

Logic-Based Regulation Compliance-Assistance
Shawn Kerrigan
Stanford University

Dept. of Civil & Environmental Eng
Stanford, CA 94305-4020

kerrigan@stanford.edu

Kincho H. Law
Stanford University

Dept. of Civil & Environmental Eng
Stanford, CA 94305-4020

law@stanford.edu

ABSTRACT
This paper focuses on the creation of a first order predicate
calculus based regulation compliance-assistance system built upon
an XML framework. Two areas of research that support the
development of the compliance assistance system are discussed.
The first is a document repository containing federal and state
regulations and supplemental documents. The second is an XML
framework for representing regulations and associated metadata.
The prototype effort for the regulation assistance system has been
focused on environmental regulations and related documents. The
compliance assistance system is illustrated in the domain of used
oil management. The objective of this research is to develop a
formal information infrastructure for regulatory information
management and compliance assistance.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Search
and Retrieval; [Artificial Intelligence]: Knowledge
Representation Formalisms and Methods – Predicate logic; J.1
[Administrative Data Processing]: Law.

General Terms
Design, Performance, Theory.

Keywords
Regulations, Legal Informatics, Compliance Assistance.

1. INTRODUCTION
Industrial production activities in the United States that produce
byproducts classified as hazardous waste must comply with
regulations regarding the handling and fate of such materials. In
the United States, both federal and state, as well as local
governments, have strict regulations imposed on the treatment and
disposal of such chemical wastes. Environmental regulations are
complex and voluminous. The largest of the generators have the
staffs to deal with the regulatory agencies and, often, the resources

to contract with specialized treatment, storage and disposal
facility (TSDF) companies to manage their waste. However,
environmental regulations can be disproportionately burdensome
on small businesses, since these businesses often do not have the
resources to staff personnel trained to deal with these complicated
regulations and procedures [1, 2]. Many government regulations
are now available online. However, most of current online portals
are primarily designed for displaying the information for
experienced users and are difficult to use for further processing.
Information technology (IT), if properly designed and developed,
has the potential to mitigate and help solve many of these
complicated issues. Through the application of advanced
information technologies and development of new methodologies,
the REGNET research project aims to develop a formal
information infrastructure for regulatory information management
and compliance assistance.

This paper focuses on the creation of a first order predicate
calculus based regulation compliance-assistance system built upon
an XML framework. We first briefly describe two areas of
research that support the development of the compliance
assistance system. The first is a document repository containing
federal and state regulations and supplemental documents. The
second is an XML framework for representing regulations and
associated metadata. We then describe in detail the prototype
effort for the regulation assistance system. The regulation
assistance system is illustrated in the domain of used oil
management.

2. DOCUMENT REPOSITORY
An objective for the REGNET information infrastructure has been
the development of a document repository for environmental
regulations. The scope of our current prototype development
covers US Code of Federal Regulations Title 40 (40 CFR):
Protection of the Environment, along with selected supplementary
and supportive documents that focus on regulations covering
hazardous waste and the management of used oil. Supplemental
documents are important because they often contain information
that is necessary for the accurate interpretation of the federal
regulation(s) to which they refer [3]. Supplementary documents
may come in the form of administrative decisions, guidance
documents, court cases, letters from the general counsel and
letters of interpretation from the Environmental Protection
Agency (EPA). The REGNET document repository is designed to
make these important documents more accessible. The contents
of the repository are available through the mediation of one or
more searchable concept hierarchies, or through a regulation
assistance system described later in this paper.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICAIL ’03, June 24-28, 2003, Edinburgh, Scotland, UK.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

3. XML REGULATION FRAMEWORK
AND METADATA
We have developed an XML framework for environmental
regulations. The framework is document centric and includes
XML tags for each level of regulation text – for example part,
subpart, section or subsection – that mirrors the standard structure
of regulations. This framework results in a hierarchical structure
for the regulations, with regulation text attached throughout.
Figure 1 shows how a regulation can be decomposed into a
hierarchical tree structure. Figure 2 shows an abbreviated sample
of how we represent this hierarchical structure in XML. Parsing
systems have been built to transform federal and state
environmental regulations from Portable Document Format (PDF)
and HTML into the REGNET XML framework. With XML, it is
possible to augment a regulation with various types of annotation
and regulation-specific metadata rather than to simply structure
the regulation according to how it should be displayed. With
respect to the document repository, the metadata types currently
added to the regulation framework include concept tags, reference
tags and definition tags.

The concept tags allow dynamically generating links to related
supporting documents in the document repository. This is useful
because supporting documents and regulations may not directly
reference each other even when they address the same topic. The
automatic application of concept tags to the XML framework
means that as new supporting documents are added to the
document repository, regulations stored in the framework can
automatically be linked to them via the terms that they share in
common. Concept tags can be generated “semi-automatically”
using existing text mining and information retrieval tools [4].
Currently, we use software from Semio Corp. to extract, clean and
define over 65,000 concepts for 40 CFR regulations and to
categorize the concepts according to different interests and
applications.

Regulation provisions tend to contain a large number of casual
English references to other provisions. These references are
cumbersome to look up manually, and they reduce the readability
of the regulation text itself. Simple references (for example, “as
stated in 40 CFR section 262.14(a)(2)”) and complex references
(for example, “the requirements in subparts G through I of this
part”) exist throughout regulations. Given the large volume of
federal and state environmental regulations, a manual translation
of references would be too time consuming. A parsing system
was developed using a context-free grammar and a semantic
representation/interpretation system that is capable of tagging
regulation provisions with the list of references they contain.
Instead of building hyperlinks, which tie the reference to a
particular source for the referred document, the reference tags
provide a complete specification for what regulation provision is
referenced. Where the regulation is located is not specified so that
a viewing system may select from any document repository of
regulations to retrieve the referenced provision. This gives better
flexibility than a rigid hyperlink structure for maintenance and
scalability.

The large number of domain-specific terms and acronyms that
appear in regulations can make regulation text difficult for
novices to understand. We standardize all definitions with XML

Figure 1. Decomposition of regulation into a tree structure

 <regulation id="40.cfr.279" name="Standards For The Management Of Used Oil" type="federal">

 <regElement id = “40.cfr.279.A” title = "Subpart A">
 < regElement id = “40.cfr.279.12” title = “Prohibitions”>
 < regElement id = “40.cfr.279.12.a” title = “Surface Impoundment prohibition”>
 <regText>

 <paragraph>Used oil shall not be managed in surface impoundments or waste
 piles…</paragraph>
 </regText>
 </regulation>
 <regulation id = “40.cfr.279.12.b” title = “Use as a dust suppressant”>
 </regulation>
 </regulation>
 </regulation>
</regulation>
Figure 2. Abbreviated XML representation of regulation tree

structure

elements, which allow regulation viewing systems to incorporate
explicit definitions of terms and acronyms into their user
interfaces.

4. REGULATION ASSISTANCE SYSTEM
4.1 Overview
There has been a push in the United States by the executive office
for government agencies to put more emphasis on compliance
assistance in lieu of enforcement to encourage companies to
comply with regulations [5, 6]. Towards this end, specialized
modules using expert system technologies have been built to
assist specific applications and business types in understanding
regulation requirements [7]. In these systems, references to the
regulations are not explicitly linked. Our research on developing
a compliance assistance infrastructure builds upon the XML
regulation framework and takes advantage of the regulation
metadata described in Section 3.

Besides the concept, reference and definition tags, we add logic
and control processing metadata to the REGNET regulation
framework. Logic metadata comes in two variations. There is
only one form of control processing metadata. Regulation logic
metadata represents a rule or concept from a regulation using First
Order Predicate Calculus (FOPC) logic sentences. These logic
sentences are used to represent the rules that must be followed for
an entity to be in compliance with the regulations. User interface
logic metadata uses FOPC logic sentences to represent
compliance questions and a list of possible user answers to those

PART 279—Standards For The Management Of Used
Oil

Subpart B – Applicability

…
§ 279.12 Prohibitions.
(a) Surface impoundment prohibition. Used oil shall
not be managed in surface impoundments or waste
piles unless the units are subject to regulation under
parts 264 or 265 of this chapter.
(b) Use as a dust suppressant. The use of used oil as a dust
suppressant is prohibited, except when such activity takes
place in one of the states listed in § 279.82(c).
(c) Burning in particular units. Off-specification used oil
fuel may be burned for energy recovery in only the
following devices:

(1) Industrial furnaces identified in § 260.10 of this
chapter;

(2) Boilers, as defined in § 260.10 of this chapter, that
are identified as follows:

(i) Industrial boilers located on the site of a facility
engaged in a manufacturing process where substances are
transformed into new products, including the component
parts of products, by mechanical or chemical processes;
….
§ 262.11 Used Oil Specification.
…..

Subsection
(a)

Subsection
(b)

Subsection
(c)

Subsection
(d)

40 CFR 279

Subpart A Subpart B Subpart I

Section 262.10 Section 262.11 Section 262.12

…

…
… …

contains

(a) Surface impoundment prohibition.
Used oil shall not be managed in
surface impoundments or waste piles
unless the units …

Example:

PART 279—Standards For The Management Of Used
Oil

Subpart B – Applicability

…
§ 279.12 Prohibitions.
(a) Surface impoundment prohibition. Used oil shall
not be managed in surface impoundments or waste
piles unless the units are subject to regulation under
parts 264 or 265 of this chapter.
(b) Use as a dust suppressant. The use of used oil as a dust
suppressant is prohibited, except when such activity takes
place in one of the states listed in § 279.82(c).
(c) Burning in particular units. Off-specification used oil
fuel may be burned for energy recovery in only the
following devices:

(1) Industrial furnaces identified in § 260.10 of this
chapter;

(2) Boilers, as defined in § 260.10 of this chapter, that
are identified as follows:

(i) Industrial boilers located on the site of a facility
engaged in a manufacturing process where substances are
transformed into new products, including the component
parts of products, by mechanical or chemical processes;
….
§ 262.11 Used Oil Specification.
…..

Subsection
(a)

Subsection
(b)

Subsection
(c)

Subsection
(d)

40 CFR 279

Subpart A Subpart B Subpart I

Section 262.10 Section 262.11 Section 262.12

…

…
… …

containscontains

(a) Surface impoundment prohibition.
Used oil shall not be managed in
surface impoundments or waste piles
unless the units …

Example:

(a) Surface impoundment prohibition.
Used oil shall not be managed in
surface impoundments or waste piles
unless the units …

Example:

questions. Control processing metadata provides information
about what provisions of a regulation need to be checked for
compliance. Each type of logic or control processing metadata
can be associated with any regulation provision in the document.
In the REGNET framework, these three types of metadata are
necessary for the system to be able to verify compliance with a
regulation. However, they must be specified by a domain expert
as they cannot be generated automatically. For the purposes of
demonstration, a federal used oil regulation (40 CFR 279) has
been manually tagged with regulation logic metadata, with user-
interface logic metadata, and with control processing metadata.

We built a regulation assistance system (RAS) to demonstrate
how the regulation meta-data can be used. The RAS functionality
is implemented by a web interface that communicates with a
compliance checking system. The compliance checking system
interacts with a theorem prover component. The structure of this
system is shown in Figure 3. The compliance checking system
controls the process used to check for violations. First, it parses
the XML-structured regulation to extract the information
necessary to run a compliance check. The XML structure allows
the system to properly scope the meta-data and reduce the amount
of extraneous data passed to the reasoning system. Only the logic
and control processing metadata necessary for the compliance
check are acquired and dynamically loaded into the reasoning
system. This is important because the performance of FOPC
theorem provers decreases rapidly as the number of logic
sentences used for reasoning increases. The system design is such
that any FOPC theorem prover can be used to perform the logic
checks. Presently, we employ Otter, a publicly available theorem
prover developed at the Argonne National Laboratory [8].

The primary feature of this web-based compliance assistance
system is that it helps guide the user through regulations. In order
to facilitate greater understanding of the regulations, the system

 XML-based
Regulations

Additional
Input Files

Interactive
User Input

Regulation
Compliance

Decision

Logic input file Found proof / no proof found

RASweb
•Provides web interface

•Displays regulation information

RCCsession
•Implements compliance
checking procedure

Otter
•Attempts to find proof by
contradiction from input file

User input Results / requested information

XML-based
Regulations

Additional
Input Files

Interactive
User Input

Regulation
Compliance

Decision

Logic input file Found proof / no proof found

RASweb
•Provides web interface

•Displays regulation information

RCCsession
•Implements compliance
checking procedure

RCCsession
•Implements compliance
checking procedure

Otter
•Attempts to find proof by
contradiction from input file

Otter
•Attempts to find proof by
contradiction from input file

User input Results / requested information

Figure 3. Diagram of the Regulation Assistance System's

structure
Figure 4.temp

makes available a number of enhancements while guiding the user
through a compliance check, utilizing the metadata with which the
regulations are tagged. The system can automatically insert links
to any referenced regulation provisions and display terms and
definitions. Key conceptual phrases for the provision are
displayed and linked, enabling instant access to repository
documents related to the provision. The use of concepts,
definitions, and references is shown in Figure 4.

A web interface asks users questions based on information in the
XML logic metadata. Users may select a response from a menu of
possible responses, including an “I don’t know” option that forks
the compliance-checking process along all possible answers. The
ability to allow users to fork the compliance process along all
possible paths at any time is useful for exploring different
scenarios. When the system completes a check against the

Search Terms/ Concepts

Definitions

Links to References

Letter of
Interpretation

Search by Concept
Category

Figure 4. Definition, reference and concept usage

regulation provisions or detects a conflict between the user’s
answers and the regulation, it displays a summary of the question-
and-answer history as well as the results of the compliance check.
The use of and results produced by the system are illustrated in
Figure 5 below. Downloadable logs of completed compliance
checks allow users to maintain detailed records of their
compliance checks, a feature companies we met with felt would
be extremely valuable for record keeping or when revisiting the
regulations at a later date. The logs of compliance checks can
also be uploaded and edited for future compliance checks against
the same or updated regulations.

4.2 Logic and control processing meta-data
In order to facilitate the development of compliance assistance
systems, we developed XML elements to provide processing
information for systems interpreting the regulation document. We
developed control elements to specify what regulation provisions
need to be processed, and logic elements to represent compliance
information.

4.2.1 Control processing elements
The control element is a wrapper element that may contain one or
more instructions within it in the form of one or more of three
sub-elements: goto, switchTo, or end. These control elements
allow regulation designers to specify what regulation provisions
may or may not need to be investigated. While not FOPC in
nature, control elements provide processing logic and therefore
may be used within the logic XML elements that are discussed in
Section 4.2.2. These control elements are currently added
manually, but it would be possible to take advantage of the
automatically-generated reference elements to partially-automate
the process of adding control elements.

The goto control element specifies a regulation provision that the
system should process next; returning to the current provision
once the specified provision has completed its check. The goto
element is useful when it is necessary to check an additional
regulation provision without abandoning the current line of

processing. For example, frequently a regulation provision will
refer readers to another regulation provision that should be read
before continuing. The goto element instructs a system to
temporarily go to the specified regulation provision, but to return
to the currently provision eventually.

Similarly, the switchTo element specifies a regulation provision to
process next, but processing should not return to the current
provision once the specified provision has completed its check.
This is useful when a regulation provision specifies some
conditions under which a different regulation provision will
apply. The switchTo element instructs the system that the check
against the current regulation provision is complete, and that
processing should continue starting with the regulation provision
specified by the switchTo element.

Figure 6 demonstrates the usage of the goto and switchTo
elements. This example illustrates an instruction to process
section 279.65, and once that section is complete to switch
processing to section 279.73. Note that in order to specify
processing control to move to a reference within the regulation the
control attribute “target” is used. For example, target =
“40.cfr.279.65”, refers the compliance processing system to
section 279.65 in 40 CFR.

The end element signals that the check of the specified provision
is complete. This is useful when the regulation specifies that
under certain conditions the check against the current provision
need not go any further. Since regulation checks may be done at
any level of the regulation document, it is important to specify a
target reference for the end element. For example, if during a
check of the regulation Section 40.cfr.279.12 an end element is
encountered that specifies that 40.cfr.279.12.a is complete, it is
important to realize that the check against 40.cfr.279.12 is not
finished and should continue. On the other hand, if section
40.cfr.279.12.a is being checked and an end element is
encountered that specifies 40.cfr.279 is complete, processing of
the current provision can stop. Figure 7 demonstrates the usage of
the end element. This example instructs the system that the
compliance checking for provision 40 CFR 279.12 is complete.

Figure 5. Example compliance-checking session

 <control>
 <goto target = “40.cfr.279.65” />
 <switchTo target = “40.cfr.279.73” />
</control>

Figure 6. Goto and switchTo element usage

 <control>
 <end target = “40.cfr.279.12” />
</control>

Figure 7. End element usage

4.2.2 Adding Logic to XML regulations
Logic can be added to the XML-based regulation document to
facilitate manipulation and interpretation of the document by
logic-based systems. Internal contradictions within the regulation
can be checked for, contradictions between regulation documents
can be identified, and compliance checking systems can be built
to verify that a user is in compliance with the regulation. This
section discusses the tagging of environmental regulations with
logic, and will be followed up by a discussion of the algorithm
used by a prototype system for checking compliance with the
regulations.

The approach of tagging XML structured regulations with FOPC
introduces an open platform consisting of structured text and
embedded logic that is a significant improvement over
unstructured text variants. The use of FOPC makes the work
accessible and usable by a wide variety of automated deduction
systems.

Logic elements can be added to the XML structure within
regElement XML elements. The logic elements are denoted by
“logic” tags, and may contain either logicSentence or logicOption.
These elements are described in detail below. All of the logic
added to regulations in the current implementation is done
manually.

The logic sentences are written in FOPC, which provides the
expressive power with which to model the meaning of
environmental regulations. While the exceptions in the regulation
rules can introduce an element of non-monotonicity, the closed
domain of the regulation scope may make this a tractable problem
in FOPC. The choice of FOPC also introduces a great deal of
flexibility for choosing a reasoning system, since there are many
reasoners available for working with FOPC.

Logic sentences representing the ideas laid out by a regulation are
added to an XML regulation document in logicSentence elements
that may be placed within “logic” elements. These logicSentence
elements may be used to tag regulation provisions throughout the
document with their logical meaning. The flexible placement of
the logicSentence element enables the tagging of any provision
within the document with a meaning. For example, tagging the
root regulation element with a logicSentence element specifies
that the logic sentence should be applied to the entire document.

The logicSentence elements are generally used to define the rules
and concepts expressed in a regulation.

Figure 8 illustrates the usage of a logicSentence element. The
logicSentence element describes a rule that used oil may not be
used as a dust suppressant. The rule states that for all objects “o”,
if “o” is used oil then “o” cannot be a dust suppressant. The use
of “ForwardImplies” instead of the more common logic syntax
“->” is necessitated by the XML standard, and is described in
greater detail in Section 4.2.3.

Another logic element was introduced to handle the issue of user
input. The logicOption element can be used to build a structured
question and answer system that constructs logic sentences based
on the user’s input. Without the “logicOption” elements,
interacting with the system would require the user to work with
FOPC sentences.

The logicOption element contains one question element and one
or more answer elements. The question specifies the text that can
be used to prompt a user for input. The answer element contains a
possible answer to the question and the logic that should be
associated with that answer. Since answers are tied to logic
statements, the user can interact with the system in plain English,
but the answers are mapped to logic statements so that they can be
used for compliance checking. The logicOption element allows
logic statements to be specified for compliance checking without
requiring the user to construct FOPC sentences on their own.

Figure 8 illustrates the usage of a logicOption element that assists
with gathering user input. This particular element maps the user’s
response to a question about the use of used oil to logic
statements that reflect the user’s answer. For example, a
compliance assistance system might ask the question "Is the used
oil used as a dust suppressant?", and provide the option of
answering "yes" or "no". If a user selects the "yes" answer, the
system would know to match the response to the logic sentence
"(usedOil(oil1) AND dustSuppressant(oil1)).".

 <logicSentence>
 all _o (usedOil(_o) ForwardImplies -(dustSuppressant(_o))).
</logicSentence>

<logicOption>
 <question>
 Is the used oil used as a dust suppressant?
 </question>
 <logicOpt answer = "yes">
 <logic_ans>
 (usedOil(oil1) AND dustSuppressant(oil1)).
 </logic_ans>
 </logicOpt>
 <logicOpt answer = "no">
 <logic_ans>
 (usedOil(oil1) AND (-(dustSuppressant(oil1)))).
 </logic_ans>
 </logicOpt>
</logicOption>

Figure 8. Usage of logicSentence and logicOption elements

4.2.3 Standard logic syntax and XML standards
One drawback to the use of XML for storing logic representations
of regulations is that there are syntactic limitations that must be
met to comply with the XML standard. For example, XML
elements are defined by the XML standard to start with “<”, as in
“<regText>”. This conflicts with the standard logic syntax used
for reverse implications, “<-“, and equivalences, “<->”. A
simple substitution of text provides the solution for this problem,
where the illegal XML character sequences are replaced with legal
ones.

The substitutions currently being used to represent FOPC in an
XML compliant syntax are shown in Table 1. Note that the
substitutions for “->” and “|” are not necessitated by XML
standards, but are done so that the XML logic uses a consistent
representation formalism. The substitutions for “<-”, “<->”, and
“&” are required by XML standards. The substitutions must be
reversed by logic processing systems reading the XML regulation
so that the standard syntax is used when providing the data to a
logic reasoner. The XML compliant substitutions also become
reserved words in the logic representation language. Since the
words in the right column will be substituted with the logic
symbols in the left column, words in the right-hand side of the
table are reserved words that cannot be used for logic predicates
or function names.

4.3 Compliance-Checking Process
The RAS compliance-assistance processing algorithm proceeds in
three stages. First, the XML regulation is verified. Second,
interactive processing is done as the RAS system moves
dynamically through the regulation. Third, results of the analysis
are compiled and presented to the user. Each of the stages is
discussed in detail below.

4.3.1 XML Regulation Verification
The RAS system performs two layers of verification checks on an
XML regulation before it is used to assist with compliance
checking procedures. The first step in verifying an XML
regulation is to perform structural verification of the XML. This
is done by verifying the regulation against a regulation DTD we
developed.

The second step in verifying the XML regulations is to verify that
all the logic rules contained in logicSentence elements are
consistent. The system extracts all the logicSentence elements
from the target regulation and builds an appropriate input file for
the theorem prover, Otter. If the theorem prover does not find a
contradiction in the logic sentences within a given time period,
the core regulation logic is assumed to be consistent. This check
attempts to ensure that the set of logic rules embedded in the
XML regulation, which were specified by a domain expert, do not
contain a contradiction. The initial check for contradictions in
regulation rules does not guarantee that there are no
contradictions in the rules, since the theorem prover, Otter, is not
guaranteed to find a contradiction if one exists. In practice,
however, this initial logic check has been fairly robust.

The initial check for problems with the logic rules is important,
since if the rules contained a contradiction the logic system would
be unable to assist with compliance checking against the
regulation. The RAS system identifies potential conflicts with
regulation rules by identifying logical contradictions between user

Table 1. Substitutions for XML compliant logic sentences

input and regulation rules. Therefore, if the regulation rules
themselves contain a contradiction the algorithm used by the RAS
system will not work.

4.3.2 Compliance Processing Algorithm
Processing of the regulation document is done by a depth-first tree
traversal of the XML structure starting at a selected provision. A
provisions-to-process (PTP) stack maintains a list of regulation
provisions that need to be investigated, and an already-processed-
provisions (APP) list keeps track of provisions for which
processing is complete. Any XML “control” elements
encountered while traversing the regulation tree-structure redirect
the flow of processing. The effect of the three control elements on
the PTP stack and APP list will be discussed next.

The effect of the goto control element on the PTP stack and the
APP list is shown in Figure 9. The initial PTP stack is shown on
the left and the resulting stack after taking the control elements
into account is shown on the right side of the figure. As the first
example shows, in the simplest case the goto element adds the
provision specified to the PTP stack. As the second example
shows, only a single call to a particular regulation provision may
be in the PTP stack at a time. Additional attempts to add the same
provision to the stack are ignored so as to prevent infinite loops.
The third example illustrates the idea that provisions in the APP
list cannot be added to the PTP stack, since they have already
been processed. The fourth example demonstrates that even if the
system is processing a sub-provision of the top PTP provision, the
goto element operates as would be expected.

40.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11 40.cfr.279.12

40.cfr.279.11

40.cfr.279.23
goto

279.23

goto
279.11(empty)

(empty)

(empty)

(empty)

40.cfr.279.12

40.cfr.279.11

40.cfr.279.23
goto

279.23 40.cfr.279.12

40.cfr.279.11

40.cfr.279.23

goto
279.2340.cfr.279.12

40.cfr.279.11
40.cfr.279.12.a (empty)

40.cfr.279.12

40.cfr.279.11

40.cfr.279.23

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

40.cfr.279.12

40.cfr.279.12

40.cfr.279.12

 Figure 9. The goto element

Standard logic syntax XML compliant substitution
-> ForwardImplies
<- ReverseImplies
<-> EquivalentTo
& AND
| OR

The effect of the end control element on the PTP stack and the
APP list is shown in Figure 10. Control elements of end type
result in the targeted provision being removed from the PTP stack
if it exists there, and added to the APP list. The first example in
Figure 10 shows the element’s basic effect. The end element has
no effect if the specified provision is already in the APP list, as
shown in the second example. The third example illustrates how
sub-provisions of provision in the PTP stack can be added to the
APP list. If provisions in the PTP stack are sub-provisions of a
provision targeted by an end element, the sub-provisions will be
removed from the PTP stack.

The effect of the switchTo control element on the PTP stack and
the APP list is shown in Figure 11. The first example in Figure
11 show how in the basic case the top provision is removed from
the PTP stack and added to the APP list, and the provision
specified by the switchTo element is added to the PTP stack. The
second example demonstrates how in cases where the switchTo
element refers to previously processed provisions the referenced
provision is not added to the PTP stack. The third example shows
that if the system is processing a sub-provision of the top PTP
provision, the switchTo element adds the provision currently
being processed to the APP list and the provision specified by the
switchTo element to the PTP stack. This illustrates how the
switchTo element is provided for convenience, since it has the
same effect as a goto element combined with an implied end
element for the current provision.

40.cfr.279.1140.cfr.279.12

40.cfr.279.11

end
279.12(empty) 40.cfr.279.12

40.cfr.279.12

40.cfr.279.11

end
279.2340.cfr.279.23 40.cfr.279.2340.cfr.279.12

40.cfr.279.11
40.cfr.279.12

40.cfr.279.12

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

40.cfr.279.11

40.cfr.279.12

40.cfr.279.11

end
279.12.a(empty) 40.cfr.279.1240.cfr.279.12 40.cfr.279.12.a

40.cfr.279.12

40.cfr.279.11

end
279(empty)40.cfr.279.12 40.cfr.279(empty)

Figure 10. The end element

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12(empty) 40.cfr.279.23

40.cfr.279.11

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12

40.cfr.279.23

40.cfr.279.1140.cfr.279.23

40.cfr.279.12

40.cfr.279.12

Provisions-to-
process Stack

Already processed
provisions

Provisions-to-
process Stack

Already processed
provisions

Currently
processing
provision

switchTo
279.2340.cfr.279.12

40.cfr.279.11

40.cfr.279.12.a(empty) 40.cfr.279.23

40.cfr.279.11
40.cfr.279.12.a

40.cfr.279.12
Figure 11. The switchTo element

As logicOption XML elements are encountered during
processing, these elements are used to prompt the user for answers
to the questions they contain. The logicOption elements provide a
mapping from user responses to logic sentences, which can then
be verified against logic rules in the regulation. After each
question is answered, the logic associated with the selected
answer is recorded and any control elements associated with the
answer are noted. Otter is then used to check for a contradiction
between the logic associated with the user’s answers, called
response logic, and the rules specified by the regulation.

Figure 12 shows a flowchart diagramming the procedure for
identifying conflicts between user response logic and regulation
rule logic. First, an input file is prepared for the theorem prover,
Otter, with all the regulation rules encountered during processing
along with all the logic sentences selected by users in response to
questions. Second, Otter is run using the input file. Third, RAS
reads the output file from Otter to see if the theorem prover was
able to find a contradiction in the input logic sentences. If no
proof was found, the logic sentences are assumed to be consistent.
If a proof was found, the proof steps are read to find the input
logic sentences that contributed to the contradiction. These input
logic sentences are then mapped back to the provision rules or the
user responses from which they originated. This allows the
system to identify what is contributing to the logical
contradiction, i.e. non-compliance with the regulation.

Answers to the questions contained in logicOption elements are
also recorded in a file. This file enables the system to
automatically process questions that have been answered in the
past. These answers form a detailed log that can be provided to
the user as described in Section 4.1.

The questioning procedure terminates when either a logical
contradiction is found or the PTP stack is empty. When the
questioning procedure ends due to an empty PTP stack, the
system returns a result stating that it appears the user is in
compliance with the regulation. When the questioning procedure
ends due to a logical contradiction being found, the system returns
a result stating that there is a compliance problem and a detailed
report is returned to the user to help identify the problem. All the
questions, answers and relevant provisions that contributed to the
logical contradiction are then displayed for the user. An example
screen shot of this process is shown in Figure 5.

Annotating XML regulations with logic elements and processing
them in the manner described above has a performance advantage
over simply building a large Knowledge Base (KB) of logic
sentences. The primary advantage of the approach described is
that the number of logic sentences that need to be handled by the
reasoning subsystem (i.e. Otter) is reduced. Doing logic proofs is
computationally intense, and significantly reducing the number of
extraneous logic sentences greatly reduces the processing time for
proofs and increases the complexity of problems that can be
handled. If a RAS compliance-checking session were to trace
over and dynamically load the logic from every provision in a
particular regulation, the performance of the RAS system would
not be better than that of a system that simply used a complete KB
of all the logic sentences in a regulation for reasoning. The
expectation of the RAS system is that in general not all provisions
in a regulation would need to be processed, so the corresponding
number of logic sentences needed for the compliance-checking

Start

Write Otter input
file with all rule

and user response
logic sentences

Run Otter with
input file

Read Otter output
file

Assume logic is
consistent

End

Found proof?

Read proof to identify
logic sentences used

in proof
(logic sentences are

inconsistent)

Map logic sentences
used in proof back to
the provision rules or
user responses they

originated from

Yes

No

Figure 12. Processing FOPC with Otter

logic proofs will be smaller than in the case of a system that
simply uses a complete KB for all logic checks.

This section has described the logic and control elements added to
the XML regulations, along with the algorithm that uses these
elements for compliance-assistance purposes. A flowchart of the
overall processing algorithm is shown in Figure 13.

4.4 The Broader Compliance Perspective
The compliance problem from the perspective of the regulated
community can be broken-down into two parts. First, one must
determine which sets of regulations one must comply with.
Second, one must determine what needs to be done to comply
with those regulations. The RAS system primarily addresses the
second of these two steps by guiding users through regulations.
The RAS system was designed, however, such that it could be
used as a component in a larger system that would first assist a
user in identifying regulations that need to be investigated. The
RAS system can initiate compliance checks at any point within a
regulation, and a compliance check can by started by connecting
to the RAS system with a target regulation in the URL.

To demonstrate how straightforward it can be to build a
compliance guide for a specific application utilizing the RAS

Start

End

Verify XML file

Is there an
unanswered question
associated with the

provision?

Is there another
provision to process?

Rule and
response logic
sentences are

consistent?

Move processing
to next provision

Appears to be in
compliance.

Compile results.

Appears to be a
compliance issue.
Compile results.

Ask question and
map user

response to logic
sentences

Update list of
provisions to

process according
to any control
statements

Rule and
response logic
sentences are

consistent?

Yes

Yes

Yes

Yes

No

No

No

No

Add any previously
unseen logic rules
from the provision

Update list of
provisions to

process according
to any control
statements

Figure 13. Determining compliance with a regulation

system and the document repository as a back end, a sample
online guide was built for vehicle maintenance shops. The
vehicle maintenance shop online guide was adapted from a paper-
based guide developed by the New York State Department of
Environmental Conservation Pollution Prevention Unit [9]. Our
adaptation is for demonstration purposes only since it combines
some federal and state regulations. Figure 14 illustrates how the
demonstration system links into the RAS system to make use of
the used oil regulations. The guide targets vehicle maintenance
shops and explains what regulations apply to typical work done in
that industry. While the original paper-based guide explains
requirements and references applicable regulations, our online
adaptation provides the additional feature of enabling users to
click on referenced regulations and check for compliance

by stepping through the regulation itself. Online regulation
guides such as the vehicles maintenance shop example located
anywhere on the Internet can build upon the compliance-checking
capabilities of the RAS system simply by passing target
regulations in the URL.

5. USER EVALUATION
In order to gather feedback we have organized a small workshop
at Stanford University attended by our key contacts from EPA
Region IX office, HP, Palo Alto’s environmental compliance
office, and legal professionals in the Bay Area. We have also
shown demos and have provided access to the compliance
assistance system for a number of individuals, government
agencies, nonprofit organizations, and large and small companies.
Feedback from these interactions has indicated that our approach,
if scalable, would be useful to many parties affected by
regulations.

6. RELATED WORK
Representation of regulations and laws has been an active
research area for decades. There has been a great deal of work
done on building expert systems for law [10, 11]. T. Bench-
Capon provided a review on the applications of knowledge-based
systems for legal applications, particularly the research and
development efforts related to the Alvey DHSS Demonstrator
project in U.K. [12]. The reference includes several hundreds of
citations that appeared before 1990 which are related to logic and
rule based approaches and their application in legal systems.
Much of the earlier work in IT and law focused on building
systems to optimize decisions with respect to laws, particularly tax
law [13]. Some of the recent work has focused on investigations
into case-based reasoning and information retrieval [14, 15].
Methodologies on tailoring legal documents to users’ needs have
also been studied [16]. While legal knowledge representation and
reasoning has been an active research topic [17, 18], an integrated
approach covering the management of regulations, efficient access
and retrieval of documents and tools for compliance checking is
missing. Wang [19], in his thesis, proposes an integrated and
distributed information management infrastructure to support
hazardous waste compliance, research work that was a precursor
to this work and laid much of the groundwork for the research
described in this paper. This research focuses on the issues
related to the development of a regulatory information
management infrastructure that can also support compliance
assistance.

7. SUMMARY
The goal of the REGNET research Project is to develop an
information infrastructure for regulatory information management
and compliance assistance. This paper describes some of the
work that has been done to date on creating a logic-based
regulation assistance system, which builds upon an XML-based
framework for representing regulations and a document
repository.

8. ACKNOWLEDGMENTS
This research project is sponsored by the National Science
Foundation, Contract Numbers EIA-9983368 and EIA-0085998.
The authors would like to acknowledge a “Technology for
Education 2000” equipment grant from Intel Corporation and the
support by Semio Corporation in providing the software for this
research. The authors would like to thank professors Gio
Wiederhold of the Computer Science Department, Barton
Thompson of the Law School, and Jim Leckie of the Department
of Civil and Environmental Engineering for their valuable
suggestions in this project. Last but not least, the authors would
like to acknowledge the contributions by the REGNET research
team members, Charles Heenan, Haoyi Wang, Gloria Lau and Jie
Wang.

9. REFERENCES
[1] Rechtschaffen, C., “Competing Visions: EPA And The

States Battle For The Future Of Environmental
Enforcement,” Environmental Law Reporter, 2000.

[2] Romine, M., “Politics, The Environment, And
Regulatory Reform At The Environmental Protection
Agency,” Environmental Lawyer, 1999.

[3] Heffron, F.A. and N. McFeeley, The Administrative
Regulatory Process, Longman, 1983.

[4] Heenan, C., Manual and Technology-Based
Approaches to Using Classification for the Facilitation
of Access to Unstructured Text (Unpublished
Manuscript), Engineering Informatics Group, Stanford
University, January, 2002. (available at
http://eil.stanford.edu/regnet).

Figure 14. Linking industry-specific guides to the regulation assistance system

[5] Business Compliance One Stop Workshop, Small
Business Administration, Queenstown, MD, July 24-
26th, 2002.

[6] National Compliance Assistance Providers Forum. co-
sponsored by the U.S. Environmental Protection
Agency and Texas Commission on Environmental
Quality: San Antonio, TX., Dec., 2002.

[7] Botkin, A., “Wizards, Advisors and Websites, Oh My!
Interactive Electronic Tools for Compliance
Assistance,” presented at the National Compliance
Assistance Providers Forum, co-sponsored by U.S.
Environmental Protection Agency and Texas
Commission on Environmental Quality, San Antonio,
December, 2002.

[8] McCune, W.W., Otter 3.0 Reference Manual and
Guide. ANL-94/6, Mathematics and Computer Science
Division, Argonne National Laboratory, 1994.

[9] Environmental Compliance and Pollution Prevention
Guide for Vehicle Maintenance Shops, New York State
Department of Environmental Conservation Pollution
Prevention Unit, 2002.

[10] Wahlgren, P., Automation of Legal Reasoning, Kluwer
Law and Taxation Publishers, 1992.

[11] Zeleznikow, J. and D. Hunter, Building Intelligent
Legal Information Systems: Representation and
Reasoning in Law, Kluwer Law and Taxation
Publishers, 1994.

[12] Bench-Capon, T.J.M., Knowledge Based Systems and
Legal Applications. The APIC Series 36, Academic
Press, 1991.

[13] McCarty, T., “Reflections on Taxman: An Experiment
in Artificial Intelligence and Legal Reasoning,”
Harvard Law Review, 1977.

[14] Stranieri, A. and J. Zeleznikow. “The Evaluation of
Legal Knowledge Based Systems,” Proceedings of the
Seventh International Conference on Artificial
Intelligence and Law, pp. 18-24, 1999.

[15] Brüninghaus, S. and K.D. Ashley, “Finding factors:
learning to classify case opinions under abstract fact
categories,” Sixth International Conference on
Artificial Intelligence and Law, Melbourne, Australia,
ACM Press, 1997.

[16] Royles, C.A. and T.J.M. Bench-Capon, “Dynamic
Tailoring of Law Related Documents to User Needs,”
9th International Workshop on Database and Expert
System Applications, IEEE, 1998.

[17] Proceedings of the 7th International Conference on
Artificial Intelligence and Law. Oslo, Norway, ACM
Press, 1999.

[18] Proceedings of the 8th International Conference on
Artificial Intelligence and Law. St. Louis, Missouri,
ACM Press, 2000.

[19] Wang, J., Distributed Information Organization and
Management for Hazardous Waste Regulation
Compliance Checking, in Department of Civil and
Environmental Engineering. (under preparation),
Stanford University.

	INTRODUCTION
	DOCUMENT REPOSITORY
	XML REGULATION FRAMEWORK AND METADATA
	REGULATION ASSISTANCE SYSTEM
	Overview
	Logic and control processing meta-data
	Control processing elements
	Adding Logic to XML regulations
	Standard logic syntax and XML standards

	Compliance-Checking Process
	XML Regulation Verification
	Compliance Processing Algorithm

	The Broader Compliance Perspective

	USER EVALUATION
	RELATED WORK
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

