
 1

A Regulation-Centric, Logic-Based Compliance Assistance Framework

 Shawn L. Kerrigan and Kincho H. Law
Department of Civil and Environmental Engineering

Stanford University
Stanford, CA 94305-4020

Email Contact: law@stanford.edu

Abstract

This paper describes the development of a logic based regulation compliance assistance system that builds

upon an XML (eXtendable Markup Language) framework. First, a document repository containing

federal regulations and supplemental documents, and an XML framework for representing regulations

and associated metadata are briefly discussed. The prototype effort for the regulation assistance system

focuses on federal environmental regulations and related documents. The compliance assistance system

is illustrated in the domain of used oil management. The overall objective is to develop a formal

infrastructure for regulatory information management and compliance assistance.

Keywords: XML (eXtendible Markup Language), compliance assistance, regulation management,

document repository, environmental regulations

1 Introduction

In the United States, both federal and state, as well as local governments, have strict regulations imposed

on the protection of the environment. Environmental regulations are complex and voluminous, which can

be disproportionately burdensome on small businesses. A significant amount of regulatory information is

available online through various regulatory portals, and the coverage of online material continues to grow.

However, most of the current online portals are primarily designed for displaying the information for

experienced users and are difficult to use for further processing. Information technology (IT), if properly

designed and developed, has the potential to help the access and retrieval of relevant information and to

facilitate the compliance process. The REGNET research project at Stanford University aims to develop

a formal infrastructure for regulatory information management and compliance assistance.

There has been a push in the United States by the executive office for government agencies to put more

emphasis on compliance assistance in lieu of enforcement to encourage companies to comply with

regulations (Van Wert 2002, National Compliance Assistance Providers Forum 2002). Towards this end,

specialized programs using expert system technologies have been built to assist users in understanding

regulation requirements for particular circumstances (Botkin 2002). One significant limitation of the

 2

systems currently available online is that they do not directly map to the regulations or legal documents

that they represent. The failure to map to the source documents creates four significant disadvantages.

First, because users do not see the regulation text as they interact with the system, users may have

difficulty understanding the results produced by the system. Second, since users do not see the

regulations during processing they may have trouble learning how the regulation works, and may have

difficulty re-tracing the results of the system on paper for validation purposes. Third, since users cannot

track how the system is proceeding with its analysis, they will have trouble investigating background

information on issues or questions the system raises. Fourth, updating the system as the regulation

changes is difficult, since without a mapping between the regulation and the rules in the system it may not

be clear what parts of the system need to be changed when the regulation is altered.

This paper describes our research on developing a compliance assistance infrastructure that builds upon

an XML (eXtendible Markup Language) regulation framework. By using a regulation-centric approach

to structuring a compliance assistance system around the regulation itself, this infrastructure allows clear

linkages to the regulation text, thus overcoming many of the limitations of the systems currently in use.

In particular, because all encoded regulation rules are tied to particular regulation provisions, it is

straightforward to map the compliance process to the provisions.

We first briefly describe a document repository containing federal environmental regulations and

supplemental documents, and an XML framework for representing regulations and associated metadata.

We then describe in detail the prototype effort for the regulation assistance system, along with a

discussion of how the regulation assistance system may fit in the broader compliance process, for

example, linking with online guidance systems. The regulation assistance system is illustrated in the

domain of used oil management.

2 Document Repository and XML Regulation Framework

One objective of the REGNET information infrastructure is to develop a document repository for

environmental regulations. The scope of our current prototype development covers Title 40 of the US

Code of Federal Regulations (40 CFR): Protection of the Environment, along with selected

supplementary and supportive documents that focus on regulations covering hazardous waste and the

management of used oil. Supplemental documents are important because they often contain information

that is necessary for the accurate interpretation of the federal regulation(s) to which they refer (Heffron

and McFeeley 1983). Supplementary documents may come in the form of administrative decisions,

guidance documents, court cases, letters from the general counsel and letters of interpretation from the

Environmental Protection Agency (EPA). The REGNET document repository is designed to make these

 3

important documents more accessible. The contents of the repository are available through the mediation

of one or more searchable concept hierarchies, or through a regulation assistance system (Kerrigan 2003).

We have developed an XML framework for environmental regulations. XML (eXtendible Markup

Language) is a meta-markup language that consists of a set of rules for creating semantic tags used to

describe data elements and provides a mechanism to describe a hierarchy of elements that forms an object

structure. The XML framework is regulation centric and includes XML tags for each level of regulation

text – for example part, subpart, section or subsection – that mirrors the standard structure of regulations.

This framework results in a hierarchical structure for the regulations, with regulation text attached

throughout. Figure 1 shows how a regulation can be decomposed into a hierarchical tree structure.

Figure 2 shows an abbreviated sample of how we represent this hierarchical structure in XML. Parsing

systems have been built to transform the federal regulations from Portable Document Format (PDF) and

HTML into REGNET’s XML framework (Kerrigan 2003). These parsers use pattern-matching

approaches to identify the structure of a regulation and create an explicit XML structure around the

regulation text. With XML, it is possible to augment a regulation with various types of annotation and

regulation-specific metadata rather than to simply structure the regulation according to how it should be

displayed. With respect to the document repository, the metadata types currently added to the regulation

framework include concept tags, reference tags and definition tags.

Figure 1. Decomposition of regulation into a hierarchical tree structure

PART 279—Standards For The Management Of Used
Oil
Subpart B – Applicability
…
§ 279.12 Prohibitions.
(a) Surface impoundment prohibition. Used oil shall not
be managed in surface impoundments or waste piles
unless the units are subject to regulation under parts 264
or 265 of this chapter.
(b) Use as a dust suppressant. The use of used oil as a
dust suppressant is prohibited, except when such activity
takes place in one of the states listed in § 279.82(c).
(c) Burning in particular units. Off-specification used oil
fuel may be burned for energy recovery in only the
following devices:
 (1) Industrial furnaces identified in § 260.10 of this
chapter;
 (2) Boilers, as defined in § 260.10 of this chapter, that
are identified as follows:
 (i) Industrial boilers located on the site of a facility
engaged in a manufacturing process where substances are
transformed into new products, including the component
parts of products, by mechanical or chemical processes;
….

Subsecti
on

Subsecti
on

Subsecti
on

40 CFR

Subpart Subpart Subpart

Section Section Section

…

… …

 contains

…
(a) Surface impoundment prohibition.
Used oil shall not be managed in
surface impoundments or waste piles
unless the units …

Example:

 4

 <regulation id="40.cfr.279" name="Standards For The Management Of Used Oil" type="US Federal">
 …
 <regElement id="40.cfr.279.B" name="Subpart B">
 …
 < regElement id="40.cfr.279.12" name="Prohibitions">
 < regElement id="40.cfr.279.12.a" name="Surface Impoundment prohibition">
 <regText>
 <paragraph>
 Used oil shall not be managed in surface impoundments or waste piles…
 </paragraph>
 </regText>
 </regElement>
 <regElement id="40.cfr.279.12.b" name="Use as a dust suppressant">
 …
 </regElement>
 …
 </regElement>
 …
 </regElement>
 …
</regulation>

Figure 2. Abbreviated XML representation of regulation tree structure

The concept tags allow dynamically generating links to related supporting documents in the document

repository. This is useful because supporting documents and regulations may not directly reference each

other even when they address the same topic. The automatic application of concept tags to the XML

framework means that as new supporting documents are added to the document repository, regulations

stored in the framework can automatically be linked to them via the terms that they share in common.

Concept tags can be generated “semi-automatically” using existing text mining and information retrieval

tools (Kerrigan 2003). Currently, we use software from Semio Corp. to help extract, clean and define

over 65,000 concepts for the 40 CFR regulations and to categorize the concepts according to different

interests and applications.

Regulation provisions tend to contain a large number of casual English references to other provisions.

These references are cumbersome to look up manually, and they reduce the readability of the regulation

text itself. Simple references (for example, “as stated in 40 CFR section 262.14(a)(2)”) and complex

references (for example, “the requirements in subparts G through I of this part”) exist throughout

regulations. Given the large volume of regulations, a manual translation of references would be too time

consuming. A parsing system has been developed using a context-free grammar and a semantic

representation/interpretation system that is capable of tagging regulation provisions with the list of

references they contain (Kerrigan 2003). Instead of building hyperlinks, which tie the reference to a

 5

particular source for the referred document, the reference tags provide a complete specification for what

regulation provision is referenced. Where the regulation is located is not specified so that a viewing

system may select from any document repository of regulations to retrieve the referenced provision. This

provides more flexibility than a rigid hyperlink structure for maintenance and scalability.

The large number of domain-specific terms and acronyms that appear in regulations can make regulation

text difficult for novices to understand. We standardize all definitions with XML elements, which allow

regulation-viewing systems to incorporate explicit definitions of terms and acronyms into their user

interfaces.

3 Regulation Assistance System

This section discusses the development of a regulation assistance system (RAS), which is the focus of this

paper. First, predicate logic is briefly introduced as a form of metadata. Second, additional metadata

added to the XML regulations described earlier to enable a logic-based compliance assistance system are

discussed. Third, the algorithms used for compliance checking are presented.

3.1 Logic-Based Metadata for Compliance Assistance

This section introduces the types of metadata specifically implemented for the web-based compliance

assistance system. Besides the concept, reference and definition tags, we add logic and control processing

metadata to the XML regulation framework. The logic metadata represents a rule or concept from a

regulation using First Order Predicate Calculus (FOPC) logic sentences. The user interface with

compliance questions and possible answers is also encoded in FOPC logic sentences as metadata in the

XML structure. Control processing metadata provides information about which provisions of a regulation

need to be checked for compliance. For the purpose of demonstration, a federal used oil regulation (40

CFR 279) has been manually tagged with regulation logic metadata, with user-interface logic metadata,

and with control processing metadata.

3.1.1 Predicate Logic

Symbolic logic is a representational formalism used to describe concepts, ideas and knowledge. The

formal representation of knowledge can be used to reason about the information and to draw new

conclusions or look for contradictions. Use of formal symbolic logic can also be used to communicate

information between systems (Genesereth 1992). First Order Predicate Calculus (FOPC) is a symbolic

logic language that will be briefly introduced in this section. For a more in-depth treatment of this subject

please refer to (Zohar and Waldinger 1993).

 6

Predicate logic is similar to propositional logic, but allows quantification and the usage of objects.

Predicate logic sentences are composed of connectives, truth symbols (true or false), constants, variables,

predicate symbols and function symbols. Constants and variables denote objects. Predicates define

relationships between objects. Functions define functions on the objects. Predicates and functions have

defined arities that are the number of arguments or terms associated with their use. Terms may be

constants, variables or function expressions. The connectives between elements in a predicate logic

sentence can be “and” (∧), “or” (∨), “not” (¬), “implies” (⇒), or “equivalent” (≡). Quantifiers are used

to quantify predicate logic variables as universally or existentially quantified. There exist rules that may

be used to perform proofs using these elements of predicate logic.

We use FOPC to model regulations in this research work because it offers a flexible, standardized, and

computable representation. The choice of FOPC also introduces a great deal of flexibility for the choice

of a reasoning system, since there are many reasoners available for working with FOPC. The current

system, using FOPC, cannot precisely model the regulations. FOPC does, however, allow us to model the

regulation rules in a simplified form that is sufficient for constructing a system to guide users through

regulations and identify potential conflicts with the regulation rules.

In order to represent logic statements in an XML-based representation, there are syntactic limitations that

must be met to comply with the XML standard. For example, XML elements are defined by the XML

standard to start with “<”, as in “<regText>”. This conflicts with the standard logic syntax used for

reverse implications, “<-“, and equivalences, “<->”. A simple substitution of text provides the solution

for this problem, where the illegal XML character sequences are replaced with legal ones.

The substitutions currently being used to represent FOPC in an XML compliant syntax are shown in

Table 1. Note that the substitutions for “->” and “|” are not necessitated by XML standards, but are done

so that the XML logic uses a consistent representation formalism. The substitutions for “<-”, “<->”, and

“&” are required by XML standards. The substitutions are reversed by the logic processing systems that

read the XML regulation so that the standard syntax is used when providing the data to a logic reasoner.

The XML compliant substitutions also become reserved words in the logic representation language.

Since the words in the right column of Table 1 will be substituted with the logic symbols in the left

column, words in the right-hand side of the table are reserved words that cannot be used for logic

predicates or function names.

 7

Table 1. Substitutions for XML compliant logic sentences

Standard logic syntax XML compliant substitution
-> ForwardImplies
<- ReverseImplies
<-> EquivalentTo
& AND
| OR

3.1.2 Basic Logic Elements

Logic can be added to the XML-based regulation document to facilitate manipulation and interpretation

of the document. Internal contradictions within the regulation can be checked for, contradictions between

regulation documents can be identified, and compliance checking systems can be built to verify that a

user is in compliance with the regulation. The approach of tagging XML structured regulations with

FOPC introduces an open platform consisting of structured text and embedded logic. Logic elements can

be added to the XML structure within the regElement XML elements. The logic elements are denoted by

“logic” tags, and may contain either logicSentence or logicOption elements.

The logicSentence elements are used to tag regulation provisions throughout the document to represent

their logical meaning. For example, tagging the root regulation element with a logicSentence element

specifies that the logic sentence should be applied to the entire document. The logicSentence elements

are generally used to define the rules and concepts expressed in a regulation. Figure 3 illustrates a

logicSentence element, where the logicSentence element describes a rule that used oil is not a valid dust

suppressant. The rule states that for all objects “o”, if “o” is used oil then “o” is not a valid dust

suppressant. The use of “ForwardImplies” instead of the more commonly used logic syntax “->” is

necessitated by the XML standard.

The logicOption element is used to build a structured question and answer system that constructs logic

sentences based on the user’s input. A logicOption element contains one question element to prompt a

user for input, and one or more answer elements to represent the possible answers and the associated logic

statements for the question. The user interacts with the system in plain English, but the answers are

mapped to logic statements so that they can be used for compliance checking. Figure 4 illustrates the

usage of a logicOption element that assists with gathering user input. This particular element maps the

user’s response to a question about the use of used oil to logic statements that reflect the user’s answer.

 8

Figure 3. Illustration of the logicSentence element

Figure 4. Illustration of a logicOption element

3.1.3 Simple Control Processing Elements

There are three basic control elements, namely: goto, switchTo, or end. These three control elements

allow regulation designers to specify what regulation provisions may or may not need to be investigated.

While not FOPC in nature, control elements provide processing logic and therefore may be used within

the logic XML elements.

The goto control element specifies a regulation provision that the system should process next; returning to

the current provision once the specified provision has completed its check. The goto element is useful

when it is necessary to check additional regulation provisions without abandoning the current line of

processing. For example, frequently a regulation provision will refer readers to another regulation

provision that should be read before continuing.

Similarly, the switchTo element specifies a regulation provision to process next, but processing should

not return to the current provision once the specified provision has completed its check. This is useful

<logicOption>
 <question>
 Is the used oil used as a dust suppressant?
 </question>
 <logicOpt answer = "yes">
 <logic_ans>
 (usedOil(oil1) AND dustSuppressant(oil1)).
 </logic_ans>
 </logicOpt>
 <logicOpt answer = "no">
 <logic_ans>
 (usedOil(oil1) AND (-(dustSuppressant(oil1)))).
 </logic_ans>
 </logicOpt>
</logicOption>

<logicSentence>
 all _o (usedOil(_o) ForwardImplies -(dustSuppressant(_o))).
</logicSentence>

 9

when a regulation provision specifies some conditions under which a different regulation provision will

apply.

Figure 5 illustrates the goto and switchTo elements. This example instructs the system to process Section

279.65, and once processing for that section is complete to switch processing to Section 279.73. The

control attribute “target” is used to direct processing control to move to a reference. For example, target

= “40.cfr.279.65”, refers the compliance processing system to Section 279.65 in 40 CFR.

Figure 6 illustrates an end element, which signals that the specified provision should not be investigated

further. Since regulation checks may be done at any level of the regulation document, it is important to

specify a target reference for the end element. For example, if a compliance check is initiated at Section

40 CFR 279.12 and an end element is encountered that specifies that Subsection 40 CFR 279.12(a) is

complete, as shown in Figure 6(a), the check against the higher level Section 40 CFR 279.12 is not

finished and should continue with the next subsection it contains. On the other hand, if a compliance

check is initiated at Subsection 40 CFR 279.12(a) and an end element is encountered that specifies that

the higher level Section 40 CFR 279.12 is complete, as shown in Figure 6(b), processing of Subsection 40

CFR 279.12(a) should stop because the subsection is contained within Section 279.12.

3.1.4 Conditional Control Processing Elements

The simple control elements specify immediate and unconditional changes in the processing control. The

goto, switchTo and end elements all define actions that should be executed immediately, without regard

for any information contained in the logic sentences already gathered by the system. What we also need

is a way to specify that under certain logical conditions a regulation provision should be checked or the

process should not proceed any further. The logic constructions used are of the form “X implies

provision Y applies” and “X implies provision Y does not apply”. Figure 7 shows a regulation provision

where the applicability of a regulation subpart depends partly on information that may not be currently

available. In this example the section 40 CFR 279.23 may not have been encountered yet, so it may not

be possible to determine if subpart G should be processed.

Conditional control statements are written in standard logic sentences, with a forward implication which

contains the predicate “provApplies” or “provDoesNotApply” as the consequent of the implication. The

two predicates indicate whether the provision contained by the predicate should or should not be

processed. Figure 8 illustrates how the provision in Figure 7 can be represented in FOPC. Using this

representation, if a company is a used oil generator that also burns the used oil it generates, Subpart G

 10

Figure 5. Illustration of the goto and switchTo elements

<control>
 <end target = “40.cfr.279.12.a” />
</control>

 <control>
 <end target = “40.cfr.279.12” />
</control>

 6(a) 6(b)

Figure 6. Illustration of the end element

Figure 7. A provision from 40 CFR 279

Figure 8. Logic representation for conditional control statement

will apply if 40 CFR 279.23 is not satisfied. The complete logic representation for 40 CFR 279.20(b)(3)

should include an element that directs the system to check for compliance with 40 CFR 279.23 if

someone is a used oil generator who also burns used oil.

<logicSentence>
 all _client _oil ((generator(_client) AND usedOil(_oil) AND
 burnsForEnergy(_client, _oil) AND -satisfied(40_cfr_279_23))
 ForwardImplies provApplies(40_cfr_279_G)).
</logicSentence>

40.cfr.279.20.b.3 states:
Generators who burn off-specification used oil for energy recovery, except under the
on-site space heater provisions of §279.23, must also comply with subpart G of this
part.

<control>
 <goto target = “40.cfr.279.65” />
 <switchTo target = “40.cfr.279.73” />
</control>

 11

3.2 Logic-Based Compliance System

This section describes in detail how the XML regulation framework can be used to support compliance

assistance services.

Figure 9 shows the organization of the RAS system which includes a web interface (RASweb), the

RCCsession component, and an automated-deduction program. The system is implemented with a web

interface built upon a compliance-checking component (RCCsession). The RCCsession component

controls the process used to check for violations. The process begins by parsing the XML-structured

regulation to extract the information necessary to run a compliance check against the document. This

information includes the logic metadata as well as the control processing metadata. The RCCsession

follows the control processing metadata in the XML-regulation structure and manages lists of regulation

rules and the associated user responses. A user response is mapped to corresponding FOPC user-interface

logic sentences for that response according to the associated logicOption element’s contents. Whenever

the RCCsession component has a set of logic sentences that it needs to check for contradictions, an input

file containing those logic sentences is generated and passed onto an automated deduction system to

check for a proof. The RCCsession then reads the results produced by the automated deduction system to

see if a proof has been found and then takes whatever actions necessary to continue the compliance

checking procedure. In short, the RCCsession controls the flow of processing while the theorem prover is

used to check for logical contradictions in the background. The system design is such that any FOPC

theorem prover can be used to perform the logical contradiction checks. Presently, we employ Otter, a

publicly available theorem prover developed at Argonne National Laboratory (McCune 1994).

Figure 10 shows the basic compliance assistance process. First, the XML regulation is verified. Second,

logic sentences are gathered and processed as the RAS moves dynamically through the regulation and

interacts with the user. Third, results of the analysis are compiled and presented to the user. The

following sections describe in detail the three stages of the compliance assistance process.

3.2.1 XML Regulation Verification

The RAS performs two verification checks on an XML regulation before the regulation is used for

compliance checking. First, the XML regulation is checked against a regulation DTD (Document Type

Definition), which defines the valid structures for an XML regulation (Navarro et.al. 2000). The

verification with the DTD primarily provides a “grammatical” check to ensure that the structure of the

regulation can be parsed and interpreted. The second step is to verify that all the logic rules contained in

 12

logicSentence elements are consistent. The initial check for problems with the logic rules is important.

The RAS system performs compliance checks by identifying logical contradictions between user input

and regulation rules. If the regulation rules themselves contain a contradiction, compliance checking

cannot proceed.

Figure 9. Organization of regulation assistance system

XML-based
Regulations

Additional
Input Files

Interactive
User Input

Regulation
Compliance

Decision

Logic input file Found proof / no proof found

RASweb

•Provides web interface
•Displays regulation information

RCCsession

•Implements compliance
checking procedure

User input Results / requested information

* Otter is an automated-
deduction program developed
by at Argonne National
Laboratory (McCune 1994)

Otter*

•Attempts to find proof by
contradiction from input file

 13

Figure 10. Regulation compliance process

To check for consistency of the logicSentence elements, the system extracts all the logicSentence

elements from the target regulation and sends them to the theorem prover, Otter. If the theorem prover

does not find a contradiction in the logic sentences within a given time period, the logic sentences are

assumed to be consistent. This check attempts to ensure that the set of logic rules embedded in the XML

regulation do not contain a contradiction. The initial check for contradictions in regulation rules does not

guarantee that there are no contradictions in the rules, since Otter is not guaranteed to find a contradiction

if one exists. In our experience, however, this initial logic check has been fairly robust.

3.2.2 Gathering and Processing Logic Sentences

Given an initial provision selected for compliance checking, related provisions are gathered and processed

using a modified depth-first tree traversal of the XML structure. The procedure deviates from depth-first

processing as control elements are encountered. The initially selected provision can be anywhere in the

XML regulation tree. A provisions-to-process (PTP) stack maintains a list of regulation provisions that

need to be investigated, and an already-processed-provisions (APP) list keeps track of the provisions for

which processing is complete.

The compliance checking process is basically a process of gathering logic sentences from the regulation

rules, control elements, and user responses and doing proofs to check for contradictions.

Figure 11 shows the flowchart for gathering and processing logic sentences. The system starts from the

top provision in the PTP stack. Any logic rules from that provision are noted, and any control elements

Start

Verify
Regulation

Gather and Process
Logic Sentences

Compile
Results

End

 14

found are also processed. If there is no question associated with the provision or its sub-provisions, the

current provision is moved to the APP list and the next provision on the PTP stack is processed. If there

is a question (i.e., a logicOption element) associated with the provision, the user is asked for an answer to

the question. The XML elements, both logic and control elements, associated with the user’s answer are

then processed before the system continues to the next question. If the PTP stack becomes empty or a

contradiction is found in the logic sentences, this stage of processing is complete. The details for

gathering and processing logic sentences are described below.

3.2.2.1 Processing logicOption Elements

The procedure for identifying contradictions between the user inputs and the regulation rules is shown in

Figure 12. The logicOption elements provide a mapping from the user responses to the control elements

that direct further processing and the logic sentences that can be verified against logic rules in the

regulation. After each question is answered, the logic associated with the selected answer is recorded and

any control elements associated with the answer are processed. The theorem prover is sent all the

regulation rules encountered during processing; these include all the logic sentences selected by the users

in response to questions, and the logic sentences stating that the provisions with which the compliance

check was initiated must be satisfied.

 15

Start

End

process
next provision

Process question:
Get answer to
question
map answer to
logicOption
contents
process any
control elements
(Figure 13)

Are logic
sentences consistent?
(by proof using Otter,

Figure 12)

Yes

Yes

Yes NoNo

Process provision:
Add any logic
rules from the
current provision
process any
control elements
(Figure 13)

No

Are logic
sentences consistent?
(by proof using Otter,

Figure 12)

Yes No
Is there an

unanswered question
associated with the

provision?

Is there
another provision

to process?

Figure 11. Gathering and processing logic sentences

 16

Start

Use Otter to check
logic sentences for a
contradiction:

Send all rule and
user response logic
sentences to Otter
Get results of Otter
proof attempt

Assume logic
setences are

consistent

End

Found proof?

Logic sentences are not
consistent:

Read proof to identify
logic sentences used
in proof
Map logic sentences
used in proof back to
the provision rules or
user responses they
originated from

Yes

No

Figure 12. Processing FOPC with Otter

After Otter attempts to find a proof, the RAS checks to see if the theorem prover has been able to find a

contradiction in the input logic sentences. If no proof has been found, the logic sentences are assumed to

be consistent. If a proof has been found, the proof steps are read to find the input logic sentences that

contributed to the contradiction. These input logic sentences are then mapped back to the provision rules

or the user responses from which they originated. This allows the system to identify what is contributing

to the logical contradiction (i.e., non-compliance with the regulation).

Answers to the questions contained in the logicOption elements are recorded in a log file. This file

enables the system to automatically process questions that have been answered in the past. This log file

of answers also forms a detailed audit trail that can be provided to the user.

 17

3.2.2.2 Processing Control Elements

Figure 13 shows how the two types of control elements, simple and conditional, are processed. First,

rules are followed to update the PTP stack and APP list according to any simple control statements.

Second, the system iterates through each conditional control statement and attempts to prove that the

conditions of the control statement are satisfied.

The processing method and the effects of the three simple control elements on the PTP stack and APP list

are shown in Figures 14-16. For the goto control element, examples of the initial PTP stack are shown on

the left and the resulting stacks after taking the goto elements into account are shown on the right side of

Figure 14. In the simplest case (1), the goto element adds the new provision specified to the PTP stack.

In case (2), adding a provision to the stack is ignored because only a single call to a particular regulation

provision may be in the PTP stack at a time to prevent infinite loops. Case (3) illustrates the idea that any

processed provisions in the APP list cannot be added to the PTP stack. Case (4) demonstrates that even if

the system is processing a sub-provision of the top PTP provision, the goto element operates similar to the

other cases (for example, adding the new provision to the PTP stack).

Start

Update state according
to any simple control

elements

End

Is there an
unprocesed

conditional control
statement?

Use Otter to test if
conditions of control
statement are met

(Figure 17)

Yes

No

Figure 13. Processing control elements

 18

40.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11 40.cfr.279.12

40.cfr.279.11

40.cfr.279.23
goto

279.23

goto
279.11(empty)

(empty)

(empty)

(empty)

40.cfr.279.12

40.cfr.279.11

40.cfr.279.23
goto

279.23 40.cfr.279.12

40.cfr.279.11

40.cfr.279.23

goto
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12.a (empty)

40.cfr.279.12

40.cfr.279.11

40.cfr.279.23

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

40.cfr.279.12

40.cfr.279.12

40.cfr.279.12

(empty)

(1)

(2)

(3)

(4)

Figure 14. The goto element

40.cfr.279.1140.cfr.279.12

40.cfr.279.11

end
279.12(empty)

40.cfr.279.12

40.cfr.279.12

40.cfr.279.11

end
279.2340.cfr.279.23 40.cfr.279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.12

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11

end
279.12.a(empty)

40.cfr.279.1240.cfr.279.12 40.cfr.279.12.a

40.cfr.279.12

40.cfr.279.11

end
279(empty)40.cfr.279.12 40.cfr.279(empty)

(1)

(2)

(3)

(4)

Figure 15. The end element

 19

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12(empty) 40.cfr.279.23

40.cfr.279.11

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.23

40.cfr.279.1140.cfr.279.23

40.cfr.279.12

40.cfr.279.12

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12.a(empty) 40.cfr.279.23

40.cfr.279.11

40.cfr.279.12.a

40.cfr.279.12

(1)

(2)

(3)

Figure 16. The switchTo element

The processing rules for the end and switchTo control elements are shown in Figure 15 and Figure 16,

respectively. The basic effect of the end control element is that the targeted provision is removed from

the PTP stack if it exists there, and added to the APP list. The basic effect of the switchTo control

element is that the top provision is removed from the PTP stack and added to the APP list, and the

provision specified by the switchTo element is added to the PTP stack. The switchTo element is provided

for convenience, since it has the same effect as a goto element combined with an implied end element for

the current provision.

Processing the logic-based conditional control elements requires the use a FOPC theorem prover to check

if the antecedents of the implications are satisfied. The process is shown in Figure 17. For each

conditional control statement, Otter is sent all current logic rule and answer sentences, along with a logic

sentence negating the target of the logic-based control statement. The negated target of the conditional

control statement is necessary because the theorem prover constructs proofs by contradiction. If Otter

finds a contradiction, the control statement is executed. If the statement is of the “provApplies” variety,

the targeted provision is added to the PTP stack. If the statement is of the “provDoesNotApply” variety,

the targeted provision is added to the APP list and removed from the PTP stack if it is located there. The

targeted provision may not necessarily be in the PTP stack, since it may not have been previously added

to the stack.

 20

Start

Use Otter to check if
conditions of control
statement are satisfied:

Send to Otter all rule
and user response
logic sentences,
plus logic-based
control statement
being tested
Get results of Otter
proof attempt

control statement
does not apply

End

Found proof?

control statement
applies, update state

information

Yes

No

Figure 17. Processing logic-based control statements

3.2.3 Compilation of Results

The questioning procedure terminates when either a logical contradiction is found or the PTP stack is

empty. When the questioning procedure ends due to a logical contradiction being found, the system

returns a result stating that there is a compliance problem and a detailed report is provided for the user to

help identify the problem. All the questions, answers and relevant provisions that contributed to the

logical contradiction are displayed for the user. An example screen shot of the system results is shown in

Figure 18.

When the questioning procedure ends due to an empty PTP stack, the system has examined all relevant

logic sentences and failed to find any logical contradictions (i.e., the system is unable to prove

 21

Figure 18. Compliance summary with questions contributing to non-compliance shown

noncompliance). Note that this is different from proving that the user is in compliance with the

regulation. The procedure attempts to show noncompliance with the regulation, and when the procedure

fails to show noncompliance the system returns a result stating that it appears the user is in compliance

with the regulation.

4 Applications

The regulation assistance system (RAS) has been built as a demonstration platform to implement the

compliance checking procedure and to illustrate some of the tools achievable with the metadata in the

XML regulation framework. The RAS has been written as a Java servlet, a java-based program that is

designed to run on servers and is similar in usage to CGI (Common Gateway Interface) programs

(Callaway 2001). The RAS is run as a web application by Tomcat, a java-based application server being

produced by the Apache Jakarta Project (Brittain and Darwin 2003) These examples show the use of the

RAS for a compliance checking session. and illustrate the possibility of linking the RAS with an online

guidance system.

 22

4.1 Compliance checking session

Figure 19 shows the main menu of the RAS, where the user can enter the regulation provision or

provisions to be checked. Then, the system asks the user a series of questions, halting when it makes a

compliance decision. Figure 20 is a screen shot of a compliance session in progress. The text for the

current section of the regulation is shown while the system is asking the user questions, with the exact

provision shown in bold. In addition, explicit definitions of terms and acronyms are incorporated in the

user interface by highlighting words with definitions, and providing pop-up definition or acronym

explanations when a user moves the mouse over the highlighted terms. The RAS also allows the

browsing of cross-referenced regulation provisions to make reading the regulation less cumbersome. An

example of a reference link is shown in Figure 20 with the underlined link following Subsection 40 CFR

279.71(b).

The regulation assistance system assists the user in locating supplementary documents such as guidance

documents, letters of interpretations, and administrative decisions by using the “concept” elements in the

XML regulation to link regulation provisions to the document repository. By identifying documents in

the document repository that share “concepts” in common with a particular regulation provision,

supplementary information that is relevant to that provision can be identified. An example of this feature

is shown in Figure 20 and Figure 21. Figure 20 shows the concepts from the XML regulation, which

function as predefined search terms, linking to the document repository. Figure 21 shows how concept

searches can lead into the document repository, and from there users can locate relevant supplementary

documents.

In addition to the answers for logicOption elements, the system also includes an optional answer for “I

don’t know” (see Figure 20). With this option, the system forks the compliance-checking process along

all possible answers to the question. This allows the user to explore all available questions and answers

for the compliance session. Once the user has answered all the questions for all the compliance checking

cases, the results for each case are presented as shown in Figure 22.

Upon completing a compliance check, a user may view and download a log file of the compliance

checking session as shown in Figure 23. This feature is valuable for record keeping or when revisiting

the regulations at a later date. Uploading log files allows users to check for compliance against

regulations that have been modified since the previous compliance check. Log files may be modified and

resubmitted to reflect changing operations or allow checking of different scenarios. Modifications to the

log file are made by simply removing the answers that a user does not wish to keep, as shown in Figure

24.

 23

Figure 19. Main menu of the regulation assistance system

Definitions

Search Terms/Concepts

Link to Reference
Definitions

Search Terms/Concepts

Link to Reference

Figure 20. Compliance assistance check in progress

 24

Letter of
Interpretation

Search by Concept
Category

Letter of
Interpretation

Search by Concept
Category

Figure 21. Accessing documents in the document repository

Figure 22. Example with multiple answers during compliance checking

 25

Figure 23. A log of compliance assistance session

Figure 24. Editing compliance assistance log

 26

4.2 Linking Online Guidance Systems with the RAS

The regulation assistance system primarily addresses the problem of helping to determine whether one is

in compliance with a regulation by guiding the users through the regulation. The RAS can also be used as

a component to be linked to by other systems. Towards that end, the RAS is designed such that it can

initiate compliance checks at any point within a regulation, and a compliance check can be started by

connecting to the RAS with a target regulation encoded in a web browser’s URL.

To demonstrate, a sample online guide is built for vehicle maintenance shops. The online guide is

adapted from a paper-based guide developed by the New York State Department of Environmental

Conservation Pollution Prevention Unit (2002). Our adaptation is for demonstration purposes only since

the original guide provides state regulation references while our online guide links users to federal

regulations analogous to the state requirements. In the case of used oil regulations the New York state

regulations are similar to the federal regulations, so linking to federal regulations adequately illustrates

the functionality possible with the system.

The vehicle maintenance guide explains in plain language why vehicle maintenance shops are regulated,

and how the vehicle maintenance shops should follow the regulations. The guide then lists a number of

common materials and activities used by vehicle maintenance shops in the course of business. Each of

these materials or activities has a web page dedicated to explain in plain language the regulatory

requirements governing the material or activity. The original paper-based guide explains general

requirements and then references applicable regulations for more detail. This creates a problem, because

when readers are referred to the regulation, they are back to the original dilemma that the guide is

attempting to address; the problem of dealing with all the issues associated with finding, working with,

and interpreting regulations. The online adaptation provides a solution to the reference problem in the

form of an additional feature that links references to the regulation assistance system. These links enable

users to click on referenced regulations, which will connect them to the RAS to check for compliance.

Figure 25 through Figure 27 illustrate the link between the vehicle maintenance shop online guide and the

regulation assistance system. Figure 25 shows the web page for the vehicle maintenance shop online

guide, from which users may access information on specific materials or processes, like used oil.

Selecting the used oil link brings the user to the web page illustrated in Figure 26, which shows the

regulatory requirements for used oil. Note the reference in Figure 26 to a regulatory provision, 40 CFR

279.23, which is used as a link to the regulation assistance system. Figure 27 shows the RAS system, as

 27

Figure 25. Vehicle maintenance shop compliance guide

Figure 26. Compliance guide for used oil

 28

Figure 27. Compliance guide linked to RAS

accessed from the used oil web page of the vehicle maintenance shop online guide. From the RAS

system users can check for compliance with the referenced used oil regulation provision or connect to the

document repository to look for related supplementary documents.

5 Related Research

Representation of regulations and laws has been an active research area for decades. There has been a

great deal of work done on building expert systems for law (Sergot et.al. 1986, Wahlgren 1992,

Zeleznikow and Hunter 1994). Bench-Capon provided a review on the applications of knowledge-based

systems for legal applications, particularly the research and development efforts related to the Alvey

DHSS Demonstrator project in the U.K. (Bench-Capon 1991). The reference includes a large number of

citations that appeared before 1990 that are related to logic and rule based approaches and their

application in legal systems. Much of the earlier work in IT and law focused on building systems to

optimize decisions with respect to laws, particularly tax law (McCarty 1977). Logic-based approaches

have also been applied to engineering standards processing (Kiliccote 1996, Kiliccote and Garrett 1998,

Yabuki 1992). Some of the recent work has focused on investigations into case-based reasoning and

information retrieval (Brüninghaus and Ashley 1997). Methodologies for tailoring legal documents to

users’ needs have also been studied (Royles and Bench-Capon 1998, Royles 2000). While legal

knowledge representation and reasoning has been an active research topic (ICAIL 1999, 2001, 2003), an

 29

integrated approach covering the management of regulations, efficient access and retrieval of documents

and tools for compliance checking is missing.

The past thirty years have seen significant advancements in theorem-proving technology (Wos and Pieper

1999). Research for new formalisms and specialized logics continue to improve reasoning speed and

non-monotonic reasoning capabilities (Greiner et.al. 2001, Shanahan 1997). FOPC does not have the

expressive power to deal with issues of open texture, deontic modality, or subjunctive conditionals, which

are active areas of research (Jones and Sergot 1993, Sanders 1991). Even though we use a simplified

representation of the regulation rules in this work, logic and other metadata may be useful for a variety of

systems (Lauritsen 1993).

Two research projects in particular are closely related to the work presented in this paper. Royles (2000)

wrote his Ph.D. thesis on the intelligent presentation and tailoring of online legal information. A

prototype implementation was built to provide private consultations with users to help them identify

relevant benefits they might be able to collect from the government. Royles’ work provides important

guidance for how many of the privacy questions that might arise from work in this paper could be

addressed, and provides a model for how a tiered implementation of the compliance system might be

designed.

Wang (2003) discussed in his thesis the development of an integrated and distributed information

management infrastructure to support hazardous waste compliance, research work that was a precursor to

the work presented in this paper, deals with the information organization of regulations and the issues of

information interoperability for the compliance process. These are important issues in the design of any

regulation compliance assistance system.

6 Summary and Discussion

The goal of the REGNET research project is to develop an infrastructure for regulatory information

management and compliance assistance. This paper describes our research on developing a compliance

assistance infrastructure that builds upon an XML-based regulation framework. There are two distinct

features worth mentioning.

Annotating XML regulations with logic elements and processing them in the manner described in this

paper has a performance advantage over simply building a large knowledge base of logic sentences. The

primary advantage of the approach described is that the number of logic sentences that need to be handled

by the reasoning subsystem (i.e., Otter) is reduced. The XML structure allows the system to properly

scope the meta-data and reduce the amount of extraneous data passed to the reasoning system. Only the

 30

logic and control processing metadata necessary for the compliance checking are acquired and

dynamically loaded into the reasoning system. This is important because doing logic proofs is

computationally intense, and reducing the number of extraneous logic sentences reduces the processing

time for proofs and increases the complexity of problems that can be handled.

Online regulation guides located anywhere can build upon the compliance-checking capabilities of the

regulation assistance system. Many different compliance guides provided by regulators, industry trade

groups, or commercial third party assistance providers could build upon this design by developing online

plain language compliance guides linked to regulation assistance systems. An individual attempting to

comply with regulatory requirements could identify a relevant online guide addressing the appropriate

industry focus for his or her situation. The online guide could then refer the user to the relevant parts of

applicable regulations by using hyperlinks to a regulation assistance system. This design allows many

different online guides to all refer back to a single regulation assistance system.

This paper has described current work on building an initial document repository, XML structure for

regulations, and a regulation assistance system. There are many future research questions related to

regulation management system. These include: How can automated tools be built to help entities find

information on state and federal laws, as well as identify sources of assistance with compliance questions

and problems? How can the XML regulation structure be extended, particularly to allow other logic

formalisms and more advanced annotation with legal interpretations? Can more advanced forms of logic

be incorporated to more precisely represent the regulation? How will multiple, domain specific,

regulation assistance systems interoperate? How can security and privacy be provided when using a

compliance assistance system?

Acknowledgments

This research project is sponsored by the National Science Foundation, Contract Numbers EIA-9983368

and EIA-0085998. The authors would like to acknowledge an equipment grant from Intel Corporation

and the support by Semio Corporation in providing the software for this research. The authors would like

to thank Professors Gio Wiederhold of the Computer Science Department, Barton Thompson of the Law

School, and Jim Leckie of the Department of Civil and Environmental Engineering for their valuable

suggestions in this project. Last but not least, the authors would like to acknowledge the contributions by

the REGNET research team members, Charles Heenan, Haoyi Wang, Gloria Lau and Jie Wang, in the

Engineering Informatics Group.

 31

References

Bench-Capon, T. J. M. (1991), Knowledge Based Systems and Legal Applications, The APIC Series 36,

Academic Press.

Botkin, A. (2002), “Wizards, Advisors and Websites, Oh My! Interactive Electronic Tools for

Compliance Assistance,” presented at the National Compliance Assistance Providers Forum, U.S.

Environmental Protection Agency and Texas Commission on Environmental Quality, San Antonio,

TX . (see http://www.epa.gov/compliance/resources/briefings/assistance/stakeholders/electronic.pdf.)

Brittain, J. and Darwin, I. F. (2003), Tomcat: The Definitive Guide, O'Reilly & Associates.

Brüninghaus, S. and Ashley, K. D. (1997), “Finding Factors: Learning to Classify Case Opinions Under

Abstract Fact Categories,” Proceedings of Sixth International Conference on Artificial Intelligence

and Law, Melbourne, Australia, ACM Press, pp. 123-131.

Van Wert, J.M. (2002), “Business Compliance One-Stop: Creating a Single Face of Government,”

presented at the National Compliance Assistance Providers Forum, U.S. Environmental Protection

Agency and Texas Commission on Environmental Quality San Antonio, TX. (see

http://www.epa.gov/compliance/resources/briefings/assistance/stakeholders/initiative.pdf.)

Callaway, D. R. (2001), Inside Servlets: Server-Side Programming for the Java Platform, 2nd Edition,

Addison-Wesley.

Genesereth, M.(1992), Knowledge Interchange Format, Technical Report Logic-92-1, Computer Science

Department, Stanford University, Stanford, CA.

Greiner, R., Darken, C., and Santoso, N. I. (2001), “Efficient Reasoning,” ACM Computing Surveys,

Volume 33, Issue 1, pp. 1-30.

Heffron, F. A. and McFeeley, N. (1983), The Administrative Regulatory Process, Longman.

Jones, A. J. I. and Sergot, M. (1993), “On the Characterisation of Law and Computer Systems: the

Normative Systems Perspective,” in Deontic Logic in Computer Science: Normative System

Specification, J.-J.C. Meyer and R.J. Wieringa, Editors. John Wiley Publ. Co., pp. 275-307.

Kerrigan, S. L. (2003), A Software Infrastructure for Regulatory Information Management and

Compliance Assistance, Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford

University, Stanford, CA.

Kiliccote, H. (1996), A Standards Processing Framework, Ph.D. Thesis, Department of Civil and

Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA..

 32

Kiliccote, H. and J. H. Garrett, Jr. (1998), “Standards Modeling Language,” Journal of

Computing in Civil Engineering, Vol. 2, No. 9, pp. 129-135.

Lauritsen, M. (1993), “Knowing Documents,” Proceedings of the Fourth International Conference on

Artificial Intelligence and Law, Amsterdam, The Netherlands, ACM Press, pp. 184-191.

McCarty, T. (1977), “Reflections on Taxman: An Experiment in Artificial Intelligence and Legal

Reasoning,” Harvard Law Review, Volume 90, pp. 837-893.

McCune, W. W. (1994), “Otter 3.0 Reference Manual and Guide,” ANL-94/6, Mathematics and

Computer Science Division, Argonne National Laboratory, Argonne, IL.

National Compliance Assistance Providers Forum (2002), U.S. Environmental Protection Agency and

Texas Commission on Environmental Quality, San Antonio, TX.

Navarro, A., White, C., and Burman, L. (2000), Mastering XML, SYBEX Inc..

New York State Department of Environmental Conservation Pollution Prevention Unit (2002),

Environmental Compliance And Pollution Prevention Guide for Vehicle Maintenance Shops.

ICAIL (1999), Proceedings of the 7th International Conference on Artificial Intelligence and Law, Oslo,

Norway, ACM Press.

ICAIL (2001), Proceedings of the 8th International Conference on Artificial Intelligence and Law, St.

Louis, U.S., ACM Press.

ICAIL (2003), Proceedings of the 9th International Conference on Artificial Intelligence and Law,

Edinburgh, Scotland, UK, ACM Press.

Royles, C. A. and Bench-Capon, T. J. M. (1998), “Dynamic Tailoring of Law Related Documents to User

Needs,” Proceedings of 9th International Workshop on Database and Expert System Applications,

Vienna, Austria, IEEE, pp. 609-613.

Royles, C. A. (2000), Intelligent Presentation and Tailoring of Online Legal Information, Ph.D. Thesis in

Department of Computer Science, University of Liverpool, Liverpool, U.K..

Sanders, K. E. (1991), “Representing and Reasoning About Open-Textured Predicates,” Proceedings of

the Third International Conference on Artificial Intelligence and Law, Oxford, England, ACM Press,

pp. 137-144.

Sergot, M. J., Sadri, F., Kowalski, R. A., Kriwaczek, F., Hammond, P., and Cory, H. T. (1986), “The

British Nationality Act as a Logic Program,” Communications of the ACM, Volume 29, Issue 5, pp.

370-386.

Shanahan, M. (1997), Solving the Frame Problem: A Mathematical Investigation of the Common Sense

Law of Inertia, MIT Press, Cambridge, MA.

 33

Stranieri, A. and Zeleznikow, J. (1999), “The Evaluation of Legal Knowledge Based Systems,”

Proceedings of Seventh International Conference on Artificial Intelligence and Law, Oslo, Norway,

ACM Press, pp. 18-24.

Wahlgren, P. (2003), Automation of Legal Reasoning, Kluwer Law and Taxation Publishers, 1992.

Wang, J., Distributed Information Organization and Management for Hazardous Waste Regulation

Compliance Checking, Ph.D. Thesis, Department of Civil and Environmental Engineering, Stanford

University, Stanford, CA..

Wos, L. and Pieper, G. (1999), A Fascinating Country in the World of Computing, World Scientific

Publishing Co. Pte. Ltd..

Yabuki, N. (1992), An Integrated Framework for Design Standards Processing, Ph.D. Thesis,

Department of Civil Engineering, Stanford University, Stanford, CA.

Zeleznikow, J. and Hunter, D. (1994), Building Intelligent Legal Information Systems: Representation

and Reasoning in Law, Kluwer Law and Taxation Publishers.

Zohar, M. and Waldinger, R. (1993), The Deductive Foundations of Computer Programming, Addison-

Wesley Publishing Company, Inc..

