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ABSTRACT 
 
Structural health monitoring is a broad field that encompasses a number of synergetic technologies 
brought together to provide a system that can potentially identify and characterize the performance 
and/or possible damage in a structural system.  Such a system would include a data acquisition 
subsystem capable of recording a structure’s response to ambient and external loads and 
computational hardware embedded with numerical procedures to rapidly process the recorded 
response data to predict possible damage.  This paper describes the design of a low-cost wireless 
sensing unit for installation in structural monitoring systems.  The prototype  wireless sensing unit is 
intended to 1) collect measurement data from the sensors installed on a structure, 2) store, manage and 
locally process the measurement data collected, and 3) communicate the data and results to a wireless 
sensing network comprised of other wireless sensing/actuation agents upon demand.  The wireless 
sensing unit is designed not only for reliable communication of response measurements but also for 
power efficiency.  The performance of the sensing unit is validated in the field using the Alamosa 
Canyon Bridge in southern New Mexico.  With wireless radios consuming large amounts of power, 
energy preservation can be achieved by limiting the use of the wireless channel.  This study explores 
two approaches to reduce the power demands of the wireless sensing unit.  First, embedded 
engineering analyses are embedded and carried out by the sensing unit’s computational core to avoid 
transmission of long time-history records.  Second, lossless data compression is employed to reduce 
the size of data packets wirelessly transmitted.   
  
 
INTRODUCTION 
 
The broad field of structural health monitoring encompasses many advanced technologies that when 
integrated provides a system that can potentially identify and characterize the performance and/or 
possible damages of a structural system.  For a structural health monitoring system, a data acquisition 
subsystem is required to record a structure’s response to ambient and external loads.  Novel 
technologies such as wireless radio modems have been used to reduce monitoring system costs while 
simultaneously broadening functional capabilities.  The second necessary component for structural 
health monitoring is a package of numerical procedures that rapidly process the recorded response 
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data to predict possible damages.  To be of true value for the end users, the structural health 
monitoring system must also be low-cost, fully autonomous and highly reliable. 
   
During recent years, as new conduits for technology transfer between disciplines take hold, the 
structural engineering community has begun experimenting with advanced technologies such as 
micro-processing and embedded computing, wireless communications, micro-mechanical solid-state 
sensors, and mobile computing.  Adoption of these technologies can potentially improve the 
performance features and cost attributes of current structural engineering practices.  Straser and 
Kiremidjian (1996,1998) have explored the potential of wireless communications in structural 
monitoring systems to reduce installation and maintenance costs.  By eradicating the need to install 
coaxial cables for data communication, their work demonstrated the feasibility and the cost 
effectiveness of a wireless structural monitoring system.  Lynch (2002) has extended this work to 
include embedded microcontrollers within a wireless sensing unit prototype; embedded 
microcontrollers can be loaded with numerical algorithms to locally process and interrogate 
measurement data.   Wireless monitoring systems that are assembled from computationally self-
sufficient wireless sensors differ significantly from traditional cable-based monitoring systems whose 
centralized data servers assume responsibility for all data processing tasks.  Some advantages 
associated with computational decentralization include distributive and parallel processing of 
measurement data and eliminating the vulnerabilities due to  single, centralized point-of-failure.  A 
wireless sensor network of distributed computing power also provides opportunities to manage and 
process measurement data in new ways.  For example, wireless communications consume large 
amounts of power and are often constrained by range and bandwidth limitations.  To attain optimal 
usage of power, a wireless monitoring system needs to place greater emphasis on processing 
measurement data locally at the sensor in lieu of wirelessly transmitting long time-history records in 
real-time to centralized data servers (Lynch et al. 2003a, 2003b).   
 
This paper describes the design of a low-power wireless sensing unit intended for installation in 
structural monitoring systems.  Fabricated from off-the-shelf components, the units are low-cost and 
rich in functional features.  The performance and utility of the wireless sensing unit has been 
illustrated on the Alamosa Canyon Bridge, located in southern New Mexico, during forced vibration 
testing of the bridge (Lynch et al. 2002). To minimize the power consumption on the wireless sensing 
unit, two power saving measures are considered.  First, because the wireless modem requires large 
amounts of power for its operation, transmission of time-histories is avoided and embedded 
engineering analyses are locally executed by the unit’s computational core.  Various analyses are 
considered including determination of primary modal frequencies and computational components of a 
two-tiered statistical time-series damage detection method.  Second, when wireless transmission of 
time-histories is required, lossless data compression using Huffman coding is considered to reduce 
wireless radio usage. 
 
 
DESIGN OF A WIRELESS SENSING AND ACTUATION UNIT 
 
The design of a wireless sensing unit for structural monitoring requires a low-cost solution using 
minimal power.  Low-power demands is an especially important design constraint since portable 
batteries are a likely power source for units installed in remote structures such as bridges.  In addition, 
a design comprised of off-the-shelf electrical components is pursued to keep unit costs low (below 
$500 per unit) and to provide the luxury of easy hardware upgrades as technology improvements 
occur.  As such, the capabilities of the wireless monitoring system depend on the functionality of the 
unit design.  As shown in Figure 1, the unit consists of four functional subsystems: sensor interface, 
computational core, wireless communications, and actuation interface.   
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Data can be collected simultaneously from multiple sensors attached to the sensing interface.  Current 
interface of the prototyped unit provides three sensing channels with one channel dedicated to the 
collection of data from analog sensors and two additional channels for digital sensors.  With the 
continuing advances in microelectromechanical system (MEMS) fabrication, digital sensors that 
modulate their readings on square-wave signals are becoming increasingly popular.  For the 
conversion of analog sensor readings to digital forms, a single-channel 16-bit analog-to-digital 
converter (A/D) is included in the interface.  The interface can sample sensor data as high as 100 kHz.   

 
The core of the wireless sensing unit contains the computational power necessary for unit operation 
and for execution of embedded analyses.  To create a core that is both low-power and capable of 
executing data interrogation algorithms, a two-microcontroller design is pursued.  General operation 
of the wireless sensing unit, such as acquisition and storage of sensor data and packaging of 
information for wireless transmission, is the primary role of the Atmel AVR AT90S8515 low-power 
microcontroller.  The AVR microcontroller is an 8-bit architecture processor that draws 8 mA of 
current when powered by a 5 V source.   With internal memory limited, sophisticated data 
interrogation tasks would be difficult to embed in the AVR microcontroller.  As a result, a second 
microcontroller, the Motorola MPC555 PowerPC, is selected solely for execution of embedded 
engineering analyses.  The 32-bit MPC555 is chosen because it has ample internal program memory 
and floating-point calculations are internally performed by hardware.  A drawback of the MPC555 is 
that it draws 110 mA of current when powered at 3.3 V.  Due to MPC555 consuming more power 
than the AVR, the MPC555 is ordinarily kept off.  When engineering analyses are required for 
execution, the MPC555 is powered on by the AVR and turned off after their completion.  By 
partitioning the functional tasks of the core between two microcontrollers, each has been chosen to 
best fit their respective roles.   
 
A low-power wireless radio is sought with communication ranges capable of accommodating sensor 
nodal distances of over 300 ft.  The Proxim RangeLAN2 7911 wireless modem, operating on the 2.4 
GHz FCC unlicensed radio band, is chosen.  Using a 1 dBi omni-directional antenna, open space 
ranges of 300 m can be obtained.  When installed in the interior of heavily constructed buildings, the 
range of the radio is reduced to approximately 150 m.  To sustain such long communication range, the 
wireless radio consumes a large amount of power.  When internally powered by 5 V, the wireless 
modem draws 190 mA of current during transmission and reception of data; when idle, the modem 
draws 60 mA of current. 
 
To support active sensing for damage detection in structures, the current prototype has also been 
designed to include an actuation interface in the wireless sensing unit design (Lynch et al. 2004).  
Through the actuation interface, actuators such as piezoelectric pads embedded in or mounted upon 
structural members, can be commanded using a 12-bit digital-to-analog converter (D/A).  A Texas 
Instruments DAC7624 is chosen for integration with the wireless sensing unit as a single channel 

Figure 1.  Design of the proposed wireless sensing and actuation unit 
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actuation interface.  The DAC7624 can output voltage signals between + 2.5 V and can be driven at 2 
MHz.  Additional circuitry is provided in the actuation interface to extend the voltage range of the 
output from -5 to 5 V.   
   
 
FIELD VALIDATION ON THE ALAMOSA CANYON BRIDGE 
 
In order to validate the fabricated prototype wireless sensing units, numerous validation tests have 
been performed including instrumentation within laboratory and field structures (Lynch et al. 2002).  
The wireless sensing units were instrumented on the Alamosa Canyon Bridge located in southern New 
Mexico as shown in Figure 2.  Constructed in 1937, the Alamosa Canyon Bridge consists of seven 
simply supported spans each 15.24 m long and 7.32 m wide.  Each span is constructed from six 
W30x116 steel girders supporting a 17 cm concrete deck.  The girders transfer traffic loads to 
concrete piers located at both ends of the span with standard rollers serving at the girder-pier interface.  
A single section of the bridge was instrumented with a network of wireless sensing units.  In addition, 
a commercial structural monitoring system using conventional cables were installed in parallel to the 
wireless monitoring system.  The commercial monitoring system employed was the Dactron 
SpectraBook dynamic signal analyzer capable of accommodating 8 simultaneous input channels each 
with a 24-bit analog-to-digital conversion resolution.  The Dactron monitoring system provided a 
performance baseline to which the wireless monitoring system can be compared.  Figure 3 
summarizes the structural details of the instrumented span.   The bridge serves as a convenient 
structure for instrumentation because it has been used in previous system identification studies and its 
modal properties have been documented (Farrar et al. 1997).   
  
In this field validation study, accelerometers were the primary sensing transducer for measuring 
structural responses due to impulse and traffic loads.  Two different accelerometers were employed 
with one type used exclusively with the wireless sensing unit and the other with the cable-based 
monitoring system.  The wireless sensing unit has the Crossbow CXL01LF1 accelerometer interfaced.  
The CXL01LF1 is MEMS-based accelerometer capable of measuring accelerations in a range of 0 to 
+ 1 g with a root mean square noise floor of 0.5 mg and a bandwidth of 50 Hz.  The cable-based 
monitoring system used the Piezotronics PCB336 accelerometer which can measure accelerations 
from 0 to + 4 g with a noise floor of 60 µg.  Because the PCB336 is based on an internal piezoelectric 
element, the accelerometer is not capable of sensing steady state accelerations; only accelerations in a 
1 Hz to 2 kHz bandwidth can be measured.  As shown in Figure 3, the span was instrumented in seven 
locations noted as S1 through S7 with each accelerometer attached by epoxy to the vertical midpoint 
of the girder web.  At each location, the CXL01LF1 and PCB336 accelerometers were mounted 
adjacent to one another (see Figure 2(b)).   
 
To determine the primary modal frequencies of the span, a modal hammer was employed to impose 
impulsive loads delivered to the bridge deck.  After delivering an impact blow to the deck, the 
wireless and conventional cable monitoring systems simultaneously recorded the response of the 
structure.  Figure 4(a) shows the absolute acceleration time-history response of the span to a modal 
hammer blow located at the center of the span.  The time-history response is acquired by the two 
systems using accelerometers mounted to the span at sensor location S3.  The wireless sensing unit is 
commanded to collect data at a sampling rate of 976 Hz while the Dactron system collects data at 320 
Hz.  In comparing the recorded time-history records, strong agreements can be seen in the acceleration 
responses with amplitude peaks aligned along a shared time-axis.  Similar findings were obtained in 
the time-history records recorded at different sensor locations to various modal hammer blows.  These 
findings indicate the performance of the wireless sensing unit is reliable and accurate when compared 
to a conventional cable-based monitoring system. 
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(a) Alamosa Canyon Bridge 

 

 
(b) Accelerometers mounted 

Figure 2.  Field validation tests with accelerometers mounted with wireless sensor units on girder 
 
 

 

 

Figure 3. Structural details of the Alamosa Canyon Bridge 
 
 

 

 

(a) Time-history response for a modal hammer test (b) Derived frequency response functions 
Figure 4. Impulsive load responses at sensor location S3 of the Alamosa Canyon Bridge 

 
Having obtained the time-history records of the same structural response at sensor location S3, 
frequency response functions were calculated from the recorded data.  Figure 4(b) depicts the 0-30 Hz 
region of frequency response functions (FRF) derived from data recorded by the wireless and Dactron 
monitoring systems.  The FRF function corresponding to the response measured by the wireless 
sensing unit was calculated using the unit’s computational core with an embedded FFT algorithm.   

 
In comparing the two frequency response functions, strong agreement exists, particularly in the shape 
and location of their peaks and valleys.  There exists a lack of agreement of the frequency response 
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functions at frequencies less than 2 Hz.  This is due to the limitations of the PCB336 accelerometer 
whose piezoelectric transduction mechanism is not capable of capturing steady state and low-
frequency accelerations.  Furthermore the FRF derived from the Dactron system is smoother 
compared to the one derived from the data recorded by the wireless sensing unit.  This can be 
attributed to two observations.  First, over the 0-30 Hz frequency region, the density of points 
collected to define the frequency response functions is six times greater for the Dactron measured 
data.  Second, the lower analog-to-digital conversion resolution of the wireless sensing unit introduces 
quantization noise that is not introduced by the Dactron data acquisition system.   

 
The first three modal frequencies of the instrumented span of the Alamosa Canyon Bridge can be 
calculated from the frequency response functions shown in Figure 4(b).  Table 1 summarizes the 
modal frequencies determined from the data collected by the wireless sensing unit at the different 
sensor locations of the structure.  Also tabulated are the modal frequencies calculated during a 
previous system identification study of a different span of the bridge whose structural geometries were 
nearly the same (Farrar et al. 1997).   
 

Table 1. 
Modal frequencies determined by the wireless monitoring system  

Mode 1 Mode 2 Mode 3 Sensor 
Location (Hz) (Hz) (Hz) 

Past Study 7.4 8.0 11.5 
S1 6.7 8.3 11.6 
S2 6.8 8.5 11.3 
S3 6.7 8.2 11.4 
S4 6.7 8.4 11.7 
S5 6.9 8.3 11.5 
S6 7.0 8.4 11.8 
S7 7.0 8.7 11.9 

 
Other vibration sources have also been considered during the validation tests, including a speeding 
truck driven across the bridge and ambient vibrations originating from an adjacent highway bridge 
carrying interstate traffic. The vibration tests conducted on the Alamosa Canyon Bridge have revealed 
a number of important findings (Lynch et al. 2002): 1) wireless sensing prototypes were capable of 
collecting sensor data with high precision, 2) modal frequencies were accurately determined using a 
fast Fourier transform (FFT) procedure embedded in and executed by the wireless sensing unit core, 
and 3) the wireless monitoring system was installed in less than half the time required by the tethered 
cable-based system that was installed in parallel with the wireless monitoring units. 
 
 
EMBEDDED ENGINEERING ANALYSES FOR POWER-EFFECIENCY 

 
It is important to assess the energy consumption by the wireless sensing unit which is powered using 
portable batteries.  The energy consumed by the unit was experimentally measured using two 7.5 V 
battery sources.  First, an alkaline battery pack constructed from Energizer AA E91 battery cells was 
considered.  Second, lithium-based battery cells of high energy density were considered by 
constructing a battery pack from Energizer AA L91 battery cells.  The wireless sensing unit was 
turned on and the electrical current drawn from the battery packs measured using a current meter.  
Based on the measured current draws, the life expectancy of the battery packs can be calculated from 
engineering design charts provided by the battery manufacturer.  Table 2 summarizes the expected 
operational life of the batteries when continuously drained based on the currents measured.  It should 
be noted that the values listed in Table 2 are conservative because when installed in a structure use of 



 7 

the unit would be duty-cycled.  If batteries are intermittently used, cell chemistries are provided time 
to re-attain equilibrium thus resulting in extended lives.   
 
The findings indicate that the wireless modem consumes the largest amount of battery energy.  To 
preserve battery life, use of the modem should be minimized by limiting the amount of data wirelessly 
transmitted.  The computational core of the wireless sensing unit is thus incorporated with an MPC555 
microcontroller to process time-history data with pertinent results transmitted in lieu of time-history 
records.  When drawing 110 mA at 3.3 V, the power of the MPC555 is 363 mW.  Similarly, the 
RangeLAN2 radio consumes 190 mA at 5 V which is 950 mW of power.  The MPC555 is about 2.6 
times more power efficient than the wireless radio.  To determine the total amount of energy saved, 
the time needed to perform embedded analyses needs to be calculated.   The time for transmitting the 
raw time-history record can be calculated based on the radio serial baud rate (19,200 bit per second).  
Therefore, as long as the time of execution of the analysis is faster than the time of data transmission 
by more than 2.6 times, battery energy can be considered to be saved and a longer battery life can be 
expected. 
 

Table 2.  
Duration of battery sources for various operational states 

Operational State Circuit Internal Energizer L91 Energizer E91 7.5 
 (mA) (V) (hours) (hours) 

AVR On/MPC Off 8 5 500 300 
AVR On/MPC On 160 5/3.3 15 5 
RangeLAN Active 190 5 13 4 
RangeLAN Sleep 60 5 40 25 

 
 

Illustration of Local Data Interrogation 
 

A large assortment of embedded analyses can be encoded in the wireless sensing unit core.  In 
particular, algorithms pertaining to system identification and damage detection seem attractive for 
evaluation purposes.  To assess the energy saved by the sensing unit by locally processing data, two 
algorithms are tested; a Fast Fourier transform (FFT) and an algorithm for fitting auto-regressive time-
series models. Structural modal properties are often determined by performing a Fourier Transform on 
the measured response data.  In this study, the FFT algorithm of Cooley and Turkey has been 
implemented to transform the time history response data into frequency domain (Press et al. 1992).  
 
Many researchers are exploring the development of algorithms for detection of damage in structural 
systems.  One promising approach uses the coefficients of auto-regressive (AR) and auto-regressive 
with exogenous inputs (ARX) models as feature vectors for classification (damage or undamaged) 
(Sohn and Farrar 2001).  A database of AR-ARX model pairs is populated using models fit to ambient 
response data corresponding to the structure in an undamaged state.  Future AR-ARX models obtained 
from the structure in an unknown state (damaged or undamaged) are compared to this database.  
Feature vectors that represent statistical outliers to the database indicate potential damage in the 
structure.  Assuming the structural response to be stationary, an auto-regressive (AR) process model 
fits discrete measurement data to a set of linear coefficients weighing past time-history observations: 

∑
=

− +=
p

i
kikik ryby

1

 (1) 

The response of the structure at sample index, k, as denoted by yk, is a function of p previous 
observations of the system response, plus, a residual error term, rk.  Weights on the previous 
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observations of yk-i are denoted by the bi coefficients.  For the calculation of the coefficients by the 
wireless sensing unit, Burg’s approach, which is more stable compared to least-squares by avoiding 
matrix inversions to solve the Yule-Walker equations, has been implemented (Press et al. 1992). 
 
Response data collected during the validation tests at the Alamosa Canyon Bridge in New Mexico was 
used to determine the amount of energy saved by the local processing of data.  The times necessary 
for the MPC555 to fully calculate the modal frequencies and AR coefficients are measured.  Based on 
the measured execution times, the energy consumed by the MPC555 and the amount of energy 
estimated to wirelessly transmit the initial raw time-history records are compared. Table 3 presents the 
time associated with each analysis and the energy saved.  The computational efficiency of the 
embedded FFT and transmission of modal frequencies as compared to transmission of the time-history 
record can provide major energy savings of over 98%.  Calculation of AR coefficients is more 
complex and requires external memory for temporary data storage resulting in longer execution times.  
Hence, the energy saved is not as impressive as for the FFT, but savings of over 50% can still be 
obtained.  This exercise illustrates that significant savings could result by local data interrogation.    
 
Lossless Data Compression – Huffman Coding 

 
Compression methods can be used to reduce the data size by exploiting the structures of the data. 
Compression algorithms generally fall in two broad classes: lossless and lossy compression.  Lossless 
compression, often used in medical imaging applications, guarantees the integrity of the data without 
distortion.  In contrast, lossy compression reduces data with reasonable distortions but can achieve 
higher compression rates.  The results presented here are based on lossless compression.  
 
The computationally inexpensive compression technique, known as Huffman coding, was employed 
in the experimentation (Sayood 1996).  Lossless Huffman coding exploits statistical relationships in 
the data to pair short symbols to data values with high probability and long symbols to those with low 
probability of occurrence.  For example, if the 16-bit integer value “2342” was the most commonly 
occurring data sample, a short 1-bit symbol can be given to it, such as “0”.  Next, if “2455” is the next 
most common symbol, it might be given the 2-bit symbol “10”.  Hence, provided the probability mass 
density of the data, a compact binary representation of variable length can be used for compressed 
coding.  Prior to the generation of a Huffman lookup table, inherent structures in the data can further 
be exploited to increase the compression rates.  The structure in the data can be described by the 
transformation of the initial record using a de-correlation transform.  Although many transforms could 
serve as suitable candidates, Wavelet Transforms (WT) was employed in this study.  The complete 
compression process, including decompression, is presented in Figure 5.   

Table 3.  
Energy Analysis of Data Interrogation versus Tranmission 

Analysis Length  
of 

Record 

Time of 
MPC555 

Calculation 

Energy 
Consumed 
MPC555 

Time for 
Wireless 

Transmission 

Energy 
Consumed 

Radio 

Energy 
Saved 

 N (sec) (J) (sec) (J) (%) 
FFT 1024 0.0418 0.0152 1.7067 1.6213 99.062 
FFT 2048 0.0903 0.0328 3.4133 3.2426 98.988 
FFT 4096 0.1935 0.0702 6.8267 6.4854 98.917 

AR (10 Coef) 2000 1.3859 0.5031 3.3333 3.1666 84.112 
AR (20 Coef) 2000 2.8164 1.0224 3.3333 3.1666 67.713 
AR (30 Coef) 2000 4.2420 1.5398 3.3333 3.1666 51.374 
AR (10 Coef) 4000 2.7746 1.0072 6.6667 6.3333 84.097 
AR (20 Coef) 4000 5.6431 2.0484 6.6667 6.3333 67.657 
AR (30 Coef) 4000 8.5068 3.0879 6.6667 6.3333 51.243 
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Structural response data acquired from shake table tests on a 5 degree-of-freedom laboratory test 
structure is considered in this study (Lynch et al. 2002).  The top-story acceleration response of the 
structure to sweeping sinusoidal and white noise inputs are recorded by the wireless sensing unit using 
the A/D converter (with effective resolution of 12 bits).  The sweeping sinusoidal input has a constant 
displacement amplitude envelope of 0.075 in. and a linearly varying frequency of 0.25 to 3 Hz over 60 
sec.  The white noise input record has zero mean and a displacement standard deviation of 0.05 in. 
Table 4 summarizes the performance of lossless compression and the estimated amount of energy 
saved having compressed data using the MPC555 and wirelessly transmitting the compressed record.  
In all cases considered, compression rates better than 80% (of the original record size) have been 
achieved.  For the case of the sweep excitation input, compression rates of 61% and 71% were 
obtained respectively with and without applying WT for de-corrleation of the initial record.  For white 
noise excitation, the response lacks an inherent structure that the de-correlation transform can leverage 
for compression and negligible reductions in the compression rate are experienced using WT. 
 
 
 
 
 
 
 
 
 
 
 
SUMMARY AND DISCUSSIONS 
 
A wireless sensing unit for structural monitoring has been presented. The wireless sensing unit 
includes the computational capabilities as its core.  The core’s microcontrollers facilitate localized 
processing of raw time-history data prior to transmission in the wireless network.  Distributing 
computational power throughout the sensor network in this manner attains high energy efficiency 
thereby preserving portable battery operational lives.  The study has illustrated that energy-
efficiencies can potentially be gained by performing local data interrogation tasks.  Furthermore, data 
compression can be employed to reduce the size of time-history records prior to transmission.  Re-
design effort is currently underway to further minimize the power consumption of the wireless sensing 
unit (Wang et al. 2005). 
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Table 4.  
Compression of Structural response data using Huffman Coding 

Excitation 
Type 

De-
correlation 

A/D 
Resolution 

Total 
Record Size 

Compressed 
Record Size 

Compress 
Rate 

Energy 
Saved 

  (bits) (bytes) (bytes) (%) (%) 
Sweep None 12 1024 733 71.58 71.58 
Sweep Wavelets 12 1024 626 61.17 61.17 
White None 12 1024 795 77.60 77.60 
White Wavelets 12 1024 791 77.25 77.25 

Huffman
Lookup
Table

Data Data

Wireless Transmission

Compressed Data for Huffman
Lookup
Table

Inverse
De-

correlation

De-
correlation
Transform

Wireless Sensing Unit Wireless Sensing Unit

Figure 5.  Huffman compression of sensor data using wireless sensing units 
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