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ABSTRACT 
 
Automated data capture systems could significantly improve the efficiency and productivity of the 
architecture, engineering, construction and facility management (AEC/FM) industry. However, 
automatically collecting spatiotemporal information in an unstructured environment such as a 
construction site or a work place remains a time consuming and challenging task. This paper 
presents a new approach to automated data capture and processing, referred to as object 
characterization. In object characterization, the goal is to identify common objects in a scene and 
extract rich semantic information about those objects. A novel 2D-3D object detection algorithm is 
designed for detection and characterization of common worksite objects. The proposed system has 
applications in automated surveying and data collection, especially in applications which leverage 
unmanned aerial vehicles or mobile robots. To demonstrate this utility, the proposed system is 
deployed on a mobile robot and used to detect newly placed objects in a worksite environment.  
 
INTRODUCTION 
 

The growing prevalence of automated data capture systems and semi-autonomous robots is 
likely to have a positive impact on efficiency and productivity in the construction and facility 
management sectors. Recent advances in Lidar, depth-sensing, visual odometry, and related 
technologies (Engelhard et al. 2011; Kerl et al. 2013) have made it possible to obtain a static 
representation of a large space with relative ease. In most cases, this static representation exists as 
a point cloud or polygon mesh. Research efforts in computer vision have focused on the 
segmentation of these point-clouds into a number of preset classes (Armeni et al. 2016; Tchapmi et 
al. 2017). However, many applications in construction and facility management require much richer 
information about the objects. Ultimately, a mobile robot or unmanned aerial vehicle (UAV) should 
be able to scan a worksite and return a wealth of information about the objects in that environment. 
As a step toward this goal, this paper focusses on developing a computer vision system to infer 
semantic-rich information about worksite objects from RGB-D images. 

Previous systems in civil engineering have been focused on the tasks of image classification 
(Gao and Mosalam 2018), image segmentation (Feng et al. 2017), and object detection (Ferguson 
and Law 2019). This paper introduces a much richer computer vision task called object 



characterization. Object characterization is defined as the process of inferring physical attributes 
about one or more objects in an image or 3D scan. Formally, each object is assigned an object class, 
as in object detection. Each object class is associated with a set of attributes. Some attributes may 
be shared across all the object classes, such as the object size, material and color. Other attributes 
may be class-specific, such as the fullness of a recycle bin. The goal is to correctly predict the object 
class and all of the applicable object attributes. Some examples of object characterization are 
provided in Figure 1.  

In a physical engineering environment, object characterization offers many benefits over 
related tasks in automated data capture: 

• Increased semantic information: The ability to predict object attributes in addition to 
object class makes object characterization much more valuable than object detection alone. 

• Structure through ontology: As ontology is used to represent prior knowledge about 
objects and their attributes, a predictive model for object characterization can be used to 
populate the ontology using images or Lidar scans from the worksite. 

This paper introduces a methodology that uses object characterization to automatically populate a 
building information model with semantic-rich information inferred from RGB-D images. The 
following summarize the main contributions of this paper: 

• A generic framework for object characterization is proposed. 
• A new 2D-3D object detection algorithm is developed for the detection and characterization 

of worksite objects. 
• A dataset containing RGB-D images of common worksite objects is collected and annotated 

with a rich set of attribute labels which can be used by other researchers.   
The remainder of the paper is organized as follows: An overview of related works is provided in 
the next section. A detailed description of the proposed object characterization system is then 
presented. For validation, experiments are conducted to demonstrate how the proposed algorithm 
can be used to automatically update a building information model. The paper is concluded with a 
brief summary and discussion.  
 
RELATED WORK 
 

To further enhance current practice on construction automation, research efforts have been 
directed towards the problem of automatically extracting semantic information from 2D images (Zhu 
et al. 2016) and 3D point clouds (Rusu et al. 2008). However, engineering applications generally 
require much richer information from data capture systems than that provided by semantic 

                          
Figure 1. Object detection and characterization for three worksite objects, using the proposed 
object characterization framework and algorithm. 

 



segmentation. The Structural ImageNet project is one example that attempts to provide one such 
dataset where objects are labelled with semantic attributes like material type and damage state (Gao 
and Mosalam 2018). However, Structural ImageNet is posed as a classification task, where 
individual images are assigned a class based on their content. Object detection and segmentation 
tasks are much more suited to engineering applications classification tasks, as they identify the 
position of relevant objects within each image. As far as we are aware, there is yet to be a generic 
framework for the prediction of object attributes using RGB-D or Lidar images. 

Recently, there has been some interest in using unmanned aerial vehicles (UAVs)  or 
unmanned ground vehicles (UGVs) to automatically gather information about the building 
environment (Hamledari et al. 2017b; Park et al. 2016). However, the computer vision systems so 
far tend to be incomplete, often lacking the ability to accurately classify or localize objects of 
interest (Asadi and Han 2018; Hamledari et al. 2017a; McCabe et al. 2017). There has been some 
interest in updating IFC models using semantic-rich input data (Hamledari et al. 2017b). However, 
most previous approaches are impractical as they propose 2D image processing algorithms for the 
purpose of updating 3D models.  

The notion of automatically creating geometric environment maps has been explored 
extensively by the robotics community. Perhaps the most noteworthy technique is Simultaneous 
Localization and Mapping (SLAM), which aims to construct a map of an unknown environment 
while simultaneously keeping track of an agent's location within it (Thrun and Leonard 2008). 
Related tasks in robotics include visual-SLAM and structure from motion (SfM), which generate a 
static geometric representation of the environment using a consecutive series of RGB images 
(Engelhard et al. 2011). While effective for reconstructing scene geometry, these techniques do not 
directly return semantic information about the environment.  

 
WORKSITE OBJECT CHARACTERIZATION 
 

This section focuses on the development of an algorithm for the detection and 
characterization of worksite objects, using RGB-D images from a mobile robot. The proposed 
system, referred to as Extended Object R-CNN, first detects objects of interest using a deep 
convolutional neural network (CNN). Features from the CNN are then used to predict the remaining 
object attributes. The output of the system is a list of detected objects populated with attribute 
information for each object.  

 
Object Ontology: The object characterization task is based on an ontology which defines object 
classes and their attributes. Object classes could include entries like recycle bin, hard hat or gas 
container. Each class is associated with one or more attributes. For example, attributes for the 
recycle bin class could be color, material, size or fullness. Attributes can be numerical, categorical, 
or Boolean. Numerical attributes, such as color are represented as vectors. Categorical attributes 
can take on a single value from a predefined a set of potential values. Boolean attributes can take 
on a true or false value, as in the case of fullness. An example ontology for the recycle bin class is 
provided in Figure 2. 
 
Object R-CNN: An algorithm is developed to simultaneously address the tasks of object detection 
and object characterization. The proposed algorithm builds on the Object R-CNN framework, that 
has been described in an earlier work (Ferguson and Law 2019). Object R-CNN is a collection of 
CNNs designed to detect and localize worksite objects in 3D space. In Object R-CNN, each image 
is first passed through a CNN to develop a featurized representation of the image. A feature pyramid 
network (FPN) with an InceptionResNetV2 backbone is used as the feature extractor (Szegedy et 



al. 2017). In the next stage, a region proposal network (RPN) is used to generate a set of regions of 
interest (RoIs) that are likely to contain objects. Each RoI is assigned a bounding box, class and 
segmentation mask by a second CNN. Finally, each detection is projected into 3D space to form a 
3D region proposal. Features are cropped from the RGB-D point cloud using this region proposal 
and fed into a 3D CNN. The output from the 3D CNN is used along with the 2D region-based 
features to generate a refined estimate of the size and position of the object in 3D space.  
 
Extended Object R-CNN: Figure 3 shows the Extended Object R-CNN architecture that is 
designed for the prediction of arbitrary object attributes. It is hypothesized that concatenating 
features from the 2D image and the 3D voxel representation would provide a rich mathematical 
representation of each object that is sufficient for the task of object characterization. In Extended 
Object R-CNN, the fully connected neural network used to predict size and position is replaced 
with a similar, but larger neural network that has one head for each possible object attribute, 
allowing it to simultaneously predict every attribute for a given object. The benefit of this approach 
is that the data associated with multiple different object classes can be used to train a predictor for 
a common attribute, such as object color. On the contrary, the neural network must predict values 
for the set of all attributes in the ontology, not just those applicable to the object class.  
 
Loss Functions: Neural networks are trained by minimizing a loss function with respect to the 
neural network parameters. The output of a neural network branch is denoted as 𝑓(𝑎; 𝐼, 𝜃), where 
𝑎 is an anchor location in the image, 𝐼 is the image, and 𝜃 is the neural network parameters. An 
encoding 𝜙 is used to convert object attributes to a vector form. A loss function captures the 
difference between the ground truth encoding and the output of the neural network. To apply the 
Extended Object R-CNN framework to a new attribute, it is necessary to choose an encoding and 
loss function for that attribute.  

To illustrate, the following example shows the encoding and loss function for a color 
attribute. The dominant color of an object is defined as the color which covers the greatest portion 
of the object. The color is represented as a three-element vector with components red, 𝑟 ∈ [0,255], 
green 𝑔 ∈ [0,255] and blue 𝑏 ∈ [0,255]. The color encoding 𝜙34546 is chosen to map each 
component onto the domain [0,1]: 

𝜙34546(𝑟, 𝑔, 𝑏; 𝑎) =
9
:;;

[𝑟, 𝑔, 𝑏]<	  (1) 

where 𝑎 is the anchor box (position of the object in the image). The loss function 𝐿34546(𝑎; 𝐼, 𝜃) 

 
Figure 2. Example ontology for the recycle bin class. 

 



measures the difference between the encoded color and the neural network output and can be 
expressed using a 2-norm as: 

𝐿34546(𝑎; 𝐼, 𝜃) = ‖𝜙34546(𝑟, 𝑔, 𝑏; 𝑎) − 𝑓34546(𝑎; 𝐼, 𝜃)‖::		 (2) 

In general, a simple linear transformation can be used to encode numerical attributes, and a one-hot 
encoding can be used to encode categorical attributes (Goodfellow et al. 2016). The quadratic loss 
function can be used for numerical attributes and the cross-entropy loss function can be used for 
categorical and Boolean attributes. The original Object R-CNN framework defines loss functions 
for the predicted class 𝐿35A, bounding box 𝐿BB4C,  and segmentation mask 𝐿DEAF (Ferguson and Law 
2019). In Extended Object R-CNN, the total loss for each anchor 𝑎 is defined as the sum of 𝐿35A,  
𝐿BB4C, 𝐿DEAF and the loss from each of the attributes. The loss for each RGB-D image is defined as 
the average loss across positive anchors.  
 
EXPERIMENTS 
 

The proposed Extended Object R-CNN system is trained and tested on a set of RGB-D 
images collected with a purpose-built SLAM-enabled mobile robot.  
 
Dataset: Objects in the RGB-D images are annotated with class labels and 2D segmentation masks. 
A total of 7423 objects are annotated across 1214 RGB-D images to form a training dataset. A 
further 1214 objects across 255 images are annotated to form the test set. Each object is annotated 
with the additional attributes: 3D bounding box, 3D position, dominant material, and dominant 
color. The dominant material of each object is chosen from the set {plastic, fabric, wood, organic}, 
where the organic class is used to described plant material. Identifying the true color of an object 
from a photo is challenging, due to the effects of illumination, shadow, and camera properties (Zaidi 
and Bostic 2008). The ground truth color is assigned by matching the color from a color palette app 
on a mobile phone to the real object, under bright white light. The recycle bin and bucket objects 

 
Figure 3. Extended Object R-CNN builds on Object R-CNN by adding an additional network 
head for each attribute defined in the object ontology. The numbers in figure indicate the 
dimensions of intermediate representations (tensors). Arrows denote convolutional layers 
unless labelled otherwise. The term “fc” represents a fully connected neural network layer.    



are also annotated with the binary attribute, fullness. Fullness is deemed true if any object can be 
seen protruding from the container, otherwise it is labelled as false. 
 
Implementation Details: Extended Object R-CNN is trained on the aforementioned dataset. The 
neural network weights for Mask R-CNN are initialized using pretrained weights generated using 
the Microsoft Common Objects in Context (COCO) dataset (Lin et al. 2014). The remaining 
weights are initialized randomly using the Xavier initialization method (Glorot and Bengio 2010). 
The model is trained by minimizing the total loss across all images in the training dataset, using 
stochastic gradient descent with momentum. 

Training a neural network with a large number of network heads can be unstable. For 
example, large errors in the color prediction may propagate back into the convolutional layers and 
cause the CNN weights to change substantially. To overcome these instability issues, the following 
training scheme is adopted: The neural network is first trained to predict 2D bounding boxes and 
segmentation masks, as described in (He et al. 2017). Next, all of the neural network weights except 
the attribute head weights are frozen. The network is then trained to predict object attributes for 20 
epochs. Finally, all of the weights are unfrozen, the learning rate is dropped by a factor of 10, and 
the network is trained for a further 20 epochs. 
 
Evaluation Metric and Results: The system is evaluated on the test dataset. The 11-point average 
precision (AP) metric is used as a metric for quantifying the 3D bounding box accuracy (Manning 
et al. 2008). A prediction is considered correct if the 𝐼𝑜𝑈I45 of the predicted bounding box and the 
ground truth is larger than 0.5. The prediction of other attributes like color and material is only 
evaluated if the 3D bounding box is predicted correctly. A color prediction is considered correct if 
all of the RGB values are within 10% of the ground truth. The results are presented in Table 1.  
Finally, the object detection and characterization algorithm is combined with the model updating 
system described in (Ferguson and Law 2019) to automatically update a building information model 
in real time with rich information about newly spawned objects. The end-to-end system for 
automated data capture, object characterization and model updating is summarized in Figure 4. 
 

 

 
Figure 4. Automatically updating a building information model using RGB-D frames collected 
with a mobile robot. Each RGB-D frame is processed using the proposed object detection and 
characterization algorithm, to extract semantic-rich information. This information is then used 
to dynamically update a building information model. 

 
 



SUMMARY AND DISCUSSION 
 

This paper presented a framework and computer vision system for detection and 
characterization of worksite objects, using RGB-D images from a mobile robot. Specifically, the 
paper introduced Extended Object R-CNN, a new computer vision system for worksite object 
detection and characterization. Experimental results have so far demonstrated that Extended Object 
R-CNN could detect worksite objects in RGB-D images, and then populate an ontology for each 
object. The proposed framework supports both categorical and numerical attributes making it 
suitable for a range of automated data capture tasks. 

The proposed framework and algorithm enables semantic-rich information to be 
automatically extracted from RGB-D images. The framework is sufficiently flexible to make it 
useful in a large number of civil engineering applications. The 3D position of each object is 
predicted, allowing detected objects to be added directly to a building information model. Different 
object types can be added to the ontology without changing the underlying algorithms. New 
attributes can be added by simply specifying an encoding function and a loss function. For most 
categorical variables, good results are observed using a one-hot attribute encoding coupled with the 
cross-entropy loss function. Similarly, with continuous numerical variables, the quadratic loss 
function works well with any reasonable choice of encoding. 
 The proposed Extended Object R-CNN algorithm is not without limitations. The algorithm 
is computationally expensive to train and evaluate, requiring several days to train on a powerful 
desktop computer with a single GPU. The evaluation rate was limited to approximately 0.9 
frames/second on the same hardware. Furthermore, the algorithm may not learn effectively when 
training on datasets where certain object attributes are seen very infrequently.   
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