, as C2 (a proportional damping matrix) and C7 (a nonproportional
damping matrix)). The properties of the 5164 × 5164 symmetric matrices M, C, and
K are given in Table 7.3.

Table 7.3

Mass, stiffness, and damping matrices for the bridge problem.

matrix bandedness sparsity max(eig) min(eig)

M diagonal 5038 nonzero elts. 1.31 × 103 0
K bandwidth 5102 0.3% nonzero 4.94 × 1011 9.95 × 102

C2 bandwidth 5102 0.3% nonzero 1.12 × 109 2.26 × 100

C7 bandwidth 5102 0.3% nonzero 1.12 × 109 7.93 × 100

Since M is singular, with 126 zero diagonal elements, and K is positive definite, to
guarantee continuous eigenvalue paths we may swap the roles of M and K and instead
solve for the largest eigenvalues µ for the problems

(µ2K̂ + M̂)x = 0 (undamped) ,(7.1)

(µ2K̂ + µĈ + M̂)x = 0 (damped) .(7.2)

The desired eigenvalues are then the reciprocals λ = 1
µ , and the eigenvectors are

unaffected by the interchange. This interchange is not needed for the subspace ap-
proximation method, since we are interested only in the smallest (finite) eigenvalue
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paths. However, when the corresponding linearized problem ((1.2), second eqn.) is
solved for comparison purposes, the interchange is necessary in order to have a sym-
metric positive definite matrix on the right-hand side of the linearized eigenvalue
problem, Ax = λBx.

We begin by using the MATLAB eigs function to compute the first 20 eigenpairs of
the undamped problem. Taking these as the unperturbed solutions, the subspace ap-
proximation method is then applied to solve the damped problems, with the MATLAB

‘slash’ operator to solve the least squares problems. The CPU times for these results
are shown in Table 7.4. Solving the undamped problem using eigs and then solving
the problem with damping matrix C7 using the subspace approximation method takes
44 seconds of CPU time, and even when an intermediate problem with damping ma-
trix C2 is computed, the total time required is 64 seconds, 40% of the time required
by eigs to solve the linearized problem. (When started with the undamped problem,
the subspace computation involves only real arithmetic, so less work is performed in
that case.) If the undamped problem has been solved previously and its solutions are
already available, using the subspace approximation method to compute the solutions
with damping matrix C7 requires 25% of the time required by eigs to solve the same
problem.

Table 7.4

CPU times for bridge example.

problem method CPU time (sec.)

undamped eigs 4.7

damping: C2
Subsp.Approx.

starting from C = 0 0.9

damping: C7
Subsp.Approx.

starting from C2
58

damping: C7
Subsp.Approx.

starting from C = 0 38

damping: C7
eigs, using

linearization (1.2), second eqn. 159

7.3. Path crossing example. Unlike the previous examples, the problem in
this section displays changes in eigenvalue order as well as some switching from com-
plex to real values along the eigenvalue paths.

In this example, M and K are given as BCSSTM12 and BCSSTK12 from the
Harwell-Boeing collection. These matrices have order 1473, and the matrix C is taken
to be the block combination of M and K such that if M1 = M(1: 600, 1: 600) and
M2 = M(540: 1473, 540: 1473), and if K1, K2 are defined in the same way from K,
then

cij =




a11mij + a12kij , when i < 540 or j < 540
(a11 + a21)mij + (a12 + a22)kij , when 540 ≤ i, j ≤ 600

a21mij + a22kij , when i > 600 or j > 600
,

where
(
ai1
ai2

)
= 2ξi

ω1+ω2

(
ω1ω2

1

)
, with ξ1 = 0.05, ξ2 = 0.10, and ω1 and ω2 as the first

and tenth natural frequencies for the undamped problem. Now ‖M‖ = 1.34 × 101,
‖C‖ = 6.68 × 105, and ‖K‖ = 6.56 × 108. The eigenvalue paths are shown in Figure
7.5. Path crossing and order changes can be observed. The subspace approximation
method correctly computes, with tolerance 10−5, the first 20 perturbed eigenvalues
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and vectors starting with the first 10 complex conjugate pairs of eigenvalues and
corresponding eigenvectors. The vector RQI method, started with the same values
and using the same convergence tolerance, computes only the values numbered 4, 5,
6, 7, 12, 13, 14, 15, 17, and 18 (ordered by magnitude). Eigs computes all 20 values,
and takes only 77 seconds of CPU time versus 92 using the subspace approximation
method. However the solutions from eigs are much less accurate, as can be seen in
Table 7.5, and decreasing the tol parameter of eigs by a factor of 105 causes negligible
improvement in the errors while increasing the computation time to 124 seconds.

Table 7.5

Results for size 1473 example.

Subsp.Approx eigs
maximum relerrs 2.5 × 10−7 1.1 × 10−3

maximum � error est. (rad.) 3.7 × 10−6 1.7 × 10−3

CPU time 92 77
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Fig. 7.5. Eigenvalue paths and moduli of eigenvalues for size 1473 example.

8. Summary and future directions. In this paper we developed a method
for computing a few eigenvalues and eigenvectors of a quadratic eigenvalue prob-
lem assuming that solutions to the corresponding generalized (undamped) eigenvalue
problem are known. The Taylor series for the block eigenvector matrix X(t) was
shown to converge, and the range of the kth Taylor polynomial was shown to be
contained in the kth generalized Krylov subspace Sk(FM, F∆C, X0), where F is a
matrix such that FP (λ0, 0) fixes a space complementary to the range of the original
block eigenvector matrix X0.

We discussed how to compute the generalized Krylov subspaces by solving a se-
quence of least squares problems, and also how to directly compute the derivative
subspaces range([X0 X(1) · · · X(k)]) assuming that certain additional assumptions
hold. Computing reduced problems in these subspaces was described. Using a first
order error analysis a reasonable acceptance criterion was developed. After gener-
alizing Lancaster’s Rayleigh quotient iteration to a block algorithm, we assembled
a hybrid method starting with the linearly converging subspace approximations and
switching to the faster converging RQI as a finishing procedure. From several nu-
merical experiments it is clear that solving the quadratic eigenvalue problem as a
perturbed quadratic eigenvalue problem using the subspace approximation method
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has some advantages both in speed and in accuracy over solving the problem from
scratch using a standard linearization approach.

The theory in this paper extends to more general perturbed quadratic eigen-
value problems and to other polynomial eigenvalue problems [8]. Suppose that
(λN (t)ÂN (t) + λN−1(t)ÂN−1(t) + · · · + λ(t)Â1(t) + Â0(t))x(t) = 0 and that
FP (λ0, 0) fixes a space complementary to range(X0). Then range(X̂(j)) ⊆
Sj(FA1, . . . , FAN , F∆A0, F∆A1, . . . , F∆AN , X0) for j = 0, 1, 2, . . .. Future study
of such extensions should prove fruitful.

Another important direction for future work is towards the reduction of the sub-
space dimension. Suppose a dense standard or generalized eigenvalue problem of size
up to N is considered small and a problem of size greater than N is considered large.
Then we should ensure that the reduced problems our method requires to be solved
remain “small.” The derivative subspaces grow linearly, while the generalized Krylov
subspaces Sj can grow exponentially with j; either way a mechanism is needed for
stopping the growth when the subspace reaches size N/2.

Three possible approaches are: (1) Switching early to block RQI. (2) Restarting
with a subspace of dimension s spanned by the approximate eigenvectors based on
the fact that the approximate eigenpairs {(µi,yi)} are exact solutions to the problems
(λ2M̂(1) + λĈ(1) + K̂(1) − riu

T
i

uT
i
yi

)x = 0, where uT
i yi �= 0, i = 1, 2, . . . , s. (3) Cutting

the timestep and using a homotopy continuation method.
In summary, there are several interesting avenues to pursue in continuing this

work on the subspace approximation method for perturbed, quadratic, and polynomial
eigenvalue problems.
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